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1 Multilinear maps

1.1 General multilinear maps

We work with vector spaces over a fixed field K.

Let V1, . . . , Vk

,W be vector spaces. A map

V1 × . . . × Vk

µ�→W
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is calledmultilinear if it is linear in each variable, that is, if all maps µ(v1, . . . , vi−1, ⋅, vi+1, . . . , vk) ∶
V

i

→W are linear. The multilinear maps form a vector space Mult(V1, . . . , Vk

;W ).
Multilinear maps in k variables are also called k-linear. The 1-linear maps are the linear

maps, the 2-linear maps are the bilinear maps.

Multilinear maps are determined by their values on bases, and these values are independent

of each other. More precisely, if (e(i)
ji
� j

i

∈ J
i

) are bases of the V

i

, then a multilinear map µ is

determined by the values µ(e(1)
j1

, . . . , e

(k)
jk
) ∈ W for (j1, . . . , jk) ∈ J1 × . . . × Jk, and these values

can be arbitrary, i.e. for any vectors w

j1...jk
∈ W there is a unique multilinear map µ with

µ(e(1)
j1

, . . . , e

(k)
jk
) = w

j1...jk
. Indeed, for the values on general vectors v

i

= ∑
ji∈Ji aijie(i)ji ∈ Vi

, we

obtain the representation

µ(v1, . . . , vk) = �
j1,...,jk

� k�
i=1

a

iji� ⋅ µ(e(1)
j1

, . . . , e

(k)
jk
). (1.1)

In particular, if the dimensions of the vector spaces are finite, then

dimMult(V1, . . . , Vk

;W ) = ��
j

dimV

j

� ⋅ dimW.

Examples: Products in algebras. Composition Hom(U,V ) × Hom(V,W ) → Hom(U,W ). Scalar produtcs, symplectic forms,

volume forms, determinant. Natural pairing V × V ∗ →K.

1.2 The sign of a permutation

Let S

k

denote the symmetric group of k symbols, realized as the group of bijective self-maps of

the set {1, . . . , k}. The sign of a permutation ⇡ ∈ S
k

is defined as

sgn(⇡) = �
1≤i<j≤k

⇡(i) − ⇡(j)
i − j ∈ {±1}.

It counts the parity of the number of inversions of ⇡, i.e. of pairs (i, j) such that i < j and

⇡(i) > ⇡(j). The sign is positive if and only if the number of inversions is even, and such

permutations are called even. Transpositions are odd, and a permutation is even if and only if

it can be written as the product of an even number of transpositions. The sign is multiplicative,

sgn(⇡⇡′) = sgn(⇡) sgn(⇡′),
i.e. the sign map

S

k

sgn�→ {±1}
is a homomorphism of groups. Its kernel A

n

is called the alternating group.

Briefly, the sign map is characterized as the unique homomorphism S

k

→ {±1} which maps

transpositions to −1. The remarkable fact is that such a homomorphism exists at all. A

consequence is that, when representing a permutation as a product of transpositions, the parity

of the number of factors is well-defined.

Remark. For n ≥ 5 the alternating group A

n

is non-abelian and simple.
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1.3 Symmetric multilinear maps

We now consider multilinear maps whose variables take their values in the same vector space

V . One calls such maps also multilinear maps on V (instead of on V

n

). We abbreviate

Mult

k

(V ;W ) ∶=Mult(V, . . . , V����������������������������
k

;W )

and denote by Mult

k

(V ) ∶=Mult

k

(V ;K) the space of k-linear forms on V . Then Mult1(V ) = V ∗
and, by convention, Mult0(V ) =K.

A k-linear map

V

k = V × . . . × V�������������������������������������������������
k

µ�→W

is called symmetric if

µ(v
�(1), . . . , v�(k)) = µ(v1, . . . , vk) (1.2)

for all permutations � ∈ S
k

and all v

i

∈ V .

Remark. There is a natural action

S

k

�Mult

k

(V ;W ) (1.3)

of permutations on multilinear forms given by

(�µ)(v1, . . . , vk) = µ(v
�(1), . . . , v�(k)).

Indeed, (⌧(�µ))(v1, . . .) = (�µ)(v
⌧(1), . . .) = µ(v⌧(�(1)), . . .) = ((⌧�)µ)(v1, . . .)

for �, ⌧ ∈ S
k

. Thus condition (1.2) can be rewritten as

�µ = µ,
i.e. µ is symmetric if and only if it is a fixed point for the natural S

k

-action (1.3).

We describe the data necessary to determine a symmetric multilinear map.

If (e
i

� i ∈ I) is a basis of V , then µ ∈ Mult

k

(V ) is symmetric if and only if the values on

basis vectors satisfy µ(e
i�(1) , . . . , ei�(k)) = µ(ei1 , . . . , eik) for all i1, . . . , ik ∈ I and � ∈ S

k

, compare

the representation (1.1) of the values on general vectors. Hence, if I is equipped with a total

ordering “�”, then µ is deteremined by the values µ(e
i1 , . . . , eik

) for i1 � . . . � i

k

, and these

values can be arbitrary.

If dimensions are finite, we conclude that

dimMult

sym

k

(V ;W ) = �dimV + k − 1
k

� ⋅ dimW.

Further discussion: Polynomials and symmetric multilinear forms.
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1.4 Alternating multilinear maps

We now consider a modified symmetry condition for multilinear maps, namely which is “twisted”

by the signum homomorphism on permutations:

Definition (Antisymmetric). A map µ ∈Mult

k

(V ;W ) is called anti- or skew-symmetric if

µ(v
�(1), . . . , v�(k)) = sgn(�) ⋅ µ(v1, . . . , vk) (1.4)

for all v

i

∈ V and permutations � ∈ S
k

.

In terms of the natural action S

k

�Mult

k

(V ;W ) we can rewrite (1.4) as

�µ = sgn(�) ⋅ µ, (1.5)

for all � ∈ S
k

.

A closely related family of conditions will turn out to be more natural to work with:

Lemma 1.6. The following three conditions on a k-linear map µ ∈Mult

k

(V ;W ) are equivalent:
(i) µ(v1, . . . , vk) = 0 whenever v

i

= v
i+1 for some 1 ≤ i < k.

(ii) µ(v1, . . . , vk) = 0 whenever v

i

= v
j

for some 1 ≤ i < j ≤ k.
(iii) µ(v1, . . . , vk) = 0 whenever the v

i

are linearly dependent.

They imply that µ is antisymmetric.

Proof. Obviously (iii)⇒(ii)⇒(i).

(i)⇒antisymmetric and (ii): Suppose that (i) holds. The computation

�(u, v) + �(v, u) = �(u + v, u + v) − �(u, u) − �(v, v)
for bilinear maps � shows that then (1.4) holds in the general k-linear case for the transpositions

of pairs (i, i+1) of adjacent numbers. Since these transpositions generate the group S

k

, it follows

that (1.4) holds for all permutations � ∈ S
k

,

1
that is, µ is antisymmetric. The antisymmetry

together with (i) implies (ii).

(ii)⇒(iii): Suppose that the v

i

are linearly dependent. In view of the antisymmetry (implied

already by (i), as we just saw), we may assume that v

k

is a linear combination of the other v

i

,

that is, v

k

= ∑
i<k aivi. Then µ(v1, . . . , vk) = ∑

i<k aiµ(v1, . . . , vk−1, vi) = 0 because of (ii).

Definition (Alternating). A map µ ∈ Mult

k

(V ;W ) is called alternating if it satisfies (one

of) the equivalent conditions (i-iii) of the lemma.

According to the lemma, alternating multilinear maps are antisymmetric.

If charK ≠ 2, then also the converse holds:

2

1The permutations � ∈ Sk, for which (1.4) holds, form a subgroup of Sk.
2The field K has characteristic ≠ 2, if 2 ∶= 1 + 1 ≠ 0 in K. In this case, 2 has a multiplicative inverse in K,

i.e. one can divide by 2 in K. On the other hand, if the field K has characteristic 2, i.e. if 2 = 0 in K, then−1 = 1 and hence −a = a for all a ∈K, i.e. there are no signs in K.
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Lemma. If charK ≠ 2, then antisymmetric multilinear maps are alternating.

Proof. It su�ces to treat the bilinear case. An antisymmetric bilinear map � satisfies �(v, v) =−�(v, v) for all v ∈ V , and hence 2�(v, v) = 0. Dividing by 2 yields that � is alternating.

Moreover, in characteristic ≠ 2 antisymmetry and symmetry are “transverse” conditions;

the only multilinear maps, which are both symmetric and skew-symmetric, are the null-maps.

Remark. If charK ≠ 2, then bilinear forms can be uniquely decomposed as sums of symmetric

and alternating ones, since

�(u, v) = �(u, v) + �(v, u)
2�����������������������������������������������������������������������������������������������

symmetric

+ �(u, v) + �(v, u)
2�����������������������������������������������������������������������������������������������

anti-symmetric

.

If charK = 2, then the relations between the conditions are di↵erent. Since there are no

signs, skew-symmetry is the same as symmetry, whereas alternation is more restrictive if k ≥ 2.
Since antisymmetry coincides with either alternation or symmetry, depending on the char-

acteristic, alternation is the more interesting condition to consider. We denote by

Alt

k

(V ;W ) ⊂Mult

k

(V ;W )
the K-vectorspace of alternating multilinear maps, and we write Alt

k

(V ) ∶= Alt
k

(V ;K).
We now describe the data determining an alternating multilinear map.

