Algebraic Number Theory Exercises Tutorium 9

Dr. Tom Bachmann

Winter Semester 2021–22

Let $x^3 = 2$ and $K = \mathbb{Q}(x)$. The aim of these exercises is to determine \mathcal{O}_K .

Exercise 1. Show that $X^3 - 2$ is irreducible in $\mathbb{Q}[X]$ and $[K : \mathbb{Q}] = 3$.

Exercise 2. Let $z = a + bx + cx^2 \in K$. Compute $tr_{\mathbb{Q}}^K(z)$.

Exercise 3. Let $A = \mathcal{O}_K$ and $B \subset K$ the subring $\mathbb{Z}[x]$ generated by x. Show that $B \subset A$ and B is a free abelian group with basis $\{1, x, x^2\}$.

Exercise 4. Show that xA is a prime ideal in A [hint: consider the decomposition of 2A into prime ideals] and xB a prime ideal in B. What is the residue field of xA? Show that $B/xB \simeq A/xA$. Conclude that A = B + xA and A = B + 2A.

Exercise 5. Show that $3 = (x-1)(x+1)^3$ and x-1 is a unit in B. Proceeding as in (5), with 1+x in place of x, 3 in place of 2, show that A = B + (x+1)A and A = B + 3A.

Exercise 6. Conclude that A = B.