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Chapter 1
Matrix functions

The paradigm of a Lie algebra is the vector space of matrices with the commutator
of two matrices as Lie bracket. These concrete examples even cover all abstract
finite dimensional Lie algebras. They are the focus of these notes. Nevertheless it is
useful to consider Lie algebras from an abstract viewpoint as a separate algebraic
structure like groups or rings.

If not stated otherwise, we denote by K the field R of real numbers or the field C
of complex numbers. Both fields have characteristic 0. The relevant difference is the
fact that C is algebraically closed, i.e. each polynomial with coefficients from K of
degree n has exactly n complex roots. This result allows to transform matrices over
C to certain standard forms by transformations which make use of the eigenvalues
of the matrix.

If not stated otherwise all vector spaces in this chapter are assumed finite-
dimensional K-vector spaces.

1.1 Power series of matrices

At high school every student learns the functional equation of the exponential
function

exp(x) - exp(y) = exp(x+y)

This formula holds for all real numbers x, y € R. Then exponentiation defines a
group morphism
exp: (R,+) = (R*,)

Those students who attended a class on complex analysis will remember that
exponentiation is defined also for complex numbers. Hence exponentiation extends
to a map

exp: (C,+) = (C*,")

which also satisfies the functional equation above.
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The seamless transition from the real field R to the complex field C is due to the
fact that the exponential map is defined by a power series
exp() = Y oz

|
v=o V"

The series converges not only for real numbers but for all complex numbers too.

In order to generalize the exponential map one step further we now exponentiate
strictly upper triangular matrices.

Definition 1.1 (Exponentiation of strictly upper triangular matrices). For n € N*
denote by

II(I’Z,]K) = {(ail/')lgi’jgn 1 aij € K and ajj = 0 lf] < i}

the K-algebra of strictly upper triangular matrices with a typical element of the form

0 * *.. *
00 *... %
000...0

For A € n(n,K) the exponential of A is defined as

o

1
exp A = Z —"AV
v:0\/.

Matrices from n(n,KK) can be added and multiplied with each other, and they can be
multiplied by scalars from the field K. Note that the series in Definition 1.1 reduces
to a finite sum because A" = 0. Hence there arises no question of convergence.

The goal of the present section is to extend the exponential map to all matrices
from M (n x n,KK). Now we need a concept of convergence for sequences and series
of matrices. The basic ingredience is the operator norm of a matrix, a concept which
applies to each linear map between normed vector spaces.

Definition 1.2 (Operator norm). We consider the K-vector space K", n € N, with

the Euclidean norm
n
Il = [ bl for = (xr..ooo) €K
i=1

For matrices A € M(n x n,K) we define the operator norm
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|A]| := sup{||Ax|| : x € K" and ||x|| < 1} = sup{||Ax|| : x € K" and ||x|| = 1}

as the supremum on the unit ball of K" of the linear map represented by A with
respect to the canonical basis.

Note that ||A|| < e due to compactness of the unit ball
{xeK": ||x|| <1}.
Intuitively, the operator norm of A measures how the linear map determined by A

with respect to the canonical basis of K" blows-up or blows-down the unit ball of
K".

The K-vector space M(n x n,K) of all matrices with components from K is an
associative K-algebra with respect to the matrix product
A-Be M(nxnK)

because
(A-B)-C=A-(B-C)

for matrices A,B,C € M(n x n,K).

Proposition 1.3 (Normed associative matrix algebra). The matrix algebra (M(n x n,K), ||||)
is a normed associative algebra:

1. |A]|=0ifA=0
2. |[A+B|| < ||A]| + ||B]| (Triangle inequality)
3 )A-All = AL ||A|| with A e K
4. ||A-B|| < ||A]|l - ||B]| (Product estimation)
511 = 1 with 1 € M(n x n,K) the unit matrix.
6. For a matrix A = (a;j);.j € M(n x n,K) holds
[Allsup < A[] < 7 [|A|5up
with the supremum norm of the matrix components
Al = sup{lag| 1 <7, j < m}.
7. Each eigenvalue A € C of a matrix A € M(n x n,K) satisfies the estimate

(A< (Al
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Proof. ad 6) For j=1,...,n denote by ¢, the j-th canonical basis vector of K". Then

foralli=1,...,n
n
ALl = [lAejll = | ¥ laxs1* > laisl,
k=1

IA[= |l sup-

hence

Concerning the other estimate, the inequality of Cauchy Schwarz
| <xy > < x> [yl?

implies for all x = (x,...,x,) € K", in particular for |x| < 1

2
<

n

lAx* =)

i=1

n
aij Xj
=1

n n 2 n n 2 n 2
<Y laij-xj|” | < Y laij?- Y Il
i=1 \j=1 =1 i=1

i j=1 J

n n

2

<Py <Zsup|ai,,-|2> = P A IR,
i=1 \j=1 i.j

hence
Al <7 [|A] sup

ad 7) Consider an eigenvector v € K" with eigenvalue A. If
A-v=A-v

then
AL VI =14 -v=lA-v] < [|A]l - [IV]],

and cancelling ||v|| # O proves the claim. O

Remark 1.4 (Equivalence of norms).

1. Because the operator norm ||A|| and the sup-norm refering to the entries of A
dominate each other up to a constant, the following two convergence concepts
are equivalent for a sequence (Ay )yen of matrices

Ay eM(nxnK),veN,

and a matrix A € M(n x n,K):
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e lim ||A, —A] =0, i.e. lim A, = A (norm convergence).
V—boo V—roo

» The sequence (Ay)ycn converges to A componentwise.

2. In particular each Cauchy sequence of matrices wih respect to the operator norm
is convergent: The matrix algebra

(M(nxn,K),[[[])

is complete, i.e. it is a Banach algebra.

3. The vector space M(n x n,K) is finite dimensional, its dimension is n>. Hence
any two norms are equivalent in the sense that they dominate each other. There-
fore the structure of a topological vector space on M (n x n,K) does not depend
on the choice of the norm.

Because (M(n x n,K), ||||) is a normed algebra according to Proposition 1.3,
concepts from analysis like convergence, Cauchy sequence, continuous function,
and power series also apply to matrices. In particular, the commutator is a
continuous map: For A, B € M(n x n,K)

I[A, B]| = lAB — BA|| < [|AB|| + || BA[| < 2[|A[|||B|-

We recall the fundamental properties of a complex power series

i ev-z
v=0
with radius of convergence R > 0. Set
A(R):={zeC:|z| <R},
the open disc in C with radius R. Then

 The series is absolutely convergent in A(R), i.e. Yo_lcy| - |z|¥ is convergent
forz € A(R).

 The series converges compact in A (R), i.e. the convergence is uniform on each
compact subset of A(R).

 The series is infinitely often differentiable in A(R), its derivation is obtained by
termwise differentiation.
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Lemma 1.5 (Power series of matrices). Consider a power series
f(Z) = Z CV . ZV
v=0
with coefficients ¢y € K, v € N, and radius of convergence R > 0. Let

B(R) = {A € M(nxn,K) : ||A]| < R}

be the open ball in M(n x n,K) around zero with radius R. Then:

e The series

oo n
fA):=Y cy-AV:=lim [ Y ¢y AY | € M(nxnK)
v=0 7 \v=0
is absolutely convergent and compact convergent in B(R).

» For each matrix A € B(R) the series f(A) satisfies
[f(4),A] =0
with the commutator
[f(A),A]:= f(A)-A—A-f(A).

e The function
f:B(R) = MnxnK), A— f(A),

is continuous.

Proof. 1) We apply the Cauchy criterion: For N > M holds

N M N
ZCV'Avf ZCV'AV S Z ‘Cv|'||AHv.
v=0 v=0 v=M+1
If
ri=|A| <R
then

Z|CV\"’V
v=0

converges. Hence the Cauchy criterion is satisfied with respect to the operator
norm ||...||, hence a posteriori with respect to the sup-norm ||.... ||sup. The limit

n
lim [ Y e, -AY
n—yo0 (VO
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exists with respect to ||...||sp, hence also with respect to the operator norm. The
remaining statements about convergence follow from the estimate

IFA < Y lev]- Al
v=0
and the corresponding properties of complex power series.

ii) The equation [A, f(A)] = 0 about the commutator follows: We take the limit lim
n—soo

and employ the continuity of the commutator

OME [A, Y cva”

n n
— | . v = 1 . . v =
= lim lA,VZ_:Ocv A ] }ggvz::ocv [A,-AY] =0

iii) Continuity of f is a consequence of the compact convergence. 0O

Proposition 1.6 (Transposition and base change for power series of matrices).
Consider a complex power series

f(z) = Z ay ,ZV
v=0
with radius of covergence R > 0 and a matrix A € M(n x n,C) with ||A|| < R. Then:

i) Transposition:
JCOENI
ii) Similarity: For each invertible matrix S € GL(n,C)
f(S-A-571)=5-f(A)-57!

Proof. 1) The proof follows from the fact that transposition is a continuous map:
Proposition 1.3 implies
T
AT <n-|A|

Then taking the limit lim of
N—oo

N v N T
Z ay-(AT) = Zav~AV
v=0 v=0
i1) For each v € C
(S-A-STHY=5.4".57".

The claim of the proposition follows from the continuity of the matrix multiplication
by taking the limit Al]im of
—yo0
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N N N
S Ya-a)s'=Ya sa-s"=Ya- (5As")
v=0 v=0 v=0

One can even show for A € M(n x n,C) the strict equality

IAT] = [lAl

Definition 1.7 (Derivation of matrix functions). Let / C R be an open interval. A
matrix function
A:I— M(nxnK)

is differentiable at a point fy € [ iff the limit

A(to+h) —A(#
fim At +h) —Al0) _ A(to) € M(n x n,K)
h—0 h
exists. In this case we employ the notation

dA

E(fo) i=A'(10).

Lemma 1.8 (Derivation of power series of matrices depending on a parameter).
Let I C R be an open interval.

i) Consider two differentiable maps
A,B:1— B(R).
Then for all t € I holds the product rule

%A(r) ‘B(t)=A'(t)-B(t)+A(t) - B'(1).

ii) Consider a complex power series
v
f@) = Z Cv-2
v=0

with radius of convergence R > 0, and
A:I— B(R) C M(nxnK)

a differentiable function, which satisfies for all t € I
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[A(1),A(t)] = 0.

Then also the function
foA:I—=MnxnK), t— fA@):=Y cv-A%(1),
v=0
is differentiable for all t € I and satisfies the chain rule

%f(A(t)) =f'(A(1))-A'(t) = A'(t) - f'(A(1)).-

Here f' denotes the derivation of the complex power series f term by term.

Proof. 1) The proof follows the proof of the product rule from calculus: One inserts
a suitable additional term.
A(t+h)-B(t+h)—A(r)-B(r)

li =
hl—% h

_y A(t+h)-B(t+h)—A(t)-B(t+h)+A(t) B(t+h) —A(t)B(t)
=0 h N

A(t+h)—A)

im Bl +h) +A() - lim 20 B
h—0 h

—0

ii) i) After differentiating the series
fA@) =Y ev-A"(r)
v=0

term by term, the resulting power series

Z I CV 'Avj] (t)

v=1
is again compactly convergent. Hence

fAm) =Y vey- A1)
v=1

The proof of the lemma reduces to proving

%A"(r) =v-A" 1) Alt)=v-A(1)- AV (1),
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Here the proof goes by induction on v € N. The induction step uses the product
formula from part 1)

d \Y \Y _ d v \Y !
SAV 1) = S (A1) -A() = (th <r>> A +AY()-A'()

and the induction assumption

d \% _ vV— !
A =v-A Y1)-A'(r).

Asa consequence

%A"“(r) =v-AV LA (1) A() +AY (1) -A(t) =

= (V1) A1) A1) = (v+1)-A'(1)- A1)

1.2 Jordan decomposition

The central aim of Jordan decomposition:

» Decompose a complex vector space V with respect to a given endomorphism f € End (V')
into eigenspaces or generalized eigenspaces of f,

* and decompose f as the sum of two endomorphisms of special type, one semisim-
ple while the other nilpotent.

Definition 1.9 (Eigenspaces and generalized eigenspaces). Consider a K-vector
space V, a fixed endomorphism f € End(V), and A € K.
o If
Va(f) == ker(f —24) #{0}
then V) (f) is the eigenspace of f with respect to A, which is named an eigenvalue

of f.

o If
VAP = U ker(f = 2)" # {0}

neN

then VA (f) is the generalized eigenspace of f with respect to A.
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Remark 1.10 (Generalized eigenspace).

1. All generalized eigenspaces VA (f) are f-invariant, i.e.

FVAE) VA

Forallke N
[(f=2)" A =0.

If
xe V), ie. (f = A)fx) =0

for suitable k € N, then
(f =2 @) = ((f=A) o f)x) = (fo(f —2A))(x) = f(0) =0.

2. Every non-zero generalized eigenspace VA (f) contains at least one eigenvector v € V
of f with eigenvalue A: Take a non-zero vector vo € V*(f) and choose n € N
maximal with

vi=(f=24)"(vo) #0.

Hence knowing a generalized eigenspace of f allows to find an eigenvector of f.

We recall the following types of matrix representation of an endomorphisms.

Definition 1.11 (Diagonalizable, triangularizable, nilpotent). Consider an n-dimensional K-vector
space V.

1. An endomorphism f € End(V) is diagonalizable iff it can be represented by a
diagonal matrix from M(n x n,K).

2. Anendomorphism f € End (V) is triangularizable iff V has a flag, i.e. a sequence (V;)=o,
of subspaces of V with

dimV;=iandV; C Vi 1,
which is f-stable, i.e. satisfying
FV)CViyi=1,..,n.

3. An endomorphism f € End (V) is nilpotent iff f*(V) = 0 for a suitable k € N.

A matrix A = (a;;) € M(n x n,K) is an upper triangular matrix iff a;; = 0 for
all j < i. Apparently an endomorphism is triangularizable iff it can be represented
by an upper triangular matrix from M(n x n,K).
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For a vector space V # {0} each nilpotent endomorphism f € End V has an
eigenvector v € V with eigenvalue zero: For the proof one chooses a non-zero
element w € V and considers the greatest index n € N* with

£1(w) £0.
By nilpotency of f such an index exists. Then
v:i=f"(x)

is an eigenvector of f with eigenvalue zero.

Note: The only endomorphism f € End(V'), which is both diagonalizable and
nilpotent, is f = 0.

It is well-known from Linear Algebra that the sum of two diagonalizable
endomorphisms, which commute with each other, is diagonalizable. A similar
result holds for nilpotent endomorphisms.

Proposition 1.12. Consider a finite-dimensional K-vector space V and two nilpo-
tent endomorphims f, g € End(V) with commutator [f,g] = 0. Then

f+g€EndV)
is nilpotent.
Proof. We choose an index N € N with
M=g"=0.
Because [f, g] = 0 the binomial theorem applies and shows
N /N
(f+e)N = Vgo ( y ) MgV =0

because each summand has at least one factor equal to zero. O

The question whether an endomorphism f is triangularizable or even diagonaliz-
able depends on the roots of its characteristic polynomial. These roots are the eigen-
values of f. The corresponding crtieria are stated in Propositions 1.14 and 1.15.

Definition 1.13 (Characteristic polynomial of an endomorphism). Denote by V
a K-vector space and by f € End(V) an endomorphism.
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1. The characteristic polynomial of f is the polynomial
Penar(T) :=det(T-1—A) e K[T]

with 1 € M(n x n,K) the unit matrix and A € M(n x n,K) an arbitrary matrix
representing f. The polynomial is independent from the representing matrix.

2. It is well-known that the roots A € C of pgy, are the eigenvalues of f. We denote
by
.u(pchar;/l) eN

the multiplicity of the root, i.e. the algebraic multiplicity of A.

For later aplication we prove the following lemma about diagonal approximation.

Proposition 1.14 (Triangular form). For an endomorphism f € End(V) with a
finite dimensional K-vector space V are equivalent:

1. The endomorphism f is triangularizable.

2. The characteristic polynomial p.par splits over K into a product of - not neces-
sarily pairwise distinct - linear factors.

For the proof see [12].

In particular, over K = C every endomorphism is triangularizable.

Proposition 1.15 (Diagonal form). For an endomorphism f € End(V) with a finite
dimensional K-vector space V are equivalent:

1. The endomorphism f is diagonalizable.

2. The characteristic polynomial p .- splits over K into linear factors, and for all
eigenvalues A of f the algebraic multiplicity equals the geometric multiplicity,
ie.

U(Pehars &) = dim V), (f) (Geometric multiplicity).

3. The vector space V splits as direct sum of eigenspaces

V= @ Ww.

A eigenvalue

For the proof see [12].
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Lemma 1.16 (Diagonal approximation). For each matrix B € M(n x n,C) exists a
sequence (By)yen of diagonalizable matrices By € M(n x n,C) with

B = lim B,,.

V—oo
Here the limit of matrices is to be understood componentwise.

Proof. Over the algebraically closed base field C the given matrix B is triangulariz-
able: There exists an invertible matrix S € GL(n,C) such that

A:=S-B-§!
is an upper triangular matrix of the form
A=A+N

with a diagonal matrix
A =diag(Ay,..., A)

and a strictly upper triangular matrix
N = (ajj),a;j =0 ifi > j.
For all i = 1,...,n one defines successively sequences
a = (ai/)veN

of complex numbers converging to zero, such that for each fixed v € N the numbers

l,'—i—al;,, i=1,.,n,
are pairwise distinct. Then one defines for each v € N

Ay :=diag(A —|—ai,7 woy Ay +dy) +N.

Each matrix Ay has the n pairwise distinct eigenvalues

Ai+d,i=1,...n,
and is therefore diagonalizable due to Proposition 1.15. By construction

A=1limAy,

V—o0
which implies

B=S1.A.5=5"'.(limA,)-S= lim(S~'-A,-9)

V—yoo V—so0

The matrices
By:=S"1-A,-S, veN,
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are diagonalizable because the corresponding matrices Ay are diagonalizable. O

A second polynomial from K[7] which encodes important properties of an
endomorphism f is the minimal polynomial of f.

Definition 1.17 (Minimal polynomial and semisimpleness). Let V be an n-dimensional K-vector
space. The K-vector space End (V) of endomorphisms has dimension = 1. Hence

for each endomorphism f € End(V) the family (f*)zcy is linearly dependent and

each endomorphism f € End(V) satisfies a polynomial equation

k—1
fr=Y o f ogeC
i=0

with suitable k € N*.

1. Because the ring R := K[T] is a principal ideal domain, the ideal of all polyno-
mials which annihilate f

<p€ER: p(f)=0€End(V) >

has a unique generator of positive degree with leading coefficient = 1. It is named
the minimal polynomial of f
Pmin (T) €R.

2. The endomorphism f is named semisimple if its minimal polynomial splits as

Pmin(T) = . H gj(T)

with irreducible polynomials
gi(T)eK[T], j=1,....k,
which are pairwise distinct up to scalars.

If V is a complex vector space and f € End(V), then semisimpleness of f re-
duces to the property, that the roots of the minimal polynomial of f are pairwise
distinct, i.e. pyn(T) is a product of pairwise distinct linear factors.

Lemma 1.18 (Restriction of semisimple endomorphisms). Consider a complex
vector space V, an endomorphism f € End(V), and an f-invariant subspace W C V.
If f is semisimple, then also the restriction

fIW:w—w

is semisimple.
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Proof. The minimal polynomial
P(min,iw)(T)
of the restriction f|W divides the minimal polynomial p,;,,(T) of f. Hence also
P(min, fiw)(T)

splits into pairwise distinct linear factors. 0O

Note that Lemma 1.18 also holds in the real context.

Theorem 1.19 (Jordan decomposition). Let f € End(V) be an endomorphism of
a finite dimensional complex vector space V.

1. A unique decomposition
f = fs+ fn (Jordan decomposition)

exists with a semisimple endomorphism f; € End(V) and a nilpotent endomor-
phism f, € End(V) such that both satisfy

[fwfn] =0.

2. The two summands f; and f, depend on f in a polynomial way, i.e. polynomials
ps(T), pa(T) € C[T]
exist with ps(0) = p,(0) = 0 such that

fs= ps(f) and f, = pn(f)

In particular, if [f, 8] = 0 for an endomorphism g € End (V') then

[fS7g] = [fmg] =0.

3. The vector space V splits as direct sum of the generalized eigenspaces of f

V=@ V.

A eigenvalue

For each eigenvalue A the generalized eigenspace of [ equals the eigenspace
of fs: N
V() =Va(fy)-

4. The minimal polynomial p,,;n(T) of f and the characteristic polynomial pqp,r(T)
of f have the same roots.
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The proof uses the fact that the field C is algebraically closed. Hence the minimal
polynomial p,,;;, of f splits completely into linear factors. If p,,i, has the roots

A,,', i= 1,...,7‘,

then the linear factors of p,,;, induce a family of polynomials without a common
factor. Because
R:=CJ[T]

is a principal domain, the factors generate a partition of unity in R. It induces a
partition of the identity id € End(V). The corresponding summands form a family
of pairwise commuting projectors

E:V—=Vi=1..r
Setting
Vii=imE; CV,i=1,..,r,

decomposes V as the direct sum

is semisimple and that
f=Jfs=/n

is the searched nilpotent summand of f. One checks that the direct summands V;
equal the generalized eigenspaces of f, and that these are also the eigenspaces

of f;.

Proof (of Theorem 1.19).

1) Splitting idy as a sum of pairwise commuting, non-zero projectors: Because the
field C is algebraically closed, the minimal polynomial p,,;,(T) of f splits into
linear factors with positive exponents m; € N*

Poin(T) = _f!(T A

with A; # A; if i # j. Fori = 1,...,r consider the polynomials

L pmin<T)
pi = m c Ie7
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obtained by cancelling the corresponding factor from the minimal poylnomial. By
construction these polynomials are coprime, their greatest common divisor
is =1 € R. Because R is a principal ideal domain there exist
polynomials r; € R, i = 1,...,r, with
,
1=) ri-pi€R.
i=1

Applying the polynomial equation to the endomorphism f creates the
endomorphisms

Ei:=ri(f) - pi(f) €End(V), i=1,...,r.
They satisfy:
* By construction
.
i=1
e Foreachi=1,...,r
E; #{0}.

Otherwise assume the existence of an index i € {1,...,r} with E; = {0},
w.l.o.g. i = 1. Then

ri(f)-pi(f)=0
The minimality of p,,; implies

Pmin divides ry-pjin R,

and by definition of p;
Pmin = (T - }Ll)ml *P1

Therefore
(T —A1)™ - p; divides ry - p; in R,

and because R is a domain of integrity
(T —A)™ divides ry.

By definition (7 — A;)™ also divides all p;, j =2,...,r. Hence

(T — )™ divides 1=Y" ri-p;,
i=1

14

a contradiction.
e If i jthen py,;, divides

(ri-pi)-(rj-pj) €ER.



1.2 Jordan decomposition
Hence pyin(f) =0 € End(V) and the minimality of p,;, imply
E,"Ej =0¢€ End(V)

* The family (Ey)k=1,. - is a family of projectors:

,
Ef =ExoY E;=Eyoidy = Ey.
i=1

Hence the family (E;);=, .., splits the identity idy as a sum of pairwise
commuting, non-zero projectors. We define the ranges

Vii=imE CV,i=1,...r

of the projectors, and obtain the direct sum decomposition

,
v=v.
i=1

For all i = 1,...,r the projector E; is as a polynomial in f by definition, hence it
satisfies
[fa El] = 07

which implies that the subspace V; is f-stable.

ii) The semisimple summand and V; C V*(f): On each subspace
Vi,i=1,..,r,
the corresponding projector E; acts as identity, hence the endomorphism
Ai- (Ei|Vi) € End(V;)

acts as multiplication by A;. We define the polynomial
ps(T) = Z Ai-ri(T)-pi(T) ER
i=1
and the endomorphism

fi=ps(f) =Y Ai-Ei €End(V).
i=1

=

Recall from parti) foralli=1,....r

Vi # {0}.

Due to Proposition 1.15 the decomposition
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implies that f; is diagonalizable with eigenspaces
Vi=Wy(fs), i=1,...,r.

In particular, f; is semisimple with minimal polynomial

r

Pmin,f, = H(T —A)

i=1
Foreachi=1,...,r
Vi cVA(f)

because for each v € V; holds

(f =)™ (v) = (f = A)"™(Ei(v)) = (f = 4)" (ri(£) 2 pi(£)) (V) = (ri(f) © Pmin (£)) (V)
the penultimate equality is due to the definition

o Pmin
PI= G g

iii) The nilpotent summand: To obtain the nilpotent summand of f we consider the
polynomial
pu(T) ;=T — ps(T) € C[T]

and define the corresponding endomorphism

fo=pa(f)=f—fs € End(V).
Then
f=rs+fa
The two definitions
fs = ps(f) and f := pa(f)
imply
f. sl =1f, ful =0.

In order to prove the nilpotency of f,, we consider an arbitrary index i € 1,...,r and
the restriction of f;, to V;. Set
m:=dimV;
OnV;
n=f—=fi={-X)—(fi—N).

Using [f, f] = 0 the binomial theorem implies
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m m B B
=Y ( )(—1)m HOf =AM o (fs— M) 1.
Here the second factor
(fi—A)"*

of each summand with index 0 < u < m vanishes, because 4; is an eigenvalue of
the restriction f|V;. The first factor

(f =M

vanishes for the summand with index = m as proved in part ii). As a
consequence of the binomial theorem

S"(Vi) = 0.

Hence the restriction f,|V; is nilpotent for every i = 1,...,r, which implies the
nilpotency of f, € End(V).

iv) Inclusion V* (f) C V;: Consider an arbitrary, but fixed i = 1,...,r. We use the
direct sum decomposition from part ii)

Consider an arbitrary vector v € yhi (f) C V and decompose
r
v=) vyv;eViforj=1,..,r.

j=1

We have to show that v reduces to v;, i.e.v; = 0 for j #i.

For large n € N by assumption
r
0=(f=2)"(v)= Y (f = 4)"(v)).
j=1
The f-stableness of each V; implies
(f =4)"(vj) €V}
Assume the existence of an index j = 1,...,r such that v; # 0. Then

(f =4)"(vj) =0,

i.e. f has the generalized eigenvector v; belonging to the eigenvalue A;:
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Ai
\JAS \% (f)

Due to Remark 1.10 the endomorphism f has also an eigenvector w € V;.(f). The
f-stableness of V; implies w € V;. We obtain for large m

0= (f=2)"(w) = (A= A;)" -w.
Here the left equality is due to
weV; cVh(f)
with the last inclusion proven in part i). And the right equality is due to

w e V)Li(f)-

The equality
0= (A,’—/'Lj)m'w

implies j = i. As a consequence v = v; € V;, which finishes the proof of the
inclusion
VA(f) Vi

Together with the opposite inclusion from part iii) we obtain
vi=VA(p)
and

V=@Vi= BVH() = DV ().
i=1 i=1 i=1

In particular, the vector space V splits as the direct sum of the generalized
eigenspaces of f. The corresponding generalized eigenvalues of f are the roots of
the minimal polynomial p,,;;, of f.

V) Both polynomials pyin and pepar have the same roots:

* Due to part iv) each root A of the minimal polynomial of f defines a generalized
eigenspace V* (f)- Due to Remark 1.10 the latter contains an eigenvector of f
with eigenvalue A. The eigenvalue A is a root of the characteristic polynomial
of f. Hence all roots of the minimal polynomial are also roots of the
characteristic polynomial.

« For the oppposite direction we consider an eigenvalue A of f with
corresponding eigenvector v € V:

FV)=24-v.

Because pin(f) =0 € End(V) we have in particular

Pmin(f)(V) =0 € V.



1.2 Jordan decomposition
Hence
0= Ppmin(f)(V) = pmin(A) - v EV.
Because v # 0 we conclude
Pmin(A) =0€C,
i.e. the eigenvalue A is a root of the minimal polynomial.

vi) Semisimplicity implies diagonalizability: If f is semisimple then each A; is a
simple root of the minimal polynomial of f, i.e.

r

Ppmin(T) = [T (T =2)

j=1
We show for each arbitrary but fixed index i =1, ...,r
VA(f) =V, (f)

To prove the non-trivial inclusion

VA(f) € Vi, (f),s

i.e. that generalized eigenvectors are eigenvectors, we consider a generalized
eigenvector v € V% (f). We have

0= pmin(f)(v) = fI (f =) V) = ((H(f— Aj))e(f - li)) (v)

j=1 J#i

In case
(f =A)(v) #0

we obtain due to the f-stableness of vhi (f) by iteration a non-zero
vector w € V% (f) and an index j # i with

(f = 24j)(w) =0

In particular
w eV (f) cVh(f).

Hence
0£weVH(f)NVA(f),

a contradiction to
VA (F)AVE(f) =0

according to part iv). Therefore

(f=A)(v) =0, ie. veVy(f).

27
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vii) Uniqueness of the Jordan decomposition: Assume a second decomposition
f=£+1
with the properties stated in part 1) of the theorem. From
[fful =0

follows
oSl = [f5s Fl + s £l = [ 2] = 0.

Part iii) with

fo = pa(f)
shows

[ 3] =0.
Analogously, one proves

[fmfﬂ =0.

As a consequence
fs=fi=Jfn—fa €End(V)
is an endomorphism which is both
* semisimple, as the sum of two commuting semisimple, i.e. diagonalizable
according to part vi), endomorphisms,
* and nilpotent - being the sum of two commuting nilpotent endomorphisms, see
Proposition 1.12.

Hence the endomorphism is zero, i.e.

fi=f, and £, = f..

viii) Killing the constant terms: We prove that the polynomials ps and p, can be
choosen with

ps(0) =pa(0) =0:
 Either A; = 0 for one index i = 1,...,r. Then

VO(f) # {0}

and the generalized eigenspace of f contains also an eigenvector of f with
eigenvalue 0, i.e.

{0} # ker f.

The representation
ps(T) =ap+aiT + ...+, T* € C[T]

implies
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fi=ps(f) =ao-id+ar-f+..+ap fFEnd(V).