Lemma 1.7. If (e
i

� i ∈ I) is a basis of V , then ↵ ∈Mult

k

(V ;W ) is alternating if and only if

(i) ↵(e
i1 , . . . , eik

) = 0 if some of the e

ij agree, and

(ii) ↵(e
i�(1) , . . . , ei�(k)) = sgn(�) ⋅ ↵(ei1 , . . . , eik) for all � ∈ Sk

if the e

ij are pairwise di↵erent.

Proof. The conditions are obviously necessary.

To see that they are also su�cient, we first treat the case k = 2 of a bilinear form �. For a

vector v = ∑
i

v

i

e

i

, assumptions (i+ii) imply

�(v, v) =�
i

v

2
i

�(e
i

, e

i

)�������������������������=0
+�

i�j
v

i

v

j

(�(e
i

, e

j

) + �(e
j

, e

i

))�����������������������������������������������������������������������������������������������������������������������������=0
= 0,

where we assume that I is equipped with a total ordering “�”. Thus, � is alternating.

In the general k-linear case, it follows that the bilinear forms ↵(e
i1 , . . . , eij−1 , ⋅, ⋅, eij+2 , . . . , eik)

for 1 ≤ j < k are alternating, and consequently all bilinear forms ↵(v1, . . . , vj−1, ⋅, ⋅, vj+2, . . . , vk)
since they are linear combinations of the former. Hence condition (i) of Lemma 1.6 is satisfied

and ↵ is alternating.

Corollary. If I is equipped with a total ordering “�”, then a map ↵ ∈ Alt
k

(V ;W ) is determined

by the values ↵(e
i1 , . . . , eik

) for i1 � . . . � ik, and these values can be arbitrary.
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Thus, if dimensions are finite, then

dimAlt

k

(V ;W ) = �dimV

k

� ⋅ dimW.

In particular, dimAlt

k

(V ) = 0 if k > dimV and dimAlt

k

(V ;W ) = dimW if k = dimV .

Corollary. If dimV = k, then dimAlt

k

(V ) = 1, i.e. there exists, up to scalar multiple, a unique

non-zero alternating k-linear form.

Moreover, if 0 ≠ ↵ ∈ Alt
k

(V ) and (e1, . . . , ek) is a basis of V , then ↵(e1, . . . , ek) ≠ 0.
1.4.1 The determinant of a matrix

To represent general values of alternating multilinear maps in terms of the values on a basis,

the key computation is the following. For vectors v

j

= ∑
i∈I ajiei, one obtains:

↵(v1, . . . , vk) = �
i1,...,ik∈I

↵(a1i1ei1 , . . . , akikeik) = �
i1�...�ik

�
�∈Sk

↵(a1i�(1)ei�(1) , . . . , aki�(k)ei�(k))�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(∏k
j=1 aji�(j))⋅↵(ei�(1) ,...,ei�(k))

= �
i1�...�ik

��
�∈Sk

sgn(�) ⋅ k�
j=1

a

ji�(j)� ⋅ ↵(ei1 , . . . , eik)
The coe�cients appearing in this formula are all derived from the same building block:

Definition (Determinant of a matrix). The determinant of a matrix (a
ij

) ∈Kk×k
is defined

as the quantity

det(a
ij

) ∶= �
�∈Sk

sgn(�) ⋅ k�
i=1

a

i�(i) ∈K. (1.8)

Note that

det(a
ij

)
i,j

= �
�∈Sk

sgn(�)�����������������=sgn(�−1)
⋅ k�
i=1

a

�

−1(i)i = �
�∈Sk

sgn(�) ⋅ k�
i=1

a

�(i)i = det(aji)i,j, (1.9)

i.e. the determinant of a matrix equals the determinant of its transpose.

Matrices may be regarded as tuples of (column or row) vectors, and accordingly the deter-

minant as a function in several vector variables. As such, the determinant of a k × k-matrix is

the up to scalar multiple unique alternating k-linear form on K

k

. Indeed, the last corollary,

the subsequent computation and (1.9) imply the following characterization:

Theorem 1.10. The function det ∶Kk×k →K given by (1.8) is

(i) alternating k-linear in the columns,

(i’) alternating k-linear in the rows,

(ii) normalized by detE = 1, where E ∈Kk×k denotes the identity matrix.

It is uniquely determined by properties (i) and (ii), and also by (i’) and (ii).
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Formula (1.8) for the determinant is called the Leibniz formula.

Closely related to it is the Laplace expansion of the determinant. We denote by M

rs

the

matrix obtained from (a
ij

) by cancelling the r-th row and the s-th column. Due to the Leibniz

formula and the antisymmetry of the determinant in columns and rows, we have that detM

rs

=(−1)r+s ⋅ detM ′
rs

, where M

′
rs

denotes the matrix obtained from (a
ij

) by replacing all entries in

the r-th row and the s-th column by 0, except a

rs

which is replaced by 1. The linearity of the

determinant in the r-th row yields the expansion

det(a
ij

) = k�
s=1

a

rs

detM

′
rs

= k�
s=1
(−1)r+sa

rs

detM

rs

,

and similarly the linearity in the s-th column the expansion

det(a
ij

) = k�
r=1
(−1)r+sa

rs

detM

rs

.

1.4.2 The determinant of an endomorphism

A linear map of vector spaces L ∶ U → V induces natural linear pull-back maps

Mult

k

(V ) L

∗�→Mult

k

(U)
of multilinear forms, (L∗µ)(u1, . . . , uk

) = µ(Lu1, . . . , Luk

).
Alternating forms pull back to alternating ones, L

∗(Alt
k

(V )) ⊂ Alt
k

(U).
Suppose now that dimV = k and L ∈ EndV is an endomorphism. Then Alt

k

(V ) is a one-dim
vector space and the induced endomorphism L

∗
of Alt

k

(V ) must be the multiplication by a

scalar. This factor is given by the determinant of a matrix for L. Indeed, if (e
i

) is a basis of

V and (a
ij

) the matrix of L relative to this basis, then Le

j

= ∑
i

a

ij

e

i

and, according to our

computation above and also invoking (1.9), we have for ↵ ∈ Alt
k

(V ) that
↵(Le1, . . . , Lek) = det(aij) ⋅ ↵(e1, . . . , ek), (1.11)

that is,

L

∗
↵ = det(a

ij

) ⋅ ↵.
In particular, det(a

ij

) is independent of the chosen basis and it makes sense to define:

Definition (Determinant of an endomorphism). The determinant of an endomorphism

of a finite-dim vector space is defined as the determinant of its matrix relative to a basis.

The induced endomorphism L

∗
of Alt

k

(V ) can then be written as

L

∗�Altk(V ) = detL ⋅ idAltk(V ), (1.12)

which may be taken as an alternative direct definition of the determinant of an endomorphism.
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For endomorphisms A,B ∈ End(V ) it holds by the contravariance of pull-back that

(AB)∗ = B∗A∗.
With (1.12) this immediately implies the multiplication law for determinants

det(AB) = detA ⋅ detB. (1.13)

It amounts to the fact that the natural map

Aut(V ) det�→K

∗
(1.14)

from the group of linear automorphisms of V to the multiplicative group of the field K given

by the determinant is a group homomorphism. In particular, for V = Kk

this means that the

map GL(k,K) det�→K

∗
given by the determinant of matrices is a group homomorphism.

1.4.3 Orientation

We now do geometry and work over the field K = R. Let V be a n-dim vector space.

The most intuitive description of orientations is in terms of bases.

Suppose first that n ≥ 1. Let B(V ) denote the space of ordered bases e = (e1, . . . , en) of V .

It is a dense open subset of V

n

.

Theorem 1.15. B(V ) has two path components. More precisely:

Two ordered bases e and e

′ lie in the same path component of B(V ) if and only if for one

and hence every 0 ≠ ↵ ∈ Alt
n

(V ) the values ↵(e1, . . . , en) and ↵(e′1, . . . , e′n) have the same sign.

Proof. A form 0 ≠ ↵ ∈ Alt
n

(V ) yields a surjective continuous map B(V ) → R∗ by evaluating it

on bases, i.e. sending (e1, . . . , en)� ↵(e1, . . . , en). Hence, B(V ) is not path connected.

To see that there are at most two path components, we note that any ordered basis e can be

continuously deformed (a continuous deformation of bases being a continuous path in B(V )) by
shearings and stretchings (as in the proof of Lemma 1.18) to a permutation of any other ordered

basis e

′
. Moreover, by rotations we can continuously deform e

′
to (. . . , e′

i−1,−e′i+1, e′i, e′i+2, . . .)
for any 1 ≤ i < n. Hence, e can be deformed to one of the two bases (±e′1, e′2 . . . , e′n).
Definition (Orientation). An orientation of V is a path component of B(V ).

In dimension n = 0, one defines an orientation of a trivial vector space V = {0} as a choice

of sign ±. In particular, in this case there is the natural orientation +.
Thus, a finite-dim real vector space has two orientations.

If an orientation has been chosen, one calls the ordered bases belonging to this equivalence

class positively oriented, the others negatively oriented, and the vector space oriented. An

ordered basis determines an orientation, namely the component of B(V ) containing it.

