Mathematical Quantum Mechanics

Problem Sheet 11

Hand-in deadline: 01/19/2017 before noon in the designated MQM box (1st floor, next to the library).

To register for the final exam send an email to cuenin@math.lmu.de until 01/16, 8pm!

Ex. 1: Consider the Hamiltonian $H = \sqrt{1 + |p|^2} - 1 - Z/|x|$ on $L^2(\mathbb{R}^3)$, defined in the quadratic form sense for $0 < Z \leq 2/\pi$. Prove that

$$\sigma_{\rm ess}(H) = [0, \infty) \quad \text{for } Z < 2/\pi.$$

Ex. 2: Let V be a locally bounded positive function with $V(x) \to \infty$ as $|x| \to \infty$.

- a) Prove that $-\Delta + V$, defined as a sum of quadratic forms, is self-adjoint.
- b) Prove that $-\Delta + V$ has purely discrete spectrum.

Ex. 3: Let H_0 be a nonnegative selfadjoint operator in a Hilbert space \mathfrak{h} , and let V be bounded and symmetric. Define $H = H_0 + V$ and let E < 0. Prove that the following are equivalent:

- i) $E \in \sigma(H);$
- ii) $-1 \in \sigma((H_0 E)^{-1/2}V(H_0 E)^{-1/2});$
- iii) $-1 \in \sigma(\operatorname{sgn}(V)V^{1/2}(H_0 E)^{-1}|V|^{1/2}).$

Can you generalize the statements $i) \iff ii$ or $i) \iff iii$ to certain unbounded potentials?