The last equation applied to an eigenvector
v € ker f = ker f;

shows ag = 0. Hence p,(T) € C[T] has no constant term, i.e. ps(0) = 0. From
the definition

pn(T) =T — ps(T)
follows
pn(0) = —p;(0) =0.
e Or A; # 0 for all indices i = 1,...,7: Then

pmin(o) = iH )vi 7& 0
i=1

Now one replaces the polynomials p; and p, respectively by

S ps(0)

Ps ‘= Ds me(O)'pmin

and
L. pn(0)

Pn = Pn— Drin (O) * Pmin-

Then
ﬁ.\'(o) = ﬁn(o) =0

without changing the polynomial representations

fs = ps(f) and fu = pu(f),

because puin(f) = 0.
O

The decomposition of a complex endomorphism into the sum of its semisimple
and its nilpotent part points to the two fundamental classes of Lie algebras. Nilpotent
- and slightly more general - solvable Lie algebras are the subject of Chapter 3.
While the study of semisimple Lie algebras will start in Chapter 4 and continue as
the subject of Part II.

The Cayleigh-Hamilton theorem relates the minimal polynomial of an endomor-
phism to its characteristic polynomial. The theorem can be obtained as a corollary
of the Jordan decomposition.

Theorem 1.20 (Cayleigh-Hamilton). Consider a complex, finite-dimensional vec-
tor space V and an endomorphism f € End(V).
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* The characteristic polynomial p.a-(T) € C annihilates f, i.e.

pchar(f) =0¢ End(V)

The minimal polynomial p,,(T) of f divides the characteristic polynomial ppa,(T)
in the ring C[T].

Proof. We denote by
f=r+rh

the Jordan decomposition of f according to Theorem 1.19 and take over the
notation from its proof. The minimal polynomial of f has the form

r

pmin(T) = H (T - )vi)mi

i=1

with pairwise distinct A;.

i) We choose an arbitrary but fixed index j € {1,...,r}, set
A=A, W:= v* (f), and k :=dim W,

and denote the restriction of endomorphisms to the f-stable subspace W by
priming. Then the restrictions

fl=AX-idy and f,
are semisimple respectively nilpotent, and
f'=K+h
The nilpotency of f;, implies
(F =2 =(f =)= (=0
ii) For each i = 1,...,r we use the shorthand
Vi =V (f)

The characteristic polynomial of f is

,
pchar(T) = H (T - li)dlm Vi
i=1
Part i) shows foreachi=1,...,r

(f =)™ YV =0

As a consequence of the Jordan decomposition
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holds

~

pChar(f) = (f_li>dim Vi _ 0
i=1

Due to the minimality of py,(T) the

minimal polynomial p,,;,(T) divides the
characteristic polynomial pejq,-(T). O

Apparently the statement p.-(f) = 0 of the Cayleigh-Hamilton theorem also
holds for an endomorphism of a real vector space V. Because any real endomor-
phism f defines the complex endomomorphism

foid

of the complexification V @ g C.

1.3 The exponential map of matrices

The complex exponential series

oo %

ep(@) =Y o

|
v—0 v

has convergence radius R = oo. We now generalize the exponential series from
complex numbers z € C as argument to matrices A € M(n x n,K) as argument.

Definition 1.21 (Exponential of matrices). For any matrix A € M(n x n,K) one
defines the exponential

© AV
exp(A) := ZOW € M(nxn,K).
=ov

In Definition 1.21 the defining power series of matrices is absolutely and
compactly convergent due to Lemma 1.5.
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Proposition 1.22 (Derivation of the exponential with respect to a parameter).
Consider an open interval I C R and a differentiable function

A:1— M(nxnK)

with
A'(1),A()] = 0

forallt € 1. Then forallt €1

%(wWAU»::ATG'GWAO)=(QPAO»'A%0-

Proof. We apply Lemma 1.8 with the power series

|
f(2) =Ly -z’
and its derivative
f(2)=£(2)

We obtain
“lexp A(1) = (2 v,-AV(r)) A1) = (exp A1) A1) = A'(1) - exp A).
v=0 ""

O

Theorem 1.23 (Exponential of commuting matrices). The exponential of matrices A,B € M(n x n,C)
satisfies the following rules:

1. Functional equation in the commutative case: If [A, B] = 0 then
exp(A+B) = exp(A) - exp(B).
2. Determinant and trace: det(exp A) = exp(tr A).

Proof. 1. First we apply the binomial theorem making use of the assumption [A, B] = 0:

oo oo \4
exp(A+B) :Z A+B ZJ;(Z(;)AV”'BO:

v=0 0 u=0
Y (Y o
_v:O n=0 (V_I’L)! u!

Secondly we invoke the Cauchy product formula. It rests on the fact that any
rearrangement of absolutely convergent series is admissible:
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oo AV oo Bv oo \% AV n B;L
exp(A)-exp(B) = Y Y —= ¥ (Z u.>~
v=0 " v=0 "° v=0 u:O :
2. According to Proposition 1.14 and 1.6 w.l.o.g.
M *
A= ,MeC,i=1,..,n,
0 An
is an upper triangular matrix. We obtain
AY *
AV = ,VEN,
0 AY
and conclude
2

v=0

det(exp A) = det Z il det

Hence .
det(exp A) = He}”" =Mt — exp(tr A).

i=1

Corollary 1.24 (Exponential map). The exponential defines a map
exp: M(nxn,K) — GL(n,K), A+ exp(A),

i.e. the matrix exp(A) is invertible, and exp(A) ™" = exp(—A).

The inverse of exponentiation is taking the logarithm. But even in the case of
complex numbers the exponential map is not injective because

exp(z+2mi) = exp(z)

Anyhow the exponential map of complex numbers is locally invertible. And this
property carries over to the exponential of matrices around the unit 1 € GL(n,C).
We first recall the complex power series of the logarithm

oo 1V+l
log(1+7z) :Z 7Y, z€C,

v=1
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and the complex geometric series

Y ' zeC
v=0

Both power series have radius of convergence R = 1.
Definition 1.25 (Logarithm and geometric series of matrices). For a matrix A € M(n x n,K)
with ||A|| < 1 one defines its logarithm
log(1+A):= Z (—1)V+t. v € M(n x n,K)
v=1

and its geometric series

AY € M(nxn,K).

v=0

Proposition 1.26 (Inverse matrix and derivation of logarithm).

1. For a matrix A € M(n x n,K) with ||A]| < 1 the matrix 1 — A is invertible with
inverse the geometric series

(1-A)'= i AY.
v=0
2. Consider an open interval I C R and a differentiable function
B:1— M(nxn,K)
with |B(t) — 1|| < 1 and [B'(t),B(t)] =0 forallt € I.
Then for all t € I the inverse B(t)™" exists and

9 (10 B) =B) " B () =B(1)-B) "

Proof. ad 1) Foreachn € N

n n n+1
(1-4)- Y A=Y A" -y A" =1-4A"""
v=0 v=0 v=1

Because HAH < 1 it follows
. % : n+1
(1-A4) VE 0A —]l—r}lmHAH =1.

ad 2) For ¢ € I define
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A:=1-B(z).
Because ||A|| = ||1 — B(t)|| < 1 apply part 1) to A:

B(t)=1-A

has the inverse

=

B(t) ' = iOAV — Y (1-B(@)".

v=0
In addition,
log(B(t)) = log(1+ (B(t) — 1))

is well-defined. The chain rule from Lemma 1.8 with the power series of the loga-

rithm il
fa+z)=Y (S IRY

1%

<
—_

and its derivative

implies

Proposition 1.27 (Exponential and logarithm of matrices as locally inverse maps).
For a matrix A € M(n x n,C) holds:

1. If |A—1]| < 1 or A — 1 nilpotent, then
exp(logA) =A
2. If ||A|| < log 2 or A nilpotent, then
log(lexpA) =A
Proof. 1. 1) Assume ||A — 1|| < 1: For the proof cf. [18, Theor. 2.8].

First we consider the case that the matrix A is diagonalizable: Assume the exis-
tence of matrix § € GL(n,C) with

SA-ST=A

a diagonal matrix
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diag (A1,..., ).
Then for all v e N
L-1)Y0 ... 0 0
A-1)Y=s" S
0 0 .. 04 —1)
The complex numbers A;, j = 1,...,n are the eigenvalues of A, while
Ai—1,j=1,...,n
are the eigenvalues of A — 1. Hence according to Proposition 1.3
Ai—1<||A-1| <1, j=1,...,n
We obtain

logA=log(1+(A—1)) = i(—n”l : @:
v=1

log210 ... 0 O

=s'. .S

Then by Theorem 1.23

exp(logA) =S S=A
0 0 ... 0exp(log M)

Secondly, for a general matrix A € M (n x n,C) Lemma 1.16 provides a sequence
(Ay)y of diagonalizable matrices with

A= limA,

V—roo

Due to the continuity of the matrix functions exp and log, see Lemma 1.5,
exp(log A) = exp(log(1im A,)) = lim (exp(log Ay)) = lim A, = A

ii) Assume A — 1 nilpotent, but not necessarily
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[A—1] <1,
Consider for each ¢ € R the matrix
Alt):=1+4t-(A—-1)

For all r € R the matrix
A(t)—1=¢t-(A-1)

is nilpotent, and for small |¢| holds

1A(@) =1 = Jr[-[A=1][ <1
For all # € IR the power series

log A(t) =log(1+ (A(r) — 1))
reduces to a finite series, and for small |¢| holds due to part i)

exp(log A(t)) = A(r)

Both sides of the last equality are power series in ¢ € R. The identity theorem
for real power series implies that the equality holds for all # € R. For# = 1 one
has A(r) = A, hence

exp(logA) =A

2. 1) Assume ||A|| < log 2. Then

oo

lexp(4)— 1] = | ): i

Hence

\AHV

=exp(|A)—-1<2—-1=1.

log(exp A) = log(1 + (exp(A) — 1))

is a well-defined convergent power series.

For a diagonal matrix
M 0

0 A
holds
max{|A;]: 1< j<n}=][Al.
If ||A|| < log 2 then
log(eM) 0 Al 0
log(exp(A)) = = =4
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Here we use that the power series of the logarithm computes the principal
value of the logarithm.

According to Lemma 1.16 an arbitrary complex matrix A € M (n x n,C) can
be approximated by a series of diagonalizable matrices (Ay)yen

A = lim Av.

V—roo
If ||A]| < log 2 then for sufficiently large index v also
[Av]l <2

For each sufficiently large fixed v € N there exists an invertible matrix
S € GL(n,C) such that
Ay:=S-A,-57!

is a diagonal matrix, and estimating the operator norm against the modulus
of the largest eigenvalue shows

Av]| = llAv]| < log 2.
The previous step implies
log(exp S-Ay-S™1) =log(exp Ay) = A,

Hence
S-log(exp Ay)-S~' =log(exp S-A,-S71) = A,

implies
log(expAy) =S"1-A,-S=A,

Taking the limit of the outer terms of the last equation and using the
continuity of the functions log and exp gives

log(exp(A)) =A.
ii) Assume A nilpotent, but not necessarily
A]| < log 2
Then the reduction is similar: For each ¢ € R the matrix
A(t):=t-A
is nilpotent, and satisfies for small |¢|
JA(1)] < log 2

For all # € R the power series
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exp(A(r) ~1=Y
reduces to a finite series, and its value

exp(A(t)) =1
is nilpotent as finite sum of pairwise commuting nilpotent matrices. Hence

vi1 ((exp A(r)) —1)¥
\%

 agk

log(exp A(t)) = log(1 + (exp(A(r) = 1)) = ), (=1)

v=1

also reduces to a finite sum and is therefore well-defined. For small |¢| holds
due to part 1)
loglexp A(r)) = A(t)

Both sides of the last equality are power series in ¢ € R. The identity theorem
for real power series implies that the equality holds for all # € R. Fort = 1 one
has A(7) = A, hence

log(lexpA)=A

Remark 1.28 (Counter example against invertibility). In Proposition 1.27, part 2 the
assumption ||A|| < log 2 cannot be dropped: Consider the matrix

A=2mi-1eM(nxn,C)
with ||A|| =27 > log 2. We have
exp(A)=e"1.1=1

hence
log(exp(A)) =log(1) =0 # A.

Theorem 1.29 (Surjectivity of the complex exponential map). The exponential
map of complex matrices

exp:M(nxn,C)— GL(n,C), A— exp A,
is surjective.

To obtain an inverse image of the endomorphism f € End(C") represented by a
given matrix B € GL(n,C) the Jordan decomposition of f allows to focus on a gen-
eralized eigenspace V* (f) of f. Therefore we have to find an inverse image of the
restriction
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fr o= FIVA(F).

The Jordan decomposition decomposes
1
Po=A Lt fy =2 (142 fu

with a nilpotent endomorphism f;, and A # 0 because f is invertible. We find inverse
images separately for each factor of the induced multiplicative decomposition by
using the logarithm for nilpotent matrices and for complex numbers. Then the sum
of both inverse images maps to f; and solves the problem.

A given matrix B € GL(n,C) is similar to a block matrix with respect to the Jordan
decomposition and the exponential map is compatible with conjugation due to
Proposition 1.6. Hence we may assume B as a block matrix.

Proof. Consider a fixed but arbitrary matrix B € GL(n,C). According to Theorem 1.19
the vector space C”" splits up to conjugation into the sum of the generalized
eigenspaces with respect to the generalized eigenvalues A of B

C" = Pv*H(B)
A

and for each generalized eigenvalue A the restriction
B; :=B|V*(B)

is an endomorphism of the B-stable subspace V*(B).

W.l.o.g. we may assume B = B; with a fixed A € C. Note A # 0 because the
matrix B is invertible. According to the Jordan decomposition of B the matrix

N:=B;—A-1

is nilpotent. We obtain an additive and a multiplicative decomposition

br i (1 L)

Then "
1 = (—1)vH NV
Ayi=log(1+—-N)=yY 2 .
z "g( 7 ) V; v

is well-defined because the sum is finite. We have

1
exp Ay = exp (log (IH—A~N>> =1+

according to Proposition 1.27. In order to deal with the numerical factor A € C we
choose a complex logarithm u € C with

‘N

> =
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Combining both steps we set
A=u-14+A,,

Theorem 1.23 implies

expA=exp(-14+Ay)=exp(-1)-expA, =(A-1)-expA) =21 <]l+i~N> =B.

O

Remark 1.30 (Counter examples against surjectivity). In general, the exponential
map of matrices is not surjective on domains where one possibly expects it to be.

1. Complex case: Set
sl(2,C):={AeM(?2x2,C):trA=0}

and
SL(2,C):={Be€GL(2,C):det B=1}

and consider
exp:sl(2,C) — SL(2,C).

The map is well-defined due to Theorem 1.23. Each matrix

B:= (Ol _bl) €SL(2,C), beC*,

has no inverse image.
2. Real case: Set
GL"(2,R):={B € GL(2,R) : det B> 0}

and consider
exp: gl(2,R) — GL"(2,R).

Each matrix
B (01 _bl> € GL*(2,R), b € R",
has no inverse image.

Proof. 1. Assume the existence of a matrix A € s/(2,C) with

expA=B.
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The two complex eigenvalues
Aiy i=1,2,

of A satisfy
O0=trA=A1+ 1.

e The case 4| = A, i.e. 0 = A} = A, is excluded, because then exp A has the
eigenvalue ¢ = 1. But B has the only eigenvalue —1.

* Hence A # 4. Then A is diagonalizable: A matrix S € GL(2,C) exists with

(M0
S-A-S (o )

We obtain

—1 —1 -1 e}” 0
S:B-S =S-(expA)-S  =exp(S-A-§ )= 0 ot
e
Hence B is diagonalizable. Then its minimal polynomial is

pmin(T) =T +1 € C[T],

but
Pmin(B) # 0 because b # 0.

We obtain a contradiction.

2. Assume the existence of a matrix A € M(2 x 2,R) with
expA=B.
The real matrix A has two complex eigenvalues
Aiy i=1,2,

which are conjugate to each other.

¢ If both eigenvalues are real, then
)Ll = 7Lz =A1eR

and exp A has the eigenvalue ¢* > 0, while B has the single eigenvalue —1, a
contradiction.

e If A; is not real, then o
A=A #A.
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Hence A has two distinct eigenvalues. Therefore A is diagonalizable. Hence
also B is diagonalizable, a contradiction according to the end of part 1.
O

For later application in Proposition 2.13 we provide the following useful formula:

Proposition 1.31 (Lie-Trotter product formula). For each pair of matrices A,B € M(n x n,C)
the exponential map satisfies

, A B\
exp(A+B) = ‘}grelc exp Jrexp |

In the proof we will use the standard notation: A function f belongs to the class

o(1/v¥)

C
iff there exists a positive constant C such that | f| remains bounded by E

for limy_,.. Note
feo(1/v)) = v-feo(1)v),
in particular

limv-f=0

V—oo

Proof. We conside the Taylor series
A A
—=1+-+0(1/v?
exp " + v—i— (1/v7)

B B
—=14+—+0(1/v?
expv +v+ (/ )

and
I 1+A+B+01/%
—exp—=1+—+— ve).
expvexpv >t (

For large v € N we have

Therefore the logarithm is well-defined:

<log 2.

A B A B A B
log (exp 5P v> =log <1+v+v+0(1/v2)> = ;+;+0(1/v2).

* Then on one hand, applying exp to the last equality



44 1 Matrix functions
A B A B
! —exp— | = —+—to01/vY|.
(expoog><expvexp v) exp<v+v+ (1/ >>

*  While on the other hand, Proposition 1.27 implies

( l0g) A B A B
o —- — | = —- —.

expolog) | exp —-exp = exp —-exp —
We get

A B A B

T exp o= —+—+0(1/v?

exp —-exp - exp(v+v+ (1/ ))

and

<exp13-exp€> :<exp<é+€+0(l/v2)>> =exp(A+B+0(1/v)).

Here the last equality follows by expanding the exponential on both sides up to
linear terms, and expanding on the left-hand side the v-th power. Now for lim the
V—oo

continuity of the exponential proves the claim

V—roo

_ A B\

lim | exp —-exp — | =exp(A+B)
v v

O

How does the functional equation of the exponential map from the commutative
case of Theorem 1.23 generalize to the non-commutative case?

Example 1.32 (Counter example against the expected functional equation). We con-
sider two strictly upper triangular matrices of the form

0poO 000
P=1000),0=(00g| €n(3,K), p,g#0.
000 000
Note that
00 pg
P.o]= (000 | #0
000
We compute
o 1 p0O
. _ .pv_ _
exp(P).—Zv' PP=14+P={010
v=0 001
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© ] 100
exp(Q)i=Y ~0"=1+0=101g
v=0"" 001

Note: Forall v > 2
P'=0"=0

Hence we do not need to care about questions of convergence.

1) Failure of the expected functional equation: To test the functional equation we
compute on one hand

1 p0 100 1 ppg
exP(P)'exp(Q): 010 01g]=(01gq |=1+P+0+PQ.
001 001 001
On the other hand we compute
exp(P+ Q).

For the computation of matrix products it is often helpful to introduce the
basis (Ej;)1<i, j<n of the K-vector space M(n x n,KK) with the matrices

E,’j EM(an,K)

having value = 1 at the position with index ij and value = 0 at all other positions.
Then
Eij-Egm = Ojk - Eim

We have
P=p-Epand Q=q Ex3
Then
(P+Q)* = (pE12 +qE2) - (PE12 + qE23) = pqE13 = PQ
and

(P+Q)" =0, v>3,
which implies
exp(P+Q)=1+P+0+(1/2)-(P+Q)*=14+P+Q+(1/2)-PQ.

As a consequence
exp(P+ Q) # exp(P) - exp(Q)
and the expected functional equation is not satisfied.

ii) Correction term: Fortunately, the defect can be fixed by introducing a correcting
term C. Because the expected functional equation holds for arbitrary commuting
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matrices according to Theorem 1.23, the most simple ansatz for the correction term
I
C := o - [P,Q] with suitable ot € K

and the commutator
[P,Q] := PQ — QP € n(3,K).

With
PQ=pq-Eiz3and QP = q-Ey;-E;3=0

we obtain

PQ=[P,Q] -C, [P,Ql=pq-Ei3, andC=o-pg-E;3=0-[P,Q]

B 1
o
(P+0+C)? = (pEia+qExn+ (- pq)-Er3) - (pE1a+qEx + (- pq) - E13) = pq-En3

and
(P+Q+C)" =0, v>3.

Hence
exp(P+Q+C) = exp(P) - exp(Q)

N

1+ (P+Q+C)+(1/2)(P+0+C)* = 1+P+Q+C-(l+%) = ]1+P—|—Q+g
—
o=1/2.
The correction term is
!

proportional to the commutator:

exp <P+Q+ > 1P Q]) = exp(P)-exp(©)

iii) Generalization: More general one can show: The exponential
exp :n(3,K) — GL(3,K).

satisfies the functional equation in the generalized form: For A, B € n(3 x 3,K)

exp(A) -exp(B) = exp <A +B+ % [A,B]>

The exponential map of matrices
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exp : M(nxn,K) — GL(n,K)

is a well-defined map according to Corollary 1.24. But the map is not a group
morphism
exp: (M(nxn,K),+)— (GL(n,K),-)

as the counter example from Example 1.32, part i) shows. Instead, the functional
equation of the exponential map depends in a certain way on the commutator of the
matrices in question. The correct statement of the functional equation in the case of
two arbitrary matrices is the special case of a deep theorem from general Lie group
theory, see also [47]:

Remark 1.33 (Baker-Campbell-Hausdorff formula for matrices). There exists a
sequence of polynomials in two matrix-valued indeterminates X and Y

Hv(X7y)veN*

with values in M(n x n,K) and homogeneous with respect to commutators of
degree v, and an open zero-neighbourhood

U C M(nxn,K),

which together satisfy the following properties:

e The Hausdorff polynomials of low order are

=

=X+Y

= (1/2)[x,Y]

= (1/12)[X, Y], Y] = [[X, Y], X])
=—(1/24)[v, [X, [X, Y]]

l(va
Hy(X,Y
X,y
X,y

T

3
Hy

)

)
)
)
)

* The Baker-Campbell-Hausdorff series

H(X.Y):= i Hy(X,Y)

v=1

is absolute and compact convergent in U x U. It satisfies for all X,Y € U the
functional equation
expX-expY =exp(H(X,Y))






Chapter 2
Fundamentals of Lie algebra theory

In this chapter the base field is either K =R or K = C.

2.1 Definitions and first examples

In general, in the associative algebra M(n x n,K) the product of two matrices is not
commutative:
AB+#BA, A,B € M(nxn,K).

The commutator
[A,B] := AB—BA € M(n x n,K)

measures the degree of non-commutativity. The commutator depends K-bilinearly
on the matrices A and B. In addition, it satisfies the following rules:

1. Permutation of two matrices: [A,B] + [B,A] = 0.
2. Cyclic permutation of three matrices: [A,[B,C]] + [B,[C,A]] +[C,[A,B]] = 0.
These properties make
gl(n,K) = (M(nxn,K),[—,—])
the prototype of a Lie algebra.
Definition 2.1 (Lie algebra).
1. A K-Lie algebra is a K-vector space L together with a K-bilinear map

[—,—]:LxL— L (Lie bracket)

such that

* [x,x]=0forallx € Land

49
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o [x, 2]+ b, 2] + [z, [x,y]] = 0 for all x,y,z € L (Jacobi identity).

2. A morphism of K-Lie algebras is a K-linear map f : Ly — L, between two K-Lie
algebras satisfying

F(er,xa]) = [(f(x1), f(x2))], x1,%2 € Ly.

Note that the Lie bracket satisfies
[x,y] + [y,x] =0 forall x,y € L.
For the proof one computes [x+y,x+y] € L.

Asa consequence

eyl = =D,

We have just seen that the Lie algebra gl/(n,KK) derives from the associative al-
gebra M (n x n,K). Actually, any finite dimensional K-Lie algebra derives from a
matrix algebra. But the theory becomes more transparent when considering Lie al-
gebras and their morphisms as abstract mathematical objects.

A Lie algebra is a vector space with the Lie bracket as additional operator. This
additional algebraic structure resembles the multiplication within a group or a ring.
The Lie algebra concept of the commutator is taken from group theory while the
concept of an ideal comes from ring theory.

Definition 2.2 (Basic algebraic concepts). Consider a K-Lie algebra L. One de-
fines:

* A vector subspace M C L is a Lie subalgebra of L iff
[M,M] C M,

i.e. iff M is closed with respect to the Lie bracket of L.

» A vector subspace I C L is an ideal of L iff
L] C 1,

i.e. if I is L-invariant.

* The normalizer of a subalgebra M C L is the subalgebra
Ny(M):={xeL:[x,M]CM}CL,

i.e. the largest subalgebra of L which includes M as an ideal.
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* The center of L is the ideal
Z(L):={x€eL:[x,L]=0}.

The center of L collects those elements from L which commute with all elements
from L.

» The centralizer C1(Y) of a subset Y C L is the largest subalgebra of L which
commutes with all elements from Y

CL(Y):={xeL:[xY]=0}

e The derived algebra or commutator algebra DL of L is the subalgebra generated
by all commutators

DL :=[L,L] := spang{[x,y] : x,y € L}.
Iff [L,L] = 0 then L is named Abelian because the condition is equivalent to

[x,¥] = [y,x] forall x,y € L.

For a morphism
fiLi— Ly

between to K-Lie algebras the kernel
ker(f) € L,

is an ideal. Apparently, for each Lie algebra L the derived algebra [L,L] C L is an
ideal.

If one compares these basic concepts from Lie algebra theory with concepts from
group theory then subalgebras correspond to subgroups, while ideals are an ana-
logue to normal subgroups.

Definition 2.3 (Specific matrix Lie algebras).

1. For a finite dimensional K-vector space V we define the K-Lie algebra
gl(V) := (End(V),[—, ~])

with

[f,8]:=fog—golf.
In particular

gl(n,K) := gl(K").
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Lie subalgebras of the Lie algebra gl(n,K) are named matrix Lie algebras or
embedded Lie algebras.

2. The subalgebra of gl(n,K) of strictly upper triangular matrices is
n(n,K) :={A = (a;j) € gl(n,K) : q;; =0if i > j}.
Each strictly upper triangular matrix has the form
0 *
0 . 0
3. The subalgebra of gl(n,KK) of upper triangular matrices is
t(n,K) := {A = (a;j) € gl(n,K) : a;; =0if i > j}.
Each upper triangular matrix has the form
* *
0 ‘ *
4. The subalgebra of gl (n,K) of diagonal matrices is
3(n,K) :={A = (a;j) € gl(n,K) : a;; =01if i # j}.

Each diagonal matrix has the form

Moreover for n > 2
n(n,K) ¢ (n,K) C gl(n,K)

and
(n,K) C t(n,K).

We will see in Chapter 3.1 and Chapter 3.2 that n(n,K) and t(n, K) are the prototype
of the important classes of respectively nilpotent and solvable Lie algebras.

The fundamental tool for studying Lie algebras are their representations. To rep-
resent an abstract Lie algebra L means to define a map from L to a matrix Lie al-
gebra. The concept of a representation has also many applications in physics. Some
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examples we will see in later chapters. The scope of the concept of a representation
is not restricted to Lie algebra theory.

Definition 2.4 (Representation of a Lie algebra). Consider a K-Lie algebra L.
1. A representation of L on a finite dimensional K-vector space V is a morphism of

Lie algebras

p:L—gl(V).
In particular,
p([x.y]) = lp(x),p )] =p)op(y) —p(y)op(x).
The vector space V is named an L-module with respect to the multiplication
LxV =V, (x,v)—xv:=p(x)(v).

It satisfies

peylv=p([xy))(v) = [p(x),pI(V) = pX) (P ()(V)) =P ) (P (x)(V)) =

x.(y.v) = y.(x.v).

The representation p is faithful iff p is injective, i.e. p embeds L into a Lie algebra
of matrices.

2. A linear map
fV—-w

between two L-modules is a morphism of L-modules if forallx € L, ve V:
Fxv) =x.f(v).
3. The adjoint representation of L is the map
ad:L— gl(L), x— ad x,

defined as
adx:L— L,y (ad x)(y) := [x,y].

Note. One often speaks about an L-module V by surpressing the name of the
defining map of the representation

p:L—glV).
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Lemma 2.5 (Adjoint representation of a Lie algebra). The adjoint representation
is a representation, i.e. a morphism of Lie algebras.

Proof. For a Lie algebra L we have to show for all x,y € L
ad [x,y] = [ad x,ad y| : L — L.
Consider z € L. On one hand,
ad[x,y|(z) = [[x,y],z] = —[[v.2],x] = [[z,x], ] (Jacobi identity)
On the other hand
lad x,ad y](2) = (ad x oad y—ad y oad x)(z) = [x, [y.2]] — [y, [v, 2]

Both results are equal because the Lie bracket is antisymmetric. 0O

The adjoint representation maps any abstract Lie algebra to a matrix algebra.
But in general the adjoint representation is not injective. The kernel of the adjoint
representation of a Lie algebra L is the center Z(L). While the adjoint representation
is not always faithful, it is theorem of Ado, [4, Chap. I, §7.3, Theor. 3], that each
Lie algebra has a faithful representation, i.e. each Lie algebra is a matrix algebra.

The characteristic feature of a Lie algebra L is the Lie bracket. It refines the
underlying vector space of L. In order to investigate the Lie bracket of L one studies
how each given element x € L acts on L as the endomorphism ad x.

This procedure is similar to the study of number fields Q C K C C. The multi-
plication on K refines the underlying Q-vector space structure. And one studies the
multiplication by considering the Q-endomorphisms which result from the multipli-
cation by all elements x € K. Norm and trace of these endomorphisms are important
concepts in algebraic number theory.

For all x € L the element ad x is not only an endomorphism of L but also a
derivation of L: With respect to the Lie bracket it satisfies a rule similar to the
Leibniz rule for the derivation of the product of two functions.

Definition 2.6 (Derivation of a Lie algebra). Let L be a Lie algebra. A derivation
of L is an endomorphism
D:L—L

which satisfies the product rule

D([y,z]) = [D(y),2] + [», D(2)].
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Lemma 2.7 (Adjoint representation and derivation). Consider a Lie algebra L.
For every x € L the endomorphism

ad x:L— L

is a derivation of L.