The standard orientation of Rn

is determined by its standard basis (e1, . . . , en).
8



One can also describe orientations in terms of top degree alternating multilinear forms. As

a consequence of the second part of the theorem, a volume form, that is, a form 0 ≠ ↵ ∈ Alt
n

(V )
determines an orientation, namely by defining a basis e as positively oriented if

↵(e1, . . . , en) > 0,
and all positive multiples of ↵ yield the same orientation.

One can therefore alternatively define an orientation as a ray component of Alt

n

(V ) � {0}.
There is a natural simply transitive right action

B(V )� GL(n,R) (1.16)

given by

e ⋅A = e′ with e

′
j

=�
i

a

ij

e

i

for A = (a
ij

). The group GL(n,R) decomposes as the disjoint union of the open subgroup

GL+(n,R) of matrices with positive determinant and its open coset GL−(n,R) of matrices with

negative determinant. (Recall that det ∶ GL(n,R)→ R∗ is a homomorphism, cf (1.14).)

The above theorem implies a corresponding result for GL(n,R):
Corollary. (i) GL(n,R) has two path components, namely GL±(n,R).

(ii) The path components of B(V ) are the GL+(n,R)-orbits for the action (1.16).

Proof. The simple transitivity of the GL(n,R)-action on B(V ) yields that the orbit maps

o

A

∶ GL(n,R) → B(V ),A � e ⋅ A are homeomorphisms. Thus, GL(n,R) is homeomorphic toB(V ).
Since ↵(e⋅A) = detA⋅↵(e) by (1.11), the subgroup GL+(n,R) preserves the path components

of B(V ) and is therefore homeomorphic to both of them and in particular path connected.

A linear isomorphism L ∶ V → V

′
of n-dim vector spaces induces a homeomorphism B(V )→B(V ′) of spaces of ordered bases and a linear isomorphism Alt

n

(V ′) → Alt

n

(V ) of lines of

top-degree alternating multilinear forms. If V and V

′
are oriented, then L is called orientation

preserving if it maps oriented bases to oriented bases, and orientation reversing otherwise.

A linear automorphism L ∶ V → V preserves orientation if and only if detL > 0, cf (1.12).
Complex vector spaces have natural orientations as real vector spaces. Indeed, as in the proof

of the theorem one sees that, if W is a C-vector space with dimCW = n, then the space BC(W )
of ordered complex bases is path connected. The image of the natural continuous embedding

BC(W )�→ BR(W ), (e1, . . . , en)� (e1, ie1, . . . , en, ien)
is contained in a path component of BR(W ) which one defines to be the natural orientation.

Note that the group GL(n,C) acts simply transitively on BC(W ) and is hence path connected.

Remark. GL(n,R) continuously retracts to O(n), and GL(n,C) to U(n).
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1.4.4 Determinant and volume

We keep working over the field K = R.
Let (V, �⋅, ⋅�) be a n-dim euclidean vector space. The scalar product induces a measurement

not only of lengths, but also of k-dim volumes in any dimension 1 ≤ k ≤ n. More precisely, it

induces a natural k-dim Lebesgue measure on every k-dim linear or a�ne subspace.

For a k-tuple (v1, . . . , vk) of vectors in V , we denote by

vol

k

(v1, . . . , vk)
the (non-oriented) k-dim volume of the parallelepiped P (v1, . . . , vk) spanned by the vectors v

i

.

Our aim is to give a concrete formula for the volume in terms of the scalar product.

The 1-dim volume is just the length, vol1(v) = �v�, equivalently, vol1(v)2 = �v, v�.
The 2-dim volume is the area. We compute the area of the parallelogram P (u, v) as in

elementary geometry as “base times height” and obtain using the Pythagorean theorem:

vol2(u, v)2 = �u�2 ⋅ ��v�2 − �v, u�u��2� = �u�2 ⋅ �v�2 − �u, v�2 = det��u, u� �u, v��v, u� �v, v�� (1.17)

This computation can be generalized to arbitrary dimension by induction.

We take another approach and establish a close link between the volume function and

alternating multilinear forms. It su�ces to consider the top-dimensional case. Let (e
i

) denote
an ONB of V . One has the following characterization of the volume:

Lemma 1.18. The function vol

n

is the unique function V

n → [0,∞) with the properties:

(i) symmetric, i.e. vol
n

(v
�(1), . . . , v�(n)) = voln(v1, . . . , vn) for � ∈ Sn

and v

i

∈ V .

(ii) invariant under shearing (Cavalieri principle), i.e. it holds that

vol

n

(v1 +w, v2, . . . , vn) = voln(v1, v2, . . . , vn)
for v

i

∈ V and any vector w in the span of v2, . . . , vn.

(iii) positively homogeneous under stretching, i.e.

vol

n

(a1v1, . . . , anvn) = �a1 ⋅ . . . ⋅ an� ⋅ voln(v1, . . . , vn)
for v

i

∈ V and a

i

∈ R.
(iv) normalized by vol

n

(e1, . . . , en) = 1.
Sketch of proof: The properties (i-iv) are clearly satisfied by vol

n

. On the other hand, they

determine vol

n

, because any n-tuple (v
i

) can be transformed by shearings and permutations in

finitely many steps to a tuple (a
i

e

i

) of multiples of the reference ONB vectors.

These properties bear strong similarities to the properties of top-degree alternating multi-

linear forms and the determinant. In fact, for every form 0 ≠ ↵ ∈ Alt
n

(V ), its absolute value �↵�
10



satisfies properties (i-iii) of the lemma. Consequently, due to uniqueness of vol

n

,

vol

n

(v1, . . . , vn) = �↵(v1, . . . , vn)
↵(e1, . . . , en) �. (1.19)

Note that, as a consequence, there exists a unique up to sign form ! ∈ Alt
n

(V ) whose

absolute value equals the volume,

vol

n

= �!�.
If V is in addition oriented, then there is a unique such form ! such that !(e1, . . . , en) = 1 for

every positively oriented ONB (e
i

) of V , cf Theorem 1.15. It is called the volume form of the

oriented euclidean vector space V .

Since endomorphisms act on top-degree alternating multilinear forms by multiplication with

their determinant, see (1.12), we conclude from (1.19) that they act on volume by multiplication

with the absolute value of the determinant,

L

∗
vol

n

= �detL� ⋅ vol
n

,

that is,

vol

n

(Lv1, . . . , Lvn) = �detL� ⋅ voln(v1, . . . , vn)
for L ∈ End(V ) and v

i

∈ V .

This provides a geometric interpretation for the determinant of an endomorphism, namely

that the volume distortion factor of an endomorphism is given by the absolute value of its

determinant. The determinant itself can be seen as a more refined oriented volume distortion

which takes into account additionally whether the endomorphism preserves or changes the

orientation of the vector space. The values of a volume form can be interpreted as signed or

oriented volumes of parallelepipeds.

Returning to our task of generalizing (1.17) to arbitrary dimension, we consider the multi-

linear form (u1, . . . , un

, v1, . . . , vn)� det(�u
i

, v

j

�) (1.20)

on V . It is alternating in the u

i

’s as well as in the v

j

’s. Hence, by the uniqueness of alternating

n-linear forms up to scalar multiple, it holds that

det(�u
i

, v

j

�) = ↵(u1, . . . , un

)
↵(e1, . . . , en) ⋅ det(�ei, vj�) =

↵(u1, . . . , un

)
↵(e1, . . . , en) ⋅

↵(v1, . . . , vn)
↵(e1, . . . , en) ⋅ det(�ei, ej�)��������������������������������������������������������=1

.

In particular, with (1.19) we obtain the generalization

vol

n

(v1, . . . , vn)2 = det(�vi, vj�) (1.21)

of (1.17). The expression on the right-hand side is called the Gram determinant. Of course,

this formula carries over to all intermediate dimensions 1 ≤ k ≤ n.

11



2 Tensors

2.1 The tensor product of vector spaces

Can one make sense of multiplying vectors belonging to possibly di↵erent vector spaces with

each other? This is certainly possibly. Given the freedom of constructions in mathematics, it

is a matter of giving a suitable definition. . .

A product, in algebraic contexts, usually is a bilinear map, that is, a distributive law holds.

Therefore, if U and V are K-vector spaces, by a product of vectors in U with vectors in V we

just mean some bilinear map

U × V �→W, (u, v)� u ⋅ v (2.1)

with values in another vector space W .

Given such a product �, we can compose it with a linear map l ∶W →W

′
to obtain another

product �

′ = l ○ �. If l has nontrivial kernel, then the new product �

′
is more “degenerate”

than � in that there are additional (linear) relations between its values. We are looking for

a universal product �

univ

∶ U × V → W

univ

from which all other products can be derived by

composing with a suitable linear map. It is thus natural to require that:

(i) W

univ

is “no larger than necessary”, i.e. W is the linear span of the values of the product.

(ii) W

univ

is “as large as possible”, i.e. there “no unnecessary relations” between the values.

One observes that, if (e
i

) and (f
j

) are bases of U and V , respectively, then the product of

two general vectors u = ∑
i

u

i

e

i

and v = ∑
j

v

j

f

j

can be expressed due to bilinearity as a linear

combination of the products of basis vectors,

u ⋅ v =�
i,j

u

i

v

j

e

i

⋅ f
j

. (2.2)

If the product is universal, then (i) the products e

i

⋅ f
j

should span and (ii) they should be

linearily independent. This suggests to construct a universal product by choosing W

univ

as a

vector space with basis the set of symbols e

i

⋅ f
j

and to then define the product map by (2.2).

