
Chapter 2

C*-algebras, states and
representations

2.1 C*-algebras

Let A be an associative algebra over C. A is a normed algebra if there is a norm A 3 x 7! kxk 2
R
+

such that kxyk  kxkkyk. A complete normed algebra is a Banach algebra. A mapping
x 7! x⇤ of A into itself is an involution if

(x⇤)⇤ = x;

(x+ y)⇤ = x⇤ + y⇤;
(xy)⇤ = y⇤x⇤;

(�x)⇤ = �x⇤.

An algebra with an involution is a *-algebra.

Definition 1. A Banach *-algebra A is called a C*-algebra if

kx⇤xk = kxk2, x 2 A.

Proposition 1. Let A be a C*-algebra.

1. kx⇤k = kxk;
2. If A does not have an identity, let eA be the algebra obtained from A by adjoining an

identity 1. Then eA is a C*-algebra with norm k · k defined by

k�1 + xk = sup
y 6=0

k�y + xyk
kyk , � 2 C.

Proof. Exercise.

In the following, A will always denote a C*-algebras with an identity if not specified other-
wise.

Definition 2. The spectrum Sp(x) of x 2 A is the set

Sp(x) := {� 2 C : x� �1 is not invertible in A} .
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If |�| > kxk, then the series ��1

P
n2N (x/�)n is norm convergent and sums to (�1 � x)�1.

Hence, Sp(x) ⇢ Bkxk(0). Assume now that x 2 A is a self-adjoint element and that a + ib 2
Sp(x), a, b 2 R. Then a+i(b+t) 2 Sp(x+it1). Since kx+it1k2 = kx+it1kkx�it1k = kx2+t21k 
kxk2 + t2, and by the remark above, |a+ i(b+ t)|2  kxk2 + t2, and further 2bt  kxk � a2 � b2

for all t 2 R, so that b = 0. For any polynomial P over C, P (µ) � � = A
Qn

i=1

(µ � zi), and
P (x) � �1 = A

Qn
i=1

(x � zi) 2 A for any x 2 A. Hence, � 2 Sp(P (x)) i↵ zj 2 Sp(x) for a
1  j  n. Since P (zj) = �, we have that � 2 Sp(P (x)) i↵ � 2 P (Sp(x)). We have proved

Proposition 2. Let x 2 A.

1. Sp(x) ⇢ Bkxk(0);

2. if x = x⇤, then Sp(x) ⇢ [�kxk, kxk];
3. if xx⇤ = x⇤x, i.e. x is normal, then kxk = sup{|�| : � 2 Sp(x)};
4. for any polynomial P , Sp(P (x)) = P (Sp(x));

The proof of 3. is left as an exercise. Note that the condition holds in particular for x = x⇤

An element x 2 A is positive if it is self-adjoint and Sp(x) ⇢ R
+

.

Proposition 3. Let x 2 A, x 6= 0. The following are equivalent:

1. x is positive;

2. there is a self-adjoint z 2 A such that x = z2;

3. there is y 2 A such that x = y⇤y;

Proof. (3) ) (2) by choosing y = z. (3) ) (1) since z2 is self-adjoint and since, by Proposition 2,
Sp(z2) ⇢ [0, kzk2]. To show (1) ) (3), we note that1 for any µ > 0,

µ =


1

⇡

Z 1

0

p
�

✓
1

�
� 1

�+ µ

◆
d�

�
2

(2.1)

Since x is positive, (x+�1) is invertible for all � > 0 so that z := ⇡
R1
0

p
�
�
��1 � (x+ �1)�1

�
d�

is well defined as a norm convergent integral, and x = z2. Using again (2.1) with µ = 1, we
have that

kxk1/21� z =
kxk1/2
⇡

Z 1

0

p
�

�+ 1
(x̂+ �1)�1(x̂� 1)d�, x̂ = xkxk�1

But x̂ positive implies Sp(x̂) ⇢ [0, 1], hence Sp(1� x̂) ⇢ [0, 1] and k1� x̂k  1. Moreover, since
Sp((x̂ + �1)�1) = (Sp(x̂ + �1))�1 ⇢ [(1 + �)�1,��1], we have k(x̂ + �1)�1k  ��1 for � > 0.
Hence, k1� zkxk�1/2k  1 so that Sp(z) ⇢ [0, 2kxk1/2] and finally z is positive.

It remains to prove (2) ) (1). Since x = y⇤y is self-adjoint, x2 is positive and we denote by
|x| its positive square root defined by the integral above. Then x± := (|x|±x)/2 is positive and
x�x+ = x

+

x� = 0. Decomposing yx� = s + it, with self-adjoint s, t, we have (yx�)⇤(yx�) +
(yx�)(yx�)⇤ = 2(s2+t2) � 0. But �(yx�)⇤(yx�) = �x�(�x�+x

+

)x� = x3� is positive, so that
(yx�)(yx�)⇤ is positive. On the other hand, Sp((yx�)(yx�)⇤)[{0} = Sp((yx�)⇤(yx�))[{0} ⇢
R�, hence (yx�)⇤(yx�) = 0 so that x� = 0, and finally x = x

+

is positive.