Proof. Set D :=ad x € End(L). The Jacobi identity implies
D([y2]) := (ad x)([y:2]) = b, . 2l] = =D, [eod]] = [z [y )] = [ b 2l - [y 2] =

= [y, (ad x)(2)] + [(ad x)(y),2] = [y, D(2)] + [D(),2]-

Derivations arising from the adjoint representation are named inner derivations,
all other derivations are outer derivations.

Lemma 2.8 (Algebra of derivations). Let L be a Lie algebra. The set of all deriva-
tions of L
Der(L) :={D € End(L) : D derivation}

is a subalgebra Der(L) C gl(L).

Proof. Apparently Der(L) C End(L) is a subspace. In order to show that Der(L) is
even a subalgebra, we have to prove: If Dy,D, € Der(L) then [Dy,D;] € Der(L).
[D1,D]([x,y]) = (D1 o D2)([x,y]) — (D20 D1)([x,y]) =

= Di([D2(x),y] + [x, D2(y)]) = D2([D1(x),y] + [x, D1 ()]) =
= [D1(D2(x)),y] + [D2(x), D1 (y)] + [D1(x), D2(y)] + [x, D1 (D2 (y)]
=[D2(D1(x)),y] = [D1(x), D2(y)] = [D2(x), D1 (y)] = [x, D2(D1 (y)] =
= [[D1, D2](x),y] + [x, [D1, D2] ()]

Hence the commutator of two derivations satisfies the product rule, i.e. is again a
derivation. 0O

2.2 Lie algebras of the classical groups

An important class of Lie algebras are the Lie algebras attached to the classical
groups. The classical groups are groups of matrices, and the corresponding Lie al-
gebras are the Lie algebras of the infinitesimal generators of their 1-parameter sub-
groups.
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Definition 2.9 (1-parameter subgroup and infinitesimal generator). For a given
matrix X € M(n x n,K) the differentiable group morphism

fX : (Ra+) — (GL(an)7 ')a = €Xp(t'X)7
with derivation

<jtexp(t -x)) (0)=x

according to Proposition 1.22 is named the 1-parameter subgroup of GL(n,K) with
infinitesimal generator X.

Definition 2.10 (Matrix group and 1-parameter subgroups).

1. A matrix group G is a closed subgroup
G C GL(n,K).

Here GL(n,K) C K is equipped with the subspace topology of the Euclidean
space.

2. Consider a matrix group G. For a matrix X € M (n x n,KK) the group morphism
fx :R— GL(n,K), t — exp(t-X),
is a 1-parameter subgroup of G iff for allt € R

fx(l) eaG.

Note that the definition of 1-parameter subgroups refers to real parameters ¢.
A 1-parameter subgroup of G with infinitesimal generator X is a differentiable
curve in G which passes through the unit element e € G with tangent vector X.

Remark 2.11 (Matrix group and 1-parameter subgroups).

1. The term closed subgroup of G C GL(n,K) in Definition 2.10 refers to the
topology of G which is induced as a subset of GL(n,K). A subgroup

G C GL(n,K)

is closed iff for any sequence (Ay)yen of matrices Ay € G,V € N, which con-
verges in GL(n,K), also the limit belongs to G, i.e.

A= limA, € GL(n,K) = A €G.

V—poo
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2. For a real Lie group G each closed subgroup H C G has a unique real Lie
group structure such that the injection H — G becomes an embedding of real
Lie groups. Therefore matrix groups according to Definition 2.10 are Lie groups.

Note that closed subgroups of a complex Lie group are not necessarily complex
Lie groups; a simple counter-example are the real Lie groups

SU(n) C GL(n,C).

3. The general definition of a 1-parameter subgroup of an arbitrary Lie group G
requires only a continuous group morphism

fR—=G.

But one can show: All continuous 1-parameter subgroups of a Lie group G have
the form

f(1) = exp(t-X)

with an element X € Lie G, the Lie algebra of G, and with respect to the expo-
nential map
exp:Lie G—= G.

In particular, every continuous 1-parameter subgroup depends on the parameter ¢
in a differentiable - even analytic - manner.

Notation 2.12 (Restricting scalars from C to R).

For a complex vector space V there is a method of restricting scalars: The real
vector space Vi has the same elements as V, but the elements are multiplied only
by scalars from R.

An analogous notation applies to a complex Lie algebra L. By restricting scalars
from C to R the elements of L form a real Lie algebra which is denoted Lg. The Lie
algebra Ly has the same elements as L, but they are multiplied only by scalars
from R.

Be aware that the notation is not standard in the literature.

The infinitesimal generators of all 1-parameter subgroups of a matrix group form
areal Lie algebra. Recall Notation 2.12.
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Proposition 2.13 (Infinitesimal generators of a matrix group). For a matrix

group
G C GL(n,C)

the set of infinitesimal generators of all 1-parameter subgroups of G
L:={X eM(nxn,C): fx(t) € G forallt € R}

with the functions fx from Definition 2.10, is a real Lie-subalgebra of gl(n,C)g.

Proof. 1) Scalar multiplication: For X € L and s € R also
s-XelL
because for all € R
exp(t-(sX))=exp((t-5)X) €G.

ii) Additivity: If X, Y € L then Proposition 1.31 implies for all € R

v
exp(t(X+Y)) = lim <exp g~exp tY) .
V—boo \% 1%
The closedness of G C GL(n,C) implies
exp(t(X+7Y)) € G.
iii) Lie bracket: First, for all X € L and all A € G also the conjugate
AXA'eL:

Proposition 1.6 implies for allt € R

exp(t(AXA™")) = exp(A(tX)A™" ) = A-exp(tX)-A"' € G.
Secondly, consider for arbitrary fixed X, Y € L the differentiable map

i R=>MnxnC), f(t) :=exp(tX) Y -exp(—tX).

Due to the first step
f(@t) € Lforallt € R.

The chain rule and the product rule from Proposition 1.8 imply:
d d X)-Y tX
511 = (exp(tX) Y - exp(—1X)) =

=X-exp(tX) Y -exp(—tX)—exp(tX)-Y -X -exp(—tX)

Hence
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df B B
E(O) =XY-YX=[X,Y].
On the other hand
4 (o) — g TS
dt 1—=0 t

Because each fraction belongs to L, which is a subspace of the finite dimensional
vector space M (n x n,C) due to part i) and ii), and is therefore closed. In the limit
we get

X.¥]=—-0) €L

According to Proposition 2.13 the infinitesimal generators of all 1-parameter sub-
groups of a matrix group form a Lie algebra.

Definition 2.14 (Lie algebra of a matrix group). Consider a matrix group G.
The Lie algebra of all infinitesimal generators of 1-parameter subgroups of G is
named Lie G, the Lie algebra of G.

If for each X € Lie G also i- X € Lie G then G is named a complex matrix group.

Not each matrix group G C GL(n,C) which contains non-real, complex matrices is
a complex matrix group. Counter examples are the unitary groups U (m). Whether
a matrix group is a complex matrix group depends on the possibility to multiply the
elements of its Lie algebra by the imaginary unit i € C. It does not depend on the
question whether the entries of the matrices are complex numbers.

Proposition 2.15 (The Lie algebras of the classical groups). Consider a parame-
ter r € N and a number m = m(r) € N. We use the shorthand
G:= (GL(m7K)7 )

for the matrix group and
L:= (gl(m7K)a [_a _])

for the Lie algebra Lie G. Then the classical groups and their Lie algebras are:

i) Series A, r > 1, m :=r—+ 1. The special linear group
SL(m,K):={geG:detg=1}CG
has the K-Lie algebra

siimK):={XeL:tr X =0}
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of traceless matrices .
ii) Series B,, r > 2, m := 2r+ 1: The special orthogonal group
SOm,K):={gcG:g-g' =1,detg=1}
has the K-Lie algebra
somK):={X€L:X+X" =0}
of skew-symmetric matrices .
iii) Series Cy, r > 3, m = 2r: The symplectic group
Sp(m,K):={gcG:g' -6-g=0}
with

o (_O]l ]é) o= <(]i _01) = —o0, 1 € GL(r,K) unit matrix,

has the K-Lie algebra
sp(mK):={XeL:X"-c+0-X=0},
named the symplectic algebra.

Note that any g € Sp(m,K) has det g = 1, see [38]. Moreover, each X € sp(m,K)
has tr X =0, see [24, Chap. 1.2].

iv) Series D,, r > 4, m = 2r: The special orthogonal group
SOmK):={gcG:g-g" =1,det g=1}

has the K-Lie algebra

somK):={X €L:X+X" =0}
of skew-symmetric matrices .
v) Special unitary group: For each m € N the special unitary group
SU(m):={g € GL(m,C):g-g"* =1, det g=1}, g* :==g' Hermitian conjugate,
has the real Lie algebra

sufm):={X eL: X+X"=0,ir X =0}

of traceless skew-Hermitian matrices .
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Proof (of Proposition 2.15).

Proposition 2.13 ensures that the infinitesimal generators of all these matrix groups
form a Lie algebra. Hence we have to show

» Each infinitesimal generator of a 1-parameter subgroup of the matrix group in
question belongs to the defined “small-letter”-set.

* Each element of the defined “small-letter” set generates a 1-parameter subgroup
of the matrix group in question.

i) Consider an infinitesimal generator X € gl(m,K) of a 1-parameter subgroup
d
of SL(m,K). Taking the derivative 7 at ¢ = 0 on both sides of the equation
1l =det(exp(t-X)) =exp(tr (t-X))

gives
0=(trX) -exp(tr (t-X)).

Hence tr X = 0 because the exponential function has no zeros.

In the opposite direction: If tr X = 0 then
det X =" (X) = o (1r X) — g0 — 1,
ii) and iv) Taking the derivative of
1=exp(t-X) exp(t-X)"
and using the product rule gives
0=X-exp(t-X)-exp(t-X")+exp(t-X)- X -exp(t-X").

Hence fort = 0:

X+Xx'=o0.
In the opposite direction:
X+X'=0
implies
exp(tX)-exp(tX ) =exp(t(X +X ")) =€ =1
because

[X,X']=0 dueto X' = —X.

And tr X = 0 implies
det(exp(tX)) =" X =1.

iii) Taking the derivative of
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c=exp(t-X)'-c-exp(t-X)
gives
0=X"-exp(t-X")-c-exp(t-X)+exp(t-X")-o-X-exp(t-X).

Hence fort = 0:
0=X"-0+0-X.

In the opposite direction:
0=X"+0-X-0"'

implies
(exp(tX))' -c-exp(tX)- o1 =1

because
X", o-X-ol=x",-x"]=0

v) Taking the derivative of
I=exp(t-X) exp(t-X)*
and using the product rule gives
0=X-exp(t-X)-exp(t-X*)+exp(t-X)-X*-exp(t-X*).

Hence fort =0

X+X*=0.

Forallt € R
1 =det exp(tX) =e""* =0
implies
t-tr X € Z2mi.
Therefore
tr X =0.

In the opposite direction:

X+X"=0
implies

[XaX*] = _[XaX] =0

and

exp(tX) - (exp(tX))* = exp(tX) - exp(tX™) = exp(t(X +X¥)) = 1.

And
trX=0 = det(expX)=¢"X =1.
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Note that su(m) is not a complex Lie algebra:

ia b

X €su(2) <:)X:( - .),aER,bEC
—b —ia

If X € su(2) and X # 0 then iX ¢ su(2). Therefore SU(2) and more general the
groups SU(n) are examples of real matrix groups which are not complex matrix
groups.

* Elements of the complex matrix groups of the series B,, D, preserve the K-bilinear
form on K™

m
(zw) =Y zj-wj.
=1

* Elements of the complex matrix groups of the series C, preserve the K-bilinear
form on K™

r
(x,y) = in “Yri — Xr+ti Vi
i=1

* Elements of the special unitary group SU (m) preserve the sesquilinear (Hermi-
tian) form on C™”

m
(zw) =) 2;-W;.
=1

The sesquilinear form (z,w) is C-linear with respect to the first component
and C-antilinear with respect to the second component.

Remark 2.16 (Classical Lie groups of low dimension).

The reason for introducing the different series in Proposition 2.15 and for
distinguishing the two series B, and D, of special orthogonal groups will become
clear later in Chapter 6.

The lower bound for the parameter r € N has been choosen to avoid duplicates or
product decompositions. Otherwise we would have for the base field K = C and
the corresponding Lie algebras, see [40, Chap. IL,7]:

A1 =B =Cy, By =C,, Dy not simple, Dy =A| XA, D3 =A3

When the term classical Lie group is taken in a narrow sense, then it applies only
to the complex matrix groups of the A — D-series.
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Proposition 2.17 (Exponential map of SU(n)). For each n € N the exponential
map

su(n) — SU(n)
is surjective.
For the proof cf. [12, Kor. 6.4.9].

Proof. i) Assume A € U(n): Each unitary matrix is diagonalizable. Hence there
exists an invertible matrix S € U (n) with

S-A-S* =diag(A, ..., A)

andfor j=1,...,n

Al =1,
hence
A; = €% with 6 € [0,27]
Set
B:=S"-diag(i6y,...,i6,)-S € u(n)
Then

exp(B) = S* -diag(e'?,...,e"%) .S =A
ii) Assume A € SU (n): The eigenvalues
A= %, j=1,..n
satisfy

n
Y i6;=k-27i, ke Z
j=1

Replace 6, by

Then
0,—6,=—k-2n
which implies
o0 — 0
Set
B :=S"-diag(i6,,...,i0,_1,i0,) - S € su(n)
Then

expB =expB=A
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2.3 Topology of the classical groups

The present sections investigates topological properties of some classical matrix
groups. The study of matrix groups often reduces to the study of simply connected
matrix groups and covering maps. The simply connected matrix groups can be stud-
ied by their Lie algebras. The study of covering projections is often the starting point
for a course on algebraic topology. The following proofs about the matrix groups

SU(2), SO(3,R), SL(2,C), O(3,1),

the group O(3, 1) beeing the Lorentz group, are special cases from general Lie group
theory.

Proposition 2.18 (Topology of SO(3,R), SU(2), SL(2,C)).
1. The matrix group SO(3,R) is connected, the matrix group O(3,R) has two con-

nected components.

2. The matrix group SU(2) - as a differentiable manifold - is diffeomorphic to
the 3-sphere:
SUR)~ 8 :={xeR*: x| =1}

In particular, SU (2) is simply connected.

3. The matrix group SL(2,C) - as a differentiable manifold - is diffeomorphic to the
product

(C*\{0}) x C,
and the latter is homeomorphic to
S* xR3.
In particular, SL(2,C) is simply connected.

Proof. 1. Matrix group SO(3,R): We show that the matrix group SO(3,R) is path-
connected: For a given rotation matrix A we choose an orthonormal basis of R>
with the rotation axis of A as third basis element. Then we may assume

cosd sind 0
A= | —sind cosd 0 | € SO(3,R),d € [0,2x].
0 0 1

The path
cos (t-8) sin (t-90)

0
v:[0,1] = SO3,R),t — [ —sin (t-6) cos (t-6) 0 | € SO(3,R)
0 0 1
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is a continuous map and connects within SO(3,R) the start y(0) = 1 the unit
matrix with y(1) = A.

Each matrix
AcOB,R):={AcGL(3,R): A-AT =1}
has

det A ==1.

Hence O(3,R) has two connected components: SO(3,R), the connected compo-
nent of the identity, and the residue class

10 0
SO3,R)-[01 0
00 —1

As a consequence, both Lie groups SO(3,R) and O(3,R) have the same Lie al-
gebra
s0(3,R) = Lie SO(3,R) = Lie O(3,R).

. Matrix group SU(2): Consider a matrix

Then o
Al = < W Z) and A* = (a C>
—Cc a w
Hence
ATl =47
implies

SUQ2):={A€GL(2,C):A-A*=1,det A=1} =

{(W Z) 1z, we C, |z|2+w|2:1}:
—Fw

~ 8 cC?~R

is diffeomorphic to the 3-dimensional unit sphere. The unit sphere S is compact,
connected and simply connected.

Simply connected means the vanishing of the fundamental group
m($?,%) =0

or equivalently: Any closed path in S3 is contractible in S to one point. Intu-
itively, simple connectedness means that S3 has no “holes”.
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The result 7; (S3,%) = 0 is a particular case of the Seifert-van Kampen theorem,
see [19, Theor. 1.20], [44, Kap. 5.3]: One decomposes $3 as the union of its north-
ern and southern hemispheres, which are homeomorphic to the 3-dimensional
closed solid ball B*> and intersect each other in a space homeomorphic to S°.
Then 7, (S3, %) is the quotient of a free product:

T (S3, %) = my (B3, %) (82,6 T (B}, %) =0

-
because 7y (B3, %) = 0.
3. Matrix group SL(2,C): Set B := C?\ {0}.

i) First, projecting a matrix A € SL(2,C) onto its last column defines the differ-

entiable map
) _faz Z
p:SL(2,C) =B, A= (cw) — <w>

ii) Secondly, one expands p to a map
f:SL(2,C) - BxC
To define f one considers the open covering % = (U}, U,) of the base B with
Uy :={(z,w) €B:2#£0}, Uy :={(z,w) €B:w#0}
Then one defines
f:SL(2,C) - BxC
by distinction of cases

A <a z> . {(p(A),(a—w-r‘z)-z_l) if p(A) e Uy
c+7z-

cw 2wl if p(A) € Uy
with
P 1= [+ |wp.
If p(A) € Uy NU, then

(a—w-r )z =(c+z-r2)-wl,

after multiplying by z-w and expanding both sides, employing the determinant
formula
aw—zc=1

as well as the definition of 7. Hence the map f is well-defined.
iii) The map f is a differentiable isomorphism satisfying pr; o f = p: The inverse

g:BxC— SL(2,C)
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is obtained as

g/(Uy x C) : U x C — SL(2,C), <(fv> ,s) — (? fv>

aw—1

with

and c:=

a.=s-z+

Wl =l

Z

A= <“ Z) € SL(2,C).

One checks

cw

A similar calculation determines the restriction
8l(t2xC)

There results a diffeomorphism

SL(2,C)~BxC
iv) Concerning the homeomorphy type of the base B one has

B=C*\ {0} ~ 5% x]0,00[~ $* x R.

Because S° is simply connected according to part 1), also B and eventually

SL(2,C)~BxC

are simply connected. O

The groups from Proposition 2.18 serve as an example to demonstrate the method
of investigation. For a systematic study see [23, Chap. 17] and [21, Chap. 10, §2].
For the classical groups of arbitrary dimensions one has the following topological
results:

Remark 2.19 (More topological results about the classical groups).

1. General linear group, m > 1:

The complex group GL(m,C) is connected due to Theorem 1.29 about the
surjecitivity of the exponential map. Moreover,

m (GL(n,C),*) = Z.

The real group GL(m,RR) has two connected components. The component of the
identity is not simply connected for m > 2.
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2. Series Ap,r > 1l,m=r+1:

For K € {R,C} the group SL(m,K) is connected: For the proof one considers
the homeomorphism

GL(m,K) = SL(m,K) x K*, X + (X', det X),

with X’ obtained by diving the first column of X by det X. The projection onto
the first factor
pr1 : GL(m,K) — SL(m,K)

maps the connected GL(m,K) onto SL(m,K), which therefore is connected too.
The groups SL(m,C) are simply connected. One has

Z m=2

m (SL(m,R), %) = {Z/Q >3

3. Series B,,r > 2,m = 2r, and series D,,r > 4,m=2r+1:
For K € {R,C} the group SO(m,K) is connected. The groups SO(m,R) are
compact. One has

71 (SO(m, R), %) — {22 n’";i

For m = 2 the universal covering projection is

R — SO(2,R), t — <

cost sint
—sint cost)’

with
SO(2,R) ~R/Z.

For m > 3 the universal covering of SO(m,R) is Spin(m,R),
see [16, Chap. IV, Sect. V.4]. One has

Spin(3,R) =SU(2),
cf. Example 2.24. Moreover one has the isomorphy of groups
Spin(4,R) ~ SU(2) x SU(2).

4. Series C, : r > 3,m =2r:
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For K € {R,C} the symplectic groups Sp(m,K) are connected. The groups
Sp(m,C)) are simply connected, the real symplectic groups satisfy

i (Sp(m,R),*) =Z.

5. Special unitary group, m > 1:

The group SU (m) is compact, connected and simply connected.

No complex group from this list is compact, because each complex, connected and
compact Lie group is Abelian, see [23, Prop. 15.3.7].

Several relations exists between the classical groups. These relations can be made
explicit by differentiable group morphisms. Hence it is advantageous not to study
each group in isolation. Instead, one should focus on the relations between different
classical groups and study those properties, which the groups have in common. For
two examples in low dimension see Example 2.24 and Proposition 2.27.

We now make some remarks about the relation between real and complex Lie
algebras. Recall Notation 2.12 for restricting scalars from C to R.
Complexification is a method of scalar extension.

Definition 2.20 (Complexification of a real Lie algebra, real form of a complex
Lie algebra).

1. Consider a real Lie algebra M. The complexification of M is the complex Lie
algebra
M@ C

with Lie bracket
[mi ®@z1,my @22] := [my,ma2] @ (21 -22), mi,ma €M, 21,20 € C.

2. A real form of a complex Lie algebra L is a real subalgebra M C Ly such that the
complex linear map from the complexification

MRRC—>L mR1—m mQi— i-m,

is an isomorphism of complex Lie algebras.
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Note that for a complex vector space V restricting and extending scalars are not
inverse operations: The complex vector space

(Vk) ®@rC

has complex dimension 2 - dimc V.

Remark 2.21 (Non-isomorphic real forms).

1. The complex Lie algebra s/(2,C) has the non-isomorphic real forms
sl(2,R) and su(2).

The proof goes along the following steps:

i) Real forms: Apparently, sl(2,R) is a real form of s/(2,C).

Concerning su(2), the C-linear map
su(2)@rC —s1(2,C), AQ1— A, A®QIi— iA,
has the inverse
s1(2,C) = su(2)QrC, Z=X+i¥ — (—iX)Qi+iY @1,
with the Hermitian matrices

zZ+ZF z-z¢ .
X = 5 “real” part of Z) and Y := 5 (“imaginary” part of Z),
i

and therefore
(—iX),iY € su(2)

Hence both real Lie algebras s/(2,R) and su(2) are real forms of the complex
Lie algebra sl(2,C).

ii) Existence of a 2-dimensional subalgebra of sl(2,R): The real Lie
algebra s/(2,R) contains the 2-dimensional subspace

10 01
spang < A := (O 1) , B:= (O O) >,

which is a Lie subalgebra because

A, B] = 2B.
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iil) Isomorphy su(2) ~ so(3,R): Cf. [18, Example 3.27]. Using the traceless
Hermitian Pauli matrices

oo (O1) 4 (00 4. (10
=810/ 7 \io )" \o-1

we introduce the basis of the real Lie algebra su(2) of skew-Hermitian traceless
matrices

i i —1
Ei==-03 E:==-01, B3:=—0O
( 1 5 03 B2 5 01 B3 5 2)
The basis elements have the commutators
[E\, B3] = E3,

and all further non-zero commutators result from cyclic permutation, i.e. using
the Levi-Civita symbol €

[Ej,Er] = €ju - E;

To investigate the Lie algebra so(3,R) we consider the infinitesimal generators
of the standard 1-parameter subgroups of rotations around the coordinate axes
of R? by

00 0 001 0-10
X=(00-1],Y:=(000),Z:=1 0 0] €50(3,R).
010 —-100 000
One checks
X,Y]|=Z

with the standard behaviour for cyclic permutation. Then the R-linear map
fisu(2) = so(3,R),

defined by
fEY) =X, f(E2) =Y, f(E3):=Z,

is an isomorphism of real Lie algebras.

iv) No 2-dimensional subalgebra of so(3,R): The Lie algebra so(3,R) is
isomorphic to the Lie algebra vector product

Vect := (R?, x).
For any two linear independent vectors x1,x, € R? the product

X1 X X2 eRrR?
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is orthogonal to the plane generated by x; and x,. Hence
X| X X2 & spang < x1,xp >,

which shows that
Vect ~ 50(3,R) =~ su(2)

does not contain a 2-dimensional Lie subalgebra.

As a consequence, the two real Lie algebras s/(2,R) and su(2) are not
isomorphic.

2. Compactness versus non-compactness: The real Lie algebra su(2) is the Lie al-
gebra of the compact matrix group SU(2). The real Lie algebra s/(2,R) is the Lie
algebra of the matrix group SL(2,R) which is not compact.

3. Arbitrary dimensions: Also for general n € N the real matrix group su(n) is a
real form of the complex Lie algebra sl(n,C). And the matrix group SU (n) is
compact.

4. Complex representations of real forms: Consider a complex vector space V and
areal Lie algebra M. Each R-linear representation

p:M—gl(V)
induces by complexification the C-linear representation
PpRRC:MRrC —gl(V), mz+— z-p(m),
which renders commmutative the following diagram

Iy p

gl(V)

a
-

" p@&C

-
-

MRrC
with the canonical map
M—->MerC, m—m3z,

in the vertical direction. In particular, the representations of su(n) and s/(n,C)
as Lie algebras of complex-linear endomorphisms of a complex vector space V
correspond bijectively to each other.

Note: Using the notation 2.12 the map
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p:M—gl(V)
can be considered a morphism of real Lie algebras
M — gl(V)r

But do not mix up g/(V)g and gl(VR).

We saw in Remark 2.21 that the complex Lie algebra s/(2,C) has the real

form su(2), which is the Lie algebra of the compact real matrix group SU(2). A
similar result holds for all complex Lie algebras from the A-D series,

see [31, Chap. VI.10].

Proposition 2.22 (Compact real form). Each complex Lie algebra from Proposition 2.15
has a compact real form, i.e. a real form which is the Lie algebra of a compact real
matrix group:

1. Series A,, m = r+ 1: The real Lie algebra su(m) is a compact real form
of sl(m,C) because the matrix group SU (m) is compact.

2. Series By, m = 2r+ 1: The real Lie algebra so(m,R) is a compact real form
of so(m,C) because the matrix group SO(m,R) is compact.

3. Series C,, m = r: The real Lie algebra
sp(m):={X egl(m,H): X*+X =0},

with H the real division algebra of quaternions, is a compact real form of sp(m,C)
because the matrix group of unitary quaternions

SP(m):={X €GL(m,H): g-g" =1}
is compact.

4. Series D,, m = 2r: The real Lie algebra so(m,R) is a compact real form
of so(m,C) because the matrix group SO(m,R) is compact.

According to Example 1.30 the exponential map
exp:LieG— G

is not surjective in the general case. Compact real matrix groups G have the nice
property that their exponential map

exp:LieG— G
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is surjective, see [21, Chap. II, Prop. 6.10]. A typical example is the surjectivity of
exp : su(n) — SU(n)

for the special unitary group, see Proposition 2.17.
A further application of Lie algebra theory for the investigation of topological
properties of matrix groups is the polar decomposition. It can be used to restrict

the investigation of topological properties of certain matrix groups to the study of a
maximal compact subgroup.

Remark 2.23 (Polar decomposition and examples).

1. Polar decomposition: Consider a matrix group G C GL(n,C) which is the zero
set of polynomials in the 2 - n® real parts and imaginary parts of the entries of its
matrices (algebraic matrix group), and which is invariant with respect to Hermi-
tian conjugation. Then G has a polar decomposition: Define the subgroup

K:=GnNU(n)
and the vector space
P:={X € Lie G: X* = X} (Hermitian matrices).
The polar decomposition theorem states, see [31, Prop. 1.143], [23, Prop. 4.3.3, Prop. 16.1.9]:

The product map
KxP—G, (k,X)—~k-expX,

is a homeomorphism, hence
G =K exp(P)

Moreover, K C G is a maximal compact subgroup with Lie algebra

Lie K ={X € Lie G: X+X"* =0} (Skew-Hermitian matrices),
see [32, Lect. 2, Theor. on p. 25].
Using for the vector spaces of Hermitian matrices the notation
Herm(n,C):={XeM(nxn,C): X=X"}, Hermo(n,C) :={X € Herm(n,C) :tr X =0}
and for the symmetric matrices the notation
Symm(n,R) :={X e M(nxn,R): X =X "1}, Symmo(n,R) := {X € Herm(n,R) : tr X =0}

the prototype of polar decompositions are the polar representations
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GL(n,C) =U(n)-exp(Herm(n,C)), SL(n,C) = SU(n) - exp(Hermgy(n,C))
and
GL(n,R) = O0(n,R)-exp(Symm(n,R)), SL(n,R) =SO(n,R) -exp(Symmg(n,R)),
see [18, Theor. 2.17, Prop. 2.19].

The vector spaces of matrices in these product decomposition are connected and
simply connected. Therefore the connected components of G with polar decom-
position

G =K exp(P)

correspond bijectively to the connected components of the compact group K, and
the fundamental groups are isomorphic

m (G, *) ~ m (K, *).
. The groups O(p,q): The matrix group
0(3,1):={geGL(4,R): g" ‘Bi-g=h,}

with the block matrix of type (3,1)

10
L= (0 —1)

is an algebraic matrix group. It is isomorphic to the Lorentz group which will
be introduced in Definition 2.25 and further investigated in Remark 2.26 and
Proposition 2.27.

The group O(3,1) belongs to the class of real matrix groups
0(p,q) CGL(p+q,R), 1< p,q.

They are the isometry groups of R”™4 provided with the bilinear form of signa-
ture (p,q), defined by the block matrix of type (p,q)

10
Ipq = (0 _1> € GL(p+q,R),

namely
0(p,q) = ={g €GL(p+q,R): g Ipq-g=1p4}
with Lie algebra

Lie O(p,q) = {X €sl(p+q,R) : X" Iy g +1,4-X =0}

A maximal compact subgroup of O(p,q) is
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Ko(p.g) =0(p,q)NO(p+4,R) >~ O(p,R) x O(q,R)
The group has 4 connected components. Moreover
Popg ={X €ELie O(p,q): X =X"}
The polar decomposition is the homeomorphic product map

Ko(p.g) X Pop.g) = o(p,q), (k,X)—k-exp X.