This is a possible approach, cf lemma 2.6 below, but we will give a “basis free” construction.

We first formulate the properties which we expect from a universal product, to be called a

tensor product, namely that any product can be derived from it in a unique way:

Definition 2.3 (Tensor product). A tensor product of two vector spaces U and V is a vector

space U ⊗ V together with a bilinear map

U × V ⊗�→ U ⊗ V

satisfying the following universal property: For every bilinear map � as in (2.1) there exists a

unique linear map

U ⊗ V

��→W

such that � = � ○ ⊗.
12



In other words, the natural linear map

Hom(U ⊗ V,W )�→ Bil(U,V ;W ), �� � ○ ⊗ (2.4)

is an isomorphism. A tensor product thus serves as a device which converts bilinear maps into

linear ones.

Often, one refers to the vector space U ⊗ V itself as the tensor product of U and V .

Theorem 2.5. A tensor product exists and is unique up to natural isomorphism.

We can therefore speak of the tensor product.

Proof. Uniqueness follows from the universal property (by a typical kind of argument referred

to in category theory as “abstract nonsense”): Given two tensor products U ×V ⊗�→ U ⊗V and

U ×V ⊗̃�→ U ⊗̃V , there exist unique linear maps U ⊗V ��→ U ⊗̃V and U ⊗̃V �̃�→ U ⊗V such that⊗̃ = � ○⊗ and ⊗ = �̃ ○ ⊗̃. It follows that ⊗ = (�̃ ○�) ○⊗ and ⊗̃ = (� ○ �̃) ○ ⊗̃. The uniqueness part
of the universal property then implies that �̃ ○ � = id

U⊗V and � ○ �̃ = id
U⊗̃V . Hence, between

any two tensor products there is a natural isomorphism.

Existence. We start by forming a vector space with basis U ×V . Namely, let E be the vector

space consisting, as a set, of all symbols

�
i

a

i

(u
i

, v

i

)
with u

i

∈ U , v

i

∈ V and a

i

∈K, the vector space operations (addition and scalar multiplication)

defined in the obvious way. We denote by

U × V ◆�→ E

the natural inclusion. It is only a map of sets and not bilinear. Accordingly, every bilinear map

� as in (2.1) can be viewed as a map defined on the basis ◆(U × V ) of E and there is a unique

extension to a linear map

ˆ

� ∶ E →W such that � = ˆ� ○ ◆. However, not for all linear maps � the

composition

ˆ

� ○ ◆ is bilinear, because ◆ is not bilinear.

In order to pass from ◆ to a bilinear map, we impose relations on the values by dividing out

corresponding elements of E: Let R ⊂ E be the linear subspace generated by the elements

(u1, v) + (u2, v) − (u1 + u2, v), (u, v1) + (u, v2) − (u, v1 + v2),
(au, v) − a(u, v), (u, av) − a(u, v)

for u, u1, u2 ∈ U , v, v1, v2 ∈ V and a ∈K, and consider the quotient vector space

E�R =∶ U ⊗ V.

The map ◆ descends to the map

U × V ⊗�→ E�R�=∶U⊗V
, (u, v)� (u, v) +R =∶ u⊗ v.

13



which is bilinear by construction. For instance:

(u1 + u2)⊗ v = (u1 + u2, v) +R = (u1, v) + (u2, v) − ((u1, v) + (u2, v) − (u1 + u2, v))�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������∈R
+R

= ((u1, v) +R) + ((u2, v) +R) = u1 ⊗ v + u2 ⊗ v

We must verify that the map ⊗ satisfies the desired universal property. Given a bilinear map

� as in (2.1), let

ˆ

� ∶ E → W with � = ˆ

� ○ ◆ be the linear extension as above. Note that the

bilinearity of � is equivalent to

ˆ

�(R) = 0 since, for instance,

ˆ

�((u1, v) + (u2, v) − (u1 + u2, v)) = �(u1, v) + �(u2, v) − �(u1 + u2, v).
Hence,

ˆ

� descends to a linear map U ⊗ V

�→W with

�(u⊗ v) = ˆ��(u, v)� = �(u, v).
The map � is unique because already its lift

ˆ

� is the unique extension of �.

A more concrete idea of the tensor product is provided by the following fact.

Lemma 2.6. If (e
i

� i ∈ I) and (f
j

� j ∈ J) are bases of U and V , then (e
i

⊗ f

j

� i ∈ I, j ∈ J) is a
basis of U ⊗ V . In particular, in the case of finite dimensions, it holds that

dim(U ⊗ V ) = dimU ⋅ dimV.

Proof. From the construction of the tensor product we know that the elements u⊗ v generate

U ⊗ V . Consequently, also the elements e

i

⊗ f

j

generate.

In order to show that they are linearily independent, we separate them by linear forms.

Namely, we use the linear forms

U ⊗ V

�kl�→K, u⊗ v � e

∗
k

(u)f∗
l

(v).
Their existence follows from the universal property of the tensor product; they are induced by

the bilinear forms

U × V �kl�→K, (u, v)� e

∗
k

(u)f∗
l

(v).
For a finite linear relation

�
i,j

c

ij

e

i

⊗ f

j

= 0
it follows by applying these linear forms that

c

kl

= �
kl

��
i,j

c

ij

e

i

⊗ f

j

� = 0.
Thus, the elements e

i

⊗ f

j

form a basis.

With respect to the bases, the tensor product is given by:

(�
i

a

i

e

i

)⊗ (�
j

b

j

f

j

) =�
i,j

a

i

b

j

e

i

⊗ f

j

14



When changing the bases of the factors, ẽ

k

= ∑
i

g

ki

e

i

and

˜

f

l

= ∑
j

h

lj

f

j

, the induced change of

basis for the tensor product is given by:

ẽ

k

⊗ ˜

f

l

=�
i,j

g

ki

h

lj

e

i

⊗ f

j

Remark 2.7. It follows that if {e
i

∶ i ∈ I} is a basis of U , then every element in U ⊗ V can be

written as

�
i

e

i

⊗ v

i

with unique vectors v

i

∈ V .

Remark. (i) There is a natural isomorphism switching factors

U ⊗ V ≅ V ⊗U (2.8)

which identifies the elements u⊗ v with the elements v ⊗ u. It is induced by the bilinear map

U × V → V ⊗U sending (u, v)� v ⊗ u.

(ii) There are natural linear maps

U

∗ ⊗ V �→ Hom(U,V ); u

∗ ⊗ v � u

∗(⋅)v (2.9)

relating spaces of homomorphisms to tensor products. If dimU < ∞, then these are isomor-

phisms, i.e. the space of homomorphisms can then be represented as a tensor product,

Hom(U,V ) ≅ U∗ ⊗ V.

Indeed, if (e
i

� i ∈ I) is a basis of U , then (e∗
i

� i ∈ I) is a basis of U

∗
(due to finite dimensionality).

Elements of U

∗ ⊗ V then have unique representations as sums ∑
i

e

∗
i

⊗ v

i

and, correspondingly,

elements of Hom(U,V ) as sums ∑
i

e

∗
i

(⋅)v
i

.

If also dimV <∞ and {f
j

} is a basis of V , then elements of U

∗ ⊗ V have unique represen-

tations of the form

�
i,j

a

ji

e

∗
i

⊗ f

j

and they correspond to the homomorphisms given with respect to the chosen bases by the

matrices (a
ji

)
j,i

.

In particular, if V = U and dimU <∞, then we have the natural isomorphism

End(U) ≅ U∗ ⊗U, (2.10)

and id

U

corresponds to the element ∑
i

e

∗
i

⊗ e

i

.

(ii’) The homomorphism (2.9) is always injective, as one sees by restricting to finite dimen-

sional subspaces of U .

By analogy with the twofold tensor product, the multiple tensor product of an arbitrary

finite number of vector spaces U1, . . . , Un

is a multilinear map

U1 × . . . ×Un

⊗�→ U1 ⊗ . . .⊗U

n

15



with the universal property that every multilinear map U1 × . . . × Un

→ W is the composition

of ⊗ with a unique linear map U1 ⊗ . . . ⊗ U

n

→ W . Existence and uniqueness of the multiple

tensor product are proven in the same way.

Hence, as in the case of two factors, cf (2.4), the natural linear map

Hom(U1 ⊗ . . .⊗U

n

,W ) ○⊗�→Mult(U1, . . . , Un

;W ) (2.11)

given by precomposition with the tensor product is an isomorphism, and the tensor product

can be viewed as a tool for converting multilinear maps into linear ones.

If (e
ji � ji ∈ Ji) are bases of the U

i

, then again (e
j1 ⊗ . . .⊗ e

jn � (j1, . . . , jn) ∈ J1 × . . . × Jn) is a
basis of U1 ⊗ . . .⊗U

n

, cf. Lemma 2.6.

When building up multiple tensor products in several steps, the question of associativity

arises, i.e. of the independence of the choice of partial steps.

Lemma 2.12 (Associativity). There are natural isomorphisms

(U1 ⊗ . . .⊗U

n

)⊗ (U
n+1 ⊗ . . .⊗U

n+m)�→ U1 ⊗ . . .⊗U

n+m (2.13)

mapping elements (u1 ⊗ . . .⊗ u

n

)⊗ (u
n+1 ⊗ . . .⊗ u

n+m) to elements u1 ⊗ . . .⊗ u

n+m.