1

Convergence follows from the asymptotics O(s�1/2

) as s ! 0 and O(s�3/2

) as s ! 1, while the change of

variables � = µ⇠ yields immediately that the integral is

p
µ, up to a constant.
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Definition 3. A *-morphism between two *-algebras A and B is a linear map ⇡ : A ! B
such that ⇡(A

1

A
2

) = ⇡(A
1

)⇡(A
2

) and ⇡(A⇤) = ⇡(A)⇤, for all A,A
1

, A
2

2 A. It is called a
*-isomorphism if it is bijective. A *-isomorphism A ! A is an automorphism.

Proposition 4. Let A,B be two C*-algebras and ⇡ : A ! B a *-morphism. Then k⇡(x)kB 
kxkA, and the range {⇡(A) : A 2 A} is a *-subalgebra of B.
Proof. If x is self-adjoint, so is ⇡(x) and k⇡(x)k = sup{|�| : � 2 Sp(⇡(x))}. If x��1 is invertible,
then 1 = ⇡((x��1)�1(x��1)) = ⇡((x��1)�1)⇡(x��1) so that ⇡(x)��1 is invertible, whence
Sp(⇡(x)) ⇢ Sp(x), we have that k⇡(x)k  sup{|�| : � 2 Sp(x)} = kxk. The general case follows
from k⇡(x)k2 = k⇡(x⇤x)k  kx⇤xk = kxk2.

Let � be a locally compact Hausdor↵ space, and let C
0

(�) be the algebra, under pointwise
multiplication, of all complex valued continuous functions that vanish at infinity.

Theorem 5. If A is a commutative C*-algebra, then there is a locally compact Hausdor↵ space
� such that A is *-isomorphic to C

0

(�).

Proof. See Robert’s lectures.

In classical mechanics, the space � is usually referred to as the phase space.
If A is a commutative C*-algebra with an identity, then A is isomorphic to C(K), the

algebra of continuous functions on a compact Hausdor↵ space K.
Let U be a *-subalgebra of L(H). The commutant U 0 is the subset of L(H) of operators

that commute with every element of U , and so forth with U 00 := (U 0)0. In particular, U ⇢ U 00,
and further U 0 = U 000.

Definition 4. A von Neumann algebra or W*-algebra on H is a *-subalgebra U of L(H) such
that U 00 = U . Its center is Z(U) := U \ U 0, and U is a factor if Z(U) = C · 1.
Theorem 6. Let U be a *-subalgebra of L(H) such that UH = H. Then U is a von Neumann
algebra i↵ U is weakly closed.

Note that UH = H is automatically satisfied if 1 2 U . Furthermore, for any *-subalgebra U
of L(H), let U be its weak closure for which U 00

= U by the theorem. Since U ⇢ U , we have

U 0 ⇢ U 0. Furthermore, if x 2 U 0, and y 2 U , with U 3 yn * y, then x commutes with yn for all
n and hence with y, so that U 0 ⇢ U 0

. It follows that U 0
= U 0, whence U 00

= U 00 and so:

Corollary 7. U is weakly dense in U 00, namely U = U 00.

2.2 Representations and states

Definition 5. Let A be a C*-algebra and H a Hilbert space. A representation of A in H is a
*-morphism ⇡ : A ! L(H). Moreover,

1. Two representations ⇡,⇡0in H,H0 are equivalent if there is a unitary map U : H ! H0

such that U⇡(x) = ⇡0(x)U ;

2. A representation ⇡ is topologically irreducible if the only closed subspaces that are invari-
ant under ⇡(A) are {0} and H;

3. A representation ⇡ is faithful if it is an isomorphism, namely Ker⇡ = {0}.

5



Note that in general k⇡(x)k  kxk, with equality if and only if ⇡ is faithful. One can further
show that for any C*-algebra, there exists a faithful representation.

If (H,⇡) is a representation of A and n 2 N, then n⇡(A)(�n
i=1

 i) := �n
i=1

⇡(A) i defines a
representation n⇡ on �n

i=1

H.

Proposition 8. Let ⇡ be a representation of A in H. T.f.a.e

1. ⇡ is topologically irreducible;

2. ⇡(A)0 := {B 2 L(H) : [B,⇡(x)] = 0, for all x 2 A} = C · 1;
3. Any ⇠ 2 H, ⇠ 6= 0 is cyclic: ⇡(x)⇠ = H, or ⇡ = 0.

Proof. (1) ) (3) : If ⇡(A)⇠ is not dense, then ⇡(A)⇠ = {0}. It follows that C⇠ is an invariant
subspace, and hence H = C⇠ and ⇡ = 0
(3) ) (1) : Let K 6= {0} be a closed invariant subspace. For any ⇠ 2 K, ⇡(A)⇠ ⇢ K and since ⇠
is cyclic, ⇡(A)⇠ is dense in H
(2) ) (1) : Let K 6= {0} be a closed invariant subspace, and let PK be the orthogonal projection
on K. Then PK 2 ⇡(A)0, since for ⇠ 2 K, ⌘ 2 K?, h⇠,⇡(x)⌘i = h⇡(x⇤)⇠, ⌘i = 0 so that
⇡(x)⌘ 2 K? for any x 2 A. Hence PK = 0 or PK = 1, i.e. K = {0} or K = H.
(1) ) (2) : Let c 2 ⇡(A)0 be self-adjoint. Then all spectral projectors of c belong to ⇡(A)0, so
that they are all either 0 or 1 by (1), and c is a scalar. If c is not self-adjoint, apply the above
to c± c⇤.

