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Abstract. This paper proposes a method, which integrates object-orientation and process-orientation for requirement analysis in the field of business mode​ling. We strive for a unified method to map the business of a company, which comprises both the static and the dynamic aspect. We clarify the meaning of object-orientation for processes and elaborate on the approach, that also processes are classes: Processes originate from the interaction of business classes and form the lifecycle of a new class. The resulting model is a layered business model. Every distinct layer represents a definite level of abstraction and can be executed as an autonomous business process. The basic principles of the proposed interaction theory are class, inheritance, interaction and scalability. We evaluate the semantics of our method on the base of a reference model „Business Process Management“.
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1 Introduction

Every developer experienced with the building of large software systems knows about the importance of a sound system architecture. The present workshop concentrates on a conceptual level, rather than on the technical one. Therefore we will emphasize the conceptual aspect of system architectures. We will talk about models and design concepts.

A sound system architecture comprises a set of layers. Sometimes they are named presentation layer, business layer and data layer. Each layer exercises well-defined client/server relations, providing services for the next layer on top. A fundamental requirement for a layered system architecture is a unified formal model. The model should connect neighbouring layers without any clash of concepts.

Object-orientation is one of these universal concepts. Originating from the realm of programming languages, today object orientation has extended its scope to all phases of software development. Thinking in classes begins in the early phase of requirement analysis. Object-orientation starts with business classes, continues with presentation classes for the graphical user interface (gui) and extends to the class instances stored in the objectoriented database. Today there is still a gap between the objectoriented model - used for the presentation and the business layer - and the relational model of the data bases in use.

The basic principle of object-orientation requires to consider as a unit data, functions and the lifecycle of a class. All of these properties inherit to subclasses.

A second fundamental concept is process-orientation. It is propagated mainly by business consultants. Process-orientation thinks in valued added chains. The benefits show up in the close relationship between business goals and processes. First one quantifies the particular goals of the company. Next one controls their degree of fulfilment by the indices of the supporting processes. In general the main tasks of an industrial company is to improve the entire processes “Time to market” and “Time to customer”, not to optimize isolated segments.

Object-orientation and process-orientation are the two fundamental principles currently used to structure commercial projects from the domain of business engineering. Even if there is no software to build at all, those principles elucidate the concept of any project from business engineering. Both are of equal importance. So it is a desideratum to join both concepts into a unified theory. This task is the subject of many papers published in the last years, cf. [9]. Also “Interaction Theory” shares this goal. In the present paper we present its four principles:

· Class

· Inheritance

· Interaction

· Scalability.

Chapter 2 Reference model „Business Process Management“ presents a metamodel for business modeling. We identify those classes, which – in our opinion - every method of business modeling should represent. Looking in advance to the following chapters we indicate, to which degree these classes are represented by interaction theory. Chapter 3 Interaction Theory of business modeling develops the principles of interaction theory. Of course interaction theory is much more general than its application in the field of business modeling. It allows to build any kind of object-oriented model, which comprises also the dynamical aspect. Chapter 4 The Russian philosophers illustrates the theory by a detailed example from the literature. In the final Chapter 5 Conclusion and further work we compare our theory with a similar method and identify a series of open issues.

2 Reference model „Business Process Management“

We focus our approach around the reference model Business Process Management, cf. Figure 1. The model expresses the requirements, which every method of business modeling has to fulfill. Our model neatly separates three different levels:

· type, business process and business class, 

· instance, case and business object, 

· execution, state of a case and state of a business object.

The level of type considers as usual the class of all similar activities and instances. At the level of instance one considers single objects and all activities necessary to process a specific instance of a business process. The level of execution models a run of the case.
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Figure 1 Reference model „Business Process Management“ (ARIS-notation)
Table 1 describes the different concepts from the reference model Business Process Management and gives an outlook to Chapter 3, where they are represented within interaction theory.