Proof. The natural multilinear map

U1 × . . . ×Un+m �→ (U1 ⊗ . . .⊗U

n

)⊗ (U
n+1 ⊗ . . .⊗U

n+m)
induces a linear map

U1 ⊗ . . .⊗U

n+m �→ (U1 ⊗ . . .⊗U

n

)⊗ (U
n+1 ⊗ . . .⊗U

n+m)
mapping elements u1 ⊗ . . . ⊗ u

n+m to elements (u1 ⊗ . . . ⊗ u

n

) ⊗ (u
n+1 ⊗ . . . ⊗ u

n+m). That it is

an isomorphism, is seen by choosing bases.

Remark 2.14. (i) Permutations of factors. Generalizing (2.8), for permutations � ∈ S
n

there

are the natural isomorphisms

U1 ⊗ . . .⊗U

n

≅ U
�(1) ⊗ . . .⊗U

�(n)
mapping elements u1 ⊗ . . .⊗ u

n

to elements u

�(1) ⊗ . . .⊗ u

�(n).
(ii) Functoriality. Linear maps L

i

∶ U
i

→ V

i

induce a linear map

L1 ⊗ ⋅ ⋅ ⋅ ⊗L

n

∶ U1 ⊗ . . .⊗U

n

�→ V1 ⊗ . . .⊗ V

n

(2.15)

mapping elements u1 ⊗ . . .⊗ un

to elements L1(u1)⊗ . . .⊗Ln

(u
n

). Indeed, it is induced by the

multilinear map U1 × . . . ×Un

�→ V1 ⊗ . . .⊗ V

n

sending (u1, . . . , un

)� L1(u1)⊗ . . .⊗L

n

(u
n

)
(iii) Multilinear maps. Generalizing (2.9), we have natural injective linear maps

U

∗
1 ⊗. . .⊗U∗n⊗V �→Mult(U1, . . . , Un

;V );u∗1⊗. . .⊗u∗n⊗v � �(u1, . . . , un

)� u

∗
1(u1) ⋅. . . ⋅u∗

n

(u
n

)v�
which are isomorphisms if dimU

i

<∞.
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2.2 The tensor algebra of a vector space

Covariant tensors. Now we multiply vectors in a fixed vector space U with each other. For

m ∈ N0, we call the m-fold tensor product

U

m = U × . . . ×U�������������������������������������������������
m

⊗�→ U ⊗ . . .⊗U���������������������������������������������������
m

=∶ ⊗m

U =∶ T
m

U (2.16)

of U with itself the m-th tensor power of U . Then T1U = U . By convention, T0U ∶= K. The

m-th tensor power of U can be regarded as the universal m-multilinear map from U × . . . ×U ,

universal in the sense that all others are obtained from it by postcomposition with a linear

map. As in the case of the general tensor product, one often refers to the K-vector space T

m

U

itself as the m-th tensor power of U .

We combine the tensor powers of the various degrees by forming the graded K-vector space

T∗U ∶= ∞�
m=0Tm

U

Due to the associativity of the tensor product, cf (2.13), there are natural bilinear maps

T

m

U × T
n

U

⊗�→ T

m+nU
which, by bilinear extension, yield a product

T∗U × T∗U ⊗�→ T∗U.
Equipped with this product, T∗U becomes a graded associative K-algebra with unity, the (co-

variant) tensor algebra of U . Covariant, because the functor U � T∗U from vector spaces to

algebras is covariant, i.e. a linear map L ∶ U → V induces a homomorphism of graded algebras

T∗U T∗L�→ T∗V
in the same direction. Indeed, cf (2.15), there are natural maps L

⊗m ∶ ⊗m

U → ⊗m

V sending

u1⊗ . . .⊗un

� L1(u1)⊗ . . .⊗Ln

(u
n

). We obtain T∗L by putting them together, T∗L�⊗m
U

= L⊗m.
The covariant tensor algebra can also be characterized by a universal property. The algebra

T∗U is the “largest” associative K-algebra with unity “generated by U” in the sense that every

linear map L ∶ U → A to an associative K-algebra with unity uniquely extends to an algebra

homomorphism

T∗U → A.

It maps elements u1 ⊗ . . .⊗ u

n

to L(u1) ⋅ . . . ⋅L(un

) and can be obtained as the composition of

the algebra homomorphism L∗ ∶ T∗U → T∗A induced by L with the natural “retraction” algebra

endomorphism T∗A→ A sending a1 ⊗ . . .⊗ a

n

to a1 ⋅ . . . ⋅ an.
A basis (e

i

� i ∈ I) of U induces a (vector space) basis (e
i1 ⊗ . . .⊗ e

im � i1, . . . , im ∈ I) of Tm

U

Contravariant tensors. Multiplying covectors, that is, linear forms leads to the contravariant

tensor algebra of U . It is defined as

T

∗
U ∶= T∗U∗.
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Contravariant, because a linear homomorphism U → V induces a linear homomorphism V

∗ →
U

∗
of dual spaces and hence an algebra homomorphism T

∗
V → T

∗
U in the reverse direction.

Mixed tensors. Both types of tensors can be combined to mixed tensors with vector and

covector components. One defines the tensor spaces

T

s

r

U ∶= T
r

U ⊗ T

s

U

for r, s ∈ N0 with the convention T

0
0U =K, and the tensor algebra of U as

T (U) ∶= T ∗∗U ∶= ∞�
r,s=0T

s

r

U.

Again, there is a natural product ⊗ on T (U) satisfying
(u1 ⊗ . . .⊗ u

r1 ⊗ u

∗
1 ⊗ . . .⊗ u

∗
s1
)⊗ (v1 ⊗ . . .⊗ v

r2 ⊗ v

∗
1 ⊗ . . .⊗ v

∗
s2
)

= u1 ⊗ . . .⊗ u

r1 ⊗ v1 ⊗ . . .⊗ v

r2 ⊗ u

∗
1 ⊗ . . .⊗ u

∗
s1
⊗ v

∗
1 ⊗ . . .⊗ v

∗
s2

which makes T (U) into a bigraded associative algebra with unity. There are natural inclusions

T∗U ⊂ T (U) and T

∗
U ⊂ T (U) such that T

r

U = T 0
r

U and T

s

U = T s

0U . The elements of T (U) are
called tensors, and the elements of T

s

r

U are called homogeneous tensors of type (r, s). Among

them, the tensors u1 ⊗ . . .⊗ u

r

⊗ u

∗
1 ⊗ . . .⊗ u

∗
s

are called decomposable or simple or monomials.

We note that not all homogeneous tensors are decomposable (by dimension reasons).

In low degrees, there are natural identifications of tensors with other linear algebra objects,

for instance: Tensors of type (1,0) are vectors. Tensors of type (0,1) are covectors, i.e. linear

forms. Tensors of type (0,2) are naturally identified with bilinear forms, compare (2.23) below,

and tensors of type (1,1) with endomorphisms cf (2.10).

The natural linear inclusion

U � U

∗∗
, u� (u∗ � u

∗(u))
induces natural linear inclusions

T

s

r

U � T

r

s

(U∗) and T (U)� T (U∗) (2.17)

of mixed tensor spaces and tensor algebras. If dimU <∞, these inclusions are isomorphisms.

Contractions. There are natural contraction maps between tensor spaces obtained by pairing

vector with covector factors. The simplest and most basic such map is the linear form

T

1
1U = U ⊗U

∗ �→K, u⊗ u

∗ � u

∗(u) (2.18)

induced by the natural non-degenerate bilinear pairing

3

U ×U∗ �→ R, (u, u∗)� u

∗(u). (2.19)

3A pairing of two vector spaces U and V is a bilinear map � ∶ U ×V →K. It induces linear maps U → V ∗, u�
�(u, ⋅) and V → U∗, v � �(⋅, v), and can be recovered from either of them. The pairing � is called non-degenerate

if for every 0 ≠ u ∈ U exists v ∈ V such that �(u, v) ≠ 0 and for every 0 ≠ v ∈ V exists u ∈ U such that �(u, v) ≠ 0.
This is equivalent to the injectivity of both induced linear maps. If dim(U),dim(V ) <∞, the non-degeneracy
of the pairing is equivalent to both linear maps being isomorphisms (implying dim(U) = dim(V )).

18



More generally, one can pair the i-th vector factor of a homogeneous tensor with the j-th

covector factor and thus obtains the contraction homomorphisms

T

s

r

U

C

j
i�→ T

s−1
r−1U

for 1 ≤ i ≤ r and 1 ≤ j ≤ s satisfying

u1 ⊗ . . .⊗ u

r

⊗ u

∗
1 ⊗ . . .⊗ u

∗
s

� u

∗
j

(u
i

) ⋅ u1 ⊗ . . . û

i

. . .⊗ u

r

⊗ u

∗
1 ⊗ . . . û

∗
j

. . .⊗ u

∗
s

,

the “hats” on two of the factors indicating that these factors are omitted. These homomor-

phisms are induced by the multilinear maps

(u1, . . . , ur

, u

∗
1, . . . , u

∗
s

)� u

∗
j

(u
i

) ⋅ u1 ⊗ . . . û

i

. . .⊗ u

r

⊗ u

∗
1 ⊗ . . . û

∗
j

. . .⊗ u

∗
s

.

