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Abstract

Let A be an abelian variety over a number �eld k and F a �nite cyclic

extension of k of p-power degree for an odd prime p. Under certain technical

hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number

conjecture (`eTNC') for A, F/k and p in terms of explicit p-adic congruences

involving values of derivatives of the Hasse-Weil L-functions of twists of A,

normalised by completely explicit twisted regulators. This reinterpretation

makes the eTNC amenable to numerical veri�cation and furthermore leads to

explicit predictions which re�ne well-known conjectures of Mazur and Tate.

1 Introduction

Let A be an abelian variety of dimension d de�ned over a number �eld k. We
write At for the dual abelian variety. Let F/k be a �nite Galois extension with
group G := Gal(F/k). We let AF denote the base change of A and consider the
motiveMF := h1(AF )(1) as a motive over k with a natural action of the semi-simple
Q-algebra Q[G].

We will study the equivariant Tamagawa number conjecture as formulated by
Burns and Flach in [9] for the pair (MF ,Z[G]). This conjecture asserts the validity
of an equality in the relative algebraic K-group K0(Z[G],R[G]). If p is a prime, we
refer to the image of this equality inK0(Zp[G],Cp[G]) as the `eTNCp for (MF ,Z[G])'.
If p does not divide the order of G the ring Zp[G] is regular and one can use the
techniques described in [8, �1.7] to give an explicit interpretation of this projection.
In this manuscript, we will focus on primes p dividing the order of G where such an
explicit interpretation is in general very di�cult.

In [11], a close analysis of the �nite support cohomology of Bloch and Kato for
the base change of the p-adic Tate module of the dual abelian variety At is carried out
under certain technical hypotheses on A and F . A consequence of this analysis is an
explicit reinterpretation of the eTNCp in terms of a natural `equivariant regulator'
(see [11, Th. 4.1]). The main results of the present manuscript are based on the
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explicit computation of this equivariant regulator in the special case where F/k is
cyclic of degree pn for an odd prime p. Under certain additional hypotheses on the
structure of Tate-Shafarevich groups of A over the intermediate �elds of F/k we
obtain a completely explicit interpretation of the eTNCp (see Theorem 2.9). Whilst
this is of independent theoretical interest, it also makes the eTNCp amenable to
numerical veri�cations.

One of the main motivations behind our study of the equivariant Tamagawa
number conjecture for the pair (MF ,Z[G]) is the hope that it may provide a coherent
overview of and a systematic approach to the study of explicit properties of leading
terms and values at s = 1 of Hasse-Weil L-functions. In order to describe our current
steps in this direction, we �rst recall the general philosophy of `re�ned conjectures of
the Birch and Swinnerton-Dyer type' that originates in the work of Mazur and Tate
in [20]. These conjectures concern, for elliptic curves A de�ned over Q and certain
abelian groups G, the properties of `modular elements' θA,G belonging a priori to the
rational group ring Q[G] and constructed from the modular symbols associated to
A, therefore interpolating the values at s = 1 of the twisted Hasse-Weil L-functions
associated to A and G. More precisely, the aim is to explicitly predict the precise
power r (possibly in�nite) of the augmentation ideal I of the integral group ring
Z[G] with the property that θA,G belongs to Ir but not to Ir+1, and furthemore
to explicitly describe the image of θA,G in the quotient Ir/Ir+1 (whenever such an
integer r exists). In the process of studying the modular element θA,G, Mazur and
Tate also predict that it should belong to the Fitting ideal over Z[G] of their `integral
Selmer group' S(A/F ) (and refer to such a statement as a `weak main conjecture')
and explicitly ask for a `strong main conjecture' predicting an explicit generator of
the Fitting ideal of an explicitly described natural modi�cation of S(A/F ) (see [20,
Remark after Conj. 3]).

However, it is well-known that in many cases of interest the modular element
θA,G vanishes, thus rendering any such properties trivial, and it would therefore be
desirable to carry out an analogous study for elements interpolating leading terms
rather than values at s = 1 of the relevant Hasse-Weil L-functions, normalised by
appropriate explicit regulators. Although the aim to study such elements already
underlies the results of [11], one of the main advantages of con�ning ourselves to the
special case in which the given extension of number �elds F/k is cyclic of prime-
power degree is that we are led to de�ning completely explicit `twisted regulators'
from our computation of the aforementioned equivariant regulator of [11]. Further-
more, we arrive at very explicit statements without having to restrict ourselves to
situations in which the relevant Mordell-Weil groups are projective when considered
as Galois modules. In particular, we derive predictions of the following nature for
such an element L that interpolates leading terms at s = 1 of twisted Hasse-Weil
L-functions normalised by our twisted regulators from the assumed validity of the
eTNCp for (MF ,Z[G]):

• a formula for the precise power h ∈ Z≥0 of the augmentation ideal IG,p of the
integral group ring Zp[G] with the property that L belongs to IhG,p but not to

2



Ih+1
G,p (expressed in terms of the ranks of the Mordell-Weil groups of A over the
intermediate �elds of F/k), and a formula for the image of L in the quotient
IhG,p/I

h+1
G,p (see Corollary 2.11);

• the statement that the element L of Zp[G] (resp. a straightforward modi�ca-
tion of L) annihilates the p-primary Tate-Shafarevich group of At (resp. A)
over F as a Galois module (see Theorem 2.12 and Corollary 2.14);

• and the explicit description of a natural quotient of (the Pontryagin dual of)
the p-primary Selmer group of A over F whose Fitting ideal is generated by
L (see Theorem 2.12).

The structure of the paper is as follows. In Section 2 we present our main results
and in Section 4 we supply the proofs. In order to prepare for the proofs we recall
in Section 3 the relevant material from [11]. In the �nal Section 5 we present some
numerical computations.

We would like to thank David Burns and Christian Wuthrich for some helpful
discussions concerning this project.

1.1 Notations and setting

We mostly adapt the notations from [11].
For a �nite group Γ we write Γ̂ for the set of irreducible E-valued characters of

Γ, where E denotes either C or Cp (we will throughout our arguments have �xed an
isomorphism of �elds j : C→ Cp and use it to implicitly identify both sets, with the

intended meaning of Γ̂ always clear from the context). We let 1Γ denote the trivial
character of Γ and write ψ̌ for the contragrediant character of each ψ ∈ Γ̂. We write

eψ =
ψ(1)

|Γ|
∑
γ∈Γ

ψ(γ)γ−1

for the idempotent associated with ψ ∈ Γ̂ and also set TrΓ :=
∑

γ∈Γ γ.
For any abelian group M we let Mtor denote its torsion subgroup and Mtf the

torsion-free quotient M/Mtor. We also set Mp := Zp ⊗Z M and, if M is �nitely
generated, we set rk(M) := dimQ(Q⊗Z M).

For any Zp[Γ]-moduleM we writeM∨ for the Pontryagin dual HomZp(M,Qp/Zp)
and M∗ for the linear dual HomZp(M,Zp), each endowed with the natural contra-
gredient action of Γ. Explicitly, for a homomorphism f and elements m ∈ M and
γ ∈ Γ, one has (γf)(m) = f(γ−1m).

For any Galois extension of �elds we abbreviate Gal(L/K) to GL/K . We �x an
algebraic closure Kc of K and abbreviate GKc/K to GK . For each non-archimedian
place v of a number �eld we write κv for the residue �eld.

Throughout this paper, we will consider the following situation. We have �xed
an odd prime p and a Galois extension F/k of number �elds with group G = GF/k.
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Except in Section 3, the extension F/k will always be cyclic of degree pn. We give
ourselves an abelian variety A of dimension d de�ned over k. For each intermediate
�eld L of F/k we write SLp , S

L
r and SLb for the set of non-archimedean places of L that

are p-adic, which ramify in F/L and at which A/L has bad reduction respectively.
Similarly, we write SL∞, S

L
R and SLC for the sets of archimedean, real and complex

places of L respectively. If L = k we simply write Sp, Sr, Sb, S∞, SR and SC.
Finally, we write A(L) for the Mordell-Weil group and Xp(AL) for the p-primary

Tate-Shafarevich group of A over L.

2 Statement of the main results

Recall that A is an abelian variety of dimension d de�ned over the number �eld k.
Furthermore, F/k is cyclic of degree pn where p is an odd prime.

We assume throughout this section that A/k and F/k are such that

(a) p - |A(k)tor| · |At(k)tor|,

(b) p -
∏

v∈Sb
cv(A, k), where cv(A, k) denotes the Tamagawa number of A at v,

(c) A has good reduction at all p-adic places,

(d) p is unrami�ed in F/Q,

(e) No place of bad reduction is rami�ed in F/k, i.e. Sb ∩ Sr = ∅,

(f) p -
∏

v∈Sr
|A(κv)|,

(g) X(AF ) is �nite,

(h) Xp(AFH ) = 0 for all non-trivial subgroups H of G.

Remarks 2.1. a) Our assumptions (a) - (g) recover the hypotheses (a) - (i) of [11].
b) We emphasize that in (h) we allow Xp(AF ) to be non-trivial.

An understanding of the G-module structure of the relevant Mordell-Weil groups
is key to our approach. We hence begin by applying a result of Yakovlev [22] in order
to obtain such explicit descriptions. This approach is inspired by work of Burns, who
obtained a similar result in [7, Prop. 7.2.6(i)]. For a non-negative integer m and a
Zp[G]-moduleM we writeM<m> for the direct sum of m copies ofM . Furthermore,
we set [m] := {1, . . . ,m}.

Proposition 2.2. There exist isomorphisms of Zp[G]-modules of the form

A(F )p ∼=
⊕
J≤G

Zp[G/J ]<mJ> ∼= At(F )p,

for a set of non-negative integers {mJ : J ≤ G}.
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Proposition 2.2 has the following immediate consequence for the ranks of the
relevant Mordell-Weil groups.

Corollary 2.3. For any subgroup H of G we have

rk(A(FH)) = rk(At(FH)) =

=
∑
J>H

|G/J |mJ + |G/H|
∑
J≤H

mJ ≤ |G/H|rk(A(k)).

Proposition 2.2 combines with Roiter's Lemma (see [12, (31.6)]) to imply the
existence of points P(J,j) ∈ A(F ) and P t

(J,j) ∈ At(F ) for J ≤ G and j ∈ [mJ ] with
the property that

A(F )p =
⊕

J≤G
⊕

j∈[mJ ] Zp[G/J ]P(J,j), Zp[G/J ]P(J,j)
∼= Zp[G/J ],

At(F )p =
⊕

J≤G
⊕

j∈[mJ ] Zp[G/J ]P t
(J,j), Zp[G/J ]P t

(J,j)
∼= Zp[G/J ].

(1)

Furthermore, our choice of points as in (1) guarantees that one also has

Q⊗Z A(F ) =
⊕

J≤G
⊕

j∈[mJ ] Q[G/J ]P(J,j), Q[G/J ]P(J,j)
∼= Q[G/J ],

Q⊗Z A
t(F ) =

⊕
J≤G

⊕
j∈[mJ ] Q[G/J ]P t

(J,j), Q[G/J ]P t
(J,j)
∼= Q[G/J ].