Concept
Description
Interaction
Theory
Reference

Attribute
Property of a business class, specified by a value.
Attribute of a class
Definition 3.1.1

Business class
Key concept for describing a company and all its business processes. Comprises specific data, corresponding functions and the lifecycle.
Class
Definition 3.1.1

Business goal
External or internal goal of the company as determined by the management.
not represented
-

Business object
Concrete instance of a business class.
Instance of a class represented by a token.
Definition 3.1.1

Business process
A net of functions and outcomes, which serves to reach a definite business goal from a given original state.
Coloured Petri Net (CPN)
Definition 3.1.4

Business rule
Guidelines and restrictions with respect to states and processes in a company. Standard form (ECAA): ON Event IF Condition THEN Action 1 ELSE Action 2.
Binding and colour functions of a transition
Definition 3.1.2

Case
Concrete instance of a business process.
Run of a CPN
Section 3.1

Condition
Existence of a definite fact.
Binding of a transition
Definition 3.1.2

Event
Occurence of a deadline, update of an attribute or occurrence of an external message.
Place of a CPN
Definition 3.1.4

Function
Activity to obtain a definite goal.
Method of a class represented by a labeled transition
Definition 3.1.4

Hierarchy of business processes
Connection between business processes on different levels of abstraction
Morphism between CPNs
Definition 3.4.1

Index
Quantification of a business goal.
not represented
-

Lifecycle
Possible states and state transitions of all business objects of a given business class.
CPN
Definition 3.1.4

Organisational unit
Structural organisation.
Class
Definition 3.1.1

Position
Particular job within an organisational unit, defined by a job description.
not represented
-

Resource
Relationship between a business class and a given function, being a necessary precondition for the execution of the function. Examples: Real estate, equipment, employee.
Place serving as input and output of a transition
Definition 3.1.4

Role
Type of employee with distinct skills and competence. Examples: Sales engineer, cost planer, machine operator, purchaser.
Class
Definition 3.1.1

State of a case
Current state of work of a case based on its processing.
Reachable marking of a CPN
Section 3.1

State of a business object
Current state of work of a business object based on its processing for a given case.
Reachable marking of a CPN restricted to all tokens representing the business object
Section 3.1

Static relationship
Time independent relation between all business objects of two or more business classes.
Relation from class-relationship diagram
Section 3.1

Time
Aid to support the modeling of time dependent facts.
not represented
-

Table 1 Concepts of the reference model “Business Process Management”
3 Interaction Theory of business modeling

Henceforth process as itself, and class as itself,
are doomed to fade away into mere shadows,
and only a kind of union of the two
will preserve an independent reality.

Variation on a statement of
H. Minkowski about space and time, 1908

Interaction theory of business modeling integrates the object-oriented and the process-oriented method. It is a unified approach aiming at a common model for both the static and the dynamic properties of the company. Our synthesis of the process-orien​ted and the object-oriented principle follows the motto:

A process is the interaction of classes and constitutes the lifecycle of a new class.

Scientific progress sometimes advances by considering a situation from the viewpoint of a foreign discipline. Therefore we transfer a paradigm of particle physics to the domain of business administration and develop the business model of a company as a theory of interaction. The asymptotic approximation of interaction theory is the free theory. It describes separate atomic classes in a fictive world without any interaction. In the real world objects from these classes enter into temporary client/server relations. Their interaction is governed by business rules, which locally control the flow of objects by the current values of their attributes. In addition a static relationship between classes can hold, which must be respected during the interaction of the objects. These static relations compare to invariants or conserved properties.

We base both the interaction theory of business modeling and its free part on relatio​nal algebra and Petri net theory. The formal models of the free theory are

· class diagrams and Petri nets (Lifecycle),

while interaction theory comprises

· Petri nets linked by morphisms (Dynamics)

· and class-relationship diagrams (Statics).

The dynamic models from interaction theory strive to represent real-world processes, the lifecycles of the free theory compare to a space of possible worlds.

3.1 Class

The concept of a class is the basic concept of object-orientation. It abstracts to a new entity a set of arbitrary objects with similar properties. Every object encapsulates its properties. The class decides, which properties are made public by a well-defined interface. We emphasize that we consider the lifecycle a genuine property of the class, of equal importance like the other two properties.

3.1.1 Definition (Class and object)
A class is defined by its properties, namely

· attributes,

· methods

· and the lifecycle.

Any instance of a class is called an object.

