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Recall:

o Consider a lattice A. "= C/A is a compact Riemannian surface of
genus 1.

e Additionally, it is an Abelian group (C,+)/(A,+).

@ Every torus is biholomorphic equivalent to a torus with the normalized
lattice A; :=Z-1+Z -7, 7 € H. (cf. Wehler 2019, sect 2.2)

Paula Pilatus Riemannian Surfaces 12.05.2020 2/14



@ The Weierstrass g-function for A is the even elliptic function
defined by

1 1 1
o) =5+ > |(—m-—5)-
22 weri (o} ((z —w)? w2>

The poles of g are the elements of A and are of order 2.

@ o satisfies the differential equation
% =4-9"—g2- 9 — g3,

with the lattice constants

g2:=60- Y é g3 =140 Y %

weA\{0} weA\{0}
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Very ampleness criterion

Consider a compact Riemann surface X. For an invertible sheaf £ on X
are equivalent:

@ The sheaf L is very ample;

@ For the point divisors P, Q) € Div(X) of two arbitrary, not necessarily
distinct points p,q € X holds

dim H® (X, £L_(p1q)) = dim H*(X, L) — 2.

We saw: If g(X) =1, let p € X, P € Div(T) the corresponding point
divisor. Then Osp is very ample.
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Projective embedding of a torus

Theorem

Consider a torus T'= C/A and its Weierstrass p-function. Denote by
Z € Div(T) the point divisor corresponding to 0 € T". Set

D :=3Z € Div(T).

For the invertible sheaf £ := Op, the three sections

/
so:=1, s1:=p, s2:=¢

are a basis of H%(T, £), defining the holomorphic embedding

. 2 (1:p() :¢'(p) p#0
&, : T — P2, pl—){ @001 et
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Proof:

®, is holomorphic in a neighborhood of 0 € T

Choose a chart z of T around 0 in a neighborhood U of 0. Then in

U\ {0}:
(I)EZ(12@:@0:(23;23,@:’23‘@/)

which extends holomorphically to the singularity, setting

dr(0):=(0:0:1) € P2

Paula Pilatus Riemannian Surfaces 12.05.2020 6/14



Recall:
P =4-0"—g2-p - g3,
Weierstrass polynomial:
F(z,y) :=y* — (4:1:3 —gox — gg) .
homogenization (X = %, Y = %)
Fhom (X0, X1, X2) = X5 Xo—(4X7 — g2 - X1X§ — g3 X§) € C[Xo, X1, X2]

~ ®, maps into the zero set of Fop in P2
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Proposition
The curve defined by the Weierstrass polynomial

F(z,y) :==y* — (42° — Az — B) € C[z,y|

is non-singular iff
Ap=A3—-2TB%+£0

Proof: (7¢,y0) € C? is a singular point of the curve iff
OF OF
0= yg—(4xg — Axg — B) , a—y (z0,Y0) = 2y0 = 0, e (z0,y0) = —12x(2)+A

introduce
f(z) := 423 — Az + B € C[q]

~ f(x9) =0 and f'(z0) =0

= f has a double zero (at xy). This is equivalent to (cf. Knapp, Elliptic
curves, ch. 3, Cor 3.4, Princeton University Press, 1992)

A3 —27B?2 =0
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Proposition

The discriminant form

A :H — C with A(7) :=

mv 93(7)

>

(m,n)€Z2\{0}

has no zeros.

g5(1) — 27g3(7)

1

:= 140- —_—
(m7 +n)S

D

(m,n)eZ2\{0}

Proof: see Wehler 2019, sect. 4.1
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Lemma

The point O := (0:0: 1) in the projective curve E defined by the
homogenization of

F(z,y) =y* — (42 — Az — B) € Clz, ]

is non-singular.

Proof: Consider standard coordinates of P2 around O:

¢2 : UQ — (Cz7 (ZO VAR Zz) — (u,v) = <ZO Zl)

29 %9

introduce
flu,v) :==u—(4-v> — A-u?v — B-u?)

Then
$2(E NU2) = {(u,v) € C*|f(u,v) = 0}

check explicitly: V£(0,0) = (1,0) #0

Paula Pilatus Riemannian Surfaces 12.05.2020 10/ 14



Corollary

For any 7 € H the projective curve defined by the homogenization of the
Weierstrass polynomial

F(z,y) =y* — (42° — go(7) - & — g3(7))

is non-singular.

Definition

An elliptic curve is a non-singular curve X C P" of genus g(X) = 1.
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Consider a torus T'= C/A with normalized lattice A =Z-14+Z-1, 7 € H,
and lattice constants g2, g3 € C. The image of the embedding
®, : T — P? is the elliptic curve E C P? with Weierstrass polynomial

F(z,y) =y* — (42° — g2 - = — g3).

Proof: ®, : T — FE is surjective:

Let (1:z:y) € E. Since p : T — P! is non-constant, holomorphic
= Jze€Tst piz)=0 = p(—2)==

From
y? =42’ —go- 1 — g3 = 4p(2)° — g2 - p(2) — g3 = ¢'(2)?
= either:
y=¢'(z) = ¢c(z)=1:2:y)
or:

y=—¢(2) =¢/(-2) = ¢e(-2)=(L:2:y)
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The group structure of elliptic curves

// - o Bezout’s theorem: number of

%/’/ intersection points of two
- / algebraic curves in P2 counted
,/_&/\/ // by multiplicity equals product of
e ] degrees of the curves
- /’ (cf. Hartshorne 1977, ch.1, sect.7)
\ ! i . .
A Joa @ &, is a group homomorphism
St TIN (cf. Wehler 2019, sect. 3)
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Further comments and outlook

o Converse statement: (cf. Wehler 2019, sect. 4.2)
Every elliptic curve is biholomorphic equivalent to a torus
@ More refined definition of elliptic curves: (cf. Hartshorne 1977, ch.4,
sect.4)
e projective curve E is defined over a subfield k C C (write E/k) if
coefficients of defining polynomials are in k
o for k C K C C the K-valued points are (zp : ... : z,,) € E s.t.
Zj € K V]
o an elliptic curve is a pair (E/k,O), where E/k is a non-singular
projective curve of genus 1, O € E a k-valued point
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