
Physics 127b: Statistical Mechanics

Renormalization Group: 1d Ising Model

The ReNormalization Group (RNG) gives an understanding ofscalinganduniversality, and provides various
approximation schemes to calculate exponents etc. We will first motivate and illustrate the method using the
1d Ising ferromagnet, following Nelson and Fisher [Annals of Physics91, 226 (1975)].

The 1d Ising model is analytically soluble using various methods. We will be able to implement the RNG
explicitly and without approximation. Usually, an explicit implementation requires approximations. The
1d Ising model (as is true for any 1d system with short range interactions) has a ordered phase only at zero
temperature. We can think of this as a “zero temperature phase transition”. This leads to an important
difference from conventional, finite temperature phase transitions: rather than thescaling variablebeing
t = 1− T/Tc (which makes no sense ifTc is zero) the analogous variable ise−T0/T (which we will call
x) with kBT0 an appropriately chosen excitation energy. Once this change is made, the results illustrate the
general case very well.

Perturbation expansion

We considerN Ising spinssi = ±1 with periodic boundary conditions (i.e. on a ring). The Hamiltonian in
zero field is

H = −J
∑
i

sisi+1. (1)

The ground state—the ordered state atT = 0—is the aligned state with spins all up or all down and energy
E = −NJ . The minimum excitation energy to flip one spin is 4J (switch 2 bonds from−J to J ), and so
the natural variable describing the finite temperature properties is

x = e−4J/kBT . (2)

We will try to develop a perturbation expansion in powers ofx to describe the low temperature behavior, and,
sinceTc = 0, the transition to the disordered phase.

We organize the expansion in terms of flipping an isolated single spin, an isolated pair of spins, an isolated
triplet etc. There areN choices of an isolated spin to flip (energy cost 4J ). Two flip two isolated spins
(energy cost 8J ) we can choose the first one inN ways, and the second one inN − 3 ways, since flipping
the neighboring spins to the first one will not give isolated single spin flips, and will cost a different energy.
Then we divide by 2 since the ordering of which spin is flipped first doesn’t matter. In this we we have for
the partition function

QN = eNJ/kBT {2
+Nx + 1

2
N(N − 3)x2+ · · · isolated single spins

+Nx + 1

2
N(N − 5)x2+ · · · isolated pairs of spins

... ( total ofN − 1 lines)

}. (3)

Summing gives

QN = 2eNJ/kBT {1+ 1

2
N(N − 1)x +O(N3x2) · · · } (4)
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and for the free energy per spin

f = −J + kBT {1
2
(N − 1)x + · · · }. (5)

We see that in the thermodynamic limit the seriesdivergedue to the possibility of thermal fluctuations over
an infinite range of length scales (one spin flipped, a pair flipped,… half the spins flipped). For the 1d Ising
model these fluctuations all have identical energy! This is indeed a special feature of the one dimensionality,
but in higher dimensions fluctuations over all length scales indeed become important at the transition point.

Conclusion:T = 0, B = 0 is acritical point of the 1d Ising model. Taylor expansions about this point
break down. In fact we will see that the expansion is nonanalytic, e.g.

f

kBT
= − J

kBT
+ x1/2+ · · · (6)

with anontrivial exponent1/2.

Renormalization Group

The key idea is not to try to treat all length scales in one shot. Instead use an iterative procedure to first
treat short length scales, and study their effect (“renormalization”) on the next larger scale etc. Furthermore,
rather than studying how the free energy varies with parameters of a fixed Hamiltonian, the RNG studies
how the Hamiltonian evolves to maintain a fixed free energy under the elimination of successive length scale
fluctuations.

For the 1d Ising model we can proceed completely analytically. For convenience let as define a reduced
Hamiltonian

H̄ = − H

kBT
= K

∑
i

sisi+1+ h
∑
i

si + CN (7)

with K = J/kBT , andh = µB/kBT , and we have added a “zero of energy” constantCN for complete
generality. A convenient definition of the corresponding partition function is

Q̄N =
∏
i

1

2

∑
si=±1

eH̄({si }) = T rN(eH̄ ) (8)

where the notationT rN is introduced to denote the trace over all configurations of theN spins. Note that we
have added an extra factor of 1/2 in the “trace”, i.e.T rN is an average, rather than the mathematical trace.
This corresponds to subtracting the entropy termNkBT ln 2 from the free energy, so that

−kBT ln Q̄N = A−NkBT ln 2. (9)

The free energy we calculate from̄QN is therefore the deviation from the free spin result—precisely the
quantity we are interested in.

Rather than doing theT rN all at once, we do the trace operation (i.e. average) over the states ofevery other
spin (or in general everybth spin, leaving a fraction(b − 1)/b remaining—we are doing the caseb = 2).