We propose the same formal method to represent the lifecycle of a separate class (free theory) and the behaviour of the entire system (interaction theory), namely Petri nets. We refer to [7] for the latest survey about Petri net theory. As a model for systems concerning their structure and behaviour Petri nets show the following properties according to the classification of [8]:

· Petri nets are models on the system level, i.e. they show explicitely the states of the system not only the behaviour as represented by the pattern of actions.

· Petri nets are non-interleaving models, i.e. they do not represent concurrency by enumerating all possible linear orders of actions. Instead they provide a distinguished concurrency relation between actions.

· Petri nets are branching-time models, i.e. Petri nets attribute choices exactly to the point, where the choice is taken within the entire process.

3.1.2 Definition (Coloured Petri net)
i) A coloured net is a tuple

N = ( T, P, B, C, w(, w( )


with two disjoint sets, T the set of transitions and P the set of places, and two families

B = 
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each B(t) considered as the free monoid of all bindings of transition t,

C = 
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each C(p) considered as the free monoid of all colours of place p, and N-linear colour functions mapping bindings to colours

w((t, p), w((t, p) ( HomN( B(t), C(p) ), (t, p) ( T x P.


ii) A coloured Petri net PN = (N, M) is a coloured net N together with an initial marking M, which attaches to every place p ( P an element M(p) ( C(p).

While the original definition in [4] starts with sets of colours and bindings, we use already from the beginning monoids, i.e. linear combinations with non-negative coefficients of respectively colours and bindings. At least for the definition of the colour functions one needs monoids. In the following we will assume, that respectively the sets T and P are finite and that all monoids C(p) and B(t) are finitely gene​ra​ted.

3.1.3 Definition (P/t net)
A p/t net is the special case of a coloured net with a single colour for every place and a single binding for every transition, i.e.

C(p) = N and B(t) = N for all p ( P, t ( T.


3.1.4 Definition (Lifecycle)
The lifecycle of a given class is represented by a labeled coloured net:

· The colourset of every place is a class, not necessarily the class in question.

· The methods of the class are the labels of the transitions.

· The net is transition-bordered: The input transitions of the net are labeled by the constructors, the output transitions by the destructor of the class.

· The net, which results from adding a particular place (basepoint), which connects to all output-transitions and to all input-transitions, is called the augmented lifecycle. Marking the basepoint with a single token is called the basemarking.

The lifecycle belongs to the class as a whole. The possible states of every class instance are the reachable markings of the augmented Petri net. In order to trace the development of a particular object, one has to instantiate the class, i.e. to mark the augmented lifecycle with the basemarking. Then one follows the run of the resulting Petri net by playing the token game. For business classes we require in addition: The augmented lifecycle marked with the basemarking is a life and bounded Petri net and the basemarking is the only reachable marking, which marks the basepoint. We stress that we do not represent states by places, but by markings. Obviously, this mechanism is more general and allows to model high-level classes with distributed states. In the special case, where the lifecycle is a state machine, both possibilities coincide.

The static relations between classes are represented by class-relationship diagrams, which are well-established by object-oriented data modeling. Similarly we skip the explanation of class diagrams and the specification of attributes and methods.

3.2 Inheritance

Inheritance is one of the basic principles from object-oriented data modeling. It allows to derive new classes from existing ones. The son inherits from the father all class properties. He can respectively add own properties or change the inherited properties by overriding, but he cannot refuse to accept inherited properties. Multiple inheritance is possible. Inheritance can serve as a means to support reusability.

Most often, inheritance has been restricted to attributes and methods of a class. The principle has been successfully generalized to lifecycles for the first time by van der Aalst and Basten ([1]). They represent the lifecycle by a p/t net and define:

3.2.1 Definition (Subcycle of a lifecycle)
A lifecycle of class B is called subcycle of the lifecycle of class A, iff

· every method of class A is also a method of class B

· and class B shows the same observable behaviour as class A, if one blocks the additional methods of B or declares them to be internal.

If the lifecycle of class B is a subcycle of the lifecycle of class A, then one says: The lifecycle of class A is inherited to class B.

Van der Aalst and Basten take the concept of behaviour from the theory of process algebras cf. [2]. Here behaviour is an expression of a formal language built from elementary activities according to a set of algebraic rules. These rules comprise sequential, parallel and non-deterministic composition. The elementary activities of a given class are its methods. One can temporarily relabel a given transition with the distinguished label “internal”. The firing of internal transitions does not contribute to the observable behaviour. Equality of observable behaviour is formalized by the concept of bisimilarity.