A triple (H,⇡, ⇠) where ⇠ is a cyclic vector is called a cyclic representation.
Recall that A⇤ := {! : A ! C : ! is linear and bounded}. For any ⇠ 2 H, the map

A 3 x 7! h⇠,⇡(x)⇠i is an element of A⇤ since |h⇠,⇡(x)⇠i|  k⇠k2HkxkA and it is positive:
If x is positive, then x = y⇤y and h⇠,⇡(x)⇠i = k⇡(y)⇠k2H � 0. We shall denote it !⇡,⇠. If
0  T  1 is a self-adjoint operator in H and T 2 ⇡(A)0, then the form x 7! !⇡,T ⇠ is positive,
and !⇡,T ⇠(y⇤y) = k⇡(y)T ⇠k2 = kT⇡(y)⇠k2  k⇡(y)⇠k2 = !⇡,⇠(y⇤y), so that !⇡,T ⇠  !⇡,⇠.

Lemma 9. Let ! be a positive linear functional on A. Then

!(x⇤y) = !(y⇤x), |!(x⇤y)|2  !(x⇤x)!(y⇤y).

Proof. This follows from the positivity of the quadratic form � 7! !((�x+y)⇤(�x+y)) � 0.

In fact, any positive linear form ⌫ bounded above by !⇡,⇠ is of the form above. Indeed,

|⌫(x⇤y)|2  ⌫(x⇤x)⌫(y⇤y)  !⇡,⇠(x
⇤x)!⇡,⇠(y

⇤y)  k⇡(x)⇠k2k⇡(y)⇠k2

so that ⇡(x)⇠ ⇥ ⇡(y)⇠ 7! ⌫(x⇤y) is a densely defined, bounded, symmetric linear form on
H ⇥H. By Riesz representation theorem, there exists a unique bounded operator T such that
⌫(x⇤y) = h⇡(x)⇠, T⇡(y)⇠i, and 0  T  1. Moreover,

h⇡(x)⇠, T⇡(z)⇡(y)⇠i = ⌫(x⇤zy) = ⌫((z⇤x)⇤y) = h⇡(x)⇠,⇡(z)T⇡(y)⇠i,

so that T 2 (⇡(A))0.

Definition 6. A state ! on a C*-algebra A is a positive element of A⇤ such that

k!k = sup
x2A

!(x)

kxk = 1.

A state ! is called
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• pure if the only positive linear functionals majorised by ! are �!, 0  �  1,

• faithful if !(x⇤x) = 0 implies x = 0.

If ! is normalised and A has an identity, then !(1) = 1. Reciprocally, |!(x)|2  !(1)!(x⇤x).
Since kx⇤xk1� x⇤x � 0, we further have |!(x)|2  kx⇤xk!(1)2, i.e. k!k  !(1), which proves:

Proposition 10. If A has an identity, and ! is a positive linear form on A, then k!k = 1 if
and only if !(1) = 1.

By Corollary 7, ⇡(A)00 is a von Neumann algebra for any state !. ! is called a factor state
if ⇡(A)00 is a factor, i.e. if ⇡(A)0 \ ⇡(A)00 = C · 1.

We shall denote E(A) the set of states over A and P(A) the set of pure states.

Proposition 11. E(A) is a convex set, and it is weakly-* compact i↵ A has an identity. In
that case, ! 2 P(A) i↵ it is an extremal point of E(A).

Proof. We only prove the second part, the first part being is a version of the Banach-Alaoglu
theorem. Let ! 2 P(A). Assume that ! = �!

1

+ (1� �)!
2

. Then ! � �!
1

, hence �!
1

= µ
1

!,
0  µ

2

 1 and similarly for !
2

. Hence ! = (µ
1

+µ
2

)! and ! is extremal. Reciprocally, assume
that ! is not pure, in which case there is a linear functional ⌫̃

1

6= �̃! such that ! � ⌫̃
1

. In
particular, � := ⌫̃

1

(1)  !(1) = 1. Since ⌫
1

:= ��1⌫̃
1

is a state, ⌫
2

:= (! � �⌫
1

)/(1� �) defines
a state, and ! = �⌫

1

+ (1� �)⌫
2

. Hence ! is not extremal.

In particular, if {!i}i2I is an arbitrary infinite family of states, then there exists at least one
weak-* accumulation point. Note that !n * ! in the weak-* topology if !n(x) ! !(x) for all
x 2 A. In fact, it is defined as the weakest topology in which this holds, namely in which the
map x : ! 7! !(x) are continuous.

Theorem 12. Let A be a C*-algebra and ! 2 E(A). Then there exists a cyclic representation
(H,⇡,⌦) such that

!(x) = h⌦,⇡(x)⌦i
for all x 2 A. Such a representation is unique up to unitary isomorphism.