(2)

We now �x sets

P = {P(J,j) ∈ A(F ) : J ≤ G, j ∈ [mJ ]}, P t = {P t
(J,j) ∈ At(F ) : J ≤ G, j ∈ [mJ ]},

such that (2) holds. For 0 ≤ t ≤ n we write Ht for the (unique) subgroup of G
of order pn−t and set P(t,j) := P(Ht,j), P

t
(t,j) := P t

(Ht,j)
. We also put mt := mHt and

eHt := 1
|Ht|TrHt = 1

|Ht|
∑

g∈Ht g. We writte 〈 , 〉F for the Néron-Tate height pairing

A(F )× At(F )→ R de�ned relative to the �eld F and de�ne a matrix with entries
in C[G] by setting

R(P ,P t) :=

 1

|Hu|
∑

τ∈G/Hu

〈τ · P(u,k), P
t
(t,j)〉F (τ · eHu)


(u,k),(t,j)

,

where (u, k) is the row index with 0 ≤ u ≤ n, k ∈ [mu], and (t, j) is the column
index with 0 ≤ t ≤ n, j ∈ [mt] (we always order sets of the form {(t, j) : 0 ≤ t ≤
n, j ∈ [mt]} lexicographically). We note that, since each point P(u,k) belongs to
A(FHu), the action of G/Hu on P(u,k) is well-de�ned.

For any matrix A =
(
a(u,k),(t,j)

)
(u,k),(t,j)

indexed as above we de�ne

At0 :=
(
a(u,k),(t,j)

)
(u,k),(t,j),u,t≥t0

,

with the convention At0 = 1 whenever no entries a(u,k),(t,j) with u, t ≥ t0 exist. If A

is a matrix with coe�cients aij in C[G] or Cp[G], then for any ψ ∈ Ĝ we write ψ(A)
for the matrix with coe�cients ψ(aij). We also set Rt0(P ,P t) = R(P ,P t)t0 .
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De�nition 2.4. For each character ψ ∈ Ĝ we de�ne tψ ∈ {0, . . . , n} by the equality
ker(ψ) = Htψ and call

λψ(P ,P t) := det
(
ψ
(
Rtψ(P ,P t)

))
.

the 'lower ψ-minor' of R(P ,P t).

Remark 2.5. It is easy to see that the element
∑

ψ∈ bG λψ(P ,P t)eψ ∈ C[G] de-
pends upon the choice of points P and P t satisfying (2) only modulo Q[G]×. Sim-
ilarly, for any given isomorphism of �eds j : C → Cp, it is clear that the element∑

ψ∈ bG j(λψ(P ,P t))eψ ∈ Cp[G] depends upon the choice of points P and P t satisfying
(1) only modulo Zp[G]×.

For any order Λ in Q[G] that contains Z[G] we let C(A,Λ) denote the integrality
part of the equivariant Tamagawa number conjecture (`eTNC' for brevity) for the
pair (h1(AF )(1),Λ) as formulated by Burns and Flach in [9, Conj. 4(iv)]. Similarly,
we let C(A,Q[G]) denote the rationality part as ormulated in [9, Conj. 4(iii) or
Conj. 5]. We recall that, under the assumed validity of hypothesis (g), C(A,Λ) takes
the form of an equality in the relative K-group K0(Λ,R[G]). For each embedding
j : R −→ Cp we denote by Cp,j(A,Λ) the image of this conjectural equality under the
induced map K0(Λ,R[G]) −→ K0(Λp,Cp[G]). We then say that Cp(A,Λ) is valid if
Cp,j(A,Λ) is valid for every isomorphism j : C→ Cp.

The eTNC is an equality between analytic and algebraic invariants associated
with A/k and F/k. In the following we describe and de�ne the analytic part. We
�rst recall the de�nition of periods and Galois Gauss sums of [11, Sec. 3.3]. We �x
Néron models At for At over Ok and Atv for Atkv over Okv for each v in Sp and then
�x a k-basis {ωb}b∈[d] of the space of invariant di�erentials H

0(At,Ω1
At) which gives

Okv -bases of H0
(
Atv,Ω1

Atv

)
for each such v and is also such that each ωb extends to

an element of H0
(
At,Ω1

At
)
.

For each v in SC we �x a Z-basis {γv,a}a∈[2d] ofH1

(
σv(A

t)(C),Z
)
. For each v in SR

we let c denote complex conjugation and �x a Z-basis {γ+
v,a}a∈[d] ofH1

(
σv(A

t)(C),Z
)c=1

.
For each v in SR, resp. SC, we then de�ne periods by setting

Ωv(A/k) :=

∣∣∣∣∣det

(∫
γ+
v,a

ωb

)
a,b

∣∣∣∣∣, resp. Ωv(A/k) :=

∣∣∣∣∣det

(∫
γv,a

ωb, c
(∫

γv,a

ωb

))
a,b

∣∣∣∣∣,
where in the �rst matrix (a, b) runs over [d] × [d] and in the second matrix (a, b)
runs over [2d]× [d].

In our special case all characters are one-dimensional and, moreover, |G| is odd.
Therefore the de�nitions of [11] simplify and we set

Ω(A/k) :=
∏
v∈S∞

Ωv(A/k),

w∞(k) := i|SC|.
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For each place v in Sr we write Īv ⊆ G for the inertia group of v and Frv for the
natural Frobenius in G/Īv. We de�ne the `non-rami�ed characteristic' uv by

uv(ψ) :=

{
−ψ(Fr−1

v ), ψ|Īv = 1,

1, ψ|Īv 6= 1.

and
u(ψ) :=

∏
v∈Sr

uv(ψ).

For each character ψ ∈ Ĝ we then de�ne the modi�ed Galois-Gauss sum by setting

τ ∗(Q, indQ
k (ψ)) := u(ψ)τ(Q, indQ

k (ψ)) ∈ (Qc)× ,

where each individual Galois-Gauss sum τ(Q, ·) is as de�ned by Martinet in [19].

For each ψ ∈ Ĝ we set

L∗ψ = L∗A,F/k,ψ :=
L∗Sr(A, ψ̌, 1)τ ∗(Q, indQ

k (ψ))d

Ω(A/k)w∞(k)d
∈ C×,

where here for each �nite set Σ of places of k we write L∗Σ(A,ψ, 1) for the leading
term in the Taylor expansion at s = 1 of the Σ-truncated ψ-twisted Hasse-Weil-L-
function of A. Without any further mention we will always assume that the functions
LΣ(A,ψ, s) have analytic continuation to s = 1 (as conjectured in [9, Conj. 4 (i)]) and
recall that they are then expected to have a zero of order rψ := dimC(Vψ⊗ZA(F ))G,
where Vψ denotes any C[G]-module of character ψ (this is the rank conjecture [9,
Conj. 4 (ii)]).

We �nally de�ne

L∗ = L∗A,F/k :=
∑
ψ∈ bG
L∗A,F/k,ψeψ ∈ C[G]×

and note that the element L∗ de�ned in [11, Th. 4.1] specialises precisely to our
de�nition.

Theorem 2.6. C(A,Q[G]) is valid if and only if

L∗ψλψ(P ,P t)−1 ∈ Q(ψ)

for all ψ ∈ Ĝ and furthermore, for any γ ∈ Gal(Q(ψ)/Q),

L∗ψγλψγ (P ,P t)−1 = γ
(
L∗ψλψ(P ,P t)−1

)
,

for any, or equivalently every, choice of points P and P t such that (2) holds.
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Remarks 2.7. (i) From the de�nitions of u(ψ), w∞(k) and the de�nition of local
Euler factors it is immediately clear that in the statement of Theorem 2.6 we can
replace L∗ψ by

L̃∗ψ :=
L∗(A, ψ̌, 1)τ(Q, indQ

k (ψ))d

Ω(A/k)
.

(ii) The explicit conditions on elements of the form L∗ψλψ(P ,P t)−1 given in The-
orem 2.6 generalise and re�ne the predictions given by Fearnley and Kisilevsky in
[15, 16]. For details see [2, Ex. 5.2]. In particular, we note that the numerical
computations performed by Fearnley and Kisilevsky can be interpreted via Theorem
2.6 as supporting evidence for conjecture C(A,Q[G]).

We �x a generator σ of G and de�ne Σ to be the diagonal matrix indexed by
pairs (t, j), (s, i) with σp

t − 1 at the diagonal entry associated to (t, j) and zeros
elsewhere. For any matrix A =

(
a(u,k),(t,j)

)
(u,k),(t,j)

indexed by tuples (u, k) and (t, j)

as above we de�ne
At0 :=

(
a(u,k),(t,j)

)
(u,k),(t,j),u,t≤t0

,

once again with the convention At0 = 1 whenever no entries a(u,k),(t,j) with u, t ≤ t0
exist. We recall that for each character ψ ∈ Ĝ we de�ned tψ such that ker(ψ) = Htψ .
We de�ne the the 'upper ψ-minor' of Σ by

δψ := det
(
ψ
(
Σtψ−1

))
.

It is easy to see that for another choice of generator of G, say τ , one has∑
ψ∈ bG

δψ(σ)

δψ(τ)
eψ ∈ Zp[G]×.

Under our current hypotheses on the data (A,F/k, p) and the additional hy-
pothesis that Xp(AF ) = 0, and for any intermediate �eld L of F/k, we shall say
that BSDp(L) holds if, for any choice of Z-bases {Qi} and {Rj} of A(L) and At(L)
respectively and of isomorphism j : C→ Cp, one has that

j

(
L∗(A/L, 1) · (

√
|dL|)d

det(〈Qi, Rj〉L) ·
∏

v∈SL∞
Ωv(A/L)

)
∈ Z×p .

Here dL denotes the discriminant of the �eld L and each period Ωv(A/L) is as
de�ned above but relative to the �eld L rather than k. It will become apparent
in the proof of Theorem 2.8 below that the validity of BSDp(L) is equivalent to
the validity of the p-part of the eTNC for the pair (h1(AL)(1),Z). We recall that
hypotheses (a), (b) and (h) justify the fact that no orders of torsion subgroups of
Mordell-Weil groups, Tamagawa numbers or orders of Tate-Shafarevich groups occur
in this formulation, and furthermore note that, by explicitly computing integrals,
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the periods Ωv(A/L) can be related to those obtained by integrating measures as
occurring in the classical formulation of the Birch and Swinnerton-Dyer conjecture
� see, for example, Gross [18, p. 224].

For the remainder of this section, we assume that C(A,Q[G]) is valid. It is then
easy to see that, for any order Λ in Q[G] that contains Z[G], the validity of Cp,j(A,Λ)
is independent of the choice of isomorphism j : C → Cp, and so we �x such a j for
the remainder of this section. In fact, all relevant elements of C[G] appearing in
the statements of our results will actually belong to Q[G] (as a consequence of an
easy application of Theorem 2.6) and so we will consider them simoultaneously as
elements of Qp[G] ⊂ Cp[G] in the natural way without any explicit mention of j.

Let M denote the maximal Z-order in Q[G]. For any ψ ∈ Ĝ, let Oψ be the
valuation ring of Qp(ψ). Let pψ be the (unique) prime ideal of Oψ above p. We
write vpψ for the normalised valuation de�ned by pψ.