Figure 2 shows a simple lifecycle of a class A. The lifecycle of class B is a subcycle of A, because after blocking of transition b it has the same behaviour like class A. The lifecycle of class C is a subcycle of class A, too. After declaring the firing of transition c to be internal, class C shows the same observable behaviour as class A.
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Figure 2 Subcycles B resp. C of augmented lifecycle A
3.2.2 Definition (Subclass)
The class Csub is a subclass of the class C iff

· the attributes of C form a subset of all attributes of Csub,

· the methods of C form a subset of all methods of Csub
· and the lifecycle of C is inherited to Csub.

3.3 Interaction

The free theory is the disjoint union of all classes. However, in the real world we do not face isolated objects, but we deal with processes: Objects of numerous classes interact, calling methods of each other for ser​vice. This interaction by message passing is modeled by linking the lifecycles of the client and the server. Busi​ness rules specify the conditions, which the linked components must satisfy. According to the semantics of Petri nets only direct neighbours interact. There does not exist any long-distance interaction like broadcasting.

3.3.1 Definition (Message passing)
i) Two methods from the lifecycles of given classes interact by synchronous message passing, iff one acts as client and the other as server. The client sends a message to the server and suspends his activity. The server executes his method and returns to the client. Now the client resumes his method and terminates.

ii) Two methods from the lifecycles of given classes interact by asynchronous message passing, iff one triggers the other without changing its own activity.

3.3.2 Remark (Message passing)
i) Synchronous message passing can be implemented by first splitting the client transition and then fusing transitions with a third class message, cf. Figure 3. In most cases one abstracts from the detailed mechanism of message passing and from the distinction between the role of client and server. On this abstract level one represents synchronous interaction by fusion of client- and server-transition.

ii) Asynchronous message passing can be implemented by fusing transitions with a third class message, cf. Figure 4.
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Figure 3 Synchronous message passing
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Figure 4 Asynchronous message passing
3.3.3 Remark (New classes resulting from interaction)
The process, which results from the interaction of given classes, can be the lifecycle of a new class. Alternatively one can add further methods to the resulting lifecycle.

3.4 Scalability

The principle of scalability provides the business model with a hierarchical structure. The model is composed of several layers of abstraction, each of which can be executed as an autonomous process. The semantics of the process model is well-defined on every distinct level - without referring to the semantics of the lower levels. Consequently, processes which have been refined, can also be executed on top level without executing their refinement. Processes from different layers compare to each other by morphisms. The question of the correct definition of a morphism between Petri nets has not been settled up to now. On the level of the net structure Lakos defines the concept of an abstraction morphism, mapping from the refinement to the abstracted level. The following Definition 3.4.1 is similar to [6], Definition 3.32.

3.4.1 Definition (Abstraction morphism)
i) An abstraction morphism between two coloured nets

f: NX = ( TX, PX, BX, CX, wX+, wX( ) ( NY = ( TY, PY, BY, CY, wY+, wY( )


is a tuple f = (f0, fB, fC) with a surjective map

f0: TX ( PX ( TY ( PY,


such that the inverse image of a transition (resp. place) of NY is a transition- (resp. place-) bordered subnet of NX, with a family

fB = 
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of injective T-flows of the fibre f0-1(u) over B(u), and with a family

fC = 
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of surjective P-flows fq of the fibre f0-1(q) over C(q), such that the abstracted token flow follows from the refined token flow as

wY((u, q) = fq o wX(( fu,

 )


for all (u, q) ( TY x PY (analogously for w().

ii) An abstraction between two coloured Petri nets PNX = (NX, MX) and PNY = (NY, MY) is an abstraction between the underlying coloured nets

f = (f0, fB, fC): NX ( NY


such that

MY(q) = fq (

 ) for all q ( PY.


The inverse image of a place, a P-fibre, is equipped with a P-invariant. Hence firing within the P-fibres does not change the token content of the base. Dually, every binding of a transition in the base lifts to a T-invariant of the corresponding T-fibre. Hence the firing of base transitions lifts to Parikh vectors, which do not produce any remaining token flow within the fibres.