Proof. We consider only the case where A has an identity. Let N := {a 2 A : !(a⇤a) = 0}.
Since, by Lemma 9, 0  !(a⇤x⇤xa)  !(a⇤a)kxk2 = 0, we have a 2 N , x 2 A implies xa 2 N is
a left ideal. On h := A\N , we denote  x the equivalence class of x 2 A, and the bilinear form
( x, y) 7! !(x⇤y) is positive and well-defined, since !((x + a)⇤, y + b) = !(x⇤y) + !(a⇤y) +
!(x⇤b) + !(a⇤b) = !(x⇤y) for any x, y 2 A; a, b 2 N . Let H be the Hilbert space completion
of h. For any  x 2 h, let ⇡(y) x :=  yx. The map ⇡ : A ! L(h) is linear and bounded
since k⇡(y) xk2 = h yx, yxi = !(x⇤y⇤yx)  kyk2kxk2 and thus has a bounded closure. It is a
*-homomorphism since

h y,⇡(z
⇤) xi = h y, z⇤xi = !(y⇤z⇤x) = h zy, xi = h⇡(z) y, xi

and ⇡(xy) z =  xyz = ⇡(x)⇡(y) z and defines a representation ofA inH. Moreover, h 
1

,⇡(x) 
1

i =
h 

1

, xi = !(x), so that ⌦ =  
1

. Cyclicity follows from {⇡(x)⌦ : x 2 A} = { x : x 2 A}, which
is the dense set of equivalence classes by construction. Finally, let (H0,⇡0,⌦0) be another such
representation. Then the map U : H ! H0 defined by ⇡0(x)⌦0 = U⇡(x)⌦ is a densely defined
isometry, since

h⇡(y)⌦,⇡(x)⌦iH = !(y⇤x) = h⇡0(y)⌦0,⇡0(x)⌦0iH0 = hU⇡(y)⌦, U⇡(x)⌦iH0 ,

and hence extends to a unitary operator.
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Corollary 13. Let A be a C*-algebra and ↵ a *-automorphism. If ! 2 E(A) is ↵-invariant,
!(↵(x)) = !(x) for all x 2 A, then there is a unique unitary operator U on the GNS Hilbert
space H such that, for all x 2 A,

U⇡(x) = ⇡(↵(x))U, and U⌦ = ⌦.

One says that ↵ is unitarily implementable in the GNS representation.

Proof. The corollary follows from the uniqueness part of Theorem 12 applied to (H,⇡ � ↵,⌦),
since h⌦,⇡(x)⌦i = !(x) = !(↵(x)) = h⌦,⇡ � ↵(x)⌦i.
Proposition 14. Let A be a C*-algebra, ! 2 E(A) and (H,⇡,⌦) the associated representation.
Then ⇡ is irreducible and ⇡ 6= 0 i↵ ! is a pure state.

Proof. Let ⌫ be majorised by ! = !⇡,⌦. There is a 0  T  1 such that ⌫(x⇤y) = h⇡(x)⇠, T⇡(y)⇠i
with T 2 (⇡(A))0. If ⇡ is irreducible, then T =

p
� · 1 so that ⌫ = �!, 0  �  1 and ! is pure.

Reciprocally, if ⌫ is not a multiple of !, then T is not a multiple of the identity, so that (H,⇡)
is not irreducible.

Definition 7. Let (H,⇡) be a representation of A. A state ! is ⇡-normal if there exists a
density matrix ⇢! in H such that !(A) = Tr(⇢!⇡(A)). Two representations (H

1

,⇡
1

), (H
2

,⇡
2

)
are quasi-equivalent if every ⇡

1

-normal state is ⇡
2

-normal and conversely.

Further, two states !
1

,!
2

are said to be quasi-equivalent if their GNS representations are quasi-
equivalent. These correspond to thermodynamically equivalent states.

2.3 Examples: Quantum spin systems, the CCR and CAR al-
gebras

2.3.1 Quantum spin systems

Let � be a countable set. Denote ⇤ b � the finite sets of � and F(�) the set of finite subsets. For
each x 2 H, let Hx be a finite dimensional Hilbert space, and assume that supx2� dim(Hx) < 1.
The Hilbert space of ⇤ b � is given by H

⇤

:= ⌦x2⇤Hx. The associated algebra of local
observables is

A
⇤

:= L(H
⇤

) ' ⌦x2�L(Hx).

Inclusion defines a partial order on F(�), which induces the following imbedding:

⇤ ⇢ ⇤0 =) A
⇤

⇢ A
⇤

0

where x 2 A
⇤

is identified with x⌦ 1
⇤

0\⇤ 2 A
⇤

0 . Note that ⇤\⇤0 = ; implies xy = x⌦ y = yx
for all x 2 A

⇤

, y 2 A
⇤

0 . Finally, the algebra of quasi-local observables is given by

A :=
[

⇤2F(�)

A
⇤

k·k
⌘ A

loc

k·k

and it is a C*-algebra. Note that A has an identity. In other words, A is obtained as a limit
of finite-dimensional matrix algebras, which is referred to as a uniformly hyperfine algebra
(UHF). From the physical point of view, a finite dimensional Hilbert space is the state space
of a physical system with a finite number of degrees of freedom, namely a few-levels atom or
a spin. In the latter case, Hx = C2S

x

+1 is the state space of a spin-S, with S 2 1/2N, and it
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carries the (2Sx +1)-dimensional irreducible representation of the quantum mechanics rotation
group SU(2). A UHF is therefore the algebra of observables of atoms in an optical lattice or of
magnetic moments of nuclei in a crystal.