Theorem 2.8. Let P and P t be any choice of points such that (1) holds. We assume
that Xp(AF ) = 0. Then the following are equivalent.

(i) Cp(A,M) is valid.

(ii) BSDp(L) is valid for all intermediate �elds L of F/k.

(iii) For each ψ ∈ Ĝ one has

vpψ

( L∗ψ
λψ(P ,P t)

)
= bψ where bψ :=

tψ−1∑
s=0

psms.

(iv) ∑
ψ∈ bG

L∗ψ
λψ(P ,P t)δψ

eψ ∈M×
p .

To describe the full range of implications of the validity of Cp(A,Z[G]) requires
yet more work and some further notations.

For each �nite extension L/k and natural number n we write Sel(p
n)(AL) for the

Selmer group associated to the isogeny [pn]. We de�ne the p-primary Selmer group
by

Selp(AL) := lim
−→

Sel(p
n)(AL).

We recall that one then obtains a canonical short exact sequence

0 −→ Qp/Zp ⊗Z A(F ) −→ Selp(AF ) −→Xp(AF ) −→ 0

of Zp[G]-modules, from which upon taking Pontryagin duals one derives a canonical
short exact sequence

0 −→Xp(AF )∨ −→ Selp(AF )∨ −→ A(F )∗p −→ 0. (3)
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We will throughout use this canonical short exact sequence to �x identi�cations of
(Selp(AF )∨)tor with Xp(AF )∨ and of (Selp(AF )∨)tf with A(F )∗p.

In [11] a suitable integral model RΓf (k, Tp,F (A)) of the �nite support cohomology
of Bloch and Kato for the base change through F/k of the p-adic Tate module of
At is de�ned and then used in order to de�ne an `equivariant regulator' which is
essential to the explicit reformulation of Cp(A,Z[G]) (see [11, Th. 4.1]). We will
recall this reformulation and the relevant de�nitions in Section 3.

By [11, Lem. 3.1], RΓf (k, Tp,F (A)) is under our current hypotheses a perfect
complex of Zp[G]-modules which is acyclic outside degrees 1 and 2 and whose coho-
mology groups in degrees 1 and 2 canonically identify with At(F )p and Selp(AF )∨

respectively. RΓf (k, Tp,F (A)) therefore uniquely determines a perfect element δA,K,p
of Ext2

Zp[G](Selp(AF )∨, At(F )p). We will use Proposition 2.2 to �x an explicit 2-
syzygy of the form

0→M
ι→ F 0 → F 1 → A(F )∗p → 0, (4)

in which we set
M :=

⊕
(t,j)

Zp[G/Ht]

and both F 0 and F 1 are �nitely generated free Zp[G]-modules and then use the
exact sequence (4) to compute Ext2

Zp[G](A(F )∗p, A
t(F )p) via the explicit isomorphism

Ext2
Zp[G](A(F )∗p, A

t(F )p) ' HomZp[G](M,At(F )p)/ι∗
(
HomZp[G](F

0, At(F )p)
)
.

If we now assume that Xp(AF ) vanishes, we may identify Selp(AF )∨ and A(F )∗p,
so that δA,F,p uniquely determines an element of the above quotient. We will
prove (see Lemmas 4.3 and 4.4 below) that we may choose a representative Φ ∈
HomZp[G](M,At(F )p) of δA,F,p with the following properties:

(P1) Φ is bijective,

(P2) Φ restricts to send an element x(n,j) of the (n, j)-th direct summand Zp[G] to
x(n,j)P

t
(n,j).

For a �xed choice of points P and P t such that (1) holds and of Φ ∈ HomZp[G](M,At(F )p)
as above, we �x a canonical Zp[G/Ht]-basis element e(t,j) of each direct summand
Zp[G/Ht] of M and �x any elements Φ(t,j),(s,i) of Zp[G] with the property that

Φ(e(s,i)) =
∑
(t,j)

Φ(t,j),(s,i)P
t
(t,j). (5)

We thus obtain an invertible matrix
(
Φ(t,j),(s,i)

)
(t,j),(s,i)

with entries in Zp[G], which

by abuse of notation we shall also denote by Φ. The matrix Φ is of the form
(
Φ(t,j),(s,i)

)
t,s<n

0
...
0

0 . . . 0 Imn

 (6)

10



with Imn denoting the identity mn ×mn matrix.
Recall the de�nition of tψ in De�nition 2.4. We de�ne the 'lower ψ-minor' of Φ

by setting
εψ(Φ) := det

(
ψ
(
Φtψ

))
.

We note �rstly that, since the chosen points P t
(t,j) satisfy (1), each element εψ(Φ)

(and, indeed, even the matrix ψ
(
Φtψ

)
) is independent of our particular choice of

elements Φ(t,j),(s,i) ∈ Zp[G] with the property that (5) holds.

Theorem 2.9. Let P and P t be any choice of points such that (1) holds. Assume
that Xp(AF ) = 0. Let Φ ∈ HomZp[G](M,At(F )p) be any representative of δA,F,p such
that (P1) and (P2) hold. Then Cp(A,Z[G]) is valid if and only if∑

ψ∈ bG
L∗ψ

λψ(P ,P t) · εψ(Φ) · δψ
eψ ∈ Zp[G]×. (7)

Remark 2.10. Theorem 2.9 can be reformulated in terms of explicit congruences.

Via Theorem 2.9, we now obtain completely explicit predictions concerning con-
gruences in the augmentation �ltration of the integral group ring Zp[G] for leading
terms at s = 1 of the relevant Hasse-Weil-L-functions of A normalised by our explicit
regulators. We recall that such predictions constitute a re�nement and generalisa-
tion of the congruences for modular symbols that are conjectured by Mazur and
Tate in [20].

In order to state such conjectural congruences, we require the following notation:
if the inequality rk(A(F J)) ≤ |G/J |rk(A(k)) of Corollary 2.3 is strict for some
subgroup J of G, we may and will denote by H = Ht0 the smallest non-trivial
subgroup of G with the property that mH 6= 0. Hence t0 is the maximal index with
the properties mt0 6= 0 and t0 < n. We then de�ne

L :=


∑
ψ∈ bG

L∗ψ
det(ψ(R(P,Pt)))eψ, if rk(A(F J)) = |G/J |rk(A(k)) for every J,∑

ψ|H 6=1

L∗ψ
λψ(P,Pt)eψ, otherwise.

We also let IG,p denote the kernel of the augmentaion map Zp[G] −→ Zp.

Corollary 2.11. Let P and P t be any choice of points such that (1) holds. Assume
that Xp(AF ) = 0. Let Φ ∈ HomZp[G](M,At(F )p) be any representative of δA,F,p such
that (P1) and (P2) hold. If Cp(A,Z[G]) is valid, then

(i) L belongs to the ideal IhG,p of Zp[G], where h :=
∑

t<nmt.

(ii) ε := det (1G(Φ)) ∈ Z×p .

(iii) v := (−1)d·|Sr|
L∗Sr (A/k,1)·(

√
|dk|)d

Ω(A)·det(1G(R(P,Pt))) ∈ Z×p .

11



(iv) L ≡ v
ε
·
∏

t<n

(
σp

t − 1
)mt

(mod Ih+1
G,p ).

The theory of organising matrices developed by Burns and the second named
author in [10] allows one to derive the containment L ∈ IhG,p of Corollary 2.11(i) from
the assumed validity of conjecture Cp(A,Z[G]) in situations in which Xp(AF ) is non-
trivial. In this greater level of generality, it furthermore leads to explicit statements
concerning annihilation of Tate-Shafarevich groups and (generalised) `strong main
conjectures' of the kind that Mazur and Tate explicitly ask for in [20, Remark after
Conj. 3]. Namely, we obtain the following result:

Theorem 2.12. Let P and P t be any choice of points such that (1) holds. If
Cp(A,Z[G]) is valid, then

(i) L belongs to the ideal IhG,p of Zp[G], where h :=
∑

t<nmt.

(ii) L annihilates the Zp[G]-module Xp(A
t
F ).

(iii) There exists a (�nitely generated) free Zp[G]-submodule Π of Selp(AF )∨ of
(maximal) rank mn with the property that L generates the Fitting ideal of the
quotient Selp(AF )∨/Π.

Remark 2.13. It will become clear in the course of the proof that, provided that there
exist sets of points P and P t such that (1) holds from which one may construct the
element L, Theorem 2.12 remains valid even if hypothesis (h) fails to hold. This
fact is relevant because, as we will see in Section 5, it allows us to obtain numerical
supporting evidence for Cp(A,Z[G]) (via verifying the explicit assertions of Theorem
2.12) in a wider range of situations.

Let #: Zp[G] −→ Zp[G] denote the involution induced by g 7→ g−1. Recalling
that the Cassels-Tate pairing induces a canonical isomorphism between Xp(AF )∨

and Xp(A
t
F ), we immediately obtain the following corollary:

Corollary 2.14. Under the assumptions of Theorem 2.12 one has that the element
L# of IhG,p annihilates the Zp[G]-module Xp(AF ).

3 An explicit reformulation of conjecture Cp(A,Z[G])

3.1 K-theory and re�ned Euler characteristics

Let R be either Z or Zp and, for the moment, let G be any �nite group. We write K
for the quotient �eld of R end let E be a �eld extension of K. Let Λ be an R-order
in K[G]. We recall that there is a canonical exact sequence of algebraic K-groups

K1(Λ) −→ K1(E[G])
∂1

Λ,E−→ K0(Λ,E[G]) −→ K0(Λ) −→ K0(E[G]) (8)
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where K0(Λ,E[G]) is the relative algebraic K-group as de�ned by Swan in [21,
p. 215].

For any ring Σ we write ζ(Σ) for its center. We let nrE[G] : K1(E[G]) −→ ζ(E[G])×

denote the (injective) homomorphism induced by the reduced norm map. If Λ is a
Z-order in Q[G] we write

δG : ζ(R[G])× −→ K0(Λ,R[G]),

δG,p : ζ(Cp[G])× −→ K0(Λp,Cp[G])

for the extended boundary homomorphisms as de�ned in [9, Sec. 4.2]. Recall that

δG ◦ nrR[G] = ∂1
Λ,R, δG,p ◦ nrCp[G] = ∂1

Λp,Cp .

By the general construction described in [9, Prop. 2.5] (and [5, Lem. 5.1]) each pair
(C•, λ) consisting of a complex C• ∈ Dp(Λp) and an isomorphism λ : Hev(C•) −→
Hod(C•) gives rise to a re�ned Euler characteristic χG,p(C

•, λ) ∈ K0(Λp,Cp[G]). For
an explicit example of the computation of χG,p(C

•, λ) in a special case, which is also
relevant for the computations in this paper, we refer the reader to [3, Sec. 3].