P9

Accordingly O(p,q) has 4 connected components.

3. The groups SO(p,q): By definition
50(p,q) :={g € O(p,q) : det g =1}
A maximal compact subgroup is
Ks0(p.q) = Ko(p.q NSO(p,q) ~{(g1,82) € O(p,R) x O(q,R) : det g\ -det g =1}
The group has 2 connected components corresponding to
(det g1,det g2) = (1,1) and (det gy,det g2) = (—1,—1),

because each of the two groups O(p,R) and O(gq,R) has two connected compo-
nents, similar to O(3,R) from Proposition 2.18.

The rest of the section presents two examples from covering theory. Each example
deals with a matrix group and the corresponding simply connected matrix group
which is the universal covering.

According to Remark 2.21 the two real Lie algebras
su(2) ~so(3,R)
are isomorphic. We now show that the corresponding connected matrix groups
SU(2) and SO(3,R)
are not isomorphic: Example 2.24 constructs a 2-fold covering projection
@ :SU(2) = SO(3,R).

Due to Proposition 2.18 the group SU(2) is simply connected. The existence of
the 2-fold covering projection & implies that SO(3,R) is not simply connected, but



78 2 Fundamentals of Lie algebra theory
1 (SO, R, %) = Zs.

In order to obtain the morphism @ we have to find out first: How does a unitary
matrix U € SU(2) act on the 3-dimensional real space R3?

Example 2.24 (SU(2) as two-fold covering of SO(3,R)).

1. Vector space of Hermitian matrices: Consider the real vector space of complex
Hermitian traceless two-by-two matrices

Hermp(2) :={X eM(2x2,C): X =X" tr X =0}.

The family of Pauli matrices (0;) j—1 2,3, see Remark 2.21, is a basis of Hermg(2).
We define the map

3 .
X3 X1 —i-x
o :R>— Hermy(2),x = (x1,x2,x3) — X := ij~6j = (Xl —|—3i~x2 ! . 2) .
=1

On R? we consider the Euclidean quadratic form

3
ge R} =R x= (x1,%2,x3) — Zx?
j=1

Correspondingly, on the real vector space Hermg(2) we consider the quadratic
form
qn : Hermp(2) = R, X — —det X,
ie.
b

qu(X)=a*+1|b [* forX = <a _ba> ,acR beC.

Then the map
a: (R, qp) = H = (Hermo(2),qn)

is an isometric isomorphism of Euclidean spaces , i.e. ¢ is an isomorphism of
real vector spaces satisfying

gu(a(x)) = gp(x), x e R>.

By means of the isometric isomorphism o we identify O(3,R), the group of
isometries of (R3, gr), with the group of isometries of H

O(H) :={g € GL(Herm(2)) : qu(g(X)) = gu(X) for all X € Hermy(2)}.
Moreover, we identify the subgroup SO(3,R) C O(3,R) with the subgroup

SO(H):={g€O(H):det g=1} C O(H),
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the connected component of the neutral element e € O(H).
In the following we do no longer deal with SO(3,RR) but with SO(H).

2. Definition of ®: We define the group morphism
®:SU(2) = SO(H),B — Pp,
as the conjugation by B, setting
®p : Hermo(2) — Hermo(2), X — B-X-B7 L.
Note B-X -B~! € Hermg(2), because B~! = B* and X* = X imply
(B-X-B")Y"=(B-X-B")"=B-X-B"=B-X-B™ ..
We have ®p € O(H) because
—det(B-X-B™') = —det X.
Because SU (2) is connected due to Proposition 2.18, we even have
Pz € SO(H).
Apparently @ is a group morphism.

3. Tangent map of ®: We use from the theory of Lie groups without proof the
following general results:

e Lie groups, in particular matrix groups, are differentiable manifolds. The un-
derlying vector space of the Lie algebra of a matrix group G is the tangent
space Lie G = T,G at the neutral element e € G.

* For each differentiable homomorphism of matrix groups
¥Y:G)— G
the induced tangent map at the neutral element e € G is a morphism
v:=LieV =T, : Lie G| — Lie G,
of Lie algebras. It linearizes ¥ at the unit element e € Gj.
Therefore we now determine the linearization of
®:SU(2) — SO(H), B+ Pp,

at the neutral element e € SU(2) as a Lie algebra morphism
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¢ :su(2) = so(H), A ¢a.

Recall
so(H) := Lie SO(H) C gl(Hermy(2)).
For
A€su(2)and X € Hermy(2)
set
B=expAcSU(2)
Then

Bp(X) = Do 4(X) = explA) - X - exp(—A) =
— (1+A+0(4%) X - (1—A+0(A%) =
=X4+A-X—X-A+0(A%) =X +[A,X] + 0(A%).
As linearization with respect to A € su(2) we obtain
(PA :H—>Ha X — ¢A(X) = [A,X],
ie.
04 = ad A,

the linearisation ¢ of & at the neutral element e € SU(2) is the adjoint
representation of
H ~50(3,R) ~ su(2).

Note: To compute the linearisation ¢ one can also fix A € su(2) and
expand P,y ;4 (X) with respect to powers of 1 € R.

To determine the value of
¢ :su(2) — so(H)

on the basis elements (i- ;) j—1,2,3 of su(2) we compute:

¢i61 :H _>H
iz, (01) = 0,¢i5,(02) =i-[01,02] = =203
0ic, (03) =i-[01,03] = —i-[03,01] =2-0»

With respect to the basis (0;) j—1 23 of H we obtain
00
01
-1

Pig, =2~ €so(H).

(=R

A similar evaluation of ¢ on the other two basis elements i - 0> and i - 63 gives
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00 -1 010
Pic,=2-[00 0 |, i, =2-[ =100 | €so(H).
100 000

Hence the family (¢;.;) j=1,2,3 is linearly independent in so(H). As a
consequence,
¢ :su(2) = so(H)

is an isomorphism because domain and range of ¢ are 3-dimensional Lie
algebras.
4. Surjectivity of ®@: The morphism
P :SU(2) = SO(3,R)

is a local isomorphism at 1 € SU(2) because its tangent map is bijective due to
part 3. In particular, @ is an open map. The image

®(SU(2)) C SO(3,R)

is compact because SU (2) is compact due to Proposition 2.18. As a consequence,
the open and closed subset

P(SU(2)) C SO(3,R)
equals the connected set SO(3,R), i.e. the map @ is surjective.
5. Discrete kernel: We are left with calculating the kernel of &. We claim:
ker @ = {£1} C SU(2).

For the proof consider an arbitrary but fixed matrix

B= ( ZW V;) €SU(2)

with
Dp = idHermO(Z) )

i.e. for all X € Hermg(2)
B-X-B'=Xx

plop (2%
w z )

Choosing for X successively the basis elements 61,0, € Hermg(2) we obtain

We have

B- o B! = 0] and B~62~B_1 = 0s.
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Equating for both equations respectively on both sides the components shows
after some calculation
ZEwr=1

Hence
w=0and z==1
i.e
B=+1
6. Universal covering space: We use from Lie group theory without proof that a
surjective morphism between Lie groups with discrete kernel is a covering pro-
jection. The group SU(2) is simply connected according to Proposition 2.18.

Hence the map
@ :SU(2) — SO(3,R)

is the univeral covering projection of SO(3,R), and SU(2) is a double cover
of SO(3,R).

7. Fundamental group of SO(3,R): As a consequence of part 6 we have

T (SO(3,R), %) = Z,.

Nearly the same method as used in Example 2.24 allows to compute the universal
covering space of the connected component of the neutral element of the Lorentz
group. More specific, the covering projection @ of SO(3,R) from Example 2.24
extends to a covering projection ¥ of the orthochronous Lorentz group, see Propo-
sition 2.27.

Figure 2.1 shows Minkowski space with the embedded light cone. Points of
Minkowski space are named events. Referring to the event e, the origin, the closure
of the interior of the light cone, the set with gys(x) < 0, splits into the disjoint union
of e as well as the future and the past cone of e. This splitting refers to the causal
structure of the world: Events from the past may have influenced e, while e may
influence events in its future. All other events, gy (x) > 0, have no causal relation
to e. They form the presence of the event e.
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Fig. 2.1 The world model of flat Minkowski space

Definition 2.25 (Minkowski space and Lorentz group).

1. Minkowski space or spacetime is the pair
M= (R47 qm )

with the quadratic form of signature (3,1)

qm - R* — R, qum(x) := —)Co2 +x12+X22+X32, X = (xo,m,xs)T

83

We use the convention from Special Relativity concerning four-vectors x € M
with coordinates x = (xg,x;,X2,x3). The coordinate x( is interpreted as time,

while x1,x,,x3 are the usual space coordinates.
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The Minkowski metric has the signature (3,1) with three positive eigenvalues + 1
referring to the space coordinates and one negative eigenvalue —1 referring
to the time coordinate. Using these conventions Euclidean space embeds into
Minkowski space in a natural way:

2. Lorentz group: The Lorentz group L is the real matrix group of isometries of
Minkowski space

L:={f€GL4R):qu(f(x)) =qu(x) forall x € R“}.

Elements from L leave invariant the metric defined by the symmetric bilinear

form
—-1000

0100
0010
0001

The Lorentz group L is isomorphic to the group O(3,1) from Remark 2.23:
While L employs the bilinear form 7, the group O(3,1) refers to the bilinear

form
100 0

Lo._|0100
3171001 0
000 —1

with the same signature (3, 1).

Remark 2.26 (Lie algebra and orthochronous Lorentz group).

1. Lie algebra: The fact that all elements from the Lorentz group L have determinant £1,
see Definition 2.25, implies for the Lie algebra of the Lorentz group

Lie L~ Lie 0(3,1) = 0(3,1) =s0(3,1) = {X €sl(4,R): B' -n+n-B=0} =

_ 0 b\, 7 3
_{(bTD> b eR ,Deo(&R)}
A block matrix of type
00 ,
(0 D) € LieL

is the infinitesimal generator of a 1-parameter group of rotations, while a block

matrix of type
< bOT 8) € LieL
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is the infinitesimal generator of a 1-parameter group of Lorentz boosts. The di-
mension is

dimg (Lie L) = dimg 0(3,1) = 3+dimg 0o(3,R) =6.
2. The entry boo: By definition
BeL < n=B'-n-B.
Hence for B € L:
—l=detn=det(B"-n-B)=det B' -det 11 -det B= —(det B)*

which implies
det B==+£1.

Consider the timelike vector
eo:=(1,0,0,0)"
Because each matrix
B=(bj)o<jk<z €L
acts as isometry on Minkowski space we obtain
_ _ 32 2 2 2
—1=qu(eo) = qu(B-ep) = —byy + b1y + b3 + b3.

Hence
2 2 2 2
by = 1+Dbig+b39+b39 > 1.
3. The orthochronous Lorentz group Ll:

* According to the calculation in Definition 2.25, part 3 the group SO(3,1) is
the disjoint union of the two subsets

{(bjk)0§j7k§3 € SO(3,1) : bog > ]}U{(bjk>0§j,k§3 €S0(3,1) : bgg < —1}

 and according to Remark 2.23, part 3 the group SO(3,1) has two connected
components.

Each of the two connected components is contained in only one of the two sub-
sets. Hence the two subsets are the two connected components of SO(3,1). As a
consequence, the orthochronous Lorentz group

Ll = {B=(bj)ocjucs €L:det B=1,boo>1} CL

is the connected component of SO(3, 1) which contains the unit element of SO(3,1).
In particular, LL is a subgroup of L. The elements from LTF keep the orientation
of tetrads (German: 4-bein). They also keep the sign of the time component.
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4. The four connected components: Besides Ll C L the other three connected com-
ponents of L are the neben-classes

L' :={B=(bjt)o<ji<s €L:det B=—1, byy > 1}

LY = {B=(bj)o<ju<z €L:det B=1, by < —1}
L' == {B=(bj)o<ju<s €L:det B=—1, bog < —1}

The two connected components of SO(3,1) correspond to the following two of
the four connected components of L

LTF and Lﬁ (time reversal).

Proposition 2.27 (Universal covering projection of the Lorentz group). The
proper orthochronous Lorentz group has the universal covering projection

¥:SL(2,C) — L]

with the group homomorphism ¥ a two-fold covering projection. The following di-
agram commutes

o)

SU(2) SO(3,R)

SL(2,C)

p
Ly

with the canonical inclusions in the vertical direction and the map ® from Example 2.24.

Proof. See also [42, Anhang L.8].

1. Minkowski space as a vector space of matrices: Let
H:= (Herm(2),qn)
denote the real vector space of Hermitian matrices
Herm(2) :={X eM(2x2,C): X =X"}
equipped with the real quadratic form
qu :Herm(2) - R, X — —det X,

i.e.



2.3 Topology of the classical groups 87

qu(X) = —(a-d)+ b
for
ab
X = (bd) ,a,d € R,b e C.

Set 0y := 1 € Herm(2). Then the family (0;),—o,.. 3 is a basis of the vector
space Herm(2). The map

3 .
Xo+x3 X1 —1-x
ﬁ:M—>H,x:(xo,...,x3)l—>X::ij-Gj: 0T Al 2
par X1+1-X2 X0—Xx3

is an isometric isomorphism, i.e. an isomorphism of vector spaces satisfying
qn(B(x)) = qu(x), x €R*.
The isometry property is due to
qn (B (x)) = —det B(x) = —x5 +x] +x3 +3 = qu (x).

By means of the isometric isomorphism  we identify the group of isometries
of H

O(H) :={g € GL(Herm(2)) : qu(g(X)) = qu(X) forall X € Herm(2)}

with O(3,1) and denote by
L' (H) c O(H)

the connected component of the neutral element idy € O(H).
2. Definition of ¥: The map
¥:SL(2,C) = O(H),B+— ¥,

defined by the conjugation

Y :H-—H,X+ B-X-B,
is a well-defined morphism of real matrix groups. We have

¥(SL(2,C)) C LI (H)

because SL(2,C) is connected due to Proposition 2.18.

3. Tangent map of W: The family (A;) =1, ¢ with

7T i-ojs if j=4,5,6
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is a basis of the real vector space s/(2,C)g. Note that
su(2) =spang <i-oj:j=1,2,3>

is a real subalgebra of s/(2,C)g, but

spang < 0j:j=1,2,3>
is not a subalgebra of s/(2,C)g. Denote by

o(H) := Lie O(H) C gl(Herm(2))
the Lie algebra of the matrix group O(H) and by
y:=LieV:sl(2,C)r = o(H), A— yy,

the tangent map of ¥ at 1 € SL(2,C). One checks that y as the linearization
of ¥ takes the values

Ya(X)=A-X+X -A", Acsl(2,C)r, X € Herm(2).
One may also check that indeed y is a morphism of Lie algebras:

W[B], Bz] = [WBl ’ IIIBZ]

by using the commutator relation of the Pauli matrices and the Hermitian resp.
skew-Hermitian properties

0; =0j, (i-0;)"=—i-ojfor j=1,2,3.
Explicit computation of the matrices representing
IVAj?j = ]‘7""67

shows: The family (l//Aj)jzl
tor space o(H) C End(Herm(2)).

6 is linearly independent in the 6-dimensional vec-

4. Surjectivity of ¥: The map
¥:SL(2,C) — L (H)
is open because its tangent map at 1 € SL(2,C) is an isomorphism. The image
¥(SL(2,C)) C L! (H)

is also closed because
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Lh(H)y= |J g¥(L2,0)
geLl (H)

represents the complement

L (H)\¥(SL(2.0))
as a union of open subsets. Hence

¥(SL(2,C)) C LI (H)

is also closed, and
¥:SL(2,C) — L (H)

is surjective, because SL(2,C) is connected and Ll (H) is the connected compo-
nent of the unit element according to Remark 2.26.

5. Discrete kernel: The kernel is
ker ¥ ={£1} C SL(2,C):
For the proof one evaluates for B € SL(2,C) the condition:
Y%(X)=X
for all elements X € Herm(2) from the basis (0}) j—o,... 3 of Herm(2).

6. Universal covering space: Due to the previous parts the map
W(SL(2,C)) — L (H)

is a 2-fold covering projection. It is the universal covering projection because SL(2,C)
is simply connected according to Proposition 2.18.

7. Fundamental group: Hence the orthochronous Lorentz group has the fundamen-
tal group
T (Ll, *) =7,

the group of deck-tranformations of the universal covering projection.
O

Remark 2.28 (Lie algebras and simply connected matrix group).

1. There is a close relation between Lie algebras and simply connected matrix
groups: Consider two matrix groups G and H. If G is connected and simply
connected, then each morphism
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¢:LieG— LieH
of Lie algebras lifts to a unique morphism
P:G—+H

of matrix groups such that the following diagram commutes

G -------- > H
exp [ exp
Lie G LieH

The result is not restricted to matrix groups, it holds for Lie groups in gen-
eral: The categories of connected, simply-connected Lie groups over R re-
spectively C and the category of Lie algebra over these fields are equivalent,
see [41, Part II, Chap. V, §8 Theor. 2].

. For a general, not necessarily simply connected matrix group G one applies the
previous result to the universal covering projection

7:6G— G,

taking into account that G and G have the same Lie algebra. Then one has to study
the covering projection 7 in order to determine whether the morphism from the
universal covering

&:G—H
projects down to a morphism
®:G—H
such that the diagram
~ b
G H
T L ’
P
G

commutes.

Note: The universal covering of a matrix group is a Lie group, but not neces-
sarily a matrix group. A counter example is the universal covering of the matrix
group SL(2,IR), see [18, Prop. 5.16].



Chapter 3
Nilpotent Lie algebras and solvable Lie algebras

If not stated otherwise, all Lie algebras and vector spaces in this chapter will be
assumed finite dimensional over the base field K = C or K = R.

3.1 Engel’s theorem for nilpotent Lie algebras

Recall Definition 1.11: An endomorphism f € End(V) with V a vector space is
nilpotent iff an index n € N exists with f” = 0. Note that complex eigenvalues of a
nilpotent endomorphism are zero.

Definition 3.1 (Ad-nilpotency). Consider a Lie algebra L. An element x € L is ad-
nilpotent iff the induced endomorphism of L
adx:L— L,y [x,],
is nilpotent.
Nilpotency and ad-nilpotency refer to two different structures: Nilpotency iter-
ates the associative product, while ad-nilpotency iterates the Lie product. If the Lie
algebra results from a matrix algebra both concepts are related: A Lie algebra of

nilpotent endomorphisms of a vector space acts “nilpotent” on itself by the adjoint
representation.

Lemma 3.2 (Nilpotency implies ad-nilpotency). Consider a vector space V, an
embedded Lie algebra L C gl(V) and an element x € L. If the endomorphism

x:V—-oV

91
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is nilpotent, then also the induced endomorphism
adx:L—L

is nilpotent.

The content of Lemma 3.2 can be paraphrased as: Nilpotency implies ad-nilpotency.

Proof. The endomorphism x € End(V) acts on End(V) by left composition and
right composition
[:End(V) = End(V), y—x oy,

r:End(V) - End(V), y—y ox.

Then
adx=1—r

because for all y € End (V)

(ad x)(y) = [x,y] = (L =) ().

Nilpotency of x implies that both actions are nilpotent. Both actions commute: For
ally € End(V)

[1,r](y) = (lor—rol)(y) =xo(yox) — (xoy)ox=0.
Proposition 1.12 implies the nilpotency of the difference
adx=1—r

O

The adjoint representation respects the Jordan decomposition from Theorem 1.19.

Proposition 3.3 (Jordan decomposition of the adjoint representation). Consider
an n-dimensional complex vector space V, an endomorphism f € End(V) and its
Jordan decomposition

=+
Then the Jordan decomposition of
ad f € L:=gl(End V),
defined as
ad f:End(V) = End(V), g— [f. g,

ad f=ad fs+ad f, € L.

In particular, ad f; is semisimple, ad f, is nilpotent and
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[ad fs,ad f] = 0.

Proof. 1) Nilpotency of ad f,: According to Lemma 3.2 the endomorphism ad f,, is
nilpotent.

i) Semisimplicity of ad f;: In order to show that ad f; is semisimple we choose a
base (vy,...,v,) of V consisting of eigenvectors of f; with corresponding
eigenvalues Ap, ..., A,.

Let (Eij)1<i,j<n denote the standard base of End (V) relatively to (vi,...,v,), i.e.
Eij(vi) = 8jxvi
mapping v; to v; and annihilating vy for all k # j.
For 1 <i,j,k <n:
((ad f5)Ei;)(vi) = [fs, Eijl (vi) = fs(Eij(vi)) — Eij(fs(vi)) = (fs = M) (Eij(vi)) =
= (fs = M) (8xvi) = (i = A7) (8jxvi) = (Ai — A7) - Eij(vie)

Hence
(ad f5)(Eij) = (A — Aj) - Eij

and ad f; acts with respect to the standard basis (E;;) diagonally on the vector
space End (V') with eigenvalues

Ai—Aj, 1<i, j<n.
Hence ad f; is semisimple.
iii) Commutator [ad fs,ad f,]: Because
ad:gl(V)—= L
is a morphism of Lie algebras:

[ad f\‘vad fn] = ad([fnfn]) =0.

O

Using the adjoint representation we carry over the concept of semisimpleness to
elements of arbitrary complex Lie algebra. Definition 3.4 is analogous to Definition 3.1.

Definition 3.4 (Ad-semisimple element of a complex Lie algebra). Consider a
complex Lie algebra L. An element x € L is ad-semisimple iff the induced endomor-
phism

adx:L— L,y [x,y]

is semisimple.
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It is a trivial observation that a nilpotent endomorphism of a non-zero vector
space V has an eigenvector with eigenvalue zero. Theorem 3.5 strongly generalizes
this fact: It proves the existence of a common eigenvector for a whole Lie algebra
of nilpotent endomorphisms.

Theorem 3.5 (Annihilation of a common eigenvector).

Consider a vector space V # {0} and an embedded Lie algebra L C gl(V). If each
endomorphism x € L is nilpotent, then all elements x € L annihilate a common
eigenvector, i.e., a nonzero vector v € V exists with

x(v) =0 forall x € L.

The proof of Theorem 3.5 is standard, cf. [24, Chap.3.3], [13, Theor. 9.9]. The idea
of the induction step is to find an ideal / C L of codimension 1 and then to split

L=13®K-xowithxp € L\1,
as the direct sum of two subalgebras.

Proof. The proof goes by induction on dim L € N, while the dimension of the
finite-dimensional vector space V is left arbitrary.

Apparently the theorem is true for dim L = 0.

For the induction step assume dim L > 1 and assume that the theorem is true for all
Lie algebras of less dimension.

i) Existence of an ideal of codimension I: By assumption all x € L are nilpotent
endomorphisms of V. Hence by Lemma 3.2 each endomorphism

adx:L—L,x€L,
is nilpotent.

Define the set
o/ :={K C L: K Lie subalgebra}

of all proper Lie subalgebras of L. We have o7 # 0, because the zero-dimensional
vector subspace K = {0} C L is a subalgebra of L.
Choose

le o

as a subalgebra of L having maximal dimension with respect to all Lie algebras
from 7. By definition
diml <dimL

Because / is a Lie algebra, for all x € 1
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(ad x)(I) C I

Hence the adjoint representation of L induces a representation of / on the
vector space L/I: For x € I the endomorphism

ad x:L/T—L/I, y+1— [x,y|+1

is well-defined. For each x € I the nilpotency of ad x € L implies the nilpotency
of ad x. The induction hypothesis applies to the Lie algebra I and the vector space

V:=L/I,
and provides a common eigenvector with eigenvalue zero
y=y+IcL/I

for all endomorphisms
adx:L/I—L/I

Eigenvectors are non-zero vectors, hence
y € L\ with [x,y] € I forall x € I.

As a consequence
yEeNL(I)\I

i.e. the Lie subalgebra I C L is properly contained in its normalizer. Due to the
maximality of the dimension of I we have Ny (I) ¢ <7, hence

N(I) =L,
i.e. I C Lis a proper ideal.

The ideal I C L induces a canonical projection of Lie algebras
w:L—L/I

In case
dim (L/I) > 2

one chooses a 1-dimensional Lie subalgebra K C L/I. The inverse image
Y (K)CL

is a proper Lie subalgebra of L, properly containing /, a contradiction to the
maximality of /. Hence
dim (L/I) =1

ii) Constructing a common eigenvector: The construction from part i) implies the
vector space decomposition
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L=1+K-x
with an arbitrary element xy € L\ /. By induction assumption the elements of the
Lie algebra / annihilate a common non-zero eigenvector, i.e.

W:={weV:x(w)=0 forall x eI} #{0}.

In addition, the subspace W C V is stable with respect to the
endomorphism xy € End(V), i.e. for all w € W holds

xo(w) eW:

Forallx el
x(xo(w)) = xo(x(w)) — [xo,x](w) = 0.
Here the first summand vanishes because w € W and x € I. The second summand
vanishes because I C L is an ideal, which implies
[x0,x] € I and [xp,x](w) =0
The restriction
X|W:W—->W

is a nilpotent endomorphism, and therefore has an eigenvector vo € W C V with
eigenvalue 0. From the decomposition

L=1+K-xg
follows for all x € L

x(vg) =0.

This finishes the induction step. O

The fact, that any embedded Lie algebra L C gl(V) of nilpotent endomorphisms
annihilates a common eigenvector, allows the simultaneous triagonalization to strict
upper triangular matrices for all endomorphisms of L. We state the result by using
the concept of a flag from Definition 1.11.

Corollary 3.6 (Simultaneous strict triagonalization of nilpotent endomorphisms).
Consider an n-dimensional K-vector space V and an embedded Lie algebra L C gl(V).
Then the following properties are equivalent:

1. Each endomorphism x € L is nilpotent.

2. Aflag (V;)i=o....n of subspaces of V exists such that all x € L satisfy foralli=1,....n

x(V;) CVieq

3. The Lie algebra L is isomorphic to a Lie subalgebra of the Lie algebra of strictly
upper triangular matrices
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0 =
n(n,K) = € gl(n,K)
0 O

Proof. 1) = 2): The proof goes by induction on n = dim V. The implication is
valid for n = 0.

Assume n > 0 and assume part 2) valid for all vector spaces of less dimension. Set
Vo = {0}

According to Theorem 3.5 all elements from L annihilate a common
eigenvector v; € V. Consider the quotient vector space

W:=V/(K-v)
with the canonical projection of vector spaces
w:V—->W.

Each endomorphism x € L C g/(V) annihilates vi, and therefore induces an
endomorphism X : W — W such that the following diagram commutes

14 14
= s
w 114

X
_—
X
—_—

The endomorphism X € End (W) is nilpotent. The induction assumption applied
to W with
dimW <dimV

provides a flag (W;)i—o,.._,—1 of subspaces of W with

X(W;) CW—y foralli=1,...,n—1.

Now define
Vie=n (W), i=1,..,n
Then
x(W;) C Wiy
implies

x(V)CViy, i=1,...n.

2) = 3) For the proof one constructs step by step a basis of V

(Vl,...,Vn)
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which satisfies foralli=1,...,n
Vi =spang < vi,...,v; >

3) = 1) The proof is obvious. O

Due to Lemma 3.2 the non-trivial implication of Corollary 3.6 states: Consider a
vector space V. Then each embedded Lie algebra L C g/ (V) of ad-nilpotent
endomorphisms is nilpotent.

A Lie algebra is Abelian when the commutator of any two elements vanishes.
Nilpotent Lie algebras are a first step to generalize this property: A Lie algebra L
is named nilpotent when a number N € N exists such that all N-fold commutators
of elements from L vanish. The concept of the descending central series of a Lie
algebra formalizes this property.

Definition 3.7 (Descending central series and nilpotent Lie algebra). Consider a
Lie algebra L.

1. The descending central series or lower central series of Lis the sequence (C'L)ien
of subsets C'L C L, inductively defined as

C°L:=Land C"'L:=[L,C'L], i € N.
2. The Lie algebra L is nilpotent iff an index ip € N exists with
CYL=0.

The smallest index with this property is named the length of the descending cen-
tral series.

3. Anideal I C L is nilpotent if I is nilpotent when considered as a Lie algebra with
Lie bracket the restricted Lie bracket of L.

By induction on i € N one easily verifies
ct'LcCL.
As a consequence, all elements of the descending central series are ideals
CLcL,ieN.

Apparently, any Lie subalgebra and any quotient algebra of a nilpotent Lie
algebra L is nilpotent too: The descending central series of a subalgebra
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respectively of a quotient of L arise from the descending central series of L by
restriction respectively taking quotients. Concerning the reverse implication
consider Lemma 3.8.

The Lie algebra n(n,KK) of strictly upper triangular matrices - and hence also all
Lie subalgebras of n(n,K) - are nilpotent. Due to Corollary 3.6 an embedded Lie
algebra L C gl(V) is nilpotent if each element x € L is a nilpotent endomorphism
of V.

Lemma 3.8 (Central extension of a nilpotent Lie algebra). Consider a Lie alge-
bra L and an ideal I C L which is contained in the center, i.e.

1CZ(L).

If the quotient L/1 is nilpotent then L, named an extension of L/I by I, is nilpotent
too.

In Lemma 3.8 the extension is named central extension because I C Z(L). In
particular, / is a nilpotent Lie algebra.

Proof. The canonical morphism
n:L—L :=LJI
of Lie algebras relates the descending central series of L and L' as
C'L' =r(C'L), ieN.
If C[/ = 0 then (CL) = 0, i.e.
CoLCIcCZ(L).
The center satisfies [L,Z(L)] = 0, hence

Cot L= [L,CPL] = 0.

In Lemma 3.8 one must not drop the assumption I C Z(L), i.e. that the ideal I C L
belongs to the center of L. It is not enough to assume that / is nilpotent:

Example 3.9 (Counter example against nilpotency of extensions). The descending
central series of the Lie algebra of upper triangular matrices

L:=t(2,K) = { (g :) € gl(Z,K)}
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starts with

CL:=L, andC'L=[L,L] =n(2,K) =K- (8 (1)> ’

the Lie algebra of strictly upper triangular matrices. The elements of the derived
series of L are

C’L=[L,C'L] = [L,n(2,K)] =n(2,K) = C'L #0.
As a consequence for all i € N*
C'L=C'L+#{0}.