A state ! on A has the property that it is generated by a a family of density matrices defined
by: if x 2 A

⇤

, then !(x) = TrH
⇤

(⇢!
⇤

x). Such a state is called locally normal. We have:

Proposition 15. If ! is a state of a quantum spin system A, then the density matrices ⇢!
⇤

obey

1. ⇢!
⇤

2 A
⇤

, ⇢!
⇤

� 0 and TrH
⇤

(⇢!
⇤

) = 1

2. the consistency condition ⇤ ⇢ ⇤0 and x 2 A
⇤

, then TrH
⇤

(⇢!
⇤

x) = TrH
⇤

0 (⇢
!
⇤

0x)

Conversely, given a family {⇢
⇤

}
⇤2F(�)

satisfying (1, 2), there is a unique state !⇢ on A.

Proof. Since A
⇤

is a finite dimensional matrix algebra, the restriction of ! to A
⇤

is given by a
density matrix satisfying (1). (2) follows from the identification A

⇤

' A
⇤

⌦ 1
⇤

0\⇤. Conversely,
a family of ⇢

⇤

defines is a bounded linear functional on the dense subalgebra A
loc

. Hence it
extends uniquely to a linear functional on A with the same bound.

Theorem 16. Let !
1

,!
2

be two pure states of a quantum spin system. Then !
1

and !
2

are
equivalent if and only if for all ✏ > 0, there is ⇤ b � such that

|!
1

(x)� !
2

(x)|  ✏kxk,

for all x 2 A
⇤

0 with ⇤ \ ⇤0 = ;.
In other words, two pure states of a quantum spin system are equivalent if and only if they are
‘equal at infinity’, namely thermodynamically equal. More generally, the theorem holds – with
quasi-equivalence – for any two factor states. Note that if a state is pure, then it is irreducible,
i.e. ⇡(A)0 = C · 1, so that ⇡(A)00 = L(H) and ⇡(A)0 \ ⇡(A)00 = C · 1, hence ! is a factor state.

In practice, one is given a family of vectors  i
⇤

, i = I
⇤

an index set, typically the set of
thermal/ground states of a finite volume Hamiltonian H

⇤

on H
⇤

. All states !i
⇤

:= h i
⇤

, · i
⇤

i
on A

⇤

can be extended to a state on A (by Hahn-Banach), that we still denote !i
⇤

. The set
S := {!i

⇤

: ⇤ b �, i 2 I
⇤

} is a subset of E(A), which is weakly-* compact, hence there are weak-
* accumulation points, denoted !i

�

, i 2 I
�

. These are usually taken as the thermodynamic
thermal/ground states of the quantum spin system.

Finally, let � = Zd. There is a natural notion of translations on A which defines a group of
automorphisms Zd 3 z 7! ⌧z: If ⇤ b � and x 2 A

⇤

, ⌧z(x) is the same observable on ⇤+ z. This
defines an automorphism on the dense subalgebra A

loc

, which can be extended by continuity
to ⌧z on all of A. If a state is translation invariant, ! � ⌧z = ! for all z 2 Z, then ⌧z is unitarily
implementable in the GNS representation, namely there is Zd 3 z 7! U(z), where U(z) are
unitary operators on H with U(z)⌦ = ⌦, such that ⇡(⌧z(x)) = U(z)⇤⇡(x)U(z) for all z 2 Zd

and x 2 A. Furthermore, ⌧z
1

+z
2

= ⌧z
1

� ⌧z
1

implies U(z
1

+ z
2

) = U(z
1

)U(z
2

).
The following proposition is usually referred to as the asymptotic abelianness of A

Proposition 17. Let A and z 7! ⌧z be as above. Then for each x, y 2 A,

lim
|z|!1

[⌧z(x), y] = 0.

Proof. Exercise.
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2.3.2 Fermions: the CAR algebra

The algebra of canonical anticommutation relations (CAR) is the algebra of creation and anni-
hilation operators of fermions

Definition 8. Let D be a prehilbert space. The CAR algebra A
+

(D) is the C*-algebra generated
by 1 and elements a(f), f 2 D satisfying

f 7�! a(f) is antilinear

{a(f), a(g)} = 0, {a(f)⇤, a(g)⇤} = 0

{a(f)⇤, a(g)} = hg, fi1

for all f, g 2 D.

It follows from the CAR relations that (a(f)⇤a(f))2 = a(f)⇤{a(f), a(f)⇤}a(f) = kfk2a(f)⇤a(f),
and the C*-property then implies ka(f)k = kfk so that f 7! a(f) is a continuous map.