It is well known that ∂1
Λp,Cp is onto and that nrCp[G] is an isomorphism. We

therefore deduce from (8) that

K0(Λp,Cp[G]) ' ζ(Cp[G])×/nrCp[G] (K1(Λp)) . (9)

Since Λp is semilocal, we can replace K1(Λp) by Λ×p in (9). Moreover, it follows
from (9) that for an element ξ ∈ ζ(Cp[G])× one has that δG,p(ξ) = 0 if and only if
ξ ∈ nrCp[G]

(
Λ×p
)
. Finally, if G is abelian, we have that

K0(Λp,Cp[G]) ' Cp[G]×/Λ×p ,

and hence δG,p(ξ) = 0 if and only if ξ ∈ Λ×p .
In this context we also recall [2, Lem. 2.5]. We naturally interpret K0(Λ,Q[G])

and K0(Λp,Qp[G]) as subgroups of K0(Λ,R[G]) and K0(Λp,Cp[G]) respectively, and
recall that if ξ ∈ ζ(R[G])×, then

δG(ξ) ∈ K0(Λ,Q[G]) ⇐⇒ ξ ∈ ζ(Q[G])×

while if ξ ∈ ζ(Cp[G])×, then

δG,p(ξ) ∈ K0(Λp,Qp[G]) ⇐⇒ ξ ∈ ζ(Qp[G])×.

We �nally recall that, for any isomorphism j : C ∼= Cp , there is an induced
composite homomorphism of abelian groups

jG,∗ : K0

(
Λ,R[G]

)
→ K0

(
Λ,C[G]

) ∼= K0

(
Λ,Cp[G]

)
→ K0

(
Λp,Cp[G]

)
(where the �rst and third arrows are induced by the inclusions R[G] ⊂ C[G] and
Λ ⊂ Λp respectively). We also write j∗ : ζ(C[G])× → ζ(Cp[G])× for the obvious map
induced by j, and note that it is straightforward to check that one has

jG,∗ ◦ δG = δG,p ◦ j∗.
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3.2 Relevant results from [11]

For a �nite group Γ we write D(Zp[Γ]) for the derived category of complexes of
left Zp[Γ]-modules. We also write Dp(Zp[Γ]) for the full triangulated subcategory of
D(Zp[Γ]) comprising complexes that are perfect (that is, isomorphic in D(Zp[Γ]) to
a bounded complex of �nitely generated projective Zp[Γ]-modules).

We write Tp(A) for the p-adic Tate module of the dual abelian variety At (sic!).
With Σk(F ) denoting the set of k-embeddings F ↪→ kc and YF/k,p :=

∏
Σk(F ) Zp we

set
Tp,F (A) := YF/k,p ⊗Zp Tp(A),

where G acts on the �rst factor in the obvious way and Gk acts diagonally.
For a given isomorphism j : C → Cp, conjecture Cp,j(A,Z[G]) is formulated in

terms of an element RΩj

(
h1(AF )(1),Z[G]

)
of K0(Zp[G],Cp[G]) that is constructed

(unconditionally under the assumed validity of hypothesis (g)) via the formalism of
virtual objects from the compactly supported étale cohomology complex Cc,•

A,F :=

RΓc

(
Ok,S

[
1
p

]
, Tp,F (A)

)
of Tp,F (A) on Spec

(
Ok,S

[
1
p

])
(where we have set S :=

Sr ∪ Sb) and the various canonical comparison morphisms between the relevant
realisations and cohomology spaces associated to the motive h1(AF )(1) (for more
details see [9]).

Motivated by work of Bloch and Kato, and in order to isolate the main arithmetic
di�culties involved in making RΩj

(
h1(AF )(1),Z[G]

)
explicit, one de�nes (local and

global) �nite support cohomology complexes RΓf (kv, Tp,F (A)) (for all v ∈ S ∪ Sp)
and RΓf (k, Tp,F (A)) (see [11, Sec. 3.2]) which �t in a canonical exact triangle in
D(Zp[G]) (see [11, (13)]) of the form

C loc,•
A,F [−1] −→ Cc,•

A,F −→ Cf,•
A,F −→ C loc,•

A,F

with
C loc,•
A,F :=

⊕
v∈S∞

RΓ(kv, Tp,F (A))⊕
⊕

v∈S∪Sp

RΓf (kv, Tp,F (A))

and
Cf,•
A,F := RΓf (k, Tp,F (A)).

However, if p divides |G| it is not clear that it is always possible to de�ne com-
plexes RΓf (kv, Tp,F (A)) so that Cf,•

A,F and C loc,•
A,F are perfect. For that reason one has

to introduce additional hypotheses (see e.g. [11, Lemma 3.1]) that do not occur in
the formulation of conjecture Cp,j(A,Z[G]) using compactly supported cohomology.

On the other hand, under the assumptions of [11] the complex RΓf (k, Tp,F (A))
is perfect and acyclic outside degrees one and two. Moreover, there are canonical
identi�cations of H1

f (k, Tp,F (A)) and H2
f (k, Tp,F (A)) with At(F )p and Selp(AF )∨ re-

spectively (see [11, Lemma 3.1]). Hence the C-linear extension of the Néron-Tate
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height pairing of A de�ned relative to the �eld F induces a canonical trivialisation

λNT,j
A,F : Cp ⊗Zp H

1
(
Cf,•
A,F

) ∼= Cp ⊗Zp A
t(F )p

∼= Cp ⊗C,j (C⊗Z A
t(F )) ∼= Cp ⊗C,j HomC

(
C⊗Z A(F ),C

)
∼= Cp ⊗Zp HomZp

(
A(F )p,Zp

) ∼= Cp ⊗Zp H
2
(
Cf,•
A,F

)
.

To recall the statement of [11, Prop. 3.2] we let λexp,j
A,F be the trivialisation of

C loc,•
A,F de�ned in loc.cit.. By unwinding the de�nition of RΩj

(
h1(A/F )(1),Z[G]

)
and relating the general formalism of virtual objects to the explicit re�ned Euler
characteristics we work with, the equality

RΩj

(
h1(A/F )(1),Z[G]

)
= χG,p

(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
−χG,p

(
C loc,•
A,F , λ

exp,j
A,F

)
+
∑

v∈S∪Sp

δG,p
(
Lv(A,F/k)

)
in K0(Zp[G],Cp[G]) is obtained, where the Lv(A,F/k) are the `local Euler factors'
de�ned in the statement of [11, Prop. 3.2].

In [11, Th. 3.3], χG,p(C
loc,•
A,F , λ

exp,j
A,F ) is subsequently explicitly computed (under

their running hypothesis (a) - (i)). Consequently, it is �nally proved in [11, Th. 4.1]
that

jG,∗
(
TΩ
(
h1(A/F )(1),Z[G]

))
= δG,p

(
j∗(L∗A,F/k)

)
+ χG,p

(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
, (10)

where TΩ
(
h1(A/F )(1),Z[G]

)
is the element de�ned in [9, Conj. 4], or equivalently

that conjecture Cp,j(A,Z[G]) is valid if and only if

δG,p
(
j∗(L∗A,F/k)

)
= −χG,p

(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
. (11)

In order to prove our results stated in Section 2 we must therefore compute

the re�ned Euler characteristic χG,p

(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
in terms of the heights of the

chosen sets of points P and P t.

4 The proofs

4.1 The proof of Proposition 2.2

In this subsection we will prove Proposition 2.2. The existence of global points P(t,j)

and P t
(t,j) such that (1) holds is then an immediate consequence of Roiter's lemma

(see [12, (31.6)]). Our proof is modelled along the lines of proof of [11, Th. 2.6].
To ease notation we set H1 := H1(Cf,•

A,F ) = At(F )p and H2 := H2(Cf,•
A,F ) =

Selp(AF )∨. We recall that, for any intermediate �eld L of F/k, we may and will use
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the relevant canonical short exact sequence of the form (3) to identify (Selp(AL)∨)tor

with Xp(AL)∨ and (Selp(AL)∨)tf with A(L)∗p.
By Lemma 4.1 below we know that (H2)J is torsionfree for all 1 6= J ≤ G. The

second arrow in the natural exact sequence(
H2

tor

)
J
−→

(
H2
)
J
−→

(
H2

tf

)
J
−→ 0

is therefore bijective and hence the modules (H2)J ' (H2
tf)J are both torsion-free.

By the de�nition of Tate cohomology, we have that the �nite groups Ĥ−1(J,H2)

and Ĥ−1(J,H2
tf) identify with (�nite) submodules of (H2)J ' (H2

tf)J and therefore
both vanish.

Furthermore, since the complex Cf,•
A,F is perfect and acyclic outside degrees 1 and

2, for each subgroup J of G the group Ĥ1(J,H1) is isomorphic to Ĥ−1(J,H2) and
hence also vanishes. In addition, since G is cyclic, the Tate cohomology of each J
is periodic of order 2 and so Ĥ−1(J,H1) also vanishes.

We next note that, since G is a p-group, hypothesis (a) implies that At(F )p = H1

is torsion-free.
We now apply the main result [22, Th. 2.4] of Yakovlev to see that both

At(F )p = H1 and A(F )∗p = H2
tf are Zp[G]-permutation modules, that is, that there

exist isomorphisms of the form

At(F )p '
⊕
J≤G

Zp[G/J ]<rJ>, A(F )∗p '
⊕
J≤G

Zp[G/J ]<sJ>

for some sets of non-negative integers {rJ} and {sJ}. But the Néron-Tate height
pairing induces an isomorphism of Cp[G]-modules between Cp⊗ZpA

t(F )p and Cp⊗Zp
A(F )∗p and so by rank considerations we �nd that rJ = sJ =: mJ for every J .
Finally, it is easy to see that the Zp-linear dual of a permutation module is again
a permutation module of the same shape. Therefore the canonical isomorphism
A(F )∗∗p ' A(F )p shows that one also has that

A(F )p '
⊕
J≤G

Zp[G/J ]<mJ>.

To complete the proof of Proposition 2.2 we �nally require the following result:

Lemma 4.1. For each 1 6= J ≤ G the module of J-coinvariants (Selp(AF )∨)J is
Zp-torsionfree.

Proof. Under the validity of our hypotheses, Greenberg proves in [17, Prop. 5.6] that
the natural restriction homomorphism resF

J

F : Selp(AFJ ) → Selp(AF )J is bijective
for every J . It follows that there is a canonical composite isomorphism of the form

(Selp(AF )∨))J
∼=
(
Selp(AF )J)

)∨ ∼= Selp(AFJ )∨.

The result follows now from hypothesis (h) since we identify (Selp(AFJ )∨)tor with
Xp(AFJ ).
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4.2 The proof of Theorem 2.9

Recall that in addition to our running hypothesis (a) - (h) we also assume that
Xp(AF ) = 0. In particular, we identify Selp(AF )∨ with A(F )∗p via the canonical
map in (3).

We �x an isomorphism of �elds j : C → Cp. From (11) and the discussion in
�3.1 it is clear that it will be enough to show that

−χG,p
(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
= δG,p

∑
ψ∈ bG

j(λψ(P ,P t))εψ(Φ)δψeψ

 (12)

(we recall that, since we have assumed the validity of C(A,Q[G]), one actually has
that the validity of Cp,j(A,Z[G]) is equivalent to the validity of Cp(A,Z[G])).