Consider first the effect of averaging over the states of a particular spins with neighborss+ ands−. Focus
your attention on the terms in the product in Eq. (8) for QN involving the spins

T rs = 1

2

∑
s=±1

. . . eKs−s+
1
2h(s−+s)+CeKss++

1
2h(s+s+)+C . . . (10a)

= . . . e 1
2h(s−+s+)+2C cosh(Ks− +Ks+ + h) . . . . (10b)
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(Notice that we consistently associate half the magnetic field term and the constant term with the “backward”
bond, and half with the “forward bond”). Obviously the variables no longer occurs inQ̄N—we have done
the necessary average over its two possible configurations. No approximation has been made, and repeating
this procedure correctly evaluatesQ̄N .

Now we would like to automate this scheme by setting up an iterative procedure. We can try to do this by
rewriting Eq. (10) in terms of a neweffective Hamiltonianinvolving s+ ands− (the rest of the terms in the
product forQ̄N are, so far, unchanged). In the present case this new Hamiltonian takes the sameform, but
with changed (renormalized) parameters.

We look forK ′, h′, C ′ so that

e
1
2h(s−+s+)+2C cosh(Ks− +Ks+ + h) = eK ′s−s++ 1

2h
′(s−+s+)+C′ (11)

for all choices ofs−, s+ = ±1. Since there are 4 states ofs− and s+, and only 3 parameters, it is not
immediately clear that this can be done. Indeed usually, i.e. more realistic systems or higher dimensions, it
will not be possible,and the Hamiltonian must be made more complicated as the iteration proceeds. However
in the present case the only quantities appearing, namelys−s+ ands− + s+, depend only on whether the
spins are↑↑,↓↓, or (↑↓ or↓↑), i.e. only three different possibilities, so the three parameters are enough to
satisfy Eq. (11). Explicitly

eh+2C cosh(2K + h) = eK ′+h′+C′, (12a)

e2C cosh(h) = e−K ′+C′, (12b)

e−h+2C cosh(−2K + h) = eK ′−h′+C′ . (12c)

The solutions are easily obtained by multiplying various combinations

e2h′ = e2h cosh(2K + h)
cosh(2K − h) (13a)

e4K ′ = cosh(2K + h) cosh(2K − h)
cosh2 h

(13b)

e4C′ = e8C cosh(2K + h) cosh(2K − h) cosh2 h (13c)

(e.g. the first equation is given by dividing the first of Eq. (12a) by the third).

Recursion Relations

Clearly this procedure can be repeated for every other spin, and we end up with a system with the same free
energy withN/2 spins, twice the lattice spacing, and described by the same Hamiltonian but with parameters
K ′, h′, C ′. The final step of the renormalization group is to rescale lengths down by a factor ofb (2 in our
case), so that the lattice “looks the same”.1 This gives us the “scale factorb = 2” renormalization group

H̄ ′ = Rb[H̄ ] (14)

defined by therecursion relationsEq. (13) which can be written

K ′ = RK(K, h), (15a)

h′ = Rh(K, h), (15b)

C ′ = bC + Rc(K, h). (15c)

1The number of spins isN/2,down by a factor ofb, but remember we are interested in the free energy density in theN →∞
limit.
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Figure 1: Recursion relation for the temperature variablex in the 1d Ising model. Fixed points are atx = 0
andx = 1. The “steps” yield successive values ofxl under the recursion.

Note that the constant term does not appear in the recursion relations forK,h, and only as a simple additive
piece in the recursion relation forC. It keeps track of the contribution to the free energy coming from the
variables averaged over. We will concentrate on the evolution of the interaction parametersK,h, and so will
not consider the third equation further.

Remember that the partition function and so the free energy ispreservedby the transformation, so we have
for the free energy density

f [H̄ ′] = bdf [H̄ ] = 2f [H̄ ] (16)

corresponding to the thinning out of the spins (or the shrinking of the full lattice). Similarly the correlations
between the surviving spins is preserved, so that for the correlation length

ξ [H̄ ′] = b−1ξ [H̄ ] = 1

2
ξ [H̄ ] (17)

again corresponding to the trivial shrinking of the lattice. Equations (16),(17), although trivial, will later be
important in understanding the content of the RNG.

We can now successively repeat the elimination i.e. solve the problem by iteration.

First considerh = 0. Equation (13a) becomes

e4K ′ = cosh2(2K) = 1

4
(e2K + e−2K)2 (18)

or for x = e−4K

x ′ = 4x

(1+ x)2 . (19)

The iteration of this equation can be understood graphically Fig.1. The twofixed pointsdefined byx ′ = x
play a key role. At a fixed point the renormalization does not change the Hamiltonian. Equation (17) then
shows us thatξ must be zero or infinite at a fixed point.

The x = 1 (i.e. K → 0) is thehigh temperature fixed point. The interactions renormalize to zero, and
the behavior is simple. There are no large length scale phenomena, and the correlation length is zero. This

4



fixed point isstableor attracting—starting from any initial value ofx 6= 0 eventually leads to this fixed
point. Physically, any finite temperature state, inspected at long enough length scales, looks like the infinite
temperature solution, i.e. isdisordered.

Thex = x∗ = 0 fixed point is the nontrivialcritical fixed point. The correspondingfixed point Hamiltonian
H̄ ∗ = H̄ (x∗, h∗ = 0) satisfies

Rb[H̄ ∗] = H̄ ∗. (20)

The fixed point corresponds toK →∞, and so to nontrivial behavior. This state has an infinite correlation
lengthξ →∞. Note that this fixed point isunstableor repelling. This is a key result:

The properties of the unstable, critical fixed point determine the physical behavior in the critical
regime near the transition temperature.