Proposition 18. Let D be a prehilbert space with closure D = H. Then

1. A
+

(D) = A
+

(H)

2. A
+

(D) is unique: If A
1

,A
2

both satisfy the above definition, then there exists a unique
*-isomorphism � : A

1

! A
2

such that a
2

(f) = �(a
1

(f)) for all f 2 D
3. If L is a bounded linear operator in H and A a bounded antilinear operator in H satisfying2

L⇤L+A⇤A = LL⇤ +AA⇤ = 1,

LA⇤ +AL⇤ = L⇤A+A⇤L = 0,

there is a unique *-automorphism �L,A of A
+

(H) such that �L,A(a(f)) = a(Lf)+a(Af)⇤.

Proof. Since D is a subset of H, we have that A
+

(D) ⇢ A
+

(H). Moreover, if f 2 H, there is a
sequence fn 2 D such that fn ! f . By linearity and continuity, ka(f)�a(fn)k = ka(f �fn)k =
kf � fnk ! 0, showing that a(f) 2 A

+

(D), and A
+

(H) ⇢ A(D), proving (1).
Assume now that dimH < 1, and that {fi}ni=1

is an orthonormal basis. Then the map
I : A

+

(H) ! M⌦n
2

defined by

I(a(fk)a(fk)⇤) = ek
11

I(Vk�1

a(fk)) = ek
12

I(Vk�1

a(fk)
⇤) = ek

21

I(a(fk)⇤a(fk)) = ek
22

where ekij is the canonical basis matrix in M⌦n
2

which is non-trivial on the k-th factor, and

Vk =
Qk

i=1

(1 � 2a(fi)⇤a(fi)), is an algebra isomorphism. In particular, the CAR imply that
ekije

k
ab = �jaekib and [ekij , e

l
ab] = 0 if k 6= l as it should. Furthermore, it is invertible with inverse

a(fk) = I�1

 
k�1Y
i=1

(ei
11

� ei
22

)ek
12

!
.

This proves (2) for the finite dimensional case. If H is infinite dimensional, there is a basis
{f↵}↵2A of H, not necessarily countable, and the above construction can be made with any
finite subset of A. We conclude in this case by (1) since the vector space of finite linear
combinations of f↵ is dense in H.

2

By definition, hf,Agi = hg,A⇤fi for an antilinear operator
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Finally,

{a(Lf) + a(Af)⇤, a(Lg)⇤ + a(Ag)} = hLf, Lgi+ hAg,Afi = hf, gi,

and similar computations for other anticommutators show that 1 and a(Lf) + a(Af)⇤ for all
f 2 H also generate A

+

(H), conluding the proof by (2).

Note that the proof of (2) shows that the CAR algebra is a UHF algebra.
The transformation �L,A is called a Bogoliubov transformation. Its unitary implementability

in a given representation is a separate question, which can be completely answered in the case of
so-called quasi-free representations. A particularly simple case is given by A = 0 and a unitary
L, corresponding to the non-interacting evolution of single particles under L.

2.3.3 Bosons: the CCR algebra

The algebra of canonical commutation relations (CCR) is the algebra of creation and annihila-
tion operators of bosons. Being unbounded operators, they do not form a C*-algebra, but their
exponentials do so and it is usually referred to, in this form, as the Weyl algebra.

Definition 9. Let D be a prehilbert space. The Weyl algebra A�(D) is the C*-algebra generated
by W (f), f 2 D satisfying

W (�f) = W (f)⇤

W (f)W (g) = exp

✓
� i

2
Imhf, gi

◆
W (f + g)

for all f, g 2 D.

Note the commutation relation W (f)W (g) = exp(�iImhf, gi)W (g)W (f).

Proposition 19. Let D be a prehilbert space with closure D = H. Then

1. A�(D) = A�(H) if and only if D = H
2. A�(D) is unique: If A

1

,A
2

both satisfy the above definition, then there exists a unique
*-isomorphism � : A

1

! A
2

such that W
2

(f) = �(W
1

(f)) for all f 2 D
3. W (0) = 1, W (f) is a unitary element and kW (f)� 1k = 2 for all f 2 D, f 6= 0

4. If S is a real linear, invertible operator in D such that ImhSf, Sgi = Imhf, gi, then there
is a unique *-automorphism �S of A�(D) such that �S(W (f)) = W (Sf).

In fact, D only needs to be a real linear vector space equipped with a symplectic form, and S
is a symplectic map. This is the natural structure of phase space and its Hamiltonian dynamics
in classical mechanics, and the map f 7! W (f) is called the Weyl quantisation3. (3) shows in
particular that it is a discontinuous map. We only prove (3) and (4). The di↵erence between
the CAR and CCR algebra with respect to closure of the underlying space is due to the lack of
continuity of f 7! W (f).

Proof. The definition implies that W (f)W (0) = W (f) = W (0)W (f) so that W (0) = 1. More-
over, W (f)W (�f) = W (�f)W (f) = W (0) = 1 so that W (f) is unitary. In turn, this implies

W (g)W (f)W (g)⇤ = exp(iImhf, gi)W (f).