We begin by de�ning, for every pair (s, i), an element P ∗(s,i) ∈ A(F )∗p by setting,

for every pair (t, j) and element τ of G,

P ∗(s,i)(τP(t,j)) =

{
1, if s = t, i = j and τ ∈ Hs

0, otherwise.
(13)

Lemma 4.2. A(F )∗p =
⊕

(s,i) Zp[G/Hs]P
∗
(s,i) with each summand Zp[G/Hs]P

∗
(s,i) iso-

morphic to Zp[G/Hs].

Proof. If γ ∈ G, then (
γP ∗(s,i)

) (
τP(t,j)

)
= P ∗(s,i)(γ

−1τP(t,j)) = 1

⇐⇒ s = t, i = j and γ ≡ τ(mod Hs). (14)

Hence we have γP ∗(s,i) = P ∗(s,i) for γ ∈ Hs. Moreover, it easily follows that the maps

γP ∗(s,i) with γ ∈ G/Hs form a Zp-basis of A(F )∗p (actually the Zp-dual basis of τP(t,j)

with τ ∈ G/Ht).

We now proceed to �x an explicit 2-syzygy of the form (4). For this purpose, we
�rst recall that Ht = 〈σpt〉. For each pair (t, j) corresponding to the subgroup Ht of
G and j ∈ [mt] we hence have a 2-extension

0 −→ Zp[G/Ht]
ιt−→ Zp[G]

σp
t−1−→ Zp[G]

πt,j−→ Zp[G/Ht]P
∗
(t,j) −→ 0.

In this sequence we let ιt denote the (well-de�ned) map which sends the image of an
element x ∈ Zp[G] under the natural surjection Zp[G] → Zp[G/Ht] to the element
TrHtx of Zp[G], while πt,j sends the element 1 of Zp[G] to the element P ∗(t,j) ∈ A(F )∗p
de�ned in (13). Lemma 4.2 then implies that, summing over all pairs (t, j) we obtain
a 2-extension

0 −→M
ι−→ F 0 Θ−→ F 1 π−→ A(F )∗p −→ 0.
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with

F 0 = F 1 = X :=
⊕
(t,j)

Zp[G],

M :=
⊕
(t,j)

Zp[G/Ht].

We now recall that we have a canonical isomorphism

Ext2
Zp[G](A(F )∗p, A

t(F )p) ' HomZp[G](M,At(F )p)/ι∗(HomZp[G](F
0, At(F )p))

under which an element φ of HomZp[G](M,At(F )p) corresponds to the element ε(φ)
of Ext2

Zp[G](A(F )∗p, A
t(F )p) which has the bottom row of the commutative diagram

with exact rows

0 −−−→ M
ι−−−→ X

Θ−−−→ X
π−−−→ A(F )∗p −−−→ 0

φ

y y ∥∥∥ ∥∥∥
0 −−−→ At(F )p −−−→ X(φ) −−−→ F 1 π−−−→ A(F )∗p −−−→ 0,

(15)

as a representative. In this diagram X(φ) is de�ned as the push-out of ι and
φ. We now proceed to prove that, when considering perfect elements ε(φ) of
Ext2

Zp[G](A(F )∗p, A
t(F )p), one may without loss of generality restrict attention to

a special class of elements φ of HomZp[G](M,At(F )p).

Lemma 4.3. For all subgroups J of G one has

(i) Ext2
Zp[G](Zp[G],Zp[G/J ]) = 0,

(ii) Ext2
Zp[G](Zp[G/J ],Zp[G]) = 0

Proof. Part (i) is clear. Concerning (ii), we �rst note that since Zp[G/J ] is Zp-
torsion-free, there is an isomorphism of the form

Ext2
Zp[G](Zp[G/J ],Zp[G]) ∼= H2(G,HomZp(Zp[G/J ],Zp[G])).

Since the Tate cohomology of G is periodic of order 2, the latter group is in turn
isomorphic to Ĥ0(G,HomZp(Zp[G/J ],Zp[G])). An explicit computation now shows
that the latter group vanishes, as required to complete the proof of the lemma.

Lemma 4.3 now implies that we can without loss of generality restrict attention
to those elements φ of HomZp[G](M,At(F )p) which satisfy (P2) and, in addition, by
the argument of [3, Lemma 4.3], which are furthermore injective.

Lemma 4.4. Suppose that φ ∈ HomZp[G](M,At(F )p) has all of the properties de-
scribed in the previous paragraph. Then the element ε(φ) of Ext2

Zp[G](A(F )∗p, A
t(F )p)

is perfect if and only if φ is an isomorphism.
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Proof. The fact that φ restricts to send an element x(n,j) of the (n, j)-th direct
summand Zp[G] to x(n,j)P

t
(n,j) immediately implies that cok(φ) = cok(φ′) where

φ′ :
⊕

(t,j),t<n

Zp[G/Ht]→
⊕

(t,j),t<n

Zp[G/Ht]P
t
(t,j)

is the map obtained by restriction of φ. Since φ is injective, the commutative
diagram (15) implies that the 2-extension ε(φ) is perfect if and only cok(φ) = cok(φ′)
is cohomologically trivial. Note that Hn−1 clearly acts trivially on cok(φ′). So, if
cok(φ′) is cohomologically trivial, then

cok(φ′)/p cok(φ′) = Ĥ0(Hn−1, cok(φ′)) = 0.

It then follows that cok(φ′) must itself vanish, as required.

We henceforth �x Φ ∈ HomZp[G](M,At(F )p) representing the element δA,F,p ∈
Ext2

Zp[G](Selp(AF )∨, At(F )p) which is speci�ed by RΓf (k, Tp,F (A)). Recall that by
our current assumption Xp(AF ) = 0 we identify Selp(AF )∨ and A(F )∗p. By Lemma
4.3 and 4.4 we may and will assume that Φ is an isomorphism and furthermore that
the matrix de�ned in (5) is of the form (6).

Having justi�ed our choice of homomorphism Φ, we now proceed to compute

the term −χG,p
(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
that occurs in (12) via a generalisation of the

computations done in [3, Sec. 4]. For brevity, given any Zp[G]-module N , resp.
Zp[G]-homomorphism h, we set NCp := Cp ⊗Zp N , resp. hCp := Cp ⊗Zp h.

For any choice of respective splittings

s1 : XCp →MCp ⊕ im(Θ)Cp

and
s2 : XCp → ker(π)Cp ⊕ A(F )∗Cp

of the short exact sequences induced by scalar extension of

0→M
ι−→ X

Θ−→ im(Θ)→ 0

and
0→ ker(π)→ X

π−→ A(F )∗p → 0

respectively, we write 〈λNT,j
A,F ◦ΦCp ,Θ, s1, s2〉 for the composite Cp[G]-automorphism

of XCp given by

XCp
s1−→ MCp ⊕ im(Θ)Cp

(ΦCp ,id)
−→ At(F )Cp ⊕ im(Θ)Cp

(λNT,j
A,F ,id)
−→ A(F )∗Cp ⊕ im(Θ)Cp

= A(F )∗Cp ⊕ ker(π)Cp

s−1
2−→ XCp .
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We also write X• for the perfect complex of Zp[G] modules X
Θ−→ X with the

�rst term placed in degree 1 and the modules H1(X•) and H2(X•) identi�ed with
M and A(F )∗p respectively via the top row of diagram (15). An explicit computation
then shows that, independently of the choice of splittings s1 and s2, one has that

−χG,p
(
Cf,•
A,F , (λ

NT,j
A,F )−1

)
=− χG,p

(
X•,Φ−1

Cp ◦ (λNT,j
A,F )−1

)
=δG,p

(
detCp[G](〈λNT,j

A,F ◦ ΦCp ,Θ, s1, s2〉)
)
.

The proof of equality (12), and hence of Theorem 2.9, will thus be achieved by
the following explicit computation.

Proposition 4.5. There exist splittings s1 and s2 as above with the property that
detCp[G](〈λNT,j

A,F ◦ ΦCp ,Θ, s1, s2〉) =
∑

ψ∈ bG j(λψ(P ,P t))εψ(Φ)δψeψ.

Proof. Let {w(s,i) : s = 0, . . . , n, i ∈ [ms]} be the standard basis of X. For each pair
(s, i) we write Ws = W(s,i) for the kernel of the canonical map

Cp[G] −→ Cp[G/Hs],

so that Ws = (σp
s − 1)Cp[G] = (1 − eHs)Cp[G]. We then have a commutative

diagram

0 // Cp[G/Hs]
ιs // Cp[G]

σp
s−1

//

"" ""EE
EE

EE
EE

E
Cp[G]

πs,i
// Cp[G/Hs]P

∗
(s,i)

// 0

Ws

- 


<<yyyyyyyyy

(16)
with furthermore

⊕
(s,i) W(s,i) equal to im(Θ)Cp = ker(π)Cp . We now �x the required

splittings s1 and s2 by summing over all pairs (s, i) the splittings of the short exact
sequences in (16) given by

Cp[G] −→ Cp[G/Hs]⊕Ws, 1 7→
(

1

|Hs|
, σp

s − 1

)
(17)

and
Cp[G] −→ Cp[G/Hs]P

∗
(s,i) ⊕Ws, 1 7→

(
P ∗(s,i), 1− eHs

)
(18)

respectively. Note that for the inverse map in (18) we have (P ∗(s,i), 0) 7→ eHs and

(0, σp
s − 1) 7→ σp

s − 1.
After these preparations we proceed to compute the matrix ΛNT(Φ) which rep-

resents 〈λNT,j
A,F ◦ ΦCp ,Θ, s1, s2〉 with respect to the �xed Cp[G]-basis {w(s,i)} of XCp .

From (17) and (5) it follows easily that the composite of s1 and (ΦCp , id) maps w(s,i)

to  1

|Hs|
∑
(t,j)

Φ(t,j),(s,i)P
t
(t,j),

(
. . . , σp

s − 1, . . .
)
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in At(F )Cp⊕im(Θ)Cp =
(⊕

(t,j) Cp[G/Ht]P
t
(t,j)

)
⊕
(⊕

(t,j)Wt

)
with the only nonzero

component in ⊕(t,j)Wt at the (s, i)-spot. By Lemma 4.6 below this is further mapped

by (λNT,j
A,F , id) to 1

|Hs|
∑
(t,j)

Φ(t,j),(s,i)

∑
(u,k)

 ∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j)〉F )τeHu

P ∗(u,k),
(
. . . , σp

s − 1, . . .
) .

Rearranging the summation and applying the map s−1
2 as described in (18) we obtain

∑
(u,k)

 1

|Hs|
∑
(t,j)

Φ(t,j),(s,i)

∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j)〉F )τeHu

w(u,k) + (σp
s − 1)w(s,i).

We now �x a character ψ ∈ Ĝ. We have that

ψ

 1

|Hs|
∑
(t,j)

Φ(t,j),(s,i)

∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j)〉F )τeHu


=


1
|Hs|

∑
(t,j)

Φ(t,j),(s,i)

∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j))〉Fψ(τ), u ≥ tψ,

0, u < tψ,

while ψ(σp
s − 1) is equal to 0 if and only if s ≥ tψ.

We immediately obtain that

det
(
ψ
(
ΛNT(Φ)

))
= j(λψ(P ,P t)) · εψ(Φ) · δψ,

as required.