Hence L is not nilpotent. But

I'=n(2,K)CL
is a nilpotent ideal, and the quotient

L/I~?(2,K),

the Lie algebra of diagonal matrices, is also nilpotent. We have

I¢Z(L)=K-1

We now state Engel’s theorem. It is the main result about nilpotent Lie algebras. It

characterizes the nilpotency of a Lie algebra by the ad-nilpotency of all its elements.
Engel’s theorem follows as a corollary from Theorem 3.5.

Theorem 3.10 (Engel’s theorem for nilpotent Lie algebras). A Lie algebra L is
nilpotent if and only if every element x € L is ad-nilpotent.

Proof. 1) Assume that every endomorphism
adx:L—L,x€L,
is nilpotent. According to Corollary 3.6 the embedded Lie algebra
ad L C gl(L)
is isomorphic to a subalgebra of
n(n,K), n=dimL,
of strictly upper triangular matrices, hence ad L is nilpotent. Due to Lemma 3.8 the

isomorphy
L/Z(L)~ad L
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implies the nilpotency of L.

ii) Suppose that L is nilpotent. An index iy € N exists with CL = 0. Hence in

particular for all x € L _
ad(x) =0,

i.e. ad x is nilpotent.
O

From the categorical point of view the concept of a short exact sequence is a use-
ful tool to handle injective or surjective morphisms and their cokernels respectively
kernels.

Definition 3.11 (Exact sequence of Lie algebra morphisms).

1. A chain complex of Lie algebra morphisms is a sequence of Lie algebra mor-
phisms

fi
(Li = Lis+1)icz
such that for all i € Z the composition fi; o f; =0, i.e.

l'm[L,',] h L,'] C ker[Li i) Li+1].

2. A chain complex of Lie algebra morphisms (L; £> Li+1)icz is exact or an exact
sequence of Lie algebra morphisms if for all i € Z

im[Li_y 775 L) = ker[L; 25 Livy).

3. A short exact sequence of Lie algebra morphisms is an exact sequence of the

form

0Ly, 1, >0

A short exact sequence

0=sLo L, 1,50

expresses the following facts about the two morphisms:
* fo:Lo— Ly isinjective,
* f1:L; — L, is surjective and
* im fy = ker fi, in particular L, ~ L /Ly.
Using the concept of exact sequences we restate from Lemma 3.8 and its pro-

logue the relation between the nilpotency of a Lie algebra L, an ideal of L and a
quotient of L as follows:
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Proposition 3.12 (Nilpotency and short exact sequences). Consider a short exact
sequence of Lie algebra morphisms

0—>LOL>L1 1>L2—>0.
1. If the Lie algebra L, is nilpotent, then also Lo and L; are nilpotent.

2. If Ly is nilpotent and j(Ly) C Z(L1), then also L, is nilpotent.

For a Lie algebra L one obtains for any i € N a short exact sequence
0—C'L/CTT'L - L/)C'L— L/C'L— 0

By definition of the descending central series, the Lie algebra on the left-hand side
is contained in the center of the Lie algebra in the middle, i.e.

C'L/CT'Lc Z(L/)CT'L).

For a nilpotent Lie algebra L, with iy € N the length of the descending central
series, the exact sequence

0—=Cor 'L L—L/Co7L—0

presents L as a central extension of the nilpotent Lie algebra L/C0~1L.
Successively one obtains L as a finite sequence of central extensions of nilpotent
Lie algebras: One starts with the nilpotent Lie algebra L/C0~!L on the right-hand
side and

chlcz(L)

on the left-hand side. The next step presents L/C0~!L as a central extension of the
nilpotent Lie algebra L/C0=2 ..

This sequence of central extensions of nilpotent Lie algebras explains the attribute
central in the name of the descending central series (C'L);_y.

For later use we prove two results about the centralizer of a nilpotent Lie algebra L
and about the normalizer of a proper subalgebra of a nilpotent Lie algebra. Due to
Corollary 3.13 each ideal of a nilpotent Lie algebra L contains non-zero elements
from the center of L.

Corollary 3.13 (Center of nilpotent Lie algebras). Consider a nilpotent Lie alge-
bra L # {0}. For each non-zero ideal I C L holds

Z(L)nI # {0}.

In particular,
{0} #z(L) cCL(D).
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Proof. According to Theorem 3.10 all endomorphisms
adx:L—L, xeL,
are nilpotent. Because / C L is an ideal each restriction
(adx)|I:1—=1,x€L,
is well-defined and also nilpotent. Theorem 3.5, applied to the embedded Lie algebra
ad L C gl(I),
provides a non-zero element xy € I with
[L,x0] =0,

ie.0#xp€Z(L)NI. O

In a nilpotent Lie algebra L each proper subalgebra M C L embeds properly into its
normalizer. The result explains a posteriori the construction made in the proof of
Theorem 3.5.

Proposition 3.14 (Normalizer in nilpotent Lie algebras). Any proper subalgebra M C L
of a nilpotent Lie algebra L is properly contained in its normalizer, i.e.

M C N.(M).

Proof. We consider the descending central series of L. Because M C L = C'L we
start with
MCM+COL.

Due to CL = 0 for a suitable index igp € N we end with
M=M+C"L.

Let i < iy be the largest index with
MCM+CL.

Then A
M=M+CT'L

Therefore
[M+C'L,M] C [M,M]+[C'L,M] C M+ [C'L,L] =M +C"'L =M,

which implies .
M+C'LCNL(M).
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We obtain .
M CM+C'LCNL(M).

O

The logical dependencies between the results of this section is clarified by the
diagram from Figure 3.1. It shows the fundamental role of Theorem 3.5 about the
existence of a common eigenvector annihilated by all elements of an embedded Lie
algebra of nilpotent endomorphisms:

T heorem 3.5

Corollary 3.6

Theorem 3.10 $—— Lemma 3.8

Corollary 3.13

Fig. 3.1 Logical relations of the results in Section 3.1

3.2 Lie’s theorem for solvable Lie algebras

Solvability generalizes nilpotency. Solvable Lie algebras relate to nilpotent Lie al-
gebras like upper triangular matrices relate to strictly upper triangular matrices.

Definition 3.15 (Derived series and solvable Lie algebra). Consider a Lie algebra L.

1. The derived series of L is the sequence (D'L);c inductively defined as
D°L:=Land D''L:= [D'L,D'L], i € N.

2. The Lie algebra L is solvable(Deutsch: aufloesbar) iff an index iy € N exists with
DL = 0. The smallest index with this property is named the length of the derived
series.

3. Anideal I C L is solvable iff I is solvable when considered as Lie algebra.
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By induction on i € N one easily shows that each DiL,i € N, is an ideal in L, and
that the series (D'L);c is descending. Note that

D'L=[L1]

is the derived or commutator algebra. Comparing the derived series with the lower
central series one has D'L C C'L for all i € N. Hence for Lie algebras:

Abelian = nilpotent —> solvable.
Solvability behaves well with respect to short exact sequences.

Lemma 3.16 (Solvability and short exact sequences). Consider an exact sequence
of Lie algebra morphisms

0—Ly— Ly 1>L2—>0.
Then solvability of Ly is equivalent to solvability of Ly and L,.
Proof. 1) Ly and L, solvable —> L; solvable: Assume

DL, = 0and DLy = 0.
Note that one may find a common index iy for both Lie algebras. For all i € N

DL, =D'n(L) = n(D'Ly).
Hence DL, =0 implies DY, C Ly. Then
D¥0L; c DLy =0.

ii) Ly solvable — Lo and L, solvable: The proof uses the following relations
between the derived series:

D'Ly C D'Ly, n(D'Ly) = D'L,.

Example 3.9 demonstrates that an analogous statement concerning the nilpotency
of the Lie algebra in the middle is not valid.

Corollary 3.17 (Solvable ideals). Consider a Lie algebra L. The sum I+ J of two
solvable ideals 1, J C L is solvable.
Proof. Lemma 3.16 applied to the exact sequence

0—=INJ—=>I—=1/(INJ)—=0
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shows the solvability of the quotient
I/(INJ)

The canonical isomorphy
I/(INJ)~(I+J)/J

and Lemma 3.16 applied to the exact sequence

0—=J—=I1+J—>I+J)/J—0

shows the solvability of
I+J.

O

Definition 3.18 (Radical of a Lie algebra). The unique solvable ideal of a Lie al-
gebra L which is maximal with respect to all solvable ideals of L, is the radical of L,
denoted rad L.

To verify that the concept is well-defined consider a maximal solvable ideal
Iax C L.
For an arbitrary solvable ideal / C L also
I+ Lax
is solvable by Corollary 3.17. The inclusion
Tnax C I+ Ty
implies by the maximality of I,,,, that
Inax = I+ Lngx.

Hence I C 1,4, Therefore I, is the uniquely determined, maximal solvable ideal
of L.

For a nilpotent embedded Lie algebra Theorem 3.5 always deals with the same
eigenvalue zero. In the more general context of a solvable embedded Lie algebra L
the eigenvalues of the common eigenvector depend linearly on the elements of L.

The following Lemma 3.19 prepares the proof of Theorem 3.20 and therefore also
of Lie’s theorem about the existence of a common eigenvector for embedded
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solvable Lie algebras. The lemma makes the assumption that a common
eigenvector exists. It investigates: How do the corresponding eigenvalues for the
different endomorphism from an ideal depend on the endomorphisms, in particular
which endomorphism annihilate the eigenvector?

Lemma 3.19 (Dynkin lemma). Consider a K-vector space V, an embedded Lie al-
gebra LC gl(V), and an ideal I C L. Assume the existence of a common eigenvector v € V
for all endomorphisms

x:V=>V xel,

and consider the corresponding linear functional
A:I—=K

satisfiying for all x € I
xv=2A(x)-v

Then A vanishes on commutators, i.e.
Al =0,

and
U:={veV:xv=AX) -vforallxel}

is an L-module.

Proof. Apparently the eigenvector equation defines a linear functional A. Let y € L
be an arbitrary but fixed element. We have to show: For all x € I holds

A([y4) =0.

i) Simultaneous triangularization on a stable subspace W =W (y) C V: Let n € N*
be a maximal exponent such that the family of iterates

B =(Vy(v),y’ (v), )" (V)
is linearly independent. Denote by
W :=spang <y'(v): i=0,...,n—1>

the n-dimensional subspace of V spanned by Z. By definition W is stable with
respect to y, i.e. y(W) C W.

Claim: The family
(W; :=span < v,y(V), ...,y 1 (v) >)iz0...n, With Wy = {0},
is a flag of W, stable with respect to all endomorphisms

x:V=>V xel
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We prove x(W;) C W; by induction on i = 0, ..., n: The induction claim holds for
i =0and i = 1. For the induction step i — i+ 1 we consider x € I and decompose

2('(v)) = (xoy) (61 (v) = ] 67 () + (rox) ().

The induction assumption applied to y'~!(v) € W; proves: For the first summand

(V) € {z(Wh) sz €1} C Wi € Wiy
because y'~!(v) € W; and [x,y] € I, and for the second summand

o)™ (V) =y(x( T (V))) € (Wh) € Wit
Hence x(y(v)) € Wiy1.
Therefore each restricted endomorphism
x|W:W =W, xel,

is represented with respect to the basis 2 of W by an upper triangular matrix
Ay = € t(n,K).

ii) Diagonal elements of the triangularization: We claim that for each x € [ all
eigenvalues of x|W are equal to A (x), i.e.

Ax)  x
A=
0 Ak

To prove the claim we have to shows for each i =0,...,n — 1: The
vector y'(v) € W4 satisfies

(Y (V) = A(x) -y (v) € Wi

The proof is by induction on i =0, ...,n — 1. The induction start for i = 0 is the
eigenvalue equation

x(V) =A(x)-v.
For the induction step i — 1 — i consider the decomposition from part i)
2 (V) = ] () + ox) (V).

* For the first summand we showed in part i)

wi =[] (v) €W
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* Concerning the second summand we apply to the induction assumption
2T V) = A ) - TH(v) € Wiy
the endomorphism y € L, and obtain
(ox)( 1 (V) = A(x) -y (V) € ¥(Wie1) C Wi

Taken together, both steps imply the induction claim for the exponent i:

(' (V) =A%) Y () =wi+ (vox) (' (V) = A(x) ¥ (v) €W,

iii) Vanishing of the trace of a commutator: Part ii) shows: All elements x € I act
on the subspace W C V as endomorphisms with

trace(x|W) =n-A(x).

For all x € I also [y,x] € I because I C L is an ideal. The trace of a commutator of
two endomorphisms vanishes. Hence for all x € 1

0= tr(yW,x[W]) = n-2([y,x])
which proves A ([y,x]) = 0. Because y € L is arbitrary the proof shows
AL 1) =0.
iv) Eigenspace is L-module: For arbitrary u € U, x € [ and y € L we have to show
x () = A®) - ()

One has due to part iii)

x.(yu) = e, ylu+y.(xu) = A([x,y]) - u+y.(A(x) -u) = A(x) - (y.u)

The present section deals with eigenvalues of certain endomorphisms. We need
the fact that a polynomial with coefficients from K splits completely over K into a
product of linear factors. Therefore we assume that the underlying field K is alge-
braically closed, i.e. we now consider complex Lie algebras.

Theorem 3.20 proves the existence of a common eigenvector for the endo-
morphisms of an embedded, complex solvable Lie algebra. It is an analogue of
Theorem 3.5 for the nilpotent case.

Theorem 3.20 (Common eigenvector of a solvable embedded complexLie alge-
bra).
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Consider a complex vector space V # {0}. Each solvable embedded Lie
algebra L C gl(V) has a common eigenvector: A non-zero vector v €V and a

linear functional
A:L—C

exist such that
x(v)=A(x)-v forall x € L.

The proof of Theorem 3.20 is standard. It imitates the proof of Theorem 3.5,
see [24, Chap.4.1], [13, Theor. 9.11].

Proof. The proof goes by induction on dim L. The claim trivially holds
for dim L = 0. For the induction step we assume dim L > 0, hence L # {0}. We
suppose that the claim is true for all solvable Lie algebras of smaller dimension.

1) Construction of an ideal I C L of codimension codimy,(I) = 1: The derived series
of L ends with D'0L = 0, hence it starts with

D'LC DL, ie. L/[L,L]#0.

Let
w:L—L/[L,L]

be the canonical projection of Lie algebras. The Lie algebra L/[L,L] is Abelian.
Therefore any arbitrary choosen vector subspace

DcCL/IL,L]
of codimension 1 is even an ideal. Then
1:=n'(D)

is an ideal of L with
codimp(I) :=dimL—dimI = 1.

The last formula about the codimension is a general statement from the theory of
vector spaces:
dim I = dim n~'(D) = dim D+ dim [L, L]

implies
codimp I =dim L—dim I =dim L—dim [L,L] —dim D =

=dim L/[L,L] —dim D = codimy; ;)D = 1.

ii) Subspace of eigenvector candidates: The action of L on V restricts to an action
of I on V. The induction assumption applied to I provides an element 0 # v € V
and a linear functional A : I — C with
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x(v) =A(x)-v forallxel.

We consider the non-zero subspace of V of common eigenvectors for all
endomorphisms of /

W:={veV:x(v)=A(x)-v forall x e I}.

The subspace W C V is stable under the action of L, i.e. forve Wandy € L
holds y(v) € W: For arbitrary x € I,v € W,y € L we have [x,y] € I and

x(y(v)) = e yl(v) +y(x(v)) = A([x,5]) - v+ A (x) - (V).

Here
e yl(v) = A[xy]) v
because [x,y] C I.

Lemma 3.19, applied to I C gl(W), gives A(|x,y]) = 0. Hence

and y(v) e W.

iii) 1-dimensional complement: According to the choice of the ideal I C L in part 1)
each element xo € L\ I provides the vector space decomposition

L=1I%C-xp.

By part ii) the subspace W is stable under the action of the restricted
endomorphism xo|W. Because the field C is algebraic closed, the restricted
endomorphism xo|W € End(W) has an eigenvector vo € W of xo with
eigenvalue A':

xO(Vo) = )L/ * V.

Due to the definition of W in part ii) the vector vo € W is also an eigenvector of all
endomorphisms from
L=IpC:-xp.

The linear functional A : I — C extends to a linear functional A : L — C by
defining A (xg) := A’. Then

x(vo) = A(x)-vo forall x € L,

which ends the induction step and completes the whole proof.
O

A corollary of Theorem 3.20 is Lie’s theorem about the simultaneous triangularization
of a complex solvable matrix algebra.
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Theorem 3.21 (Lie’s theorem on complex solvable embedded Lie algebras).

Consider a n-dimensional complex vector space V. Each solvable embedded Lie
algebra L C gl(V) is isomorphic to a Lie subalgebra of the Lie algebra of upper
triangular matrices

0 =2 . |eamo},
0 *

more precisely: There exists an invertible matrix
SeGL(V) ~GL(n,C)
such that the conjugation satisfies
L':=S8-L-S'ct(n,C).

Proof. Similar to the proof of Corollary 3.6 we construct by induction on dim V a
flag (V;) i=0,....n 0f V, each V; stable with respect to all endomorphisms

x:V=V xelL.
To start we set Vp := {0}. Theorem 3.20 provides a common eigenvector v; € V,
satisfying

x(vl) = l(x) *Vi
for all endomorphisms x € L. Set

Vi:i=C-viandV:=V/V,
We consider for all x € L the induced endomorphisms
V=V
and apply the induction assumption to the vector space V with
dimc V < dimg V :

There exists a basis (Vj)] , , of V with triagonalizes all endomorphims

V=V
For j=2,...,n we choose elements v; € V with
Vj = vj—i-V]

The family (v;) , is a basis of V: A given vector v € V has the residue class

J=ls
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n(v) = Zn: (aj-(vi+W)) = Zn: (aj-vj+Vi) = (Xn‘,z%"w) +Vi

j=2 j=2
Hence
n
\ Z oj-v; € Vi
j=2
ie.
n
V= Zocj-vj +0op vy
j=2
with complex coefficients
aj, j=1,...,n.
Hence

dimc < Vvi,...,v, >=dimc V

We set for each j =2,...,n
Vj:=spanc <vi,...,v; >

Then the family (V;),_,
endomorphisms of L. O

, is a flag of V, and each V; is stable with respect to all

Corollary 3.22 (Solvability and nilpotency). Consider a complex Lie algebra L.
Then L is solvable iff its commutator algebra

DL:=[L,L]=D'L
is nilpotent.

Proof. The derived series of L relates to the lower central series of the Lie algebra DL
as
D'L c C~Y(DL)

for all i > 1. The proof goes by induction on i € N*. The inclusion holds for i = 1.
Induction step i — i+ 1:

DL :=[D'L,D'L] c [C'~Y(DL),C'""Y(DL)] C [DL,C""'(DL)] = C'(DL).

i) Assume that DL is nilpotent. The vanishing of Cio(DL) for an index ip € N
implies the vanishing of D0*!L. Hence L is solvable.

ii) Assume that L is solvable and dim L = n. Applying Lemma 3.16 to the exact
sequence of Lie algebras

0-2Z(L)~L“% adL—0
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proves that ad L is solvable. Lie’s theorem, see Theorem 3.21, implies for the em-
bedded Lie algebra ad L
ad L C t(n,C).

If x € DL = [L,L] then
ad x € [t(n,C),t(n,C)] C n(n,C).

By Engel’s theorem, see Theorem 3.10, the Lie algebra DL is nilpotent. O

Note that Corollary 3.22 is also valid for an R-Lie algebra L, because the com-
plexification satisfies ' _
D'LerC=D'(LegC),

and similarly for the descending central series.

3.3 Semidirect product of Lie algebras

The semidirect product of two Lie algebras is a Lie algebra structure on the Carte-
sian product of the vector spaces of the two Lie algebras. The most simple case of
a semidirect product is the direct product. It is obtained by taking the Lie bracket
in each component separately. But using certain derivations one can define a Lie
bracket which mixes the Lie brackets of the components, see [4, §1.8]. The semidi-
rect product is an important tool to construct new Lie algebras from given ones, and
also for splitting Lie algebras into factors of smaller Lie algebras.

Definition 3.23 (Semidirect product). Consider two Lie algebras 7 and M with Lie
brackets respectively [—, —|; and [—, —], together with a morphism of Lie algebras
to the Lie algebra of derivations

0 : M — Der(I).
The semidirect product of I and M with respect to 0 is defined as
IxgM:=(L,[—,—])
with vector space L := I x M and bracket
[—,—]:LxL—L

[(i1,m1), (i2,m2)] := ([i1,82]1 + 0 (m1) (i) — O (m2) (in), [m1,m2]m)

foriy, i € I,my,my € M.
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According to Definition 3.23 the semidirect product I g M differs from the direct
product
IxXM,

which has the Lie bracket
[i1,i2]1, [m1,ma]pm],

by the additional summand of the first component
6(m1)(i2) — 8(m2)(ir) €1

The semidirect product captures how M acts on [ via 6, and the direct product is
the particular case 0 = 0.

Proposition 3.24 (Semidirect product). Consider two Lie algebras I and M, and a
morphism of Lie algebras
0 : M — Der(I).

1. The semidirect product
IxgM

is a Lie algebra.
2. The semidirect product fits into the exact sequence of Lie algebra morphisms

0=1LIxgMEM—0
with j(i) := (i,0), n(i,m) :=m.

3. The Lie algebra morphism & from part 2 has a section s, i.e. a morphism of Lie
algebras exists
M5 IxgM

satisfying
TTos = idM.
4. We have
I~jI)CIxgM
an ideal, and
M~s(M)CIxgM

a subalgebra of I xg M.

Proof. 1. Lie bracket: The Lie bracket is K-bilinear and alternating. In order to

verify for
x=(x1,%2),y = (y1,2),2 = (21,22) €I xM

the Jacobi identity in the form
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[[x,y],z} + [[ ,Z],X} + [[Z,XL}’] =0
we distinguish four cases:

e Ifx,y,z €I then the claim follows from the Jacobi identity of /.
e Ifx,yelandze€ MtheninlxgM
[x,y] = ([xl,yl]70) =
[bx,y],2) = ([[x1,31],0] = 0(z2) ([x1,311), 0) = (=6 (z2) ([x1, 1)), 0),
2 = [(671,0),(0,22)] = (—6(22) (31),0) =
(.2, 4] = [=(8(22)(31),0), (x1,0)] = ([=0(22) (y1), 1], 0),
[Z’x} = [(0722)7(x17 )] ( ( )(xl)vo)
[[z.2],3] = [(8(22) (x1),0), (v1,0)] = ([6(22) (x1),31],0)

The claim reduces to the claim that in /

—0(22)([x1,1]) +[=0(22) (1), x1] + [0 (22) (x1),31] = 0,

- 8(22) (w1, 31]) = [0(z2) (1)1 + [x1, 0(22) (1))

The latter equation holds because 6(z;) is a derivation of 1.
e IfxelandyzeMtheninl xgM
[e,y] = (=0(2)(x1),0): [[x,y],2] = (8(22) (8 (y2) (x1)),0)

[y7Z] = (07 [y27z2]); H 7Z]>x] = (9([)’2722})()“)70)
[z,x] = (6(22)(x1),0); [[z,x], 5] = (=6(y2)(6(22)(x1)),0)

The claim reduces to the claim in /

6(22)(6(y2)(x1)) + 0([y2,22]) (x1) — 0(y2)(8(22)(x1)) = 0,
i.e.
0([y2,22])(x1) = 0(y2)(8(2z2)(x1)) — 6(22) (0 (y2) (x1))

The latter equation holds because 60 is a morphism of Lie algebras.

e If x,y,z € M then the claim follows from the Jacobi identity of M.

2. Exact sequence: The definition of I xg M shows that j and 7w are morphisms
of Lie algebras. The exactness of the sequence is obvious: j is injective, 7 is
surjective, and

im j= j(I) =ker 7.
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3. Existence of a section: The map
s:M—=IxgM, m— (0,m),
is a morphism of Lie algebras, satisfying
7(s(m)) = 7((m,0)) = m.
4. Embedding I and M: The kernel of a morphism of Lie algebras is an ideal:
ker m=im j= j(I) ~1.

The image of a morphism of Lie algebras is a subalgebra. Hence the injectivity
of s implies that
s(M)~M

is a subalgebra of I xg M.

O

Note. The semidirect product I x ¢ M reduces to the direct product of Lie algebras
id:IxgM~IxM

if and only if 6 = 0.

Remark 3.25 (Product versus coproduct). See also [35].

1. The direct product L x L, of two K-Lie algebras together with the two canonical
projections
pl‘IL] XLQ-)LZ‘, i= 1,27

is the product in the category Liex of K-Lie algebras. The two embeddings
J1:Li =Ly XLy, x+— (x,O) and jo : Ly — Ly X Ly, x— (O,X)

satisfy
pioji = idL,‘a i= 172
2. The direct sum
(Ll &Ly, [73 *])

of two K-Lie algebras L; and L is the K-vector space L; & L, equipped with the
Lie bracket
X,Y], ifX,YelL
X, Y]:=14 [X,Y], ifX,)Yel,
0 ifXiel, X, €l
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The direct sum L & L, together with the two injective morphisms of Lie algebras
j,’ L= LDl i= 1,2,

is not the coproduct of Lie algebras: Consider a non-Abelian Lie algebra L. As-
sume there exists a morphism

f:LOL—L

which renders commutative the following diagram

Then for all (z1,z2) €LBL
flzi,2)=z1+z2 €L

which implies for
X = (X1,.X'2), y= (ylay2) cLaL

on one hand,

F(xy]) = F((xnsx2], i, y2])) = Beyyn] =+ [x2,32]
On the other hand, f being a morphism satisfies
Sy = [f ), f)] ie. £([x,3]) = 1 422,31 +y2] = [x1, 1]+ [x2, y2] + [x1, 2] + [x2, 1],
a contradiction in the non-Abelian case.

3. Note that Lieg is not an Abelian category: For non-Abelian L the set of Lie
algebra endomorphisms
HOWlL,'e]K (L, L)

is not even additively closed, because
idL + idL =2 idL ¢ HomL,-eK (L,L)
due to

(2-idL)([x,y]) = 2 [x,y] while [(2-idp)(x), (2 idL) (y)] = 4- [x, ]
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A corner stone of quantum mechanics is the canonical commutation relation
[Q,P|=h-1

with Q the position operator, P the momentum operator, 1 the identity operator,
and Planck’s constant

h= iz 1.054 x 107 erg - sec
2r '

8B8

Zur Quantenmechanik.
Von M. Born und P, Jordan in Géttingen.
(Eingegangen am 27. September 1925.)

Die kiirzlich von Heisenberg gegebenen Ansitze werden (zundchst fiir Systeme
von einem Freiheitsgrad) gu ciner systematischen Theorie der Quantenmechanik
entwickelt. Das mathematisehe Hilfsmittel ist die Matrizenrechnung, Nachdem
diese knrz dargestellt ist, werden die mechanischen Bewegungsgleichungen aus
einem Variationsprinzip abgeleitet und der Beweis gefihel, dal aul Grund der
Heisenbergschen Quantenbedingung der Energicsatz und die Bohrsche Frequensz-
bedingung aus den mechanischen Gleichungen folgen. Am Beispiel des an-
harmonischen Osgzillators wird die Frage der Eindeutigkeit der Lisung und die
Bedeutung der Phasen in den Partialschwingungen erdrtert. Den Schiul bildet
ein Versuch, die Gesetze des elektromagnetischen Feldes der neuen Theorie ein-
zufiigen.

festgelegt. Zusammenfassend erhalten wir unter Benutzung der durch
(6) definierten Einheitsmatrix J die Gleichung

pqg—qp =51 (38)

2mi
die wir die ,verschirfte Quantenbedingung® nemen und anf der
alle weiteren Schltisse beruhen.

Fig. 3.2 The birth of the strict quantum condition in [3]

This relation has been introduced by Born and Jordan and termed strict quantum
condition (German: verschdrfte Quantenbedingung), see Figure 3.2.

Proposition 3.26 (Heisenberg algebra of n-dimensional quantum mechanics).
The matrices from
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p
0,

0

0
heis(n) := 0 en(n+2,R):p=(p1,...,pn) ER"g=(q1,....qx) €R",c€R
0

o o

form a real 2n+ 1-dimensional Lie subalgebra of n(n+2,R), named the Heisenberg
algebra of n-dimensional quantum mechanics. In particular:

heis(1) =n(3,R).
A basis of heis(n) is the family
(P17~"7Pn7Q17“'7Qn71)

with elements

* P = E1 14, the matrix with the only non-zero entry p; = 1,
* Q= E11jut2, the matrix with the only non-zero entry q; = 1, and

* I =E| 2, the matrix with the only non-zero entry ¢ = 1

and the commutators
[Pijk} = 8jk'1 and [Pj,[] = [QJ',I] = [PJ',P/J = [Qj,Qk] = 0
A typical element of heis(n) looks like

Opi..pj...pn C
00006]1

00..0..0gq;|enn+2,R)

0..0..0q
0..0..00

o O

with
p: (p17"'7pl’l)7 q: (6]17-~;6]n)T>

see also [49, Chap. 13.1]. For further information on a graduate level about heis(n)
see [29, Chap. 2].
Proof. The commutator relations follow from the commutator formula
[Ei,j,Es,t} = 5}5 . Ei,t — 5;1' . Es,jy
for example

[P;, O = [Ev14j Ervknta) = Evivj Etsins2 — Ergknta Evi4+j = Ojk - E1n12
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because n+2 # 1. Hence heis(n) C n(n+2,R) is closed with respect to the Lie
bracket. O

The Heisenberg algebra is nilpotent, being a subalgebra of the nilpotent Lie al-
gebra n(n+ 2,R) of strictly upper triangular matrices.

The Heisenberg algebra captures the kinematics of an n-dimensional quantum
mechanical problem. For a complete description which also covers the dynamics of
the problem one needs a further operator: The Hamiltonian H of the problem and
its relation to the kinematical operators.