3

In fact, it is also an algebra isomorphism between D = C1
(X) equipped with a Poisson bracket and A�(D)
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Hence, the spectrum of W (f) is invariant under arbitrary rotations for any f 6= 0, so that
Sp(W (f)) = S1. Hence, sup{|�| : � 2 Sp(W (f) � 1)} = 2, which concludes the proof of (3)
since W (f) � 1 is a normal operator. Finally, (4) follows again from (2) and the invariance of
the Weyl relations.

Definition 10. A representation (H,⇡) of A�(D) is regular if t 7! ⇡(W (tf)) is a strongly
continuous map on H for all f 2 D.

In a regular representation, R 3 t 7! ⇡(W (tf)) is a strongly continuous group of uni-
taries by the Weyl relations, so that Stone’s theorem yields the existence of a densely defined,
self-adjoint generator �⇡(f) such that ⇡(W (tf)) = exp(it�⇡(f)) for all f 2 D. In fact, for
any finite dimensional subspace K ⇢ D there is a common dense space of analytic vectors of
{�⇡(f),�⇡(if), f 2 K}, namely for which

P1
n=0

k�n
⇡ ktn/n! < 1 for t small enough. The

creation and annihilation operators can be defined

a⇤⇡(f) := 2�1/2 (�⇡(f)� i�⇡(if)) , a⇡(f) := 2�1/2 (�⇡(f) + i�⇡(if))

on D(a⇤⇡(f)) = D(a⇡(f)) = D(�⇡(f)) \D(�⇡(if)), which is dense. Note that a⇤⇡(f) ⇢ a⇡(f)⇤.
In fact, equality holds.

By construction f 7! �⇡(f) is real linear, so that f 7! a⇡(f) is antilinear and f 7! a⇤⇡(f)
is linear. Now, taking the second derivative of the Weyl relations applied on any vector ⇠ 2
D(�⇡(f)) \D(�⇡(g)) at t = t0 = 0, one obtains (�⇡(f)�⇡(g)� �⇡(g)�⇡(f)) ⇠ = iImhf, gi⇠, so
that

(a⇡(f)a
⇤
⇡(g)� a⇤⇡(g)a⇡(f)) ⇠ = hf, gi⇠

the usual form of the canonical commutation relations (CCR). Finally, we prove that the
creation/annihilation operators are closed. Indeed, k�⇡(f)⇠k2 + k�⇡(if)⇠k2 = ka⇡(f)⇠k2 +
ka⇤⇡(f)⇠k2, while the commutation relations yield ka⇤(f)⇠k2 � ka(f)⇠k2 = kfk2k⇠k2. Together,
k�⇡(f)⇠k2 + k�⇡(if)⇠k2 = 2ka⇡(f)⇠k2 + kfk2k⇠k2. Hence, for any sequence  n 2 D(a⇡(f))
such that  n !  and a⇡(f) n converges, we have that �⇡(f) n,�⇡(if) n converge. Since
�⇡ are self-adjoint and hence closed, we have that  2 D(a⇡(f)), and �⇡(f) n ! �⇡(f) and
�⇡(if) n ! �⇡(if) . By the norm equality again, a⇡(f) n ! a⇡(f) and a⇡(f) is closed.

2.3.4 Fock spaces and the Fock representation

The set D⌦n carries an action ⇧ of the permutation group Sn

⇧⇡ :  
1

⌦ · · ·⌦  n 7�!  ⇡�1

(1)

⌦ · · ·⌦  ⇡�1

(n)

for any ⇡ 2 Sn and we denote D(n)
± := { (n) 2 D⌦n : ⇧⇡ (n) = (±1)sgn⇡ (n)}, namely the

symmetric, respectively antisymmetric subspace of D⌦n. Let also D(0)

± := C. The bosonic,

respectively fermionic Fock space over D is denoted F±(D) := �1
n=0

D(n)
± . That is, a vector  2

F±(D) can be represented as a sequence ( (n))n2N such that  (n) 2 D(n)
± , with

P
n2N k (n)k <

1. The vector ⌦ := (1, 0, . . .) is called the vacuum. We further denote Ffin± (D) := { 2 F±(D) :
9N 2 N with  (n) = 0, 8n � N}, which is dense. Note that the probability to find more than
N particles in any vector  vanishes as N ! 1,

P�N ( ) :=
X
n�N

k (n)k2 �! 0, (N ! 1),

which we interpret as follows: In Fock space, there is an arbitrarily large but finite number
of particles. In particular, there is no vector representing a gas at non-zero density in the

thermodynamic limit. We define N : Ffin± (D) ! Ffin± (D) by N = n whenever  2 D(n)
± .
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For f 2 D, let b±(f) : D⌦n ! D⌦n�1 be defined by

b±(f)( 1

, . . . n) =
p
nhf, 

1

i( 
2

, . . . n),

which maps D(n)
± to D(n�1)

± , with b±(f)D(0)

± = 0, and hence b±(f) : F±(D) ! F±(D). Its

adjoint b⇤±(f) := b±(f)⇤ : D(n�1)