We �nally provide the relevant Lemma used in the course of the above proof.

Lemma 4.6.

λNT,j
A,F

(
P t

(t,j)

)
=
∑
(u,k)

 ∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j)〉F )τeHu

P ∗(u,k).

Proof. We recall that λNT,j
A,F is induced by 〈 , 〉F : A(F ) × At(F ) −→ C. For P t ∈

At(F ) we explicitly have λNT,j
A,F (P t) = j(〈 , P t〉F ). Let f ∈ A(F )∗p denote the map

de�ned by the right hand side of the equation in Lemma (4.6). From (14) we
immdiately see that eHuP

∗
(u,k) = P ∗(u,k). For each pair (v, l) and γ ∈ G/Hv we hence

obtain

f(γP(v,l)) =
∑
(u,k)

∑
τ∈G/Hu

j(〈τP(u,k), P
t
(t,j)〉F )

(
τP ∗(u,k)

) (
γP(v,l)

)
= j(〈γP(v,l), P

t
(t,j)〉F )

=
(
λNT,j
A,F (P t

(t,j))
)

(γP(v,l)).
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4.3 The proof of Theorem 2.6

Since the validity of Theorem 2.6 does not rely in any crucial manner on the fact that
the extension F/k is cyclic or even abelian, we elect to use notations throughout this
proof that would be appropriate to studying conjecture C(A,Q[G]) for any �nite
Galois extension F/k of group G.

We set M = h1(AF )(1) and recall that C(A,Q[G]) is formulated in [9, Conj. 5]
as an equality of the form

[Ξ(M), ϑ∞] + δ(nr−1
R[G](λL

∗(M, 0))) = 0

in π0(V (Q[G],R[G])). For the readers convenience we brie�y recall the notation
used in [9]:

• For any unital associative ring we let V (R) denote the (Picard) category of
virtual objects over R. We also write (X, Y ) 7→ X · Y for the product and 1R
for the unit object in V (R). If P0 denotes the Picard category with unique
object 1P0 and AutP0(1P0) = 0, then

V (Q[G],R[G]) := V (Q[G])×V (R[G]) P0

is the �bre product associated to the canonical functors V (Q[G])→ V (R[G])
and P0 → V (R[G]).

• The leading term L∗(M, 0) at s = 0 of the Q[G]-equivariant motivic L-function
of M is explicitly given by

∑
χ∈Ir(G) eχL

∗(A, χ̌, 1), and λ ∈ ζ(Q[G])× is any

element with the property that λL∗(M, 0) belongs to im(nrR[G]). The map

δ : K1(R[G])→ π0(V (Q[G],R[G]))

is obtained by composing the map β : π1(V (R[G]))→ π0(V (Q[G],R[G])) aris-
ing from the Mayer-Vietoris exact sequence of the �bre product with the iso-
morphism ιR : K1(R[G])→ π1(V (R[G])) which sends an element of K1(R[G])
represented by an automorphism φ of a �nitely generated R[G]-module P
to [φ]R[G] · id([P ]−1

R[G]). Here [−]R[G] denotes the universal determinant func-

tor on the category of �nitely generated R[G]-modules and isomorphisms of
such.There exists furthermore an analogous isomorphism ιQ for the category
of �nitely generated Q[G]-modules.

• We set

Ξ(M) := [Q⊗Z A
t(F )]−1

Q[G] · [Q⊗Z A(F )∗]Q[G] ·

 ∏
v∈SF∞

[H0(Fv, Hv(M))]−1
Q[G]


· [HdR(M)/F 0]Q[G].
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We refer the reader to [9, (29)] for a more detailed de�nition of Ξ(M). In order
to de�ne ϑ∞, we �rst let once again λ

NT
A,F : R⊗Z A

t(F )→ R⊗Z A(F )∗ denote
the canonical isomorphism induced by the Néron-Tate height pairing and

αA,F : R⊗Q
⊕
v∈SF∞

H0(Fv, Hv(M))→ R⊗Q HdR(M)/F 0

denote the canonical period isomorphism described by Deligne in [13] (see also
[9, (16)]). We �nally de�ne ϑ∞ to be the canonical isomorphism in V (R[G])
from R[G]⊗Q[G] Ξ(A) to 1R[G] that is induced by [(λNTA,F )−1]R[G] and [α−1

A,F ]R[G].

In order to state certain useful preliminary results, we now note that the Q[G]-
modules X := Q⊗ZA

t(F ) and Y := Q⊗ZA(F )∗, resp. Z :=
⊕

v∈SF∞
H0(Fv, Hv(M))

andW := HdR(M)/F 0, are isomorphic (as a consequence, for instance, of [1, p. 110])
and hence, since Q[G] is semisimple, there exist Q[G]-modules M and N with the
property that both X ⊕M ∼= Y ⊕M and Z ⊕N ∼= W ⊕N are free Q[G]-modules.
In the sequel we (choose bases and so) �x identi�cations of X ⊕M , Y ⊕M , Z ⊕N
and W ⊕ N with direct sums of copies of Q[G] and hence regard λNTA,F ⊕ idR⊗QM

and αA,F ⊕ idR⊗QN as elements of K1(R[G]). In order to prove Theorem 2.6 we
require the following results, which are straightforward to deduce from the proof
of Lemma 4.6 and the proof of [11, Lemma 3.5] respectively and are furthermore
clearly independent of our choice of �xed identi�cations.

Lemma 4.7. nrR[G](λ
NT
A,F ⊕ idR⊗QM)/

∑
χ∈Ir(G) eχλχ(P ,P t) ∈ ζ(Q[G])×.

Lemma 4.8. nrR[G](αA,F ⊕ idR⊗QN)/
∑

χ∈Ir(G) eχ
w∞(k)d·Ω(A/k)

τ∗(Q,indQ
k (χ))d

∈ ζ(Q[G])×.

To proceed with the proof of Theorem 2.6, we �rst consider the following com-
mutative diagram with exact rows:

K1(Q[G]) −−−→ K1(R[G])
∂1

−−−→ K0(Q[G],R[G])

ιQ

y ιR

y c

y
π1(V (Q[G])) −−−→ π1(V (R[G]))

β−−−→ π0(V (Q[G],R[G])).

(19)

Here c sends an element [P, g,Q] to

[[P ]Q[G] · [Q]−1
Q[G], [g]R[G] · id([R⊗Q Q]−1

R[G])].

The commutativity of this diagram is easy to check given the explicit nature of all
maps involved, and it is also straightforward to prove that c is bijective (see for
example the proof of [9, Prop. 2.5]). We hence have that C(A,Q[G]) is valid if and
only if in K0(Q[G],R[G]) one has

0 =c−1([Ξ(M), ϑ∞] + δ(nr−1
R[G](λL

∗(M, 0))))

=− [Z, αA,F ,W ]− [X,λNTA,F , Y ] + ∂1(nr−1
R[G](λL

∗(M, 0))).
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It hence follows from the exactness of the top row of (19) that C(A,Q[G]) is valid
if and only if

−[αA,F ⊕ idR⊗QN ]− [λNTA,F ⊕ idR⊗QM ] + nr−1
R[G](λL

∗(M, 0)) ∈ im(K1(Q[G])).

It is now straightforward to check that the latter condition is equivalent to the
containment

L∗(M, 0)/(nrR[G](αA,F ⊕ idR⊗QN)nrR[G](λ
NT
A,F ⊕ idR⊗QM)) ∈ ζ(Q[G])×.

By Lemmas 4.7 and 4.8, combined with the fact that the Euler factors involved in the
truncation of each of the leading terms L∗Sr(A, ψ̌, 1) live by de�nition in ζ(Q[G])×,
it is hence clear that the validity of C(A,Q[G]) is equivalent to the containment∑

ψ∈ bG
L∗ψ

λψ(P ,P t)
eψ ∈ ζ(Q[G])×.

By [2, Lem. 2.9] this containment is equivalent to the explicit condition described
in Theorem 2.6.

4.4 The proof of Theorem 2.8

We assume now that C(A,Q[G]) is valid and proceed to prove the explicit inter-
pretation of Cp(A,M) claimed in Theorem 2.8 in any such situation. We begin by
noting that, for any �xed isomorphism of �elds j : C → Cp, the respective maps
jG,∗ restrict to give the vertical arrows in a natural commutative diagram with exact
rows of the form

K0(Z[G],Q[G])tor −−−→ K0(Z[G],Q[G])
µ−−−→ K0(M,Q[G])

jG,∗

y jG,∗

y jG,∗

y
K0(Zp[G],Qp[G])tor −−−→ K0(Zp[G],Qp[G])

µp−−−→ K0(Mp,Qp[G]).

(20)

We note that the exactness of the rows follows from [9, Lemma 11]. We now proceed
to prove several useful results.

Lemma 4.9. Cp(A,M) holds if and only if jG,∗
(
TΩ
(
h1(AF )(1),Z[G]

))
belongs to

K0(Zp[G],Qp[G])tor.

Proof. The equality TΩ
(
h1(AF )(1),M

)
= µ

(
TΩ
(
h1(AF )(1),Z[G]

))
proved in [9,

Th. 4.1] combines with the commutativity of the right-hand square of diagram (20)
to imply that

jG,∗
(
TΩ
(
h1(AF )(1),M

))
= µp

(
jG,∗
(
TΩ
(
h1(AF )(1),Z[G]

)))
.

The exactness of the bottom row of diagram (20) thus completes the proof.
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Lemma 4.10. Cp(A,M) holds if and only if
∑

ψ∈ bG L∗ψ
j(λψ(P,Pt))εψ(Φ)δψ

eψ ∈M×
p .

Proof. Lemma 4.9 combines with equalities (10) and (12) to imply that Cp(A,M)
holds if and only if

µp

δG,p
∑
ψ∈ bG

L∗ψ
j(λψ(P ,P t))εψ(Φ)δψ

eψ

 = 0.

We next note that the respective maps δG,p induce vertical (bijective) arrows in
a commutative diagram of the form

Qp[G]×/Zp[G]× −−−→ Qp[G]×/M×
py y

K0(Zp[G],Qp[G])
µp−−−→ K0(Mp,Qp[G])

.

This completes the proof of the Lemma.

Lemma 4.11. εψ(Φ) ∈ Zp[ψ]×.

Proof. The map Φ⊗Mp : M ⊗Zp[G]Mp −→ At(F )p⊗Zp[G]Mp is an isomorphism of
Mp-modules. SinceMp contains the Qp[G]-rational idempotents,

Φ⊗ Zp[ψ] : M ⊗Zp[G] Zp[ψ] −→ At(F )p ⊗Zp[G] Zp[ψ]

is an isomorphism of Zp[ψ]-modules. It is easy to see that Φ⊗ Zp[ψ] is represented
by ψ

(
Φtψ

)
.

We now proceed to give the proof of Theorem 2.8.
The equivalence of (i) and (iv) follows directly upon combining Lemmas 4.10

and 4.11.
Furthermore it is straightforward to compute the valuation of each element δψ.

One has vpψ(δψ) = bψ with bψ de�ned as in Theorem 2.8, and hence (iii) and (iv)
are clearly equivalent.