The fixed points tell us particularly simple behavior. The recursion relations under the renormalization
procedure allow us to relate the physical Hamiltonian (some givenK or x andh) to another Hamiltonian.
For example if we iterate many times, eventually the Hamiltonian for any nonzero temperature is related to
the Hamiltonian at the high temperature fixed point, where the properties are easy to calculate. This gives a
tractablescheme for calculating asubsetof behavior, namely the long length scale behavior that is left after
the elimination processes. Of particular interest is the behavior asT → 0. This means the physical system
corresponds to a value ofx close to the unstable fixed point. We can understand properties of the system
(beyond the simple fact that the state is disordered) by studying howx “flows away” from the unstable fixed
point under the iteration procedure.

Critical Behavior

The critical behavior (i.e.x small) may be understood bylinearizingabout the unstable fixed point. Write
the physical value ofx asx0, and assume

x0 = x∗ + δx0 (21)

with δx0 small. Then under each iteration of the RNG we find by linearizing Eq. (19) that δx is simply
multiplied by 4, so that after some chosen numberl iterations

δxl = (3x)
lδx0 with 3x = 4 (22)

where3x is aneigenvalueof the linearization of the recursion relations about the fixed pointx = x∗. This
allows us to relate the physical behavior atx0 to the behavior we calculate with the renormalized Hamiltonian
given byxl = x∗ + δxl. In particular we have for the free energy density

f (x0) = 1

2l
f (xf = 3l

xx0) (23)

for x0 small, where we have used the fact thatx∗ is zero. This result is good providingl is not so large that
xf is no longer small. A trivial-sounding statement, but another key point is:

The trick of using the renormalization group at a critical point is to choose the number of iterations
l so that something is learned (e.g. from the right hand side of Eq. (23)).

We often want to know the behavior asx is varied towards the critical point (T → Tc). Let us choosel so
thatasx0 varies,xf remains fixedat some small value so that the linearization remains valid. This means
that we choose

l = ln(xf /x0)

ln3x

. (24)
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Then2

f (x0) = 2− ln(xf /x0)/ ln3xf (xf ) (25)

= x ln 2/ ln3x
0 [x− ln 2/ ln3x

f f (xf )]. (26)

The first term tells us what we want to know—how does the free energy depend on the initialx (and so on
temperature). The second term in the brackets does not depend onx0, and is just a constant prefactor in the
x0 dependence.

Thus we have found for smallx

f (x) = Ax1/λx with λx = ln3x

ln 2
= 2. (27)

or in conventional notation

f (x) ∼ x2−αx with αx = 2− 1

λx
, (28)

The nontrivial power law dependence onx (i.e. square root) corresponds to the power law dependence ont

at a finite temperature phase transition. Similarly

ξ(x0) = 2lξ(xf ) (29)

so that following the same procedure

ξ ∼ x−νx with νx = 1

λx
. (30)

Notice that the hyperscaling relation 2−αx = dνx is satisfied (rememberd = 1 here): hyperscaling follows
directly from the scaling off with b−ld and the correlation length withbl.

Scaling of the field

Now we include the fieldh. The critical fixed point isx∗ = h∗ = 0. The recursion relation forh can be
written

h′ = h+ 1

2
ln

[
eh + xe−h
e−h + xeh

]
. (31)

Linearizing about the fixed point gives
δh′ = 2δh (32)

and the equation forδx is unchanged. Thus, in general notation

δx ′ = 3xδx with 3x = bλx and λx = 2, (33a)

δh′ = 3hδh with 3h = bλx and λh = 1. (33b)

(More generally we might expect a matrix equation[
δx ′
δh′

]
=
[

? ?
? ?

] [
δx

δh

]
(34)

2We often have to manipulate exponent expressions such as 2− ln(xf /x0)/ ln3x , where we want to look at the dependence on
xf /x0 behavior. To do this write the expression as exp[− ln(x/x0) ln 2/ ln3x ] which can then be rewritten(x/x0)

− ln 2/ ln3x .

6



and then we would have to diagonalize to find the two eigenvalues, and the different linear combinations of
δx andδh that diverge exponentially from the fixed point.) So now iteratingl times from the initial values
(x0 = x, h0 = h) near the fixed point(0,0)

xl = 2λx lx (35a)

hl = 2λhlh (35b)

and
f (x, h) = 2−lf (xl, hl). (36)

Again choosel so thatxl is some small fixed valuexf asx varies

2l = (xf /x)1/λx (37)

so that

f (x, h) =
(
x

xf

)1/λx

f (xf ,
(xf
x

)λh/λx
h), (38)

which can be written in the form

f (x, h) = Ax2−αxY (D
h

x1x
) (39)

and we have derived thescaling formwith exponents

2− αx = 1

λx
= 1

2
, (40a)

1x = λh

λx
= 1

2
. (40b)
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