Scalability is achieved by linking together all levels by abstraction morphisms. Definition 3.4.2 formalizes our claim, that a business model must show a hierarchical structure. Every level of the hierarchy is an autonomous flat model. It represents the entire business on a fixed level of abstraction. Its semantics is well defined without recurrence to a lower level.
3.4.2 Definition (Business model)
A business model is a sequence of abstraction morphisms

N = (fi: Ni ( Ni+1 )i=0,...,n


between coloured Petri nets Ni, i = 0,...,n, which are called the layers of the business model.

The only distinction we make between a function and a process is the degree of refinement: Every function can be refined by a process. A coarse view treats a given function as a black box, represented by a single transition. A more detailed view refines the function by an entire computation, hereby transforming the original function into a process.

4 The Russian philosophers

The problem of the “Russian philosophers” extends Dijkstras ([3]) well-known problem of dining philosophers.

The Russian philosophers are like the dining philosophers, except that each Russian philosopher is thinking about the dining philosophers problem. Only when such an imagined dining philosophers problem deadlocks, will the corresponding philosopher stop thinking and try to start eating. When such a Russian philosopher stops eating, he or she starts thinking about a fresh dining philosophers problem.

The problem of the Russian philosophers has been introduced by Lakos and Keen in [5]. Similar to them we will use the problem to put to the test the different concepts of our approach.

Classes and static relationships

We introduce a series of classes, which are shown together with their static relations in the class-relationship diagram from Figure 5. For example the relation belongs to between the classes philosopher and dining philosophers guaranties the obvious fact, that no instance of class dining philosophers exists without philosophers.
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Figure 5 Class-relationship diagram of the Russian philosophers

4.1 The dining philosophers

4.1.1 Example (Classes)
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Figure 6 Lifecycles of classes philosopher and fork.

We model the dining philosophers problem as the interaction of the two classes philosopher (p) and fork (f). These two classes form part of the free theory. Figure 6 shows their lifecycles, both of which are state machines.

Example (Interaction)
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Figure 7 Lifecycle of class dining philosophers

By building the class dining philosophers (dp) we enter into the realm of interaction theory. An instance of class dining philosophers is neither an isolated philosopher nor a single fork, but an entire dinner party. A dinner party comprises the same number of philosophers and forks. For reasons of simplicity we assume this number to be fixed by a constant n ( N. Figure 7 shows the lifecycle of the class dining philosophers and Table 2 specifies its colours. The lifecycle is formed by synchronous interaction of the classes phi​lo​sopher and fork. Firing transition t1 pushes into the token game n different philosophers and n corresponding forks, each represented by a number from the colour set Zn := { 0, 1,...,n-1 }. This selection is provided by the N-linear colour function

S: N ( spanN < 0, 1,...,n-1 >, 1 
[image: image14.wmf]å

-

=

1

n

0

i

i

a

,


with S(1) the sum of all colours. The colour functions annotating the arcs adjacent to transition t3 assure: If philosopher i takes his right fork, then fork i+1 is removed from place idle and is created at place in use. By default the colour functions of arcs without annotation equal the identity.

Table 2 specifies the colours of the lifecycle of the class dining philosophers. Every method of class dining philosophers results from the fusion of two other transitions. They will be called later on for the implementation of the method. Note: The lifecycle does not contain any place typed with the colour set dining philosophers.

place
label
colour set

p1
f.idle
f = fork

p2
p.thinking
p = philosopher

p3
f.in use
f

p4
p.has left
p

p5
p.eating
p

p6
p.has right
p

transition
label
binding set

t1
create = f.create || p.create
{ ( }

t2
get left = f.use || p.get left
Zn

t3
get right = f.use || p.get right
Zn

t4
return left = f.release || p.return left
Zn

t5
return right = f.release || p.return right
Zn

t6
delete = f.delete || p.delete
{ ( }

Table 2 Colours and bindings of class dining philosophers
4.1.2 Example (Inheritance)
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Figure 8 Lifecycle of class dining philosophers with deadlock detector
Looking in advance to the Russian philosophers we want to add a transition detect deadlock to the class dining philosophers. This can be done by introducing the subclass dining philosophers with deadlock detector (dpdd), cf. Figure 8. The dining philosophers deadlock, iff each philosopher keeps in hand his left fork, i.e. iff all philosophers occupy place has left and all forks gather at place in use. The lifecycle of class dining philosophers with deadlock detector is a coloured net, cf. Table 3 for its colours. The lifecycle from Figure 8 extends the lifecycle of class dining philosophers from Figure 7. Transitions t1,...,t6 are inherited from class dining philosophers. After blocking the additional transitions t7 and t8 in class dining philosophers with deadlock detector both classes show the same observable behaviour. Hence class dining philosophers with deadlock detector is a subclass of class dining philosophers.

