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Recall:

Consider a lattice Λ. T = C/Λ is a compact Riemannian surface of
genus 1.

Additionally, it is an Abelian group (C,+)/(Λ,+).

Every torus is biholomorphic equivalent to a torus with the normalized
lattice Λτ := Z · 1 + Z · τ, τ ∈ H. (cf. Wehler 2019, sect 2.2)
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The Weierstrass ℘-function for Λ is the even elliptic function
defined by

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

The poles of ℘ are the elements of Λ and are of order 2.

℘ satisfies the differential equation

℘′2 = 4 · ℘3 − g2 · ℘− g3,

with the lattice constants

g2 := 60 ·
∑

ω∈Λ\{0}

1

ω4
, g3 := 140 ·

∑
ω∈Λ\{0}

1

ω6
.
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Very ampleness criterion

Consider a compact Riemann surface X. For an invertible sheaf L on X
are equivalent:

The sheaf L is very ample;

For the point divisors P,Q ∈ Div(X) of two arbitrary, not necessarily
distinct points p, q ∈ X holds

dimH0
(
X,L−(P+Q)

)
= dimH0(X,L)− 2.

We saw: If g(X) = 1, let p ∈ X, P ∈ Div(T ) the corresponding point
divisor. Then O3P is very ample.
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Projective embedding of a torus

Theorem

Consider a torus T = C/Λ and its Weierstrass ℘-function. Denote by
Z ∈ Div(T ) the point divisor corresponding to 0 ∈ T . Set

D := 3Z ∈ Div(T ).

For the invertible sheaf L := OD, the three sections

s0 := 1, s1 := ℘, s2 := ℘′

are a basis of H0(T,L), defining the holomorphic embedding

ΦL : T → P2, p 7→

{(
1 : ℘(p) : ℘′(p)

)
p 6= 0

(0 : 0 : 1) p = 0
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Proof:

ΦL is holomorphic in a neighborhood of 0 ∈ T :

Choose a chart z of T around 0 in a neighborhood U of 0. Then in
U \ {0}:

ΦL =
(
1 : ℘ : ℘′

)
=
(
z3 : z3 · ℘ : z3 · ℘′

)
which extends holomorphically to the singularity, setting

ΦL(0) := (0 : 0 : 1) ∈ P2.
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Recall:
℘′2 = 4 · ℘3 − g2 · ℘− g3,

Weierstrass polynomial:

F (x, y) := y2 −
(
4x3 − g2 · x− g3

)
.

homogenization (X = X1
X0
, Y = X2

X0
):

Fhom (X0, X1, X2) = X2
2X0−

(
4X3

1 − g2 ·X1X
2
0 − g3 ·X3

0

)
∈ C [X0, X1, X2]

 ΦL maps into the zero set of Fhom in P2
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Proposition

The curve defined by the Weierstrass polynomial

F (x, y) := y2 −
(
4x3 −Ax−B

)
∈ C[x, y]

is non-singular iff
∆F = A3 − 27B2 6= 0

Proof: (x0, y0) ∈ C2 is a singular point of the curve iff

0 = y2
0−
(
4x3

0 −Ax0 −B
)
,
∂F

∂y
(x0, y0) = 2y0 = 0,

∂F

∂x
(x0, y0) = −12x2

0+A = 0

introduce
f(x) := 4x3 −Ax+B ∈ C[x]

 f (x0) = 0 and f ′ (x0) = 0

=⇒ f has a double zero (at x0). This is equivalent to (cf. Knapp, Elliptic

curves, ch. 3, Cor 3.4, Princeton University Press, 1992)

A3 − 27B2 = 0
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Proposition

The discriminant form

∆ : H→ C with ∆(τ) := g3
2(τ)− 27g2

3(τ)

with

g2(τ) := 60 ·
∑

(m,n)∈Z2\{0}

1

(mτ + n)4
, g3(τ) := 140 ·

∑
(m,n)∈Z2\{0}

1

(mτ + n)6

has no zeros.

Proof: see Wehler 2019, sect. 4.1
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Lemma

The point O := (0 : 0 : 1) in the projective curve E defined by the
homogenization of

F (x, y) := y2 −
(
4x3 −Ax−B

)
∈ C[x, y]

is non-singular.

Proof: Consider standard coordinates of P2 around O:

φ2 : U2 → C2, (z0 : z1 : z2) 7→ (u, v) :=

(
z0

z2
,
z1

z2

)
introduce

f(u, v) := u− (4 · v3 −A · u2v −B · u3)

Then
φ2(E ∩ U2) = {(u, v) ∈ C2|f(u, v) = 0}

check explicitly: ∇f(0, 0) = (1, 0) 6= 0
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Corollary

For any τ ∈ H the projective curve defined by the homogenization of the
Weierstrass polynomial

F (x, y) = y2 − (4x3 − g2(τ) · x− g3(τ))

is non-singular.

Definition

An elliptic curve is a non-singular curve X ⊂ Pn of genus g(X) = 1.
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Corollary

Consider a torus T = C/Λ with normalized lattice Λ = Z · 1 +Z · τ, τ ∈ H,
and lattice constants g2, g3 ∈ C. The image of the embedding
ΦL : T → P2 is the elliptic curve E ⊂ P2 with Weierstrass polynomial

F (x, y) = y2 − (4x3 − g2 · x− g3).

Proof: ΦL : T → E is surjective:
Let (1 : x : y) ∈ E. Since ℘ : T → P1 is non-constant, holomorphic
=⇒ ∃z ∈ T s.t. ℘(z) = x =⇒ ℘(−z) = x

From

y2 = 4x3 − g2 · x− g3 = 4℘(z)3 − g2 · ℘(z)− g3 = ℘′(z)2

=⇒ either:
y = ℘′(z) =⇒ φL(z) = (1 : x : y)

or:
y = −℘′(z) = ℘′(−z) =⇒ φL(−z) = (1 : x : y)
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The group structure of elliptic curves

Bezout’s theorem: number of
intersection points of two
algebraic curves in P2 counted
by multiplicity equals product of
degrees of the curves
(cf. Hartshorne 1977, ch.1, sect.7)

ΦL is a group homomorphism
(cf. Wehler 2019, sect. 3)
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Further comments and outlook

Converse statement: (cf. Wehler 2019, sect. 4.2)

Every elliptic curve is biholomorphic equivalent to a torus

More refined definition of elliptic curves: (cf. Hartshorne 1977, ch.4,
sect.4)

projective curve E is defined over a subfield k ⊂ C (write E/k) if
coefficients of defining polynomials are in k
for k ⊂ K ⊂ C the K-valued points are (z0 : ... : zn) ∈ E s.t.
zj ∈ K ∀j
an elliptic curve is a pair (E/k,O), where E/k is a non-singular
projective curve of genus 1, O ∈ E a k-valued point
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