How to extend the Heisenberg algebra to include also the Hamiltonian H?

The solution is to construct the dynamical Lie algebra of quantum mechanics as the
semidirect product of the Heisenberg algebra and the 1-dimensional Lie algebra
generated by the Hamiltonian. For the case of 1-dimensional quantum mechanics
see also [23, Example 5.1.19].

Definition 3.27 (Dynamical Lie algebra of quantum mechanics). For n € N con-
sider the Heisenberg algebra heis(n) of n-dimensional quantum mechanics with ba-
sis

(P17~"7R13Q17"'7Qn71)7

the 1-dimensional Abelian Lie algebra R with basis (H), and the morphism of Lie
algebras
0 : R — Der(heis(n))

to the Lie algebra of derivations, defined as
O(H)(P;):=Qj, 0(H)(Qj):=—Pj, j=1,...,n, and O(H)(I) := 0.

The semidirect product
quant(n) := heis(n) xg R
is the dynamical Lie algebra of n-dimensional quantum mechanics. It fits into the

short exact sequence

0 — heis(n) ER quant(n) 5 R — 0.

Lemma 3.28 (Dynamical Lie algebra of quantum mechanics). The dynamical
Lie algebra of n-dimensional quantum mechanics quant(n) is a well-defined real
Lie algebra. Identifying heis(n) with the ideal
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Jj(heis(n)) C heis(n) xg R
and R with the subalgebra
s(R) C heis(n) xg R
the distinguished commutators of quant(n) are
[H,Pj|=Qj, [H,Q;]=—Pj, j=1,...n, [H,]]=0.

Proof. 1) The endomorphism 0(H) is a derivation: Using the shorthand D := 0 (H):

e Left-hand side:
D([P;,P)]) =D(0) =0

Right-hand side:
¢ Left-hand side:
D([Q;,0x)]) =D(0) =0
Right-hand side:
[D(Q)), 0] +10),D(Q)] = [P}, Okl +[Qj, —Pi] = =8 - I+ 85 -1 = 0.

¢ Left-hand side:
D([P;, Q1)) = D(8jx-1) =0

Right-hand side:
[D(P}), Ol + [P}, D(Qk)] = [Q) Ok + [P, =P} = 0.

e Left-hand side:
D([1,Pj]) =D(0) =0

Right-hand side:
[D(I)apj] + [IaD(Pj)] =0+ [Ian] =0

¢ Left-hand side:
D([1,0;]) =D(0) =0

Right-hand side:
[D(1),Q,] +[1,D(Qj)] = 0~ [1, ;] = 0.

ii) The map O is a morphism of Lie algebras: Because R is 1-dimensional and
Abelian, the claim follows from [D, D] = 0.
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iii) Computing the distinguished commutators: For j = 1,...,n the distinguished
commutators follow from the definition of the Lie bracket of a semidirect product.
In

quant (n) := heis(n) xg R

holds
[(OaH)a (Pjvo)] = ([O’Pj] +D(Pj)’ [H,O]) = (Qj?o)

[(0,H),(2;,0)] = ([0,0,]+ D(Q;), [H,0]) = (—F;,0)
[(0,H),(1,0)] = (D(I),0) = (0,0),
i.e. under the identification of
heis(n) with j(heis(n)) C quant(n) and of R with s(R) C quant (n)

holds
[Han] = ij [Hij] = _Pja [Hal] =0.

Proposition 3.29 (Solvability of quant(n)). The dynamical Lie algebra of quantum
mechanics
quant(n) := heis(n) xg R

is solvable, but not nilpotent. Its derived algebra is
D' quant (n) = heis(n).
Proof. The descending central series of
L := quant(n) = spang < P;,Q;,I,H: j=1,..,n>
is
C'L := spang < P;,Q;,I: j=1,..,n)
and
C’L=[L,C'L] = spang < P;,Q;,I: j=1,..,n)=C'L
Hence foralli € N

C'L# {0},

which shows that quant (n) is not nilpotent. Corollary 3.22 and the subsequent note
for the base field R imply that quant(n) is solvable. O

Remark 3.30 (Heisenberg picture and Schroedinger picture).

1. Proposition 3.26 and Definition 3.27 introduce the Heisenberg Lie algebra heis(n)
respectively the Lie algebra quant(n) of n-dimensional quantum mechanics as
abstract mathematical objects.
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The role of these Lie algebras for quantum mechanics results from representing
their elements as selfadjoint operators on complex Hilbert spaces, which are
adapted to the particular physical system. Only after applying a representation
the Lie algebra gets a meaning for physics. In the most simple case

of 1-dimensional quantum mechanics the representation p maps the elements of

heis(1) = spang < Q, P, [ >

to selfadjoint operators, defined on functions f from a dense subspace of L?(R),
see [27, Chap. 3.6]:

p(P)(f(x)) :=x- f(x) (multiplication)

d
p(O)(f) :=—i- 4 (derivation)
dx
p(I) := —i-id (scalar)
Here the definition of p(I) follows from the canonical commutator relation
(POl =1

because it forces

p() =p(PQ)) =[p(P),p(Q)] = —i-id.

The canonical commutator relations have no non-zero representation on a
finite-dimensional vector space V': Taking the trace of a matrix equation

p(1) = p(P.Q]) = [p(P).p(Q)] = —i-id

shows
0 =trace[p(P),p(Q)] = trace(—i-id) = —i-trace idy

and implies V = {0}.

2. Like classical mechanics also quantum mechanics distinguishes between states
and observables to describe a physical system, cf. [37]. Pure states, the most sim-
ple states, are represented by the 1-dimensional subspaces of a complex Hilbert
space Hilb with a Hermitian product < —,— >, and the observables are self-
adjoint operators on Hilb. The expectation value of measuring the observable 2
when the system has been prepared in state ¢ is

< Q|Q2|P >:=<9,2(9) >=<Q¢,9 > €R.

3. A pure state ¢ is given by a function ¥ = y/(¢), and the temporal development
of the system, i.e. its dynamics, is governed by the Hamiltonian H of the system
according to the Schrodinger equation, the ordinary differential equation
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H(y(t)) =i-y(t), normalization: i = 1.

The Hamiltonian H is the observable of the total energy of the system. The
Schrodinger picture considers the temporal development of the states and fixes
the observables. For conservative systems the Hamiltonian has no explicit time
dependency.

4. The Heisenberg picture takes the opposite approach: It fixes the states and con-
siders the temporal development of the observables. This approach resembles the
Hamiltonian approach of classical mechanics using canonical coordinates. In the
Heisenberg picture, the temporal development of an observable (2 is governed
by the commutator equation

. P
%_Q(t) = [H,.Q(t)]-FEQ(I)'

d
Here the partial derivation 5 Q vanishes in case 2 does not explicitly depend
on the time 7. In particular, for a set of canonical observables P;, Q;, j=1,...,n:

20,0 = 1.0, = ~P,(0)

;p.,.@) = [H,P;(1)] = Q;(1).

A simple example of a 1-dimensional quantum system is the 1-dimensional os-
cillator. It has the Hamiltonian
1 mw?

H=_—P
2m + 2

Q?
with respect to the momentum observable P and the position observable Q. The
real number @ denotes the oscillator frequency, the real number m denotes the

oscillator mass.

The mathematical formalism of quantum mechanics is well understood: The theory
of self-adjoint operators in a Hilbert space forms part of the domain of functional
analysis. One needs the existence of the spectral representation.

But the interpretation of the physical content, even more the implications
considered from the viewpoint of philosophy of nature are still debated.
Historically, the first elaborated interpretation of quantum mechanics was the
Copenhagen interpretation, see [20]. Its main thesis: Observables of quantum
mechanical systems get a specific value not until the moment of observation.

The Copenhagen interpretation is sharpened further in Rovelli’s Relational
Quantum Mechanics, see [39]: Observables get a specific value in the act of
interaction of two physical systems, and this value has a relative meaning:
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“Quantum mechanics is a theory about the physical description of physical system
relative [emphasis JW] to other systems, and this is a complete description of the
world.”

Rovelli’s formulation does not refer to any observation, in particular it does not
refer to an observer. Concerning the Copenhagen interpretation Rovelli finishes his

paper:

“Heisenberg’s insistence on the fact that the lesson to be taken from the atomic
experiments is that we should stop thinking of the state of the system has been
obscured by the subsequent terse definition of the theory in terms of states given by
Dirac. Here, I have taken Heisenberg’s lesson to some extreme consequences.”



Chapter 4
Killing form and semisimple Lie algebras

All vector spaces and Lie algebras are assumed finite-dimensional if not stated oth-
erwise. The composition f, o f| of two endomorphisms will be denoted as product

f2-fioralso fafi.

4.1 The trace of endomorphisms

The present section introduces a powerful tool for the study of Lie algebras: Impor-
tant properties of a Lie algebra L are encoded in a bilinear form, which derives from
the trace of the endomorphisms of the adjoint representation of L.

Lemma 4.1 (Basic properties of the trace). Consider a vector space V and endo-
morphisms x,y,z € End(V).

1. For nilpotent x holds
trx=0.

2. With respect to two endomorphisms the trace is symmetric, i.e.
tr (xy) =tr (yx) ortr [x,y] =0.
3. With respect to cyclic permutation the trace is invariant, i.e.
tr (xyz) = tr (yzx)
4. With respect to the commutator the trace is “associative”
tr ([x,ylz) =tr (x[y,2]).

Proof. 1) All complex eigenvalues of a nilpotent endomorphism are zero.

127
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2) With respect to matrix representations of the endomorphisms note

tr(xy) = injyji = Zinxij =tr (yx)
iJ iJ

3) According to part 2) we have
tr(xyz) = tr(x(yz)) = tr((yz)x) = tr(yzx).

4) We have
[x,y]z = xyz — yxz and x|y, z] = xyz — x2y.

The ordering yxz results from the ordering xzy by cyclic permutation. Hence part 3)
implies
tr(yxz) = tr(xzy)

which proves the claim.

Definition 4.2 (Killing form). Let L be a K-Lie algebra.

1. The trace form of a representation
p:L—gl(V)
on a K-vector space V is the symmetric bilinear map
B:LxL—=K, B(xy):=tr(p(x)op(y)).
2. The Killing form of L
K:LxL—K, x(x,y):=tr (ad(x)oad(y))

is the trace form of the adjoint representation ad : L — gl(L),

Theorem 4.3 (Cartan condition for the solvability of embedded Lie algebras).
For a K-vector space V each Lie subalgebra L C gl(V') of matrices with vanishing
trace form, i.e. satisfying forall x, y € L

tr(xoy) =0,
is solvable.

For the proof cf. [13, Theor. C.5].

Proof. A real Lie algebra is solvable if and only if its complexification is solvable.
Therefore we may assume K = C for the base field.
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i) According to Corollary 3.22 it suffices to prove the nilpotency of the commutator
algebra
DL =[L,L).

Therefore it is sufficient according to Corollary 3.6 to show, that each element
x€eDLCgl(V)
is a nilpotent endomorphism of V.

ii) Consider an arbitrary but fixed endomorphism x € [L,L]. It’s Jordan
decomposition according to Theorem 1.19

XxX=xs+x, € EndV

provides a basis of V consisting of generalized eigenvectors of x. With respect to
this basis x is an upper triangular matrix and its semisimple summand x; is a
diagonal matrix

x; =diag(Ay,..., Ay)

with each eigenvalue A; of x counted with its algebraic multiplicity. Define the
complex conjugate diagonal matrix

Xs =diag(A1,...,Ay)

Then the product
X;0X

is an upper triangular matrix with the values
|lj|2, j=1,...n,
on the main diagonal. Hence
n
tr(Xsox) = Z |A;[*>0
j=1
We have to show

tr(xsox) =0

By assumption x € [L, L] is a sum of commutators of the form [y, z] with y, z € L.
Hence
tr(Xsox)

is a sum of terms of the form
II‘(XSO [y,z]) = tr([xmy] OZ):

with the last equality due to Lemma 4.1.
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iii) Relating diagonal matrices A and A: According to the proof of Proposition 3.3
the matrices of ad x; and of ad X, are diagonal with respect to the canonical
basis (E;;) of End(V):

1<i,j<n
ad x; = diag ((K,- - lj)ij) and ad X, = diag ((I,' —Ij)ij)
We choose a polynomial g € C[T] satisfying forall 1 <i,j <n
q(Ai—2A;) = Ai— 4,
Applying the polynomial in the context of the two diagonal matrices shows

g(ad x;) = ad %

Because the Jordan decomposition of ad x is obtained by applying ad to the Jordan
decomposition of x, there exists a polynomial s € C[T] with

ad x; = s(ad x).

Hence
(ad x)(L) CL = (ad x5)(L) CL = (ad %;)(L) C L

We obtain for each of the summands from part ii)
tr((ad x5)(y)oz) =0
because by assumption
u:=(ad x)(y) €L = tr(uoz)=0
Collecting all summands gives
tr(¥;0x) =0
O

In Theorem 4.3 the converse implication does not hold: The Lie algebra t(n,K) is
solvable but does not fulfill the Cartan condition.

Corollary 4.4 (Cartan’s characterization of solvability). For a complex Lie alge-
bra L are equivalent:

e The Lie algebra L is solvable.

» The Killing form K of L satisfies

k(L,[L,L]) = 0.
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Proof. = Assume L solvable. Applying Lemma 3.16 to the exact sequence
0—Z(L) —»L“% ad(L) -0

shows that
ad(L) C gl(End L)

is solvable. Lie’s theorem, Theorem 3.21, implies that the Lie algebra ad(L) can
be considered a matrix algebra of upper triangular matrices, and elements of

ad([L,L)) = [ad L,ad L]

as strictly upper triangular matrices.

Set
DL:=D°L=L,L)

as a shorthand for the commutator algebra of L.
k(L,DL) = {tr(ad xoad y): x€ L,y € DL}
For x € L and y € DL the matrix product
ad xoad y

is a strictly upper triangular matrix and therefore nilpotent. Then the Killing
form annihilates the pair:

K(x,y) :=tr(ad xoad y) =0
Because x € L and y € [L, L] are arbitrary we obtain
K(L,[L,L]) =0
* Assume k(L,[L,L]) = 0. Then in particular
k([L,L],[L,L]) = x(DL,DL) = 0.
Theorem 4.3 implies that the embedded Lie algebra ad DL is solvable. The kernel
ker|ad : DL — gl(DL)] = Z(DL)
is Abelian, hence solvable. Lemma 3.16 implies the solvability of DL. Eventually
DL = [L,L] solvable => L solvable

according to the definition of solvability via the derived series of L.
O



132 4 Killing form and semisimple Lie algebras

Note. Corollary 4.4 is valid also for a real Lie algebra L: For the necessary
calculation with the Killing forms of L and L ®g C see [31, Proof of Prop. 1.46].

4.2 Fundamentals of semisimple Lie algebras

Definition 4.5 (Simple, semisimple and reductive Lie algebras). Consider a Lie
algebra L.

1. L is simple iff [L,L] # {0} and L has no ideal different than {0} and L.
2. L is semisimple iff L has no Abelian ideal 7 # {0}.
3. Lis reductive iff it splits as the direct sum

L=Z®S

with an Abelian ideal Z C L and a semisimple ideal S C L.

These concepts apply also to an ideal / C L when the ideal is considered a Lie
algebra.

Note: For each Lie algebra L the derived algebra [L,L] C L is an ideal. Hence
[L,L]=L

for simple L. By definition the trivial Lie algebra L = {0} is semisimple, but not
simple. A semisimple Lie algebra L # {0} is not Abelian. One has

simple = semisimple =—> reductive.

Remark 4.6 (Solvable Lie algebra, semisimple Lie algebra).

1. If a Lie algebra L has a solvable Ideal I # {0} then L has also an Abelian
ideal # {0}:

Let i € N be the largest index with DI # {0} for the derived series of I.
Then D'I C L is an Abelian ideal because

DI =[D'1,D'I) = {0}.

The reverse implication is obvious: Each Abelian ideal of L is in particular a
solvable ideal.



4.2 Fundamentals of semisimple Lie algebras 133
2. As a consequence for a Lie algebra L:
L semisimple <= rad(L) = {0}.

The equivalence indicates a complementarity between semisimplicity and solv-
ability. The only Lie algebra which is both semisimple and also solvable is the
zero Lie algebra L = {0}.

A simple application of the characterization of semisimpleness is Proposition 4.7.

Proposition 4.7 (Semisimple Lie algebras are embedded Lie algebras).

The adjoint representation
ad : L — gl(L)

of a semisimple Lie algebra L is a faithful representation of L. In particular,
L~ad(L) C Der(L) C gl(L)
represents L as a matrix algebra.

Proof. The kernel of the adjoint representation of L is the center of L, an Abelian
ideal of L. Because L is semisimple, one concludes

Z(L) = {0}.

Remember that Proposition 2.8 demonstrates: The adjoint representation already
maps to the Lie algebra of derivations of L. O

Each Lie algebra becomes semisimple after dividing out its radical.

Proposition 4.8 (Semisimpleness after dividing out the radical). For any Lie
algebra L the quotient L/rad(L) is semisimple.

Proof. Consider the canonical projection of Lie algebras
w:L— L/rad(L).
Each ideal
ICL/rad(L)

has the form
I=J/rad(L)

with the ideal
J=n')cL

If 7 is an Abelian ideal, then [1,1] = 0, hence
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[J,J] C rad(L)

Therefore the derived algebra
D'J=1J,J]

is solvable. The quotient J/D'J is Abelian, hence solvable. Lemma 3.16 applies to
the canonical exact sequence

0—D'J—J—J/D'J—0
and shows that J is a solvable ideal. Hence
J C rad(L)

and
I=n(J)=0

According to Proposition 4.8 each Lie algebra L fits into an exact sequence of Lie
algebras

01505 M0

with I = rad (L), a solvable subalgebra, and M = L/I a semisimple quotient. Levi’s
theorem provides a Lie algebra morphism

s:M— L

which is a section against 7. When identifying I with j(I) the section s induces the
Lie algebra morphism

0 : M — Der(I), 6(m) := (ad s(m))|I,
to the derivations of /. One obtains L as the semidirect product
L~1Ix 0 M

For a proof of Levi’s theorem see [4, Chap. I: §6.8 Theor. 5 and §1.8].

Lemma 4.9 (Radical). Consider a Lie algebra L. Then for each ideal L' C L the
radical rad L' C L is also an ideal.

Proof. The quotient L/rad L is semisimple due to Proposition 4.8. The inclusion
L'cL

implies the inclusion of Lie algebras
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L'/(L'Nrad L) C (L/rad L)

Due to Corollary 4.20 also
L'/(L'Nrad L)

is semisimple. The vanishing of its radical implies
rad ' C (I'Nrad L).

The right-hand side
L'Nrad L

is a solvable ideal of L', hence contained in rad L'. We obtain:

rad ' =L'N rad L

is the intersections of two ideals in L, and therefore itself an ideal in L.

Definition 4.10 (Orthogonal space of a symmetric bilinear form).

Consider a K-vector space V and a symmetric bilinear form
B:VxV =K.
i) The orthogonal space with respect to 3 of a subspace M C V is

Mt = {xeV:B(x,M)=0}.

The orthogonal space V- is named the nullspace of 8 or the radical of 8.

i) The form f is non-degenerate if its nullspace is trivial, i.e. V- = {0}.

135

Remark 4.11 (Orthogonal space). Consider a K-vector space V with a symmetric,

non-degenerate bilinear form
B:VxV =K
Then B induces an isomorphism to the dual space
J VoV ) =B(v,—).
For a subspace M C V one obtains

Mt~ jMY)={AeV*: AIM =0}~ (V/M)*
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Lemma 4.12 (Orthogonal space of ideals). Consider a vector space V, a Lie alge-
bra L C gl(V) and the trace form

B:LxL—K, B(x,y):=rtr(xy).
For an ideal I C L the orthogonal space I'- C L of B is also an ideal.
Proof. Consider x € I'-. We have to show: For arbitrary y € L and all u € I holds
[y,x] € I, ie. B([y,x],u) =0

We have
_ﬁ([yvx]ﬂ") = ﬁ([xay]?u) = ﬁ(xv [y?u])

according to Lemma 4.1. Because [y,u] € I and x € I+
B, [y,u]) = 0.

Hence [x,y] € I*. O

The main step in characterizing semisimplicity of a Lie algebra by its Killing
form is Proposition 4.13.

Proposition 4.13 (Non-degenerateness of the trace form of an embedded semisim-
ple Lie algebra). Consider a vector space V and a semisimple Lie algebra L C gl(V).
Then the trace form

B:LxL—K, B(x,y):=tr(xy),

is non-degenerate.
Proof. The nullspace
S:=L*={xe€L: tr(xy) =0 forallyc L}

is an ideal according to Lemma 4.12. We consider the Lie algebra S: By definition
for all x,y € S holds
tr(xoy)=0

Hence Cartan’s trace condition, Theorem 4.3, shows that S is solvable. Hence

SCL
is a solvable ideal. Semisimpleness of L implies S = {0}. O
The main theorem of the present section is the following Cartan criterion for

semisimplicity. It derives from Proposition 4.13. It is therefore a consequence of
Cartan’s trace criterion for solvability.
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Theorem 4.14 (Cartan’s characterization of semisimplicity). For a Lie algebra L
the following properties are equivalent:

e L is semisimple
* The Killing form Kk of L is non-degenerate.

Proof. i) Assume L semisimple. According to Proposition 4.7 the adjoint
representations identifies L with the subalgebra

ad L C gl(L).
Therefore k is non-degenerate according to Proposition 4.13.

ii) Assume K non-degenerate, i.e. L+ = 0. Consider an Abelian ideal
ICL.
We claim I C L*: For arbitrary, but fixed x € I and for all y € L the composition
ad(x)oad(y):L—I1CL

is a nilpotent endomorphism of L, because

L8 ey p e pedy g~ ro).

Because the trace of nilpotent endomorphisms vanishes we obtain
k(x,y) = tr(ad(x) oad(y)) = 0.
As a consequence x € L. Because x € I was arbitrary, we obtain
IC L

The inclusion implies I = 0 because k is non-degenerate by assumption.
Therefore {0} is the only Abelian ideal of L, and L is semisimple.
O

Lemma 4.15 (Killing form of an ideal). Consider a K-Lie algebra L. For any
ideal I C L the Killing form x; of I is the restriction of the Killing form x of L
tolx1

Ki=xk|(IxI):IxI—K.

Proof. Any base of the vector subspace I C L extends to a base of L. Then
for x, y € I the map
(ad x)o(ady):L—I1CL
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(v0)

And the matrix A represents the restriction

has the matrix representation

(ad x)|Io(ad y)|I : 1— 1.

Hence
tr((ad x)o(ad y)) =tr A=tr((ad x)|I o (ad y)|I),

ie.
Ki(x,y) = tr((ad(x) o ad(y))|I) = tr(ad(x) o ad(y)) = K(x,y).

Proposition 4.16 (Semisimple ideal as a direct summand). If a Lie algebra L con-
tains a semisimple ideal I C L, then L splits as

L=I®J
with an ideal J C L.

Proof. 1) Directness: With respect to the Killing form k of L consider the
orthogonal space of [ in L

I*={yeL: x(l,y) =0}
Lemma 4.1 shows that J := I+ is also an ideal in L. The intersection
A=(InNnJ)CL

is an ideal in L. Due to Lemma 4.15 the Killing form k; of I is the restriction of the
Killing form « to arguments from L. Hence

0=x(I,A) = xi(I,A),
and the semisimpleness of 7 implies A = {0}.
ii) Dimension formula: One has
dim I > dim L—dim I

because the number of linear equations, which define the reduction from L to / L is
equal to dim I. Hence
dim I +dim I > dim L,

which implies
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dimI+dim I =dimLand L=L&J.

Theorem 4.17 (Criterion for reductiveness). Consider a complex vector space V
and an embedded subalgebra L C gl(V). If V is an irreducible L-module, then L
splits as

L=Ly®J

e with the semisimple subalgebra
Ly:={x€L: trx=0}
e and a central, scalar ideal
JCC-1y C Z(L).
Proof. 1) Semisimpleness of Ly: The kernel of the trace map
Ly =ker [tr: End(V) — C]
is an ideal in L of codimension
codimy, Lo < 1.

Lemma 4.9 implies
rad Lo C L

is an ideal. The Lie algebra
M :=rad Ly

is solvable. Due to Theorem 3.20 there exists a common eigenvector v € V of all
endomorphism of M. The eigenvector v defines a linear functional

A:M—C

satisfying for all X e M
Xv=AX) v

The vector space
Wi={weV: Xw=A(w) -wforallwe M}

is not zero. Due to Dynkin’s Lemma, Proposition 3.19, the vector space W C V is
even an L-module. The irreducibility of the L-module V implies

W=V.

Hence for each x € M the endomorphism



140 4 Killing form and semisimple Lie algebras
x:V=V

is the scalar
x=A(x)-1y

with
trx=(dimV)-A(X)

The inclusion
x € rad Ly = ker(tr X)

implies A (x) = 0, and a posteriori x = 0. We obtain
M =rad Ly = {0},
which shows the semisimplicity of L.

ii) The central ideal J: Proposition 4.16 implies the existence of an ideal / C L
such that
L=Ly®J

The estimates
codimp, L <1 and dim L+dim J < dim L,

imply
dimJ <1.

Hence J is an Abelian ideal in L, and
L=Ly®J

The argument, which was applied above to the solvable Lie algebra M, also applies
to the Abelian Lie algebra J. It shows that J is generated by a scalar, in particular J
is a central ideal.

O

Corollary 4.18 (Semisimpleness of the classical Lie algebras from the ABCD-series).
Each classical K-Lie algebra L from the ABCD-series within the parameter domain (r,m)
from Proposition 2.15 is semisimple.

Proof. 1. Complex base field: Denote by L a complex Lie algebra within the range
of the corollary. Let V the complex vector space where the defining matrices
of L act as endomorphisms. Then

LcglV)

is a Lie subalgebra. In order to apply Theorem 4.17 we show that
the L-module V is irreducible.
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* A-series L = sl(r,C): Consider the canonical basis (¢;)1< <y of C" ~ V. For
each j =1,...,m, exists a matrix A € L satisfying

A- ey =e j
Hence the L-module V is irreducible.

For the Lie algebras L from the remaining B,C, D-series we denote

by (Ers) 1<, 4 the canonical basis of the vector space End V. Due to their
definition all matrices from L C gl(B) are symmetric. For a

given L-submodule W C V we introduce the associative matrix algebra

T:={f€EndV: f(W)CW}.
It satisfies L C T, because W is an L-module.

* B-series and D-series L = so(r,C): For pairwise distinct
indices 1 <, j,k < m the elements

Eij_Eji andEjk—Ekj

belong to L, hence also to 7. Because T is an associative matrix algebra, also
for the product
Ey = (Eij —Ej') . (Ejk —Ekj) eT.

And for all indices 1 <i<m
Eij=Ej-Ey, k# i,

implies
Ei;eT.

Hence
T=EndVandW =V.

Therefore V is an irreducible L-module.

o C-series L= sp(r,C): For arbitrary indices 1 < i, j < r one starts with the

block matrices
0 E; 0 0 cL
00/’ E; i +F ji ’
Hence their product

0E;\ ( 0 0\ _ (Ei(Ej+Ej)0\_ (E;O0
00 Eij+Ej 0 0 00

belongs to T'. Analogously, one shows
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00
(0,)<T

Then for arbitrary a € M(r x r,C) the product in block form satisfies

(50)(00)=(05) €
(00) (10)= (o) €7

T=EndVandW =V.

and also

Hence

Therefore V is an irreducible L-module.

As a consequence of Theorem 4.17, each complex Lie algebra L of
the A, B,C, D-series within the given range is reductive. Because all matrices
of L are traceless, the scalar ideal J C Z(L) vanishes, and L is semisimple.

2. Real base field: A real Lie algebra M is semisimple iff its complexification
MRrC

is semisimple. According to this general result part i) implies the
semisimpleness of L.
O

Note: Theorem 7.10 will show that all complex Lie algebras from Corollary 4.18
are even simple. The proof of Corollary 4.18 does not generalize to type D;.
Indeed, the Lie algebra L of type D is Abelian and not semisimple.

The first step on the way to split a semisimple Lie algebra as a direct sum of simple
Lie algebras is Proposition 4.19.

The direct sum
L=L &L,

of two Lie algebras L; and L, has as underlying vector space the direct sum of the
vector spaces underlying L and L,, and the Lie bracket of L is by definition

[LhLz] = {0}
Hence both Lie algebras L and L, become ideals in L.

Conversely, taking the direct sum
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I®J

of two ideals of a Lie algebra presupposes that the sum of the underlying vector
spaces is direct. Then /NJ = {0}, which implies for the Lie bracket

1,J] € (InJ) = {0}.

As a consequence: If a Lie algebra L splits in the category of vector spaces as the
direct sum
L=I1&J

with two ideals 7, J C L, then L also splits in the category of Lie algebras as the
direct sum of the Lie algebras / and J.

All of these considerations also apply to the direct sum of arbitrary many Lie
algebras.

Proposition 4.19 (Splitting a semisimple Lie algebra with respect to an ideal).
Consider a semisimple Lie algebra L and an ideal I C L. Then:

1. The Lie algebra L splits as the direct sum of ideals
L=Ial*
with I'* the orthogonal space with respect to the Killing form of L.

2. Both ideals 1, I+ C L are semisimple.

Proof. 1) Direct sum: First we prove a dimension formula. According to Car-
tan’s criterion for semisimplicity, Theorem 4.14, the Killing form x of L is non-
degenerate. Hence the induced map

JiL— L7, j(x) = K(x-))
is an isomorphism. Remark 4.11 implies
j) = (L/1y

Hence
dim I = dim(L/I)* = dim(L/I) = dim L — dim I
or
dimI+dim I+ =dim L
Secondly, we show
Inr-={0}:

According to Lemma 4.12 also the orthogonal space I C L is an ideal. Due to
Proposition 4.7 we may identify L with ad L. Then Cartan’s trace condition for
solvability applies to the ideal
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J:=Inrt

considered as a Lie algebra: The Killing form «; of J is the restriction to J of the
Killing form k of L, according to Lemma 4.15. We have

KJ(["?‘IL J) = K(["?"]? J) =0

because
[J,JJcJCIandJCI*.