place
label
colour set

p1
f.idle
f

p2
p.thinking
p

p3
f.in use
f

p4
p.has left
p

p5
p.eating
p

p6
p.has right
p

p7
deadlock detected
{ ( }

transition
label
binding set

t1
create
{ ( }

t2
get left = dp.get left
Zn

t3
get right = dp.get right
Zn

t4
return left = dp.return left
Zn

t5
return right = dp.return right
Zn

t6
delete
{ ( }

t7
detect deadlock
{ ( }

t8
delete
{ ( }

Table 3 Colours and bindings of class dining philosophers with deadlock detector
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Figure 9 Lifecycle of class
abstracted dining philosopher
with deadlock detector

4.1.3 Example (Scalability)
A Russian philosophers thinks about an instance of class dining philosophers with deadlock detector (dpdd). In order to rise the level of abstraction we abstract class dpdd to the new class abstracted dining philosophers with deadlock detector (adpdd). Also the lifecycle of the abstracted class is a coloured net, because transition u2 has two bindings respectively b1 and b2. The non-trivial colour functions are, cf. Figure 9 ,

w(( u2, q1 )(b1) = w(( u2, q1 )(b1) = 1, w(( u2, q2 )(b1) = 0


w(( u2, q1 )(b2) = w(( u2, q2)(b2) = 1, w(( u2, q1 )(b2) = 0.


Table 4 shows the colours and labels of the lifecycle from Figure 9 .

place
label
colour set

q1
live
adpdd

q2
dead
adpdd

transition
label
binding set

u1
create
{ * }

u2
take dinner
{ b1 = one round, b2 = deadlock }

u3
delete
{ * }

u4
delete
{ * }

Table 4 Coulors and bindings of class abstracted dining philosophers with deadlock detector
The relation between the original class X = dpdd and the abstracted class Y = adpdd is given by a morphism. We define the abstraction morphism

f = (f0, fB, fC): NX ( NY,

f0(pi) = q1, i = 1,2; f0(pi) = u2, i = 3,4,5,6; f0(p7) = q2;

f0(t1) = u1; f0(ti) = u2, i = 2,3,4,5,7; f0(t6) = u3; f0(t8) = u4.


We define the relative P-flow of the P-fibre N1 := f0-1(q1)
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The Z-module Z0(N2, B) of T-flows of the fibre N2 := f0-1(u2) has rank 2, a Z-basis is
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We define the relative T-flow
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All other P-flows fC,q and T-flows fB,u equal the identity. One checks, that f satisfies the conditions of Definition 3.4.1.

4.2 The dining Russian philosphers

4.2.1 Example (Inheritance)
We add two new methods start thinking and think to the class philosopher in order to model the act of thinking. The resulting class thinking philosopher (tp) is a subclass of class philosopher. After declaring internal the new methods both classes have the same observable behaviour. Note, that we can also block the method tp.think. Figure 10 shows the lifecycle, which is a state machine.
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Figure 10 Lifecycle of class thinking philosopher
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Figure 11 Lifecycle of class Russian
philosopher

4.2.2 Example (Interaction)
We build the class Russian philosopher (rp) by synchronous interaction of the two classes thinking philosopher (tp) and abstracted dining philosophers with deadlock detector (adpdd), cf. Figure 11. The resulting lifecycle is a coloured net. Table 5 shows the label of all places and transitions from Figure 11.