By composing partial contractions one obtains (various) total contractions

T

r

r

U �→K,

for instance,

C

1
1 ○ . . . ○Cr

r

∶ u1 ⊗ . . .⊗ u

r

⊗ u

∗
1 ⊗ . . .⊗ u

∗
r

��
i

u

∗
i

(u
i

). (2.20)

If dimU <∞, then the contraction (2.18) is nothing but the trace

T

1
1U = U ⊗U

∗ (2.10)≅ End(U) tr�→K.

Indeed, if (e
i

) is a basis of U , then the endomorphism A = ∑
i,j

a

ij

e

i

⊗ e

∗
j

with matrix (a
ij

)
relative to this basis is mapped to ∑

i,j

a

ij

e

∗
j

(e
i

) = ∑
i

a

ii

= trA. (This also shows that the

expression ∑
i

a

ii

is independent of the basis (e
i

).)
Pairings and identifications. Generalizing (2.19), a natural non-degenerate

4
bilinear pairing

T

s

r

U × T r

s

U �→K (2.21)

is obtained by composing the tensor product T

s

r

U × T r

s

U

⊗→ T

r+s
r+sU with a total contraction. It

induces natural linear inclusions

T

r

s

U � (T s

r

U)∗
If dimU <∞, then these are isomorphisms, and together with the (now) isomorphisms (2.17),

we obtain the natural isomorphisms

(T s

r

U)∗ ≅ T r

s

U ≅ T s

r

(U∗). (2.22)

4The non-degeneracy can be verified by induction over the bigrade (r, s). The induction step follows from
the observation: If � ∶ U × U ′ → K and � ∶ V × V ′ → K are non-degenerate pairings, then the induced pairing

�⊗� ∶ (U ⊗V )× (U ′⊗V ′)→K is non-degenerate. To verify this, note that a non-zero element in ⌧ ∈ U ⊗V can
be expressed as a finite sum ∑i ui ⊗ vi with linearly independent ui ∈ U and non-zero vi ∈ V , cf. Remark 2.7. In
view of the inclusion U � U ′∗ induced by �, the linear forms �(ui, ⋅) on U ′ are linearly independent. Hence,
there exists u′ ∈ U ′ so that �(u1, u

′) ≠ 0 and �(ui, u
′) = 0 for i ≥ 2. Furthermore, there exists v′ ∈ V ′ so that

�(v1, v′) ≠ 0. Then (� ⊗ �)(⌧, u′ ⊗ v′) = ∑i �(ui, u
′)�(vi, v′) ≠ 0.
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Multilinear forms. Returning to the viewpoint of the tensor product as a device of converting

multilinear maps into linear maps, we observe now that the isomorphism (2.22) allows us in

the case dimU <∞ to identify multilinear forms with contravariant tensors,

Mult

r

(U) ≅ (T
r

U)∗ ≅ T r

U = T
r

U

∗
, (2.23)

a monomial u

∗
1 ⊗ . . .⊗u∗r ∈ Tr

U

∗
corresponding to the multilinear form (u1, . . . , ur

)�∏
i

u

∗
i

(u
i

),
compare (2.20), i.e. (u∗1 ⊗ . . .⊗ u

∗
r

)(u1, . . . , ur

) =�
i

u

∗
i

(u
i

). (2.24)

If (e
i

) is a basis of U , then (e∗
i1
⊗ . . .⊗ e∗

ir
) is a basis of Mult

r

(U) under this identification. An
r-linear form µ on U can be written with respect to this basis as

µ = �
i1,...,ir

µ(e
i1 , . . . , eir)���������������������������������������������������������������������∈K

e

∗
i1
⊗ . . .⊗ e

∗
ir
.

For instance, a bilinear form � ∈ Bil(U) = Mult2(U), e.g. a scalar product, is identified with a

type (0,2) tensor and can be written as

� =�
i,j

�(e
i

, e

j

)����������������������������∈K
e

∗
i

⊗ e

∗
j

. (2.25)

Multiplying multilinear forms. The identification (2.23) of multilinear forms on U with

contravariant tensors embeds the forms into the tensor algebra and thus gives rise to natural

product maps

Mult

k

(U) ×Mult

l

(U) ⊗�→Mult

k+l(U) (2.26)

such that (µ⊗ ⌫)(u1, . . . , uk+l) = µ(u1, . . . , uk

) ⋅ ⌫(u
k+1, . . . , uk+l)

for µ ∈Mult

k

(U) and ⌫ ∈Mult

l

(U). The last formula is satisfied if µ, ⌫ are monomials in view

of (2.24), and by bilinear extension for arbitrary µ, ⌫.

Insertion. For a vector u ∈ U , there are natural linear maps

Mult

k

(U) iu�→Mult

k−1(U)
for k ≥ 1 given by inserting u for the first variable,

i

u

µ = µ(u, . . .).
For products µ⊗ ⌫ of multilinear forms µ ∈Mult

k≥1(U) and ⌫ ∈Mult

l≥0(U) it holds that
i

u

(µ⊗ ⌫) = (i
u

µ)⊗ ⌫.
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2.3 The exterior algebra of a vector space

Now we turn from general multilinear maps to alternating multilinear maps.

For a vector space V , we look, by analogy with the k-th tensor power (2.16), for the universal

alternating k-fold product of vectors in V , or put di↵erently, for the universal alternating k-

multilinear map from V

k

.

This amounts to imposing additional relations on the product by passing to a quotient of

the tensor power. Indeed, a multilinear map arising as the postcomposition V

k

⊗�→ T

k

V

��→W

of the tensor power with a linear map � from T

k

V is alternating if and only if � annihilates the

linear subspace I

k

V ⊂ T
k

V spanned by the elements of the form

. . .⊗ v ⊗ v ⊗ . . . .

Note that I0V = 0 and I1V = 0.
We therefore define the k-th exterior power of V as the alternating k-multilinear map

V × . . . × V�������������������������������������������������
k

∧�→ T

k

V �I
k

V =∶ ⇤
k

V (2.27)

obtained from postcomposing the k-th tensor power V

k → T

k

V with the quotient map T

k

V →
T

k

V �I
k

V . It is the universal alternating k-multilinear map from V

k

in the sense that all others

are obtained from it by postcomposition with a linear map. We have ⇤0V =K and ⇤1V = V .

The image under ∧ of a k-tuple (v1, . . . , vk) is denoted v1 ∧ . . .∧ vk. The product ∧ is called

the exterior or wedge product.5 We thus have, besides the multilinearity of this product, the

alternation relations . . . ∧ v ∧ v ∧ . . . = 0 and, more generally,

. . . ∧ v ∧ . . . ∧ v ∧ . . . = 0,
compare Lemma 1.6. The wedge product is in particular antisymmetric,

v

�(1) ∧ . . . ∧ v�(k) = sgn(�) ⋅ v1 ∧ . . . ∧ vk (2.28)

for � ∈ S
k

and v

i

∈ V .

Terminology. An element of an exterior power is called a multivector. More specifically, an

element of ⇤

k

V is called a k-vector. A k-vector of the form v1 ∧ . . . ∧ vk is called decomposable

or a simple k-vector or a k-blade. A 0-vector is a scalar. A 1-vector is a vector, and it is always

simple. However, for k ≥ 2 not all k-vectors are simple (by dimension reasons).

To give a more concrete idea of the exterior powers, we again describe bases, cf Lemma 2.6:

Lemma. If (e
i

� i ∈ I) is a basis of V and I is equipped with a total ordering “�”, then(e
i1 ∧ . . . ∧ eik � i1 � . . . � ik) is a basis of ⇤

k

V .

5In german: Dachprodukt.
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Proof. Since the monomials e

i1 ∧ . . . ∧ eik are the images of the basis elements e

i1 ⊗ . . . ⊗ e

ik

under the natural quotient projection T

k

V → ⇤

k

V , they clearly generate ⇤

k

V , and in view of

the antisymmetry (2.28), already those for i1 � . . . � ik generate.

To see their linear independence, we note that for any j1 � . . . � j

k

in I there exists an

alternating multilinear form ↵ ∈ Alt
k

(V ) such that ↵(e
i1 , . . . , eik

) ≠ 0 if the i

l

are a permutation

of the j

l

, and = 0 otherwise, compare section 1.4, in particular Lemma 1.7. By the universal

property of the exterior power, ↵ translates into a linear form on ⇤

k

V which takes a nonzero

value on e

j1 ∧ . . . ∧ ejk and vanishes on the other elements of the generating set.

Again we combine the exterior powers of all degrees by forming the graded vector space

⇤∗V ∶= ∞�
k=0⇤k

V.

It is the quotient vector space

⇤∗V ≅ T∗V �I∗V
of the covariant tensor algebra T∗V = ⊕∞

k=0Tk

V by the graded linear subspace

I∗V ∶= ∞�
k=0 IkV.

The latter is in fact the two-sided ideal in T∗V generated by the elements v ⊗ v for v ∈ V .

Therefore ⇤∗V inherits from T∗V a natural structure as a graded associative K-algebra. Its

product, the graded wedge product

⇤∗V ×⇤∗V ∧�→ ⇤∗V

induced by the tensor product, is the bilinear extension of the collection of wedge product maps

⇤

k

V ×⇤
l

V

∧�→ ⇤

k+lV.