The Cartan criterion for solvability, Corollary 4.4, implies that J C L is solvable,
and semisimpleness of L implies

J={0}.
As a consequence, the dimension formula for the sum of vector spaces
dim (I4+1*) = dim I +dim I'* — dim(INIY) = dim I +dim I = dim L
implies the direct sum decomposition
L=IsI"

2) Semisimpleness: Due to part 1) any Abelian ideal J C [ is also an Abelian ideal
of L, because
[J, M) c [I,I*] = {0}.

The semisimple Lie algebra L has no non-zero Abelian ideal, hence J = 0. Analo-
gously for an Abelian ideal of I-. O

Corollary 4.20 (Semisimplenes in exact sequences). Consider a short exact se-
quence of Lie algebra morphisms

0—>L01>L1 £>L2—>0
Then are equivalent:
e The Lie algebra Ly is semisimple.
* Both Lie algebras Ly and Ly are semisimple.
Proof. We identify Ly with the ideal j(Ly) C L;.
* Assume L; semisimple. Due to Proposition 4.19 the Lie algebra L splits as
L =Ly Ly,

and the ideals
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Lo C L, andLé C Ly

are semisimple. Hence
Lz ~ L1 /LO ~ Lé‘

is semisimple.
e Assume Ly and L, semisimple. Consider an Abelian ideal J C L. Then
x(J)Cwm(l) =Ly

is an ideal because 7 : L} — L is surjective. In addition, (J) is Abelian. The
semisimpleness of L, implies (J) =0, i.e.

JClLly

is an Abelian ideal. Semisimpleness of Ly implies J = 0.
O

Theorem 4.21 (Splitting a semisimple Lie algebra into simple summands). Con-
sider a Lie algebra L.

1. The following properties are equivalent:

e L is semisimple

e L splits as a direct sum

L= @Ia, card A < oo,

acA
of simple ideals Iy C L.

2. Assume L semisimple with a splitting according to part 1

L= EBIa, card A < oo.

acA
Each ideal I C L splits as
I= P Iu
oEA
ma (I)#{0}

If 1 is simple then for exactly one o € A
I — Ia.

Hence the splitting of L is uniquely determined up to the order of the summands.
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3. A semisimple Lie algebra L equals its derived algebra, i.e.
L=D'L=|[L,1].
Proof. Each simple Lie algebra L equals its derived algebra
L=I[LL

because [L,L] C L is an ideal, but L is not Abelian and has no other ideals than {0}
and L itself.

1. i) Assume L semisimple. In case L = {0} take the empty sum with index
set A = 0. Otherwise L # {0} and L is not Abelian.

If L has no ideal different from L and different from {0}, then L is simple.
Otherwise we choose an ideal /; of minimal dimension

{oycncL.

Proposition 4.19 provides a direct sum representation
L=1Lol.

The two ideals /; and 11L have the following properties:

* Any ideal of I; respectively of Ii- is also an ideal of L because of the direct
sum representation.
e The ideals I; and Ill are semisimple due to Proposition 4.19.
e The ideal I; is even simple: Due to the semisimpleness of L the ideal /; is not
Abelian, and therefore
(11, 11] #{0}.

And due to its minimality /; has no ideal different than {0} and I;.

Continuing with /;- the decomposition can be iterated until no summand in the
direct sum representation

L=L®LD..Dl,

contains a proper ideal. The decomposition stops after finitely many steps be-
cause each step decreases the dimension of the ideals in question.

ii) Assume a direct sum decomposition

L= EBIa, card A < oo.
acA

For the semisimpleness of L we have to show: The only Abelian ideal / C L
is L ={0}.
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For each o € A the canonical projection
T - L — Iy

is a surjective morphism of Lie algebras. Hence it maps ideals to ideals. Therefore
the image
o (I) C Iy

is an Abelian ideal of the simple Lie algebra I,. Hence either
e (1) = {0} or me (1) = I

The latter case is excluded because the simple Lie algebra I, is not Abelian. As
a consequence for each o € A holds

7750:(1) = {0}7

which implies
I1={0}.

Hence L has no Abelian ideals different from {0}.

2. Claim: For each o € A with 7, (1) # {0} holds
To(l) =1y C1
For the proof consider the chain of equalities respectively inclusions
Ta(l) = lo = [l o] = [lo, T (1)) = [, 1] C 1

Simpleness of I, implies the first and the second equality. The third equality is
implied by the first equality. Concerning the fourth equality note: The splitting

L=Ep I

BeA

implies for each element x € I the decomposition

x= Z xp with xg 1= 7g(x) € Ig, B € A.
BeA

Because for 8 # « holds
[Ia,1g] = 0,
we have
[I(vaa] == [Ia,.x].

As a consequence
Lo, Mo (1)] = [la, 1]
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The final inclusion follows from the fact that / C L is an ideal.

3. The splitting of L implies the direct sum decomposition

[L,L] = [@Iav@lﬁ] = Z [Itxvlﬁ] = Z o, la] =

acA  BeA a,feA aEA
=Y L= Il.=L
acA aEA

The logical dependencies between the results of the last two sections is clarified
by the diagram from Figure 4.1. It shows the fundamental role of the Killing form
as part of the Cartan criteria for solvability and semisimplicity.

Theorem 4.3 é——— Lemma 4.1

Proposition 4.13

|

Corollary 4.4 Theorem 4.14

|

Theorem 4.21

Fig. 4.1 Logical relations of the results in Section 4.1 and 4.2

4.3 Weyl’s theorem on complete reducibility

Alike to splitting a semisimple Lie algebra as a direct sum of simple Lie alge-
bras Weyl’s Theorem 4.30 splits an arbitrary finite-dimensional representation of
a semisimple Lie algebra L as a direct sum of irreducible representations of L.

Consider a K-Lie algebra L, a vector space V, and a representation of L

p:L—gl(V).
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Recall from Definition 2.4 that V is named an L-module with respect to p. As a
shorthand one often uses for the module operation the notation from commutative
algebra

LxV =V, (x,v)—xv:=p(x)(v).

Definition 4.22 (Reducible and irreducible modules). Consider a Lie algebra L
and an L-module V.

1. A submodule W of V is a subspace W C V stable under the action of L, i.e.
LW CW.
2. An L-module V is irreducible iff V has exactly two different L-submodules,

namely V and {0}. Otherwise V is reducible. Notably, the zero-module is re-
ducible.

3. A submodule W of V has a complement iff a submodule W’ C V exists with
V=Wow
as a direct sum of vector spaces.

4. An L-module V is completely reducible iff a decomposition exists

with irreducible L-modules W;,j =1, ..., k.

Applying the standard constructions from linear algebra to L-modules creates a
series of new L-modules based on existing L-modules, cf. [24, Chap. 6.1].

Definition 4.23 (Induced representations). Consider a Lie algebra L. Two repre-
sentations of L

p:L—gl(V)and 6 :L— gl(W)

with corresponding L-modules V and W induce further representations of L in a
canonical manner:

1. Direct sum p &6 : L — gl(V &W) with
(peo)(x)(v+w):=px)(v)+o(x)(w), (xeL, veV,weW).
Corresponding module: Direct sum V & W with

x.(v+w) i=xv+xw
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2. Dual representation p* : L — gl(V*) with - note the minus sign -
(P (x)A) (V) :i==A(px)v), (xe L, A€V, veV).
Corresponding module: Dual module V* with
(xA)(v) = —A(x.v).
3. Tensor product p ® ¢ : L — gl(V @ W) with
(p®0o)(x)(vaw) = (p(x)®idy +idy @ c(x))(VRW) =

=px)veaw+veo(x)w, (xeL,veV,weW).

Corresponding module: Tensor product V@ W with
x.(VRW)=xvew+vexw
4. Exterior product p Ap : L — gl(A\*V) with
(PAP)(x)(viAV2) :=p(x)Vi AVa+ViIAp(x)va, (x €L, vi,vp €V).
Corresponding module: Exterior product A?V with
x.(UAV) =xUAVH+UAXV.
5. Symmetric product Sym*(p) : L — gl(Sym*V') with
(Sym*(p)(x))(vi - v2) := (P (X)vi) - va+Vi- (P(x)V2), (X EL,vi,v2 €V).
Corresponding module: Symmetric product Sym*V with
x(u-v)=(xu) - v+u-(xv).
6. Hom-representation Homg (p,0) := 7 : L — gl(Homg (V,W)) with
(T NV) =0 @)(f(v) = f(P(x)(V), (x € L, f € Homg (V,W),v € V).
Corresponding module: Vector space Homy (V,W) of K-linear maps with

(. )(V) = x.f (V) = fxv).

The constructions from part 1) and from part 3) - 5) generalize to sums respec-
tively products of more than two components. The notations emphasize the close
relationship to similar constructions from commutative algebra for modules over a
ring.

Remark 4.24 (Induced representations).
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1. Itremains to check that the constructions in Definition 4.23 actually yield L-modules,
in particular that they are compatible with the Lie bracket. As an example we
consider the case of the dual module V* and verify that the induced map

priL—gl(V7),

defined as

or

(xA)(v) = —=A(xv),
preserves the Lie bracket. Claim: For all x,y € L,A € V* holds
[x, 5] A =x.(y.A) —y.(x.A)

Evaluating both sides on an arbitrary vector v € V shows:

* Lefi-hand side:
(e 2)(v) = =A([x.y].v) = =A(x.(y.v) + A (3. (x.v))
* Right-hand side:
(x.(0-A) =y (x:A)) (V) = A (3.(x.v)) = A(x.(3.v))

Note in the last equation: The functional x.(y.A) means to apply x to the func-
tional y.A, hence

(. (rAN (V) = =(-A) (r.v) = A (3.(x.v)),

switching the order of x and y.

2. One checks that the canonical isomorphism in the category of K- vector spaces
V*QW = Homyg (V,W),A@w s A(—)-w,
extends to an isomorphism in the category of L-modules.
3. For a K-linear map f € Homg (V,W):
Lf=0 <= f:V = Wis L-linear.
The vector space of L-linear morphisms V — W is denoted
Homp(V,W)

Elements from Homy,(V,W) are sometimes named intertwiner, because they re-
late the L-modules V and W by an L-module morphism.
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Theorem 4.25 (Lemma of Schur for irreducible representations). Consider a K-Lie algebra L.

1. Then each L-module morphism
f:Vv—-w
between two irreducible L-modules is either zero or an isomorphism.
2. Consider an irreducible representation with a complex vector space V
p:L—gl(V).

Then each endomorphism f € End(V), which commutes with all endomorphisms
Sfrom p(L), is a scalar multiple of the identity, i.e. if for all x € L holds

[f,p(x)] =0,
then a complex number | € C exists with
f=nu-idy.
3. Consider two morphisms
S, V=W

between irreducible complex L-modules. If f, # 0 then
hi=u-f
for a suitable u € C, i.e.

C V=w
{0} vEwW

Proof. 1. Because f is a morphism, its kernel

Homp(V,W) = {

kerf CV
is a submodule. Irreducibility of V implies
kerf ={0} or kerf =V.

If kerf = {0} then f is injective and f(V) C W is a submodule with f(V') # {0}.
Irreducibility of W implies f(V) = W. Therefore f is injective and surjective,
hence an isomorphism. If ker f # {0}, then ker f =V, hence f is zero.

2. The endomorphism f has a complex eigenvalue u. Its eigenspace W C V is
an L-submodule: Each eigenvector w € W satisfies

(fep()(w) = (p(x)o f)(w) = p(x)(1-w) = k- p(x)(w).
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Now W # {0} and V irreducible imply W = V.

3. Because f, # 0 the morphism f; is an isomorphism according to part 1. Consider
the L-module morphism

fi=fiofy W =W
Then
f € Hom,(W,W),

i.e. f commutes with the action of L on W. Part 2 implies the existence of a
suitable u € C with

f=u-idw
which proves
fi=p-fa
O

Definition 4.26 (Quadratic Casimir element of a representation). Consider a
semisimple Lie algebra L and a faithful representation p : L — gl(V) on a vector
space V. The trace form of p

B:LxL—K, B(x,y):=tr(p(x)p(y)),

is non-degenerate according to Proposition 4.13. For a base (x;);=1,.. » of L denote

B(xi,y;) = 6ij.
The quadratic Casimir element of p is defined as the K-linear endomorphism
n

cp = ;p(xi)p(yi) € End(V).

Note: One checks that the quadratic Casimir element does not depend on the
choice of the basis (x;) i=1,....n- The Casimir element is an element of the associative
algebra End(V). It depends in a quadratic way on the elements of L.

Remark 4.27 (Reduction to faithful representations). If the representation p is not
faithful then one considers the direct decomposition

L=kerpaoL
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with
L' = (ker p)* C L.

The Lie algebra L' is semisimple according to Proposition 4.19. The restricted rep-
resentation
p|ll': L' — gl(V)

is faithful. The Casimir element of p is by definition the Casimir element of the
restriction p|L’.

Theorem 4.28 (Properties of the Casimir element). For a semisimple Lie algebra L
the quadratic Casimir element of a faithful representation p of L on a vector space V

cp €End(V)

has the following properties:

e Commutation: The Casimir element commutes with all elements of the represen-
tation

[CP 9 p(L)} = Oa
and the K-linear endomorphism
Cp V-V
is even an L-module morphism.

 Trace: tr(cp) =dim L

e Scalar: For an irreducible representation p of L on a complex vector space V

holds
dimL |

Cp = — “ldy .
P dimv

Proof. The faithful representation p is an embedding
p:L—gl(V)

Due to Proposition 4.13 the trace form f of p is non-degenerate. Set n = dim L. By

definition
n

cp =) p(xi)p(yi) € End(V)

with a pair of bases (x;)i=

to B.

yeury
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* Commutation: For x € L we show [p(x),cp] = 0: Define the coefficients ()
and (b ) according to

[x, ;] Zalk X, [6,y5] = ijk Vk-
i—1

Because the families (xj)1<j<, and (yk)1<k<, are dual bases with respect to 8

ajj = ﬁ(i aix - xx,yj) = B(pe,xil,y;) = =B([xi, x],y;) = =B (xi, [x,y)]) =

n
B(xi, Y bjx-yk) = —bji.

Here we made use of the associativity of the trace form according to Lemma 4.1.

To compute
n

[p(x).cp) = Y [P(x),p(xi)p (3]

i=1
we use the formula
[A,BC] =[A,B|C+BJA,C]

for endomorphisms A, B,C € End (V). The formula follows easily by expanding
both sides.

Therefore each summand of the last sum decomposes as

[Pp(x),p(xi)p(yi)] = [p(x),p(xi)]p(yi) +p (x:) [P (x), p (vi)]

and therefore

[p(x),¢p] = 2 (Ip(x); p(xi)lp (i) +p (xi) [P (x), p (vi)]) =

-

i=1

(PP +pCp (el = Y. aiy-p)pGi)+ Y., bue-px)p (o) =

™

=1 i,j=1 id=1
= ‘Zn‘,laij'P(xf')P(yi) + ‘ilbji'l)(xj)p(yl') =
i,j= i,j=
= i"l(a,»j +bji) - (p(x;)p(yi)) = 0.
i,j=

Here we have changed in the second sum the summation indices (i,k) — (j,i).

The commutation

[cp,pP(L)] =0



156 4 Killing form and semisimple Lie algebras

is equivalent to the fact that
Cp V-V

is L-linear.

e Trace: We have

™

tr(cp) =

tr(p(xi)p(vi)) = Zﬁ(xi,yi) =n=dimL.

i=1 i=1

* Scalar: For an irreducible representation p we get with the first part of the proof
and with the Lemma of Schur, Theorem 4.25, part 2

Cp = l.L . idv7
and with the second part of the present proof
tr(cp) =p-dimV =dim L.
Hence
dim L
H=dimv

In Theorem 4.28 the properties of the Casimir element of a representation are not a
happy incidence. They follow from the fact that the Casimir operators have their
origin in the center of the universal enveloping algebra of L, see [24, Chap. 22.1].

Lemma 4.29 will be used in the proof of Theorem 4.30.

Lemma 4.29 (Representations of semisimple Lie algebras are traceless). Con-
sider a semisimple Lie algebra L and a representation p : L — gl(V').

o Thenp(L) Csl(V), ie forallxeL

tr(p(x)) = 0.

e In particular, each 1-dimensional representations of L is trivial, i.e. ifdimV =1
then p = 0.

Proof. Because L is semisimple Theorem 4.21 implies
L=IL,L].
If x = [u,v] € L then

tr(p(x)) = tr(p([u,v])) = tr([p(u), p(v)]) = 0
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according to Lemma 4.1. For 1-dimensional V, i.e. V =K, holds for all x € L

Theorem 4.30 (Weyl’s theorem on complete reducibility). For a semisimple Lie
algebra L each non-zero L-module is completely reducible. The isomorphism class
of each irreducible direct summand as well as the multiplicity of each isomorphism
class is uniquely determined.

Proof. For the existence of the splitting we have to show: Each submodule of
an L-module has a complement. For the proof we may assume L # {0}. We will
consider all pairs (V,W) with an L-module V and a submodule W C V, and proceed
along the following steps:

1. Particular case codimyW = 1: Proof by induction on n =dim W.

- Subcase la): W reducible. The proof is elementary and relies on a separate
induction.

- Subcase 1b): W irreducible. The proof relies on the Casimir element and
Schur’s Lemma.

2. General case codimyW arbitrary: The proof constructs a complement of W as
the kernel of a certain section against the injection W — V. The section is ob-
tained by considering the L-module

Homy (V,W)
and constructing a pair (¥, #") to which the particular case of codimension = 1
applies.

All exact sequences in the following refer to the category of L-modules.

1. Particular case codimyW = 1: Consider all pairs (V,W) with an L-module V and
a submodule
W C V satistying codimy W = 1.

Due to Lemma 4.29 the 1-dimensional quotient V /W fits into an exact sequence
of L-modules
0—-W-—=V-=>V/W—=0

We construct a complement of W by induction on dim W with the induction
assumption: For all pairs of L-modules

(V1,V2) with codimy, Vo = 1 and dim Vo < dim W
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exists a complement of V; in V.

The induction step employs one of two alternative subcases. Subcase 1a) uses the
induction assumption twice, while subcase 1b) uses the Casimir element.

Subcase 1a), W reducible: Then a proper submodule
{opcw' cw,

exists, in particular
dimW' < dimW.

Dividing out the proper submodule W’ C W induces the exact sequence

v/w’
0—-W/W -V/W — -0
/ / w/w!
The submodule
w/w' cv/w
has

codimy jyy W /W' = codimy W = 1

and satisfies
dim (W/W') < dim W.

 Hence the pair (V /W’ , W /W’) satisfies the induction assumption. We obtain
a complement in the form

W/W W WV,
and a first splitting
V/IW =W/W oW /W'
It induces the exact sequence
0—=W =W->W/W -0
with the isomorphy of vector spaces

VW~ VW

= ww s

because the complement of W /W’ in V /W’ has codimension = 1.
We recall also dim W' < dim W.

* Hence also the pair (W,W’) satisfies the induction assumption. We obtain a
complement X C W and a second splitting
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W=WwaX.
Claim: Combining the two splittings provides the final splitting
V=WaoX.
For the proof, on one hand
dimV =dim W +dim W —dim W' and dim W = dim W' +dim X .

Hence
dimV =dimW +dimX.

On the other hand,
XCW = (WnX)c (WnWw).
Due to the first splitting
{0} =W/ W)NW/W) = (WnW)cCW,

and therefore
wWnX)c(Wnw)cw'.

As a consequence
WX =WnX)NnW =wn(Xnw’).

The second splitting implies

Xnw'={0}.
Hence
wnXx ={0}.
Therefore
V=WaoaX

which finishes the induction step for reducible W.

Subcase 1b), W irreducible: Assume that the representation
p:L—gl(V)

defines the L-module structure of V. Due to Remark 4.27 we may assume p
faithful. We consider the Casimir element of p

dim L
cp =3 pl)plys) € End(V).
j=
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Refering to V: The Casimir element
cp:V—=V
is an L-module morphism due to Theorem 4.28, part 1. Therefore
X:=kercp CV
is an L-submodule.
Refering to W: Because the 1-dimensional L-module V /W is trivial, we have
pL)(V)Cw.
The definition of ¢, implies that also
cp(L)(V) CW.

One can find a basis of the vector space V such that the matrix of ¢, has block

form
A %
°=\oo

and the matrix A represents the restriction
cp|W:W —=W.

Hence
tr(cp|lW)=trep

Due to Theorem 4.28, part 2
trcp =dim L#0,

which implies
tr(cp|W) #0.

Due to Theorem 4.25, part 1 the irreducibility of W implies that
pW:W =W
is an isomorphism. Then
dimV = dim(im cp) +dim(ker cp) = dim W +dim X
implies the splitting of L-modules
V=WaoaX

and finishes the induction step for irreducible W.
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2. General case codimyW arbitrary:

Consider an arbitrary proper submodule
{0} CwWCV.

We want to construct a complement of W as the kernel of an L-module
morphism. Therefore we claim the existence of a section against the canonical
injection

JiW=V,
i.e. we claim the existence of an L-linear map

fVvoaw
such that

foj = idy i.e. f|W =idw

Then f is surjective, and
X :=ker f

is a complement of W because V /X ~ W.

The idea is to translate the question on the existence of the section f to a
problem about L-modules in a context where case 1 applies. We consider the
induced L-module

Homg (V,W)

to reduce the question on sections to a problem concerning pairs of L-modules
of K-linear homomorphism
7 7)

with codimy# = 1. The latter problem can be solved by case 1.

Note that elements of Homy (V,W) are morphisms in the category of vector
spaces, not necessarily morphisms of L-modules.

Consider the following submodules of the L-module Homg (V,W)
YV :={f € Homg(V,W): fIW =A-idw, A € K}

W ={feV:fIW=0}

In order to prove that ¥ is a L-module, consider f € Homg (V,W)
with flW =A -idy andx € L,w € W:

xf)w) =x.(fw)) = fxw) =x.(A-w) =1 - (x.w) =
=A-(xw)—A-(xw)=0.

Therefore even
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LY CcwCYV
and both ¥ and # are L-modules. By definition

codimy W =1
because # as a subspace of ¥ is defined by the single linear equation A = 0.

We now apply the result of case 1 to the pair (¥, #"): The submodule # C ¥
has a complement, i.e. there exists a K-linear map

f e with flW £0,

which splits
V=W oK. f.

By definition of ¥ the restriction has the form
FIW = w-idw
with a non-zero scalar 4 € K because
fer,
and we may assume U = 1.

The L-module
K-f

is 1-dimensional, hence trivial according to Lemma 4.29. According to
Remark 4.24 the equality L.f = 0 implies the L-linearity of f. Therefore

X:=ker fCV
is an L-submodule. Due to our considerations at the beginning of case 2
V=WoX.

3. Uniqueness of the isomorphism classes: Consider an irreducible submodule
of W C V, and a splitting
V=V,

jeJ
with irreducible L-modules V;, j € J. For each j € J the canonical projection
pj:V—=V;
is an L-module morphism. There exists at least one index j € J with

{0} # pj(W) CV;
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Because both L-modules V; as well as W are irreducible we have
pj(W)=V; and ker (p;|W) = {0}.

Hence
pj|W W= Vj

is an isomorphism of L-modules. Iterating the argument proves the claim.
O

Note. Theorem 4.30 is due to Weyl, who gave an analytic proof using the theory of
maximal compact subgroups of a semisimple Lie group (“Unitarian trick™),

see [48, Kap. I, §5, Satz 5] and also Serre’s explanation in [40, Chap. VIII, no. 7 ].
The proof given above stays completely in the algebraic domain,

see [41, Part 1, Chap. 6.3].

The following Proposition 4.31 is a consequence of Theorem 4.30. It refers to the
Jordan decomposition for embedded semisimple Lie algebras.

Proposition 4.31 (Jordan decomposition for an embedded semisimple Lie al-
gebra). Consider a complex vector space V and an embedded semisimple Lie
algebra L C gl(V). If an element x € L, considered as endomorphism of V

x: V=V
has the Jordan decomposition
X=x5+x, € Endc(V),
then both summands belong to L, i.e. xs,x, € L. In addition,
ad x = ad x; + ad x,
is the Jordan decomposition of
ad, L — L.

Proof. The proof has two separate parts. The first part considers L as an embedded
Lie algebra L C g/(V). The second part considers the
induced L-module Endc(V,V).

Part 1. The embedded Lie algebra L C gl(V): We introduce the shorthand

E :=Endc(V).
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Proposition 3.3 implies for the endomorphism
adg x ' E —E, f—[x,f] :=x0f— fox,
the Jordan decomposition
adg x = adg x; + adg x,

with endomorphisms
X5, Xp € E.

There exist polynomials py(T), p,(T) € C[T] without constant term such that
adg x; = ps(adg x), adg x, = py(adg x).
Let
N := Ny C gl(V)

be the normalizer of L. Then x € L C N. Hence also
Xs, Xy €N.

Part 2. Semisimpleness of L: In order to show x;, x, € L the result x;, x, € N is not
sufficient, because in general
LCN.

Therefore we will now employ the semisimpleness of L to construct a
specific L-submodule
LCE ndc (V)

satisfying
LcLcNandxg, x, €L,

and eventually show L = L.

i) Construction of L: For any L-submodule W C V we consider the vector subspace
of endomorphisms

Ly :={y€Endc(V):y(W) CW and tr(y|W) =0} C Endc (V).

E.g.
Ly =sl(V)ifW:=V

and
Ly =gl(V)if W := {0}

Because W is an L-module, also Ly is an L-submodule with respect to the
induced L-module structure on Homg (V,V): For each endomorphism

(z:V—=V)eLCEndc(V)
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andy € Ly, w € W holds

(zy)(w) =z(y(w)) —¥(z(w)) €W

and
tr((z.y)|W) =tr([z,y]|W) = 0.

We define

L:=Nn () Lw= () NNLy)
wcv wcv

with the intersection taken for all L-submodules W C V. Because N and each Ly
are L-modules of the L-module Endc (L), also L is an L-module. It satisfies:

¢ L C L: Because L is semisimple, Lemma 4.29 implies ¢r(y|W) = 0 for all y € L.
As a consequence
LC ﬂ Lyand L C L.
wcv

Xs,%, € L: Because the vector subspace W is stable with respect to the
endomorphism x : V — V, the same is true for its Jordan components which
depend on x in a polynomial way, i.e.

xs(W) C W and x,(W) C W.

Again according to Lemma 4.29, the semisimpleness of L implies ¢r(x|W) = 0.
Hence x € Ly . With x,, also the restriction x,|W is nilpotent, and therefore

tr (x,|W) =0and x, € Ly.
As a consequence also
Xs =X—X, € Ly.

We obtain
Xg,Xp € L

because xg,x, € N and x,,x;,, € Ly for all L-submodules W C V.

ii): The equality L = L: It remains to show L = L. Weyl’s theorem on complete
reducibility, Theorem 4.30, applies to the L-module L. Hence there exists a
L-submodule M C L with

L=LaM.

We claim: M = 0. Because L C N, the normalizer of L, we have
[L,L)=[L,L]C[N,.L]CL

which implies
[L,M] C (LNM)
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because M is an L-module. Due to

LnM = {0}
the action of L on M is trivial.

In order to conclude M = {0} we consider an arbitrary, but fixed
endomorphism y € M. The annihilation

[L7y] =0

means that the endomorphism
y:V—=V

commutes with all endomorphism of L. Because V is a complex vector space,
Schur’s Lemma, Theorem 4.25, part 2 implies for each irreducible
submodule W C V the existence of a scalar yt € C with

y|W =Uu- idy .
On the other hand, y € Ly implies tr(y|W) = 0, hence
yW=0

for each irreducible L-sumbdule of V. And the splitting of V as a direct sum of
irreducible L-modules shows y = 0. Because y € M can be choosen arbitrarily, we
obtain M = {0} and

L=L.

By construction x,, x,, € L = L.

Part 3. Jordan decomposition: The final claim about the Jordan decomposition
of ad x follows from the result

ad x = (adg xs)|L+ (adg x,)|L

from part 1, and the result x;, x, € L from part2. O

We proved Theorem 4.31 for a complex embedded semisimple Lie algebra because
our proof employs the strong form of Schur’s Lemma for complex-linear module
endomorphism. For a real Lie algebra L the complexification

LRrC

remains semisimple, because its Killing form is the complexification of the Killing
form of L, see [4, Chap.1, §6, no. 3 Prop. 3]. Theorem 4.31 applies to the complex
Lie algebra L ® C and endomorphisms
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xeLrCcCgl(VarC).

The previous Proposition 4.31 assures: For an embedded semisimple Lie algebra L
of endomorphisms of a complex vector space V the Jordan decomposition of the en-
domorphisms of V resulting from ad L induces a decomposition of elements from L.
We know from Proposition 4.7 that each semisimple Lie algebra L embeds via
its adjoint representation as a semisimple Lie algebra of endomorphisms. Hence
a complex semisimple Lie algebra satisfies the assumption of Proposition 4.31.
Definition 4.32 defines the abstract Jordan decomposition of L. Then Corollary 4.33
shows why the abstract Jordan decomposition is a useful concept.

Definition 4.32 (Abstract Jordan decomposition). Consider a complex semisim-
ple Lie algebra L. Its adjoint representation

ad:L—ad L C gl(L)

is an isomorphism and represents L as an embedded Lie algebra of endomorphisms.
For each x € L the adjoint endomorphism

adx:L— L,y [x,y]
has the Jordan decomposition
ad x = fy+ f, € End(L),
and Proposition 4.31 ensures
fs€ad(L) and fy € ad(L).

One defines
s:=ad '(f,) € Land n:=ad " '(f,) € L.

Then the decomposition
xX=s+n

with s € L ad-semisimple, n € L ad-nilpotent and [s,n] = 0 is named the abstract
Jordan decomposition of x € L.