place
label
colour set

p1
rp.ready for thinking
rp

p2
adpdd.live
adpdd

p3
rp.thinking
rp

p4
adpdd.dead
adpdd

p5
rp.has left
rp

p6
rp.eating
rp

p7
rp.has right
rp

transition
label
binding set

t1
create
{ ( }

t2
select dp problem = tp.start thinking || adpdd.create
{ ( }

t3
think about dp = tp.think || adpdd.take dinner
{one round, deadlock}

t4
get left = tp.get left || adpdd.delete
{ ( }

t5
get right = tp.get right
{ ( }

t6
return left = tp.return left
{ ( }

t7
return right = tp.return right
{ ( }

t8
delete
{ ( }

Table 5 Places and transitions of class Russian philosopher

4.2.3 Example (Inheritance)
Class Russian philosopher is a subclass of class philosopher, cf. Figure 11. After declaring internal the additional transitions rp.select dp problem, rp.think about dp in the class Russian philosopher both classes show the same observable behaviour.

4.2.4 Example (Interaction)
In the final step we build the class dining Russian philosophers (drp) by synchronous interaction of the two classes Russian philosopher and fork, cf. Figure 12.
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Figure 12 Lifecycle of class dining Russian philosophers

Table 6 shows the colours and bindings of class dining Russian philosophers.

place
label
colour set

p1
f.idle
f

p2
rp.ready for thinking
rp

p3
f.in use
f

p4
adpdd.live
adpdd

p5
rp.thinking
rp

p6
adpdd.dead
adpdd

p7
rp.has left
rp

p8
rp.eating
rp

p9
rp.has right
rp

transition
label
binding set

t1
create = f.create || rp.create
{ ( }

t2
select dp problem = rp.select dp problem 
Zn

t3
think about dp = rp.think about dp
Zn x {one round, deadlock}

t4
get left = f.use || rp.get left
Zn

t5
get right = f.use || rp.get right
Zn

t6
return left = f.release || rp.return left
Zn

t7
return right = f.release || rp.return right
Zn

t8
delete = f.delete || rp.delete
{ ( }

Table 6 Colours and bindings of class Russian dining philosophers

4.2.5 Example (Inheritance)
The class dining Russian philosophers is a subclass of the class dining philosophers. After declaring internal the two additional transitions drp.select dp problem and drp.think about dp from class dining Russian philosophers both classes show the same observable behaviour.

5 Conclusion and further work

5.1 Process versus class

When dealing with classes and processes the question comes up, how these two concepts relate to each other. In the present paper we have been reasoning in favour of a unifying concept. Both concepts class and process are inseparably linked together:

A process is the interaction of classes and constitutes the lifecycle of a new class.

Interaction theory from Chapter 3 argues for considering pro​cesses to be classes due to the following reasons. A process has

· Instances: The runs of the process.

· Attributes: Different runs can produce different values, e.g. distribution time.

· Methods: The transition labels.

· States: The reachable markings.

· Token character: Instances of a given process can serve as tokens of a second process.

5.2 Related work

Lakos and Keen propagate an approach named “Object-oriented Petri nets” ([5]), which is similar radical as interaction theory. They characterize their method as “a complete integration of object-oriented structuring into petri net formalism.” Lakos and Keen emphasize, that a process has to be considered an object like any other object. They support their claim by the following two arguments:

· Processes must not serve as global control structures.

This prohibition meets with our requirement concerning the democratic character of the society of interacting objects. There is no distinguished master. Instead local interaction of different objects with temporary client/server relations governs the process.

· In order to model multiple levels of activities a process on a given level must be treated as a token object one level above.

We fullfill this requirement by considering every net, which results from interaction, as the lifecycle of a new class. Any instance of this class can serve as token in a new process.

5.3 Open issues and outlook

· The concept of morphisms between coloured nets and coloured Petri nets has to be clarified (cf. Definition 3.4.1).

· Is it possible, to formalize the concept of lifecycle inheritance in a more symmetric way than in Definition 3.2.1? It seems appropriate to treat places and transitions on the same footing. Moreove the concept has to be generalized to coloured nets.

· The concept of business goals (Table 1) has to be integrated into interaction theory.

· Interaction theory does not yet support the concept of genericity. A process pattern in the sense of a generic class accepts other classes as formal parameters.

· How to ensure, that the interaction of live and bounded lifecycles is live and bounded (compositionality)?

· How does interaction theory fit into current research on multi-agents societies? Switch the net class and enrich Petri nets by the changing weights of neuronal nets, in order to model populations of learning agents.
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