Due to the associativity of the tensor product, cf Lemma 2.12, it holds that

(v1 ∧ . . . ∧ vk) ∧ (vk+1 ∧ . . . ∧ vk+l) = v1 ∧ . . . ∧ vk+l.
Furthermore, in view of (2.28), the wedge product is graded commutative, i.e. it satisfies the

commutation law

b ∧ a = (−1)deg a⋅deg ba ∧ b (2.29)

for homogeneous elements a and b. Thus, the exterior algebra ⇤∗V is an alternating6 Z-graded
associative K-algebra with unity. The Z-grading ⇤∗V = ⊕k∈Z⇤k

V (putting ⇤

k

V = 0 for k < 0)
coarsens to a Z2-grading ⇤∗V = ⇤even

V ⊕⇤

odd

V by collecting the components of even and odd

degrees, respectively. It is all what is needed to formulate the anticommutation law (2.29). The

exterior algebra is characterized by the universal property that it is the “largest” alternating

6A Z-graded algebra is called alternating if its product is graded commutative.
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Z2-graded associative K-algebra

7
with unity “generated by V ” in the sense that any linear

map L ∶ V → A into the odd part of an alternating Z2-graded associative K-algebra with unity

uniquely extends to a homomorphism ⇤∗V → A of graded algebras with unity.

If dimV <∞, then dim⇤

k

V = �dimV

k

�
and dim⇤∗V = 2dimV

.

Functoriality. The exterior power and exterior algebra functors V � ⇤

k

V and V � ⇤∗V are

covariant, that is, a linear map L ∶ U → V induces linear maps

⇤

k

L ∶ ⇤
k

U → ⇤

k

V, u1 ∧ . . . ∧ uk

� Lu1 ∧ . . . ∧Luk

which combine by linear extension to a homomorphism of graded algebras ⇤∗L ∶ ⇤∗U → ⇤∗V .

Determinant revisited. If dimV = k and L ∈ End(V ), then for a basis (e
i

) of V and the

matrix (a
ij

) of L relative to this basis, Le

j

= ∑
i

a

ij

e

i

, one obtains

Le1 ∧ . . . ∧Lek = det(aij)�������������������������=detL
⋅ e1 ∧ . . . ∧ ek

and hence

⇤

k

L = detL ⋅ id⇤kV
, (2.30)

which is dual to the earlier observation (1.12). It also immediately yields the multiplication

law (1.13) for determinants, since for A,B ∈ EndV one has ⇤

k

(AB) = (⇤
k

A)(⇤
k

B).
Pairings. As for tensor spaces there are natural bilinear pairings between the exterior powers

of a vector space and its dual space. The natural pairing

T

k

V × T
k

V

∗ →K, (v1 ⊗ . . .⊗ v

k

, v

∗
1 ⊗ . . .⊗ v

∗
k

)��
i

v

∗
i

(v
i

)
itself, compare (2.21), does not descend to ⇤

k

V ×⇤
k

V

∗
, however its antisymmetrization

(v1 ⊗ . . .⊗ v

k

, v

∗
1 ⊗ . . .⊗ v

∗
k

)� �
�∈Sk

sgn(�) ⋅�
i

v

∗
i

(v
�(i)) = det(v∗

i

(v
j

))
does descend, because it vanishes on I

k

V × T
k

V

∗
and T

k

V × I
k

V

∗
, due to the fact that the

determinant of a matrix is alternating in columns and rows. We thus obtain the natural non-

degenerate

8
pairing

⇤

k

V ×⇤
k

V

∗ →K, (v1 ∧ . . . ∧ vk, v∗1 ∧ . . . ∧ v∗
k

)� det(v∗
i

(v
j

)). (2.31)

7A Z2-graded algebra is sometimes also called a superalgebra. If the commutation law (2.29) holds, then
a superalgebra it is called commutative. Thus, the exterior algebra is a commutative associative superalgebra
over K with unity.

8This follows from the more general assertion: If � ∶ V ×V ′ →K is a non-degenerate pairing, then the induced

pairing ⇤k� ∶ ⇤kV ×⇤kV
′ →K given by (⇤k�)(v1 ∧ . . . ∧ vk, v′1 ∧ . . . ∧ v′k) = det(�(vi, v′j)) is non-degenerate. To

see this, note that for 0 ≠ a ∈ ⇤kV there exist linearly independent v1, . . . , vl ∈ V , so that a = v1∧ . . .∧vk+b where
b is a linear combination of monomials vi1 ∧ . . .∧vik with ik > k. In view of the inclusion V � V ′∗ induced by �,
the linear forms �(vi, ⋅) on V ′ are linearly independent. Hence, there exist v′1, . . . , v′l ∈ V ′ so that �(vi, v′j) = �ij .
Then (⇤k�)(a, v′1 ∧ . . . ∧ v′k) = (⇤k�)(v1 ∧ . . . ∧ vk, v′1 ∧ . . . ∧ v′k) = 1 ≠ 0.
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Alternating multilinear forms. Due to the universal property of exterior powers, we have

the identification Alt

k

(V ) ≅ (⇤
k

V )∗ of the spaces of alternating multilinear forms on V . If

dimV <∞, then the non-degenerate pairing (2.31) induces natural isomorphisms

Alt

k

(V ) ≅ (⇤
k

V )∗ ≅ ⇤
k

V

∗ =∶ ⇤k

V. (2.32)

We put ⇤

∗
V ∶= ⇤∗V ∗.

One can thus identify alternating multilinear forms on V with elements in exterior powers

of V

∗
, monomials v

∗
1 ∧ . . . ∧ v∗

k

∈ ⇤k

V corresponding to forms (v1, . . . , vk)� det(v∗
i

(v
j

)), i.e.
(v∗1 ∧ . . . ∧ v∗

k

)(v1, . . . , vk) = det(v∗
i

(v
j

)). (2.33)

If (e
i

) is a basis of V , then (e∗
i1
∧ . . . ∧ e∗

ik
� i1 < ⋅ ⋅ ⋅ < i

k

) is a basis of Alt

k

(V ) under this

identification. A form ↵ ∈ Alt
k

(V ) can be written with respect to this basis as

↵ = �
i1<⋅⋅⋅<ik

↵(e
i1 , . . . , eik

) e∗
i1
∧ . . . ∧ e∗

ik
.

Multiplying alternating multilinear forms. From the identification of spaces of alternating

multilinear forms with exterior powers of the dual space, natural wedge product maps

Alt

k

(V ) ×Alt
l

(V ) ∧�→ Alt

k+l(V ) (2.34)

arise. If charK = 0, they work as follows. For forms ↵ ∈ Alt
k

(V ) and � ∈ Alt
l

(V ), one has

(↵ ∧ �)(v1, . . . , vk+l) = 1

k!l!

�
�∈Sk+l

sgn(�) ⋅ ↵(v
�(1), . . . , v�(k)) ⋅ �(v�(k+1), . . . , v�(k+l)). (2.35)

Indeed, since both sides are alternating multilinear in the v

i

and bilinear in ↵ and �, it su�ces

to verify this formula in the case when the vectors v

i

are linearly independent, i.e. constitute

part of a basis, and the forms are monomials, ↵ = v∗1 ∧ . . .∧v∗
k

and � = v∗
k+1 ∧ . . .∧v∗k+l, such that

the covector factors v

∗
i

are dual to the basis vectors v

i

, i.e. v

∗
i

(v
j

) = �
ij

. However, in this case

the formula it is easily confirmed, because the left-hand side equals 1 and in the right-hand

sum exactly the k!l! permutations � ∈ S
k

×S
l

⊂ S
k+l preserving the subset {1, . . . , k} contribute,

each of them a summand 1.

The wedge product (2.34) on alternating multilinear forms is a skew-symmetrization of the

tensor product (2.26) on general multilinear forms. Namely, there are natural linear projections

Mult

k

(V ) alt�→ Alt

k

(V )
onto the subspaces Alt

k

(V ) ⊂Mult

k

(V ) given by antisymmetrization (still assuming charK =
0),

(altµ)(v1, . . . , vk) = 1

k!

�
�∈Sk

sgn(�) ⋅ µ(v
�(1), . . . , v�(k))

for µ ∈Mult

k

V and v

i

∈ V , that is, in terms of the natural action S

k

�Mult

k

(V ),
altµ = 1

k!