Note. The abstract Jordan decomposition
xX=s+n

is uniquely determined by the property, that the components s, n € L are respectively
ad-semisimple and ad-nilpotent and satisfy [s,n] = 0. The uniqueness follows from
the uniqueness of the Jordan decomposition of the endomorphism

ad x:L— L
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and from the isomorphism
ad: L = ad(L).

In the abstract case, neither x € L nor its components s, n € L from the abstract
Jordan decomposition are endomorphisms of a vector space. But Corollary 4.33 will
show: For any representation

p:L—gl(V)

the abstract Jordan decomposition of x € L induces the Jordan decomposition of the
endomorphism p(x) € End(V).

Corollary 4.33 (Jordan decomposition for representations of semisimple Lie al-
gebras). Consider a complex vector space V and a representation

p:L—gl(V)

of a complex semisimple Lie algebra L. If x € L has the abstract Jordan decomposi-
tion
xX=s+n

then p(x) € Endc (V) has the Jordan decomposition
p(x)=p(s)+p(n).
Proof. Due to Corollary 4.20 the Lie algebra
F:=p(L)
is semisimple.

i) Abstract Jordan decomposition of p(x) € F: We choose a basis 2 = (v;)
of L of eigenvectors of the semisimple endomorphism

J=1,..n

adp(s) : L — L.
Then the non-zero elements from
p(B):= Pz .n
form a family of eigenvectors of adpp(s), and spans F. Hence the endomorphism
adpp(s) € Endc(F)
is semisimple.

The nilpotency of adpn € Endc (L) implies the nilpotency of the endomorphism
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adr(p(n)) € Endc(F)

Both endomorphisms commute

ladr (p(s)), adr (p(n))] = adr (p([s.n])) =0

Hence
adp(p(x)) = adr (p(s)) +adr(p(n))

is the Jordan decomposition of the endomorphism
adp(p(x)) € Endc(F)

As a consequence,
p(x)=p(s)+p(n)

is by definition the uniquely determined abstract Jordan decomposition of p(x) € F
from Definition 4.32.

ii) Jordan decomposition of p(x) € Endc(V): Now we consider the element
p(x) € F as an endomorphism

px): V-V

of the vector space V. Due to Theorem 1.19 the endomorphism p (x) has the Jordan
decomposition

p (x) =fs+/n
with semisimple f; € Endc (V) and nilpotent f;, € Endc (V). Proposition 4.31
applies to the semisimple embedded Lie algebra F C g/(V') and shows

fs,2Ju€F.

The proof of Proposition 4.31, part 1 shows: Semisimpleness of f; € Endc (V)
implies that f; is adr-semisimple, i.e.

adrp (fs) € Endc(F)

is semisimple. And nilpotency of f, implies adr-nilpotency, see Lemma 3.2.
Hence by Definition 4.32

p(x) :fs""fn

is also the abstract Jordan decomposition of p(x) € F. From the uniqueness of the
abstract Jordan decomposition in F' derives

fs= p(s) and f, = p(n)
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Chapter 5
Root space decomposition

The base field in this chapter is K = C, the field of complex numbers. All Lie alge-
bras are complex Lie algebras unless stated otherwise.

The present chapter starts to investigate the structure of complex semisimple Lie
algebras. The subject is a classical topic of mathematics from the 20th century. An
excellent overview of Chapter 5 and 6 and the outlook in Chapter 7 is given by
Knapp as a survey to Chapter II of his book [31]. At this point we will only name the
keywords: Maximal toral subalgebra, Cartan subalgebra, root space decomposition,
root system, Cartan matrix, Weyl group, Coxeter graph, Dynkin diagram.

According to Theorem 4.21 each semisimple Lie algebras splits as the direct sum
of simple Lie algebras. The simple complex Lie algebras are completely classified.
They are the members of the ABCD-series from Proposition 2.15 together with five
exceptional Lie algebras.

The most elementary member, and at the same time the prototype of the ABCD-
series is the complex simple Lie algebra s/(2,C) of type A;. The canonical basis
elements of s/(2,C)

m (35) o (39) - (08) e

make up two classes: The elements % is ad-semisimple and gerates a maximal
Abelian subalgebra. While the second class contains the two elements x and y. They
are eigenvectors of /4 under the adjoint representation

(ad h)(x) = [h,x] = 2x, (ad h)(y) = [h,y] = =2y,

and their commutator is
[x,y] =h.

173
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These two classes generalize for a semisimple Lie algebra L to the concept of a
maximal toral subalgebra T of L, and the generators of the root spaces of L with
respectto T'.

5.1 Toral subalgebra

Consider a Lie algebra L. We recall from Definition 3.4: An element x € L is ad-
semisimple iff the endomorphism

adx:L— L,y [x,y],
is semisimple.

It is well-known from Linear Algebra that a set of commuting semisimple en-
domorphisms can be simultaneously diagonalized. Therefore, starting from one ad-
semisimple element of L one tries to find all pairwise commuting ad-semisimple
elements of L, which also commute with the given one.

* The first result about a semisimple Lie algebra L states: Any subalgebra T C L
with only ad-semisimple elements, named a foral subalgebra, is Abelian, see
Proposition 5.2.

¢ The second result, Theorem 5.17, shows that no further element of L commutes
with a maximal toral subalgebra 7' C L, i.e. the centralizer of T satisfies

C.(T)=T.

Definition 5.1 (Toral subalgebra). Consider a Lie algebra L.

* A toral subalgebra of L is a subalgebra 7 C L with all elements x € T ad-
semisimple.

* A toral subalgebra T C L is a maximal toral subalgebra iff T is not properly
contained in any other toral subalgebra of L.

We show: The existence of non-zero toral subalgebras of a non-zero semisimple
Lie algebra follows from Engel’s theorem and the abstract Jordan decomposition.
The result, together with Theorem 5.17, is fundamental for the root space
decomposition from Definition 5.18.

Proposition 5.2 (Existence of non-zero toral subalgebras). Consider a semisim-
ple Lie algebra L.
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1. If L # {0} then exists a non-zero toral subalgebra in L, hence also a non-zero
maximal toral subalgebra.

2. Each toral subalgebra of L is Abelian.

Proof. 1. Existence of a non-zero toral subalgebra: If each element x € L were
ad-nilpotent, then Engel’s Theorem 3.10 would imply that L is nilpotent, a con-
tradiction to the semisimpleness of L. Hence we can choose an element x € L
with abstract Jordan decomposition

x=s+nandad s #0.

The 1-dimensional subalgebra
C-scL

is a toral subalgebra. Because L is finite-dimensional, there also exists a maximal
toral subalgebra.

2. Toral subalgebras are Abelian: Consider a toral subalgebra T C L. For a pair of
non-zero vectors x,y € T we have to show

[x,y] =0

Because T C L is a subalgebra, the toral subalgebra T is stable with respect to
ad x and with respect to ad y. Both are semisimple. According to Lemma 1.18
also their restrictions

ady := (ad x)|T and ady := (ad y)|T
are semisimple.

Because T is spanned by eigenvectors of ad,, we may assume y € T as an eigen-
vector of ad, i.e. for a suitable A € C

ady(y) = [x,y| = A-y.
We develop x € T with respect to a basis (y;) jes of T of eigenvectors of ad, with
eigenvalues () jey
X = Z OC/' Yj-
JjeJ

Then
—A-y=—[xyl =Dl =ady(x) = ) (- 05) -y

JjeJ
Assume A # 0. Because y # 0, for at least one j € J

Aj-aj#0, notably A; # 0.
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Apparently, the vector y € T is an eigenvector of ad, with eigenvalue 0. The

representation
Jjer

shows, that y is a linear combination of eigenvectors belonging to eigenvalues 4; # 0,
a contradiction. Therefore A = 0, which implies

[x,y] =0.

Lemma 5.3 will be used later.

Lemma 5.3 (Centralizer of a maximal toral subalgebra).

Consider a pair (L, T) with L a semisimple Lie algebra and T C L a maximal toral
subalgebra.

i) The centralizer C(T) contains with each element x € C1(T) also the
ad-semisimple and the ad-nilpotent part

s, n€ Cr(T)
from the abstract Jordan decomposition x = s+ n.

ii) Each ad-semisimple element x € Cr(T) belongs to T.

Proof. Set C:=Cr(T).

i) Abstract Jordan decomposition: Consider x € C with abstract Jordan
decomposition
x=s+n.

Then
adx=ad s+ad n € End(L)

is the Jordan decomposition of the endomorphism ad x € End(L). In particular
ad s = ps(ad x) and ad n = p,(ad x)
with polynomials ps(Z), p,(Z) € C[Z] satisfying ps(0) = p,(0) = 0.
As a consequence: For each i € T with (ad x)(h) = 0 also
(ad 5)(h) =0 and (ad n)(h) = 0.

Hence s, n € C.
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it) Each ad-semisimple element x € C belongs to T: Any ad-semisimple
element x € C commutes with all elements from 7. Therefore all elements from

spanc < x,T >
are pairwise commuting and therefore ad-semisimple. The maximality of 7 implies
spanc < x,T > =T

ieexeT. O

5.2 Structure and representations of s/(2,C)

The 3-dimensional complex Lie algebra s/(2, C) is the prototype of complex semisim-
ple Lie algebras. Its representation theory is of fundamental importance:

» The representation theory of s/(2,C) is the means to clarify the structure of
general complex semisimple Lie algebras. Proposition 5.4 presents the structure
of s1(2,C) in a form which generalizes to arbitrary complex semisimple Lie al-
gebras, cf. Proposition 7.3 about the root space decomposition.

 The representation theory of s/(2,C) is also paradigmatic for the representation
theory of general semisimple Lie algebras. Proposition 5.7, Corollary 5.8 and
Theorem 5.10 present the representation theory of s/(2,C)-modules in a form
which generalizes to representations of arbitrary complex semisimple Lie alge-
bras.

Proposition 5.4 (Structure of s/(2,C)). The Lie algebra
L:=5l(2,C)

has the standard basis % := (h,x,y) with matrices

e (30 e (0).5- (00) stz

e The non-zero commutators of the elements from P are
[, x] = 2x, [h,y] = =2y, [x,y] = h.
o With respect to P the matrices of the adjoint representation

ad : L — gl(L)
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are
00 0 001 0-10
adh=102 0|, adx=|-200], ady={(0 00
00-2 000 200

e The element h € L is ad-semisimple. The endomorphism
adh:L— L

has the eigenvalues
0, x:=2, —a

with corresponding eigenspaces
H=1"=C-h L*=C-x, L *=C-y

In particular
L=H®(L*®L™%)

as a direct sum of complex vector spaces.
e The Lie algebra L is simple.
e The Abelian subalgebra H C L is a maximal toral subalgebra of L.

o With respect to the basis % the Killing form x of L, see Definition 4.2, has the
symmetric matrix with integer coefficients

~
(=Rl §)
—_ o O

0
1| eM(3x3,7).
0

The Killing form is non-degenerate.

e The restriction
Ky = Kk|(H X H)

of the Killing form is positive definite
ke (h,h) = 8.

The scalar product Ky induces the isomorphism of the maximal toral subalgebra H
and its dual space

Jay H = H*, h— Ky (h,—) = 8- h*.
The element ty € H, which is defined as

jKH(tO!) = O"h*a



5.2 Structure and representations of s/(2,C) 179

is
2'ta

h
ty = — 1 ] h = Q.
=7 satisfying K1 (1)

Proof. Only the following claims need a separate proof:
i) Simpleness: Assume the existence of a proper ideal
ICL.

The ideal [ satisfies [I,L] C I.

* First, h ¢ I: Otherwise 2x = [h,x] € [ and —2y = [h,y] € I, which implies I = L,
a contradiction.

* Secondly, x ¢ I: Otherwise h = [x,y] € I, contradicting the first part.

* Thirdly, y ¢ I: Otherwise —h = [y,x] € I, contradicting the first part.
Consider an element
z=0-x+B-y+y-helwitha,f,ycC.

The commutator relations imply

(ad x)(z) = B-[x,y| +7- A =B-h=2-7-x

and
(ad x)*(z) = —2-B-xel

Similarly
(ad y)*(z) = —2-a-y€l

Ifa#0or B #0thenx €/ ory€ [, acontradiction. Hence
a=p=0.
If y# 0 then & € I, a contradiction. Hence z = 0. As a consequence
I={0} and L is simple.

ii) Maximal toral subalgebra: To prove that the toral subalgebra H C Lis a
maximal toral subalgebra, we show

CL(H) =H.
Assume
Z:a-h+ﬁ'x+')/'y€CL(H); a,B,'}/EC-

Then
[@-h+B-x+7-y,h==-2B-x4+2yy=0 < B=7=0,
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hence z € H. Proposition 5.2 ensures that toral subalgebras are Abelian, which
proves that H is a maximal toral subalgebra. 0O

The simpleness of L := s/(2,C) also follows from the general theory: According to
Corollary 4.18 the Lie algebra L is semisimple. Hence L splits due to Theorem 4.21
as a direct sum of simple Lie algebras. If the splitting of the 3-dimensional Lie
algebra L comprises at least two simple summands, then at least one of them is
1-dimensional and therefore Abelian, which contradicts its simpleness.

Remark 5.5 (Basis of Pauli matrices). A different basis of s/(2,C) is the family (c;); =1,2,3
of the Pauli matrices, see Remark 2.21: We have

o1 +ion o] —Ii0y

h=o03, x= =
3, X 2 y Y D)

We now investigate the theory of finite-dimensional representations of
L:=sl(2,C).

The element i € L is ad-semisimple because ad h € End(L) is semisimple.
Therefore & € L coincides with its semisimple component in the abstract Jordan
decomposition of L. Corollary 4.33 shows the far reaching consequences: The
element £ acts as semisimple endomorphism on each L-module V. Hence each
L-module decomposes as a direct sum of eigenspaces with respect to the action
of h.

Definition 5.6 introduces some basic concepts from the representation theory of
semisimple Lie algebras.

Definition 5.6 (Weight, weight space and primitive element). Consider an s/(2,C)-module V,
not necessarily finite-dimensional, with respect to a representation

p:L—gl(V).

1. For A € C set
VA={veV:ph)(v)=A-v}.

If V* £ 0 then A € C is a weight of V, the eigenspace V* of p(h) € End(L) is a
weight space of V, and the non-zero elements of V* are named weight vectors.

2. A weight vector e € V* is named a primitive element of V with weight A if
p(x)(e) =0

with respect to the action of the element x from the standard basis % of si(2,C).
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Note: Different than in Chapter 1 we denote here and in the following the eigenspace
with eigenvalue A by an upper index A.

For any s/(2,C)-module V not only the action of & € s/(2,C), but also the action of
the two other elements of the standard basis

B = (h,x,y)

can be easily described. Hereby the role of a primitive element can be parafrased as
“germ” of an s/(2,C)-module.

Proposition 5.7 (Action of the standard basis). Consider an sl(2,C)-module V,
not necessarily finite-dimensional. Assume the existence of a primitive elemente €V
with weight A € C. Then the elements

eir=—-(y.e)eV,i>0,

1
T

satisfy for all i > 0:

1. Weight vector: h.e; = (A —2i) - ;.
2. Lowering the weight: y.e; = (i+1)-e;1.
3. Raising the weight: x.e; = (A —i+1)-e;_1, e_; :=0.

4. Linear dependency respectively independency:

* Either the family (e;)i>0 is linearly independent

* or the highest weight A is a non-negative integer, the family

is linearly independent, and e; = 0 for all i > A.

Figure 5.1 illustrates the content of Proposition 5.7.
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Q.

* Ce ¢V

- *}" S
VL e

e c V

,1

Fig. 5.1 Lowering/raising weights in irreducible s/(2, C)-modules

Proof. ad 2) By definition

1 : | (i+1)! )
y-ei = lf,'(%(ylf)) - (y”rlf) =T ceip1 = (i+1)-eir1.

ad 1) By induction on i € N: i = 0 by definition.
Induction step i — i+ 1: Due to part 2)

(i+1)-(h.eir1) =h.(v.e;) = [h,y].ei +y.(h.e;) = —2y.e; +y.(A —2i)e;) =

— (A=2i-2) (re) = (A—2i=2)- (i+1)-epu1,

hence
h.€i+1 = (7L *2(l+ 1)) c€jt]-

ad 3) With the definition e_; := 0 the formula
xe=A—i+1)-e_;

follows by induction on i € N by using the commutator formula
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[x,y] =hesl(2,C)

together with the result from part 1) and part 2). The formula holds for i =0
because e is a primitive element.
Induction step i — i+ 1:

(i+1) (reir1) =x.(ye) = [x,y].ei ty.(x.e;)) =he+y. (A —i+1)-ei1) =
=A=2i)-ei+i-(A—i+1)-e;=(i+1)-(A—i)-e
and after dividing by (i+1)
xe1=A—1i)e

ad 4) The non-zero elements e; are weight vectors with pairwise distinct weights,
i.e. different eigenvalues. Hence they are linearly independent. The family (e;);>0
is linearly independent if e; # O for all i € N.

Otherwise there exists a largest index m € Z; = {0, 1, ...} with all
elements e, ..., e, non-zero. Then e; = 0 for all i > m. We apply the formula from
part 3) and obtain

O=x.epr1 =(A—m) ey

which implies
A—m=0orA=meZ,.

O

Corollary 5.8 (Primitive element). Consider a finite-dimensional s1(2,C)-module V.

1. If V is irreducible, then V has a primitive element.

2. Each primitive element e €V has a weight A € Z.. It generates an irreducible sl(2,C)-submodule
V(A):=span<e;: i=0,..,A>CV
using the notation from Proposition 5.7.

3. A primitive element of an irreducible s1(2,C)-module is uniquely determined up
to a scalar from C*,

Proof. 1. Existence of a primitive element: Set
L:=sl(2,C).
We have V # {0} because V is irreducible. Denote by

p:L—gl(V)
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the representation which defines the L-module structure on V. The kernel
kerp CL

is an ideal in the simple Lie algebra L. Depending on ker p we distinguish two
cases:

o If
ker p =L

then each non-zero element e € V is a primitive element and has weight L =0 € Z.

¢ Otherwise
ker p =0

and
p:L—gl(V)

is injective. The subalgebra
B :=spanc < h,x > CL
is solvable because

[h,x] = 2x and therefore D°B =0

The restriction
p|B:B—gl(V)

is injective. According to Theorem 3.20, the forerunner of Lie’s theorem, the
subalgebra
B~p(B)Cgl(V)

has a common eigenvector e € V. Consider the eigenvalues A, A, defined by
he=A;-eand x.e = A, -e.
The commutator [A,x] = 2x implies
2A;-e =2x.e = [h,x].e = h.(x.e) —x.(h.e) = Ay e — LAy e =0,

hence A, = 0. Therefore e € V is a primitive element.

2. The primitive element as “germ”: Let e € V be a primitive element with weight A € C.

Because V is finite-dimensional, Proposition 5.7 implies:
AEZy

and successive application of y € L lowers the weight down to the value —A.
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The vector space
V(L) =spanc <ej: i=0,.,A>CV

is a submodule of V. In V(1) each weight space with weight u is 1-dimensional,
generated by the element e; with weight u = A — 2.

Any non-zero submodule
W' cV(d)

contains at least one weight vector, because
p(MW W — W

has an eigenvector, i.e. a weight vector of V(1) is contained in W’. Hence for at
least one index i =0, ..., A holds

e; € w'.

The formulas from Proposition 5.7 for raising and lowering the weight imply
that W’ contains also e and a posteriori the whole L-module V (1), cf. Figure 5.1.
Therefore

W =V(),

which proves the irreducibility of V(1).

3. Primitive element: Due to part 2) each weight space of an irreducible s/(2,C-
module is 1-dimensional.
O

Remark 5.9 (Eigenspaces of the angular momentum vector).

1. The real Lie algebra so(3,R) of infinitesimal rotations: The Lie algebra so(3,R)
is the Lie algebra of the rotation group SO(3,R). The infinitesimal generators of
the 1-parameter subgroups of rotations around the coordinate axes are the ele-
ments

00 0 001 0-10
Lo={oo0o-1], 5=l 000],2.=[1 0 0] es0(3,R)
010 ~100 000

Their commutator relations are
Ve dy] = J;

and cyclic permutation, see Remark 2.21.
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2. The complex Lie algebra so(3,C) of the angular momentum: The 3 generators
Ji =iy, Jri=idy, J3:=1iJ; € 50(3,C),
of the complexification
50(3,C) ~s50(3,R)@r C
satisfy the commutator relation
Vi, 2l =i-J3
and cyclic permutation. The complexification provides the map
s1(2,C) = 50(3,C), h/2 = J3, x> T,y J_,

with
Jy =N +i-handJ_=J—i-Jp,

which is an isomorphism of Lie algebras due to the commutator relations
[J37J+] =Jg, [*137*]7] =-J, [J+7J7] =2-Js,
| iy . .
note the factor 5 h within the definition of the isomorphism.
The generators

Ji,J2,J03 € S0(3,(C)

are Hermitian matrices. Therefore they have real eigenvalues, and represent three
quantum mechanical observables in the Hilbert space C>. The complex Lie al-
gebra so(3,C) is named the Lie algebra of the angular momentum vector, the
vector of three observables B

J = (Jl,J27J3>.

3. The square of the angular momentum vector: Leaving the Lie algebra so(3,C)
we consider in the associative algebra M (3 x 3,C) the scalar product

S =T =)} +J3+J3€M(3x3,C).

The matrix J2 is also Hermitian, hence also J? represents a quantum mechanical
observable in the Hilbert space C3. In addition, the matrix JZ is positive semi-
definite.

One checks the equations
2 J5] = I Js = iy = D, Js) 4+ D Jsdy = sy =

=J; [Jl,J3] + []1,]3}.]1 =—i-JiJp—i-JoJy
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and similarly
[J227-]3] =i-LN+i-Ji)r

Hence
[J?24J3,05] = 0 and [J2,J3] = [J2,J3] = 0.

Hence
7%, J5] =0,

and the matrices J and J; can be diagonalized simultaneously with real eigen-
values. By symmetry also

72, 01] = [J%, 0] = 0.

4. Complex representations: The Lie algebras
su(2) ~so(3,R) and si(2,R)
have the same complexification
s1(2,C) ~ su(2) @r C = 50(3,R) @r C = 50(3,C)
of type A; = Bj. Hence the Lie algebras
su(2), so(3,R), si(2,R), si(2,C), so(3,C)

have the same complex represesentations. These representations correspond bi-
jectively to the complex representations of the simply connected, real matrix
group SU (2), see Figure 5.2.

SU(2) GL(V)
exp exp
w@ P W

Fig. 5.2 Representations of su(2) and SU(2)

The group SU(2) is the universal covering of the rotation group SO(3,R), see
Example 2.24. The covering projection

p:SU(2) = SO(3,R)
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is a 2-fold covering with kernel
ker p={x1}

The covering projection induces a bijection between the set of complex irre-
ducible representations p of SO(3,R) and the set of those complex irreducible
representations p of SU(2) with

p(—1) =idy

according to the commutative diagram from Figure 5.3

sU(2) P GL(V)
e
p - -
SO(3,R)

Fig. 5.3 Representations of SU(2) and SO(3,R)

5. Ladder operators of so(3,C): The matrices
Ji=Jy£i-J> € 50(3,C)
are Hermitian conjugate to each other
() =Jx

We now prove that J1 are the “ladder” operators of so(3,C)-modules. For the
proof we use the isomorphy from part 3

s1(2,C) = 50(3,C), h/2 T3, x> Jy, ys J_,
and carry over the result of Proposition 5.7 from s/(2, C)-modules to so(3, C)-modules:

Consider a finite-dimensional, irreducible so(3,C)-module V. Denote by e € V a
primitive element when considering V as s/(2, C)-module under the isomorphism

s1(2,C) ~ s0(3,C)

from part 2. It satisfies the eigenvalue equation

1
Jy3e=m-e, mée 3 Z (half-integer) and J;.e = 0.
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The action of J; raises the eigenvalue of J3 by 1, while the action of J_ lowers
the eigenvalue by 1: For each eigenvector v € V of the action of J3 with

Jsv=k-v, keR,
holds
T (Jev) = (U3 d o] +J0d3) v = (A k- Jy) v = (14k) - (Jov)
and
Js.(Jo) = (s ]+ T J3)v = (=] +k-J)v=(k—1)-(J_.v).

The primitive element e € V is also an eigenvector of the action of J?: The equa-
tion
JiJe =R+ B+hR =0+

implies

P=JJ +J-J;
and

JP=JJ+ 3+
From the last equation and

J+.€ =0
follows
JPe=Rethe=m*et+m-e=mm+1)-e.

Raising or lowering by Ji the eigenvalue of J3 does not change the eigenvalue
of J2: If

JPv=2A-v, LR,

then due to [J2,J.] = 0 also
P (Jev) = ([PJe] + (e ) v =Je.(JPV) = A - (J.v)

Different from the basis of V, which derives according to Proposition 5.7 from

the basis with elements
1

textbooks from physics like [2, Eq. 5.74] consider the basis of V

e; (yi.e),i >0,

(Vk) —m<k<m
successively defined as

1
\/(m+k)(m—k+l)

Vie] = (i), —m+1<k<m, v,:=e.
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These vectors satisfy, see [2, Eq. 5.71]:
Jr v = m(m+ 1) - vi (Total angular momentum)
and
B3V =k-vi, —m < k < m (Angular momentum around the z-axis).

Hence applying the ladder operators J. moves through the eigenspace of J?
along the different eigenvectors of J3.

The construction of the s/(2,C)-modules
V(A), L €Zy,
from Proposition 5.7 generates all irreducible s/(2,C)-modules.
Theorem 5.10 (Classification of all finite-dimensional irreducible s/(2, C)-modules).
1. For each A € Z exists a finite-dimensional, irreducible sl(2,C)-module with a
primitive element of weight A.

Each finite-dimensional, irreducible sl(2,C)-module with a primitive element of
weight A € Z. is isomorphic to the sl(2,C)-module V(L) from Corollary 5.8.

The s1(2,C)-module V(L) splits in the category of vector spaces as the direct
sum of 1-dimensional weight spaces

A
V(A =pvi
i=0
with integer weights.

2. The map to the isomorphy classes of finite-dimensional, irreducible sl(2,C)-modules
Zy — {[V]:V finite-dimensional, irreducible sl(2,C)-module}, A — [V(L)],

is bijective.

Proof. Set L :=sl(2,C).

1. Existence: Choose a vector space V of dimension A + 1 with basis (e, ...,e).
Define
LxV =V

by linear etension of the formulas from Proposition 5.7:
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o hei:=(A—2i)¢
o yei:=(i+1)-e1,e,1:=0
o xe:=A—i+1)-e_1,e_1:=0
One checks, that in accordance with the commutator relations of s/(2,C)
[hvx] = 2x7 [hdi] = _2)7, [‘xay] = h>
these definitions satisfy the equations
o h.(x.e;) —x.(h.e;) =2x.e
o h.(y.e)—y.(he)=—2ye

o x.(y.e;)—y.(xe)=he

Hence V becomes the irreducible L-module V (4) from Corollary 5.8 with primitive
element eg € V.

2. Classification: According to part 1 the map from the theorem is well-defined and
surjective. Concerning its injectivity: If [V (A;)] = [V (A2)] then

V(/I]) >~ V()Lz),
in particular
1+ =dim V(ﬂ,l) =dim V(lz) =1+,

hence

M=

Combining Theorem 5.10 with the results displayed in Figure 5.2 and 5.3 shows:
The complex finite-dimensional irreducible representations of SO(3,R) correspond
bijectively to the s/(2,C)-modules V (A) with highest weight A € 2-Z.

Corollary 5.11 (Classification of all finite-dimensional s/(2, C)-modules).
Each finite-dimensional sl(2,C)-module V is isomorphic to a finite direct sum of
irreducible modules of the type V(1) from Corollary 5.8

V= @ nl~V(l), ny €N,
A€Z+

with multiplicity n; # 0 for at most finitely many A.
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Proof. The proof follows from Weyl’s theorem on complete reducibility, see Theo-
rem 4.30, and Theorem 5.10. O

Example 5.12 (Explicit realization of the finite-dimensional irreducible sl(2,C)-modules
by homogeneous polynomials).

Set L :=sl(2,C).

1. The irreducible L-module of highest weight A = 0 is the 1-dimensional vector
space C with the trivial representation

p:sl(2,C) — {0} C gl(C).
Its weight space decomposition is
V(0)=v’~C.
Any non-zero element e € C is a primitive element.

2. The irreducible L-module of highest weight A = 1 is the 2-dimensional vector
space C? with the tautological representation

p:L=sl(2,C) = gl(C?).
Its weight space decomposition is
vih=vigv!

with
and primitive element

because
(01 ) Iy (0 2
we=(00) (o) = (6) ¢

3. The irreducible L-module of highest weight A = 2 is the 3-dimensional vector
space L itself, considered as L-module with respect to the adjoint representation

ad:L— gl(L).
Proposition 5.4 shows the weight space decomposition

VR)=L=L*¢L°oL?
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with primitive element ¢ = x € A.

4. In general, the irreducible L-module V(1) of highest weight A = n € Z, is iso-
mophic to the complex vector space of complex homogeneous polynomials in
two variables

P(u,v) € Clu, V]

of degree = n.

The vector space C[u,v] of polynomials in two variables u and v has a basis
of monomials (u* - v¥), ven. A homogeneous polynomial of degree n € N is an
element

n
Pu,v)=Y ay-u V""" eClu,v], ay €C.
u=0

Denote by
Pol" C Clu,V]

the subspace of homogeneoups polynomials of degree n. One has
dim Pol" =n+1

.....

When identifying the canonical basis of C? with the two variables

() ()

then the tautological representation of L acts on
Pol' ~C-u®C-v

by definition as the matrix product

w(§)==(5) zer

Here the dot on the line on the left-hand side denotes the action of the element z € L,
while the dot above the line on the right-hand side denotes the product of the
matrix z € s/(2,C) with a vector from C2. We obtain

hu=u, hv=—v; xu=0,xv=u, yu=v, yv=0.
More general, for each z € L we consider the linear differential operator
D, : Pol* — Pol", P+ D, P,

defined as
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dP(u,v OP(u,v
(D PY ) 1= () - D) (o 22D