In order to prove the equivalence of (i) and (ii), we will use (a special case
of) a general fact which we now describe. If H is any subgroup of G, we write
ρGH : K0(Zp[G],Qp[G]) −→ K0(Zp[H],Qp[H]) for the natural restriction map and
qH0 : K0(Zp[H],Qp[H]) −→ K0(Zp,Qp) for the natural map induced by sending an
element [P, φ,Q] of K0(Zp[H],Qp[H]) to the element [PH , φH , QH ] of K0(Zp,Qp).
By [6, Thm. 4.1] one then has that

K0(Zp[G],Qp[G])tor =
⋂
H≤G

ker(qH0 ◦ ρGH). (21)
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The functoriality properties of the element TΩ
(
h1(AF )(1),Z[G]

)
with respect to

the maps ρGH and qH0 proved in [9, Prop. 4.1] then imply that, for any subgroup H
of G, one has that

(qH0 ◦ ρGH)
(
jG,∗
(
TΩ
(
h1(AF )(1),Z[G]

)))
= j0,∗

(
TΩ
(
h1(AFH )(1),Z

))
,

and so Lemma 4.9 combines with (21) to imply that Cp(A,M) holds if and only if, for
every intermediate �eld L of F/k, the element jGL/L,∗

(
TΩ
(
h1(AL)(1),Z

))
vanishes,

that is, if and only if the p-part of the eTNC holds for the pair
(
h1(AL)(1),Z

)
.

Noting that it is easy to check that the set of data (A/L,L/L, p) satis�es all the
hypotheses of Theorem 2.9 for any such �eld L (see for instance [11, Lem. 2.10]
for a proof of a more general assertion), all that is left to do in order to prove the
equivalence of (i) and (ii) is to apply Theorem 2.9. Indeed, any choice of Z-bases
{Qi} and {Rj} of A(L) and At(L) respectively satisfy condition (1) for the set of data

(A/L,L/L, p), while an explicit computation proves that
τ∗(Q,indQ

L(1GL/L ))

w∞(L)
=
√
|dL|.

4.5 The proof of Corollary 2.11

For brevity we set

λψ := λψ(P ,P t), εψ := εψ(Φ), u :=
∑
ψ∈ bG

L∗ψ
λψεψδψ

eψ.

By Theorem 2.9 the validity of Cp(A,Z[G]) is equivalent to the containment u ∈
Zp[G]×, which we assume holds throughout the proof. We also let ε : Zp[G] −→ Zp

denote the augmentation map.
We begin by noting that claim (ii) is just the ψ = 1G special case of Lemma 4.11,

and proceed now to deduce claim (iii) from it. One clearly has that L∗1G/(λ1Gε1Gδ1G) =
ε(u) ∈ Z×p with δ1G equal by de�nition to 1, while an explicit computation shows

that
τ∗(Q,indQ

k (1G))

w∞(k)
= (−1)|Sr|

√
|dk|. Claim (ii) therefore indeed implies that

v = L∗1G/λ1G = ε(u) · ε1G = ε(u) · ε (22)

belongs to Z×p , as required.
In order to prove the remaining claims, we �rst note that, if rk(A(F J)) =

|G/J |rk(A(k)) for every subgroup J of G, then h = 0 by Proposition 2.2 while
Φ can be chosen to be the identity matrix by property (P2) and each element δψ is
simply equal to 1 by convention. In any such case, claim (i) therefore reduces to the
trivial statement L = u ∈ Zp[G] while claim (iv) simply reads u ≡ v(mod IG,p) and
follows directly from (22). We therefore may and will henceforth assume that the
inequality rk(A(F J)) ≤ |G/J |rk(A(k)) of Corollary 2.3 is strict for some subgroup
J of G. We recall that H = Ht0 denotes the smallest non-trivial subgroup of G with
the property that mH 6= 0.
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In order to prove claim (i), we note �rst that for each ψ ∈ Ĝ we have

ψ|H 6= 1 ⇐⇒ ker(ψ) ⊆ Ht0 and ker(ψ) 6= Ht0 ⇐⇒ tψ > t0.

From the de�nitions of εψ and δψ one immediately deduces that for each ψ ∈ Ĝ such
that ψ|H 6= 1 one has

εψ = 1, δψ = δ :=

t0∏
j=0

(
σp

j − 1
)mj

.

Since δeψ = 0 for each ψ such that ψ|H = 1 we deduce that L = δu ∈ δZp[G] ⊆ IhG,p,
as required.

Finally, claim (iv) follows from (22) because u is clearly congruent to ε(u) = v/ε
modulo IG,p and therefore L = δu is congruent to δ v

ε
modulo Ih+1

G,p , as required.

4.6 The proof of Theorem 2.12

We begin by de�ning a (free) Zp[G]-submodule

P :=
⊕
j∈[mn]

Zp[G]P ∗(n,j)

of A(F )∗p and then �x, as we may, an injective lift κ : P −→ Selp(AF )∨ of the
inclusion P ⊆ A(F )∗p through the canonical projection of (3). We also �x, as we

may, a representative of the perfect complex Cf,•
A,F of the form C1 → C2 in which

both C1 and C2 are �nitely generated, cohomologically-trivial Zp[G]-modules. We
then obtain a commutative diagram with exact rows and columns of the form

0 0 0 0y y y y
0 −→

⊕
j Zp[G]P t

(n,j)

⊕
j Zp[G]P t

(n,j)

0−→ im(κ) im(κ) −→ 0y y y y
0 −→ At(F )p −→ C1 −→ C2 −→ Selp(AF )∨ −→ 0y y y y
0 −→ N −→ D1 −→ D2 −→ cok(κ) −→ 0y y y y

0 0 0 0

(23)

in which we have set
N :=

⊕
t<n,j∈[mt]

Zp[G/Ht].
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The Zp[G]-modules D1 and D2 are �nitely generated and cohomologically-trivial,
and hence the central arrow of the bottom row of this diagram de�nes an object D•

of Dp(Zp[G]) which is acyclic outside of degrees 1 and 2 and has identi�cations of
H1(D•) with N and of H2(D•) with cok(κ). We analogously de�ne an object B• of
Dp(Zp[G]) represented by the perfect complex of Zp[G]-modules⊕

j

Zp[G]P t
(n,j)

0−→ im(κ).

Following [10, Sec. 2.1.4] we next de�ne an idempotent eN :=
∑

ψ∈ΥN
eψ in Qp[G]

by letting ΥN be the subset of Ĝ comprising characters ψ with the property that
eψ(Cp⊗ZpN) = 0. For any object C• ofDp(Zp[G]) we then obtain an object eNC

• :=
eNZp[G]⊗L

Zp[G] C
• of Dp(eNZp[G]). In particular, the exact triangle represented by

diagram (23) induces an exact triangle in Dp(eNZp[G]) of the form

eNB
• −→ eNC

f,•
A,F −→ eND

• −→ eNB
•[1]. (24)

But eND
•⊗eNZp[G] eNCp[G] is acyclic and an immediate application of the additivity

criterion of [5, Cor. 6.6] to triangle (24) implies that one has

−χeNZp[G],eNCp[G](eND
•, 0) =− χeNZp[G],eNCp[G](eNC

f,•
A,F , eN(λNT,j

A,F )−1)

+ χeNZp[G],eNCp[G](eNB
•, λ′) (25)

where λ′ denotes the canonical isomorphism

eN(Cp ⊗Zp im(κ)) =eN(Cp ⊗Zp Selp(AF )∨)

eN (λNT,j
A,F )−1

−→ eN(Cp ⊗Zp A
t(F )p) = eN(Cp ⊗Zp

⊕
j

Zp[G]P t
(n,j)).

If we now write ϕ :
⊕

j Zp[G]P t
(n,j) →

⊕
j Zp[G]P ∗(n,j) for the canonical isomorphism

that maps an element P t
(n,j) to the element P ∗(n,j), then one �nds that

χeNZp[G],eNCp[G](eNB
•, λ′) =δeNZp[G],eNCp[G](deteNCp[G](λ

′ ◦ eN(Cp ⊗Zp (κ ◦ ϕ))))

=− δeNZp[G],eNCp[G](
∑
ψ∈ΥN

j(λψ(P ,P t))eψ), (26)

where the last equality follows from Lemma 4.6.
The assumed validity of Cp(A,Z[G]) therefore combines via (11) with equalities

(25) and (26) to imply that, in the terminology of [10, �2.3.2], the element

j∗(
∑
ψ∈ΥN

L∗ψλψ(P ,P t)−1eψ) = j∗(L)

of eNCp[G] is a characteristic element for eND
•. The result [10, Lem. 2.6] therefore

implies that there exists a characteristic element L′ forD• in Cp[G] with the property
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that eNL′ = j∗(L). Since D• is clearly an admissible complex of Zp[G]-modules (in
the terminology of [10, �2.1.1]), the results of [10, Cor. 3.3] therefore imply that the

element j∗(L) belongs to the ideal I h̃G,p of Zp[G], with h̃ := dimQp(Qp ⊗Zp cok(κ)G),
and furthermore generates FittZp[G](cok(κ)). To proceed with the proof, we �rst note

that it is straightforward to verify that h = h̃. We have hence proved that j∗(L)
belongs to IhG,p, as stated in claim (i) of Theorem 2.12. Furthermore, Π := im(κ)
is clearly a �nitely generated, free Zp[G]-submodule of Selp(AF )∨ of maximal rank
mn, and so the fact that the element j∗(L) generates FittZp[G](cok(κ)) proves claim
(iii) of Theorem 2.12. To complete the proof, it is enough to note that, since im(κ)
is torsion-free, the canonical composite homomorphism

Xp(AF )∨
∼→ (Selp(AF )∨)tor ⊆ Selp(AF )∨ → cok(κ)

is injective and hence that one has that

FittZp[G](cok(κ)) ⊆ AnnZp[G](Xp(AF )∨).

Recalling �nally that the Cassels-Tate pairing induces a canonical isomorphism be-
tween Xp(AF )∨ and Xp(A

t
F ) completes the proof of claim (ii) and thus of Theorem

2.12.

5 Examples

In this section we gather some evidence, mostly numerical, in support of conjecture
Cp(A,Z[G]). Our aim is to verify statements that would not follow in an straight-
forward manner from the validity of the Birch and Swinnerton-Dyer conjecture for
all intermediate �elds of F/k. Because of the equivalence of statements (i) and (ii)
in Theorem 2.8 we therefore choose not to focus on presenting evidence for conjec-
ture Cp(A,M) (although we also used our MAGMA programs to produce numerical
evidence for Cp(A,M) by verifying statement (iii) of Theorem 2.8).

Throughout this section A will always denote an elliptic curve.