± ! D(n)
± such that

b⇤±(f) 
(n�1) =

1p
n

nX
k=1

(±1)k�1⇧⇡
k

f ⌦ (n�1)

where ⇡�1

k = (k, 1, 2, . . . , k � 1, k + 1, . . . , n). Indeed, the right hand side  ̃ is in D(n)
± : (⇡�(k) �

��1 � ⇡�1

k )(1) = 1 and the signature of the permutation is (k � 1) + sgn(�) + (�(k) � 1),

so that ⇧⇡�1

�(k)

⇧�⇧⇡
k

(f ⌦  (n�1)) = (±1)sgn(�)+(�(k)�k)f ⌦  (n�1), which implies that ⇧� ̃ =

(±1)sgn(�) ̃. Moreover, for any ⌥(n) 2 D(n)
± ,

hb±(f)⌥(n), (n�1)i = p
nh⌥(n), f ⌦ (n�1)i = 1p

n

nX
k=1

h⇧⇡
k

⌥(n),⇧⇡
k

(f ⌦ (n�1))i = h⌥(n),  ̃i

where we used that ⇧
(·) is unitary, proving that  ̃ = b⇤±(f) (n�1).

Proposition 20. 1. f 7! b±(f) is antilinear, f 7! b⇤±(f) is linear

2. Nb±(f) = b±(f)(N � 1)

3. b±(f), b⇤±(g) satisfy the canonical commutation, resp. anticommutation relations

Proof. We denote [A,B]± := AB⌥BA and prove [b±(f), b⇤±(g)]± = hf, gi. Indeed, for  (n�1) =
 
1

⌦ · · ·⌦  n�1

,

1p
n
b±(f)⇧⇡

k+1

(g⌦ (n�1)) = hf, 
1

i 
2

⌦ · · ·⌦ k⌦g⌦ · · · n�1

=
1p
n� 1

⇧⇡
k

(g⌦b±(f) (n�1)),

so that

b±(f)b±(g) (n�1) =
1p
n

nX
k=1

(±1)k�1b±(f)⇧⇡
k

(g ⌦ (n�1))

= hf, gi (n�1) ± 1p
n� 1

n�1X
k=1

(±1)k�1⇧⇡
k

(g ⌦ b±(f) (n�1))

= hf, gi (n�1) ± b±(g)b±(f) (n�1),

where the second equality follows by extracting the first term in the sum and using the obser-
vation above in the remaining terms.

In particular, {b�(f) : f 2 D} form a representation of the CAR algebra. Furthermore, The
operators �

+

(f) := 2�1/2(b
+

(f) + b⇤
+

(f)) are symmetric on Ffin

+

(D) and extend to self-adjoint
operators, so that W

+

(f) := exp(i�
+

(f)) are well-defined unitary operators on F
+

(D), yielding
a representation of the Weyl algebra. They are the fermionic and bosonic Fock representations
associated to the Fock state(

!CAR

F (a(f)⇤a(g)) :=
⌦
⌦, b⇤�(f)b�(g)⌦

↵
= 0 and !CAR

F (a(f)) := 0 (fermions)

!CCR

F (W (f)) := h⌦,W
+

(f)⌦i = e�kfk2/4 (bosons)
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In other words, Fock spaces are the GNS Hilbert spaces for the Fock states.
Quantummechanics in one dimension for one particle is usually associated with the Schrödinger

representation, defined on the Hilbert space L2(R). It arises as the regular representation of
the Weyl algebra A�(C) given by

⇡S(W (s+ it)) := e
i

2

stU(s)V (t),

where
(U(s) )(x) = eist (x), (V (t) )(x) =  (x+ t),

with self-adjoint generators X := �S(1) and P := �S(i) = �i@x.
In fact, L2(R) carries a Fock space structure, obtained by introducing aS := 2�1/2(X + iP )

and a⇤S := 2�1/2(X � iP ), which satisfy the CCR (strongly on a dense set such as C1
c (R). The

vacuum vector ⌦S is the L2-normalised solution of aS⌦S = 0, namely

(x+ @x)⌦S(x) = 0, i.e. ⌦S(x) = ⇡�1/4e�x2/2.

With Hn := span{(a⇤S)n⌦S}, namely the span of the nth Hermite function, one obtains L2(R) =
�1

n=0

Hn. In other words, L2(R) ' F
+

(C) and the Schrödinger and Fock representations are
equivalent, the unitary map being (a⇤S)

n⌦S 7! (b⇤
+

)n⌦.
Hence, the dimension of D has the interpretation of ‘the number of degrees of freedom’ of

the system and N -body quantum mechanics in Rd corresponds to the algebra A�(CNd), which
has a Schrödinger representation, namely the (Nd)-fold tensor product representation of that
given above. In fact, this is the only one:

Theorem 21. Let H be a finite dimensional Hilbert space, dimH = n. Then, any irreducible
representation of A�(H) is equivalent to the Schrödinger representation.

In other words, the algebraic machinery is useless in quantum mechanics. Whenever dimH = 1,
typically H = L2(Rd) itself, there are truly inequivalent representations: these are in particular
those arising in quantum statistical mechanics.
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