
LMU-Mathe-Sommer 2012

Eine Einführung in die Graphentheorie

Übungsblatt 2

K. Panagiotou/R. Graf

Aufgabe 1

Sei $\mathbb{N}_0 := \{0, 1, 2, ...\}$ und sei $n \in \mathbb{N}_0$. Gegeben sei ein Dominospiel mit Steinen der Form $x \mid y$, wobei $x, y \in \mathbb{N}_0$ sind und die Bedingung $0 \le x \le y \le n$ erfüllen.

- a) Wieviele Steine hat dieses Dominospiel?
- b) Ist es möglich, die Steine in einer Reihe anzuordnen, so dass (wie beim Dominospiel üblich) bei anliegenden Steinen die angrenzenden Zahlen jeweils gleich sind?

Aufgabe 2

Sei G ein Graph. Ein Weg $x_1x_2...x_n$ in G heißt Eulerweg, wenn er jede Kante in G genau einmal durchläuft; der Anfangspunkt x_1 und der Endpunkt x_n müssen dabei nicht gleich sein. Geben Sie eine notwendige und hinreichende Bedingung dafür an, dass G einen Eulerweg besitzt.

Aufgabe 3

Zeigen Sie, dass für jeden Graphen G = (V, E) gilt:

$$\sum_{v \in V} d_G(v) = 2|E|.$$

Aufgabe 4 (*)

Sei G ein zusammenhängender Graph und sei $k \in \mathbb{N}_0$. Geben Sie eine hinreichende und notwendige Bedingung dafür an, dass sich G so mit einem Stift zeichnen lässt, dass man den Stift höchstens k mal absetzt.

Aufgabe 5

Sei G ein Graph.

- a) Zeigen Sie: Ist G nicht zusammenhängend, so ist der zu G komplementäre Graph zusammenhängend!
- b) Ist es möglich, dass G und der Komplementgraph von G zusammenhängend sind?

Aufgabe 6 (*)

Sei G=(V,E) ein zusammenhängender Graph mit der Eigenschaft, dass für alle Kanten $e\in E$ der Graph $(V,E\setminus\{e\})$ nicht zusammenhängend ist. Bestimmen Sie die Anzahl |E| der Kanten von G.

Aufgabe 7

Seien V_1,\ldots,V_k paarweise disjunkte Mengen und sei $V:=V_1\cup\ldots\cup V_k$ ihre Vereinigung. Wieviele verschiedene Graphen G=(V,E) mit Knotenmenge V gibt es, bei denen für alle Kanten $e\in E$ und alle $i=1,\ldots,k$ Folgendes gilt: $|e\cap V_i|\leq 1$?