5.1 Veri�cations of conjecture Cp(A,Z[G])

For the veri�cation of Cp(A,Z[G]) using Theorem 2.9 it is necessary to have explicit
knowledge of a map Φ that represents the extension class δA,F,p. Whenever A(F )p is
not projective as a Zp[G]-module we are currently not able to numerically compute Φ,
so we only deal with examples in which A(F )p is projective. To our best knowledge
there are currently three instances of theoretical evidence (in situations in which our
�xed cyclic extension F/k is not trivial):

• In [4], it is shown that for each elliptic curve A/Q with L(A/Q, 1) 6= 0 there
are in�nitely many primes p and for each such prime p in�nitely many (cyclic)
p-extensions F/Q such that Cp(A,Z[Gal(F/Q)]) holds. All of these examples
satisfy our hypotheses and are such that A(F )p vanishes.
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• In [11, Th. 5.1], Cp(A,Z[Gal(F/Q)]) is proved for certain elliptic curves A/Q,
where F denotes the Hilbert p-class�eld of an imaginary quadratic �eld k.
This result combines with the functoriality properties of the eTNC to imply
the validity of Cp(A,Z[Gal(F/k)]). In these examples one has that A(F )p is a
free Zp[Gal(F/k)]-module of rank one.

• In [11, Cor. 5.5], certain S3-extensions F/K are considered. Let k and L
denote the quadratic and cubic sub�eld of F/K respectively. Under certain
additional assumptions it is then shown that the validity of the Birch and
Swinnerton-Dyer conjecture for A over the �elds k,K and L implies the valid-
ity of Cp(A,Z[Gal(F/K)]). Again by functoriality arguments, the validity of
Cp(A,Z[Gal(F/k)]) follows. We note that the assumptions are such that one
again has that A(F )p is a free Zp[Gal(F/k)]-module of rank one.

In the rest of this section we are concerned with numerical evidence. In [2,
Sec. 6] there is a list of examples of elliptic curves A/Q and dihedral extensions
F/Q of order 2p for which Cp(A,Z[Gal(F/Q)] is numerically veri�ed. Here the
quadratic sub�eld k is real and A(F )p vanishes. Again by functoriality arguments
we obtain examples where Cp(A,Zp[Gal(F/k)]) is numerically veri�ed. There are
two further analogous numerical veri�cations in dihedral examples in [11, Sec. 5.3],
one of degree 10 and one of degree 14, both of them with the property that A(F )p
is a free Zp[Gal(F/k)]-module of rank one.

In the following we �x an odd prime p and let q denote a prime such that
q ≡ 1(mod p). We let F denote the unique sub�eld of Q(ζq)/Q of degree p and
take k to be Q. For p ∈ {3, 5, 7} and q < 50 we went through the list of semistable
elliptic curves of rank one and conductor N < 200 and checked numerically whether
L(A/Q, χ, 1) = 0 and L′(A/Q, χ, 1) 6= 0 for a non-trivial character χ of G, and in
addition, whether our hypotheses are satis�ed. This resulted in a list of 50 examples
(27 for p = 3, 20 for p = 5 and 3 for p = 7). In each of these examples we could �nd
a point R such that A(F )p = Zp[G]R and numerically verify conjecture Cp(A,Z[G]).

We now describe in detail an example with [F : Q] = 7. Let A be the elliptic
curve

E : y2 + xy + y = x3 + x2 − 2x.

This is the curve 79a1 in Cremona's notation. It is known that A(Q) is free of
rank one generated by P1 = (0, 0) and that X(AQ) = 0. Moreover it satis�es the
hypotheses used throughout the paper.

We take p = 7 and let F be the unique sub�eld of Q(ζ29) of degree 7. Explicitly,
F is the splitting �eld of

f(x) = x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x+ 1
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and we let α denote a root of f . Using the MAGMA command Points it is easy to
�nd a point R of in�nite order in A(F ) \ A(Q),

R =

(
1

17
(31α6 + 23α5 − 373α4 − 135α3 + 814α2 + 372α− 86),

1

17
(−35α6 − 83α5 + 380α4 + 771α3 − 811α2 − 1321α + 232)

)
.

By Proposition 2.2 we know that A(F )p is a permutation module, hence A(F )p '
Zp[G]. Furthermore, [11, Cor. 2.5] now implies that Xp(AF ) = 0.

We set Q1 := TrF/Q(R) = (3
4
,−3

8
) and easily verify that Q1 = −4P1. We checked

numerically that Zp[G]R = A(F )p.
Computing numerical approximations to the leading terms using Dokchitser's

MAGMA implementation of [14] we obtain the following vector for
(
L∗χ/λχ(P ,P t)

)
χ∈Ĝ

(−0.077586206896551724152,

−0.49999999999999999992 + 2.1906431337674115362i,

−0.49999999999999999996 + 0.62698016883135191886i,

−0.49999999999999999998− 0.24078730940376432202i,

−0.49999999999999999992− 2.1906431337674115362i,

−0.49999999999999999996− 0.62698016883135191886i,

−0.49999999999999999998 + 0.24078730940376432202i)

This is very close to

(−9/116, ζ3
7 + ζ2

7 + ζ7,−ζ5
7 − ζ4

7 − ζ7 − 1,−ζ5
7 − ζ3

7 − ζ7 − 1,

−ζ3
7 − ζ2

7 − ζ7 − 1, ζ5
7 + ζ4

7 + ζ7, ζ
5
7 + ζ3

7 + ζ7)

It is now easy to verify the rationality conjecture C(A,Q[G]) by the criterion of
Theorem 2.6. Moreover, the valuations of −9/116 and ζ3

7 + ζ2
7 + ζ7 at pχ are 0, so

that by Theorem 2.8 we deduce the validity of Cp(A,M). Finally, one easily checks
that −9/116 ≡ ζ3

7 + ζ2
7 + ζ7(mod (1 − ζ7)), so that the element in (7) is actually a

unit in Zp[G], thus (numerically) proving Cp(A,Z[G]).

5.2 Evidence in support of conjecture Cp(A,Z[G])

In this subsection we collect evidence for statements that we have shown to follow
from the validity of Cp(A,Z[G]) and focus on situations in which A(F )p is not Zp[G]-
projective. In particular, we aim to verify claim (i) of Theorem 2.12. Since we can
neither compute the module Xp(AF ) nor a map Φ as required, we are not able to
verify any other claim of either Corollary 2.11 or Theorem 2.12.

Again we want to focus on evidence which goes beyond implications of the Birch
and Swinnerton-Dyer conjecture for A over all intermediate �elds of F/k. We assume
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the notation of Theorem 2.12, so in particular set h =
∑

t<nmt. If k = Q and
mn = 0, then the element L is essentially the Mazur-Tate modular element (see [20])
and the validity of the Birch and Swinnerton-Dyer conjecture would imply that it
belongs to IG,p in the type of situations under consideration. Hence, if mn = 0, we
only searched for examples where h > 1.

If F/k is cyclic of order p, then IhG,p = (σ − 1)hMp for all h ≥ 1. Letting u and
δ denote the elements de�ned in the proof of Corollary 2.11 we hence note that, if
Cp(A,M) is valid, then u ∈M× and the proof of Corollary 2.11 clearly shows that
L = δu is contained in δMp = IG,p. We therefore further restricted our search for
interesting examples to cases where [F : k] = pn with n ≥ 2.

Restricted by the complexity of the computations and the above considerations
we are therefore lead to consider the following types of examples:

(i) A(F )p ' Zm0
p ⊕ Zp[G/H1]m1 ⊕ Zp[G]m2 , [F : Q] = 32,

(m0,m1,m2) = (1, 1, 0),

(ii) A(F )p ' Zm0
p ⊕ Zp[G/H1]m1 ⊕ Zp[G]m2 , [F : Q] = 32,

(m0,m1,m2) = (m0, 0, 0), m0 ≥ 2.

We note that, whenever Xp(AF ) is trivial, the validity of Cp(A,Z[G]) implies
by Corollary 2.11 that h is the exact order of vanishing, i.e., that L ∈ IhG,p \ Ih+1

G,p .
However, this need not be true if Xp(AF ) is non-trivial. In such cases, by Theorem
2.12 (iii), Cp(A,Z[G]) does predict that L generates the Fitting ideal of Selp(AF )∨

since mn = 0 immediately implies Π = 0.
Let q denote a prime such that q ≡ 1(mod 32). We let F denote the unique

sub�eld of Q(ζq)/Q of degree 9 and take k to be Q.
We checked two examples of type (i), namely those given by the pairs (E, q) ∈

{(681c1, 19), (1070a1, 19)}. In both cases we were able to �nd a points P0 and P1

such that A(F )p = ZpP0 ⊕ Zp[G/H]P1, where H denotes the subgroup of order 3.
Each time we numerically found that Xp(AF ) = 0 (predicted by the Birch and
Swinnerton-Dyer conjecture for A over F ) and veri�ed that h is the precise order of
vanishing, as predicted by Corollary 2.11.

Concerning examples of type (ii) went through the list of semistable elliptic
curves of rank 2 and conductor N < 750 and produced by numerically checking
L-values and derivatives a list of 12 examples satisfying the necessary hypotheses.
In each of these examples we had h = m0 = 2 and could numerically verify the
containment L ∈ I2

G,p. Whenever Xp(AF ) was trivial we also checked that L 6∈ I3
G,p.

We �nally present one example in detail. Let A be the elliptic curve

E : y2 + y = x3 + x2 − 2x.

This is the curve 389a1 in Cremona's notation. It is known that A(Q) is free of rank
two generated by P1 = (0, 0) and P2 = (−1, 1) and that X(AQ) = 0. Moreover it
satis�es the hypotheses required to apply Theorem 2.12 (see Remark 2.13).
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Computing numerical approximations to the leading terms we �nd that the order
of vanishing at each non-trivial character is 0. The rank part of the Birch and
Swinnerton-Dyer conjecture therefore predicts that rk(A(F )) = 2. We checked
that 〈P1, P2〉Z is 3-saturated in A(F ) and therefore (conjecturally) conclude that
A(F )p = 〈P1, P2〉Zp ' Z2

p.
The Birch and Swinnerton-Dyer conjecture predicts that |Xp(AF )| = 81. We

therefore cannot test for the precise order of vanishing.
Computing leading terms, periods and regulators we �nd the following numerical

approximations to
(
L∗χ/λχ(P ,P t)

)
χ∈Ĝ

(−1.243243, 1.500000 + 2.598076i, 1.500000− 2.598076i,

0.358440 + 2.032818i, 0.286988− 0.104455i,−3.645429 + 3.058878i,

0.358440− 2.032818i, 0.286988 + 0.104455i,−3.645429− 3.058878i).

The actual computation was done with a precision of 30 decimal digits.
This is very close to

(−46/37, 3ζ3 + 3, −3ζ3,

2ζ3
9 − ζ2

9 + 2ζ9, −ζ4
9 − 2ζ3

9 + 2ζ2
9 − 2, ζ5

9 + 2ζ4
9 + 2ζ3

9 + ζ2
9 ,

−2ζ5
9 + ζ4

9 − 2ζ3
9 − 2ζ2

9 + ζ9 − 2, −ζ5
9 − 2ζ4

9 + 2ζ3
9 − 2ζ9, 2ζ5

9 − 2ζ3
9 − ζ9 − 2).

It is now easy to verify the rationality conjecture C(A,Q[G]) by the criterion of
Theorem 2.6. We �nally �nd that

L = −σ + 2σ2− σ3 + 2σ5 − 2σ6 − 2σ7 + 2σ8

and easily check that L ∈ I2
G,p.
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