�
�∈Sk

sgn(�) ⋅ �µ.
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We may then rewrite (2.35) as

↵ ∧ � = (k + l)!
k!l!

alt(↵⊗ �).
For multiple products, the last formula generalizes to

↵1 ∧ ⋅ ⋅ ⋅ ∧ ↵r

= (k1 + ⋅ ⋅ ⋅ + kr)!
k1!�kr! alt(↵1 ⊗ ⋅ ⋅ ⋅ ⊗ ↵

r

),
equivalently, (2.35) to

(↵1 ∧ ⋅ ⋅ ⋅ ∧ ↵r

)(v1, . . . , vk) = 1

k1!�kr! �
�∈Sk

sgn(�) ⋅ ↵1(v
�(1), . . . ) ⋅ . . . ⋅ ↵r

(. . . , v
�(k))

where k = k1 + ⋅ ⋅ ⋅ + kr.
Interior product. As in the case of general multilinear maps, for a vector v ∈ V , there are

natural linear maps

Alt

k

(V ) iv�→ Alt

k−1(V )
for k ≥ 1 given by inserting v for the first variable,

i

v

↵ = ↵(v, . . .),
and called interior multiplication or contraction with v. Invoking the identifications (2.32), we

combine these maps by linear extension to a linear map i

v

∶ ⇤∗V → ⇤

∗
V , where we make the

convention i

v

�⇤0
V

= 0. It satisfies
i

2
v

= 0
and is an antiderivation of degree −1 of the graded algebra ⇤

∗
V , i.e. it lowers degrees by 1 and

one has the product rule

i

v

(↵ ∧ �) = (i
v

↵) ∧ � + (−1)k ⋅ ↵ ∧ (i
v

�) (2.36)

for ↵ ∈ ⇤k

V and � ∈ ⇤∗V . Indeed, since both sides are bilinear in ↵ and �, it su�ces to verify

this formula for monomials ↵ = v∗1 ∧ ⋅ ⋅ ⋅ ∧ v∗
k

and � = v∗
k+1 ∧ ⋅ ⋅ ⋅ ∧ v∗k+l with v

∗
i

∈ ⇤1
V = V ∗. From

(2.33) and the Laplace expansion of determinants, we obtain that

i

v

↵ = i
v

(v∗1 ∧ . . . ∧ v∗
k

) = k�
i=1
(−1)i+1 ⋅ v∗

i

(v) ⋅ (v∗1 ∧ . . . v̂∗
i

. . . ∧ v∗
k

)
where “v̂

∗
i

” indicates that the factor v

∗
i

is omitted. There are analogous expressions for i

v

� and

i

v

(↵ ∧ �), and it follows that the left-hand side of (2.36) equals

k�
i=1
(−1)i+1 ⋅ v∗

i

(v) ⋅ (v∗1 ∧ . . . v̂∗
i

. . . ∧ v∗
k+l)

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=(iv↵)∧�

+ l�
i=1
(−1)k+i+1 ⋅ v∗

k+i(v) ⋅ (v∗1 ∧ . . .�v∗
k+i . . . ∧ v∗k+l)

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=(−1)k ⋅↵∧(iv�)

,

as claimed.
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Suppose that V is a n-dim vector space equipped with a volume form 0 ≠ ! ∈ ⇤n

V . Then !

gives rise to a linear isomorphism

V

≅�→ ⇤

n−1
V, v � i

v

!

and, more generally, linear isomorphisms

⇤

k

V

≅�→ ⇤

n−k
V, v1 ∧ . . . ∧ vk � !(v1, . . . , vk, . . .)�������������������������������������������������������������������������������������������

ivk ...iv1!

for 0 ≤ k ≤ n, induced by the alternating multilinear maps (v1, . . . , vk) � !(v1, . . . , vk, . . .). If(e
i

) is an ordered basis so that ! = e∗1 ∧ . . . ∧ e∗n, then e1 ∧ . . . ∧ ek � e

∗
k+1 ∧ . . . ∧ e∗n.

Geometric notions. We now work over the field K = R. Let V be a n-dim vector space.

Scalar products revisited. As we already pointed out in section 2.2, being bilinear forms,

scalar products are type (0,2) tensors. If �⋅, ⋅� is a scalar product on V and (e
i

) is an ONB

with respect to it, then in view of �e
i

, e

j

� = �
ij

we can write

�⋅, ⋅� = n�
i=1

e

i

⊗ e

i

,

compare (2.25).

Orientation revisited. The orientation determined by an ordered basis (e
i

) of V is induced

by the volume form e

∗
1 ∧ . . .∧e∗n ∈ ⇤n

V , where (e∗
i

) denotes the dual basis of V ∗, cf section 1.4.3.

Orientations can also be described in terms of top degreemultivectors: We have dim⇤

n

V = 1.
Every oriented base e gives rise to an n-vector 0 ≠ e1∧⋅ ⋅ ⋅∧en ∈ ⇤n

V . For bases e, e

′
with e⋅A = e′,

the induced n-vectors are related by

e

′
1 ∧ ⋅ ⋅ ⋅ ∧ e′n = detA ⋅ e1 ∧ ⋅ ⋅ ⋅ ∧ en,

compare (2.30). An orientation of V thus corresponds to a ray component of ⇤
n

V � {0}.
Volume revisited. We now can make sense of the fact that the k-dim volume, compare our

discussion in section 1.4.4, can be regarded as a norm on k-vectors. A scalar product �⋅, ⋅�
V

on

V induces scalar products �⋅, ⋅�⇤kV
on the exterior powers ⇤

k

V satisfying

�u1 ∧ . . . ∧ uk

, v1 ∧ . . . ∧ vk�⇤kV
= det(�u

i

, v

j

�
V

)
i,j=1,...,k.

They are the symmetric bilinear forms on ⇤

k

V induced, via the universal property of exterior

powers, by the 2k-linear forms (u1, . . . , uk

, v1, . . . , vk)� det(�u
i

, v

j

�
V

) on V which are alternat-

ing in the u

i

’s as well as in the v

j

’s, compare (1.20). That the �⋅, ⋅�⇤kV
are positive definite, can

be seen using bases. Namely, if (e
i

) is an ONB for �⋅, ⋅�
V

, then (e
i1 ∧ . . .∧ eik � i1 < . . . < ik) is an

ONB for �⋅, ⋅�⇤kV
. We observe that, on decomposable multivectors v1 ∧ . . . ∧ vk, the quadratic

forms associated to the �⋅, ⋅�⇤kV
are given by Gram determinants and equal the squares of the

k-dim volume functionals, cf (1.21). The associated norms � ⋅ �⇤kV
thus satisfy

vol

k

(v1, . . . , vk) = �v1 ∧ . . . ∧ vk�⇤kV
.
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If the euclidean vector space (V, �⋅, ⋅�
V

) is in addition equipped with an orientation, then

there is a unique volume form 0 ≠ ! ∈ ⇤n

V with the property that

!(e1, . . . , en) = 1
for every positively oriented ONB (e

i

) of V , compare sections 1.4.3 and 1.4.4, namely

! = e∗1 ∧ ⋅ ⋅ ⋅ ∧ e∗n.
It is called the volume form of the oriented euclidean vector space.

If e ∈ V is a unit vector, �e� = 1, then the (n − 1)-form i

e

! = !(e, . . .) restricts to a volume

form on the hyperplane e

⊥
orthogonal to e, and thus determines an orientation on e

⊥
. The

induced volume form i

e

!�
e

⊥
is the volume form on e

⊥
associated to the induced scalar product

and orientation. If (e, e2, . . . , en) is a positively oriented ONB of V , then (e2, . . . , en) is a

positively oriented ONB of e

⊥
and

i

e

! = e∗2 ∧ ⋅ ⋅ ⋅ ∧ e∗n.
Replacing the unit vector e by −e yields the reversed orientation on (−e)⊥ = e⊥.

Star operator. We keep assuming that V is a n-dim vector space equipped with a scalar

product �⋅, ⋅�
V

and an orientation. Then there are natural isometric linear isomorphisms

⇤

k

V

��→ ⇤

n−kV
for 0 ≤ k ≤ n, characterized by the property that

a ∧ �b = �a, b�⇤kV
�

for a, b ∈ ⇤
k

V , where � ∈ ⇤
n

V denotes the unit n-vector positive with respect to the orientation.

Indeed, with respect to a positively oriented ONB (e
i

), we have � = e1 ∧ . . . ∧ en and such

operators can be defined by

e

�(1) ∧ . . . ∧ e�(k) �� e

�(k+1) ∧ . . . ∧ e�(n)
for all even permutations � ∈ S

n

. They are unique, because an (n − k)-vector is determined by

its wedge products with all k-vectors. Note that � = �1.
Combining these operators for all grades k, we obtain the grade reflecting isometric linear

isomorphism

⇤∗V ��→ ⇤∗V
called the Hodge star operator. It satisfies

� � �⇤kV
= (−1)k(n−k) id⇤kV

.

Dually, on forms, we have the star operators

⇤

k

V

��→ ⇤

n−k
V
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satisfying

↵ ∧ �� = �↵,��⇤k
V

!

for ↵,� ∈ ⇤k

V .

We note that the interior product of a vector with the volume form can be written in terms

of the star operator as

i

v

! = � �v, ⋅�
V�∈V ∗
.

Cross product. The following structure is special to dimension 3. Suppose that (V, �⋅, ⋅�
V

)
is a 3-dim euclidean vector space equipped with an orientation. Let ! denote its distinguished

volume form. Then there is unique alternating bilinear map

V × V ×�→ V, (u, v)� u × v,
called the cross product on V , so that

�u × v,w� = !(u, v,w)
for u, v,w ∈ V . Indeed, each linear form !(u, v, ⋅) can be written as the scalar product �u× v, ⋅�
with a vector denoted u × v, and the resulting map (u, v)� u × v is alternating bilinear.

If (e1, e2, e3) is a positively oriented ONB, then

e1 × e2 = e3, e2 × e3 = e1 and e3 × e1 = e2.
For general vectors u = ∑u

i

e

i

and v = ∑ v

i

e

i

one obtains

u × v = �u2 u3

v2 v3
� e1 + �u3 u1

v3 v1
� e2 + �u1 u2

v1 v2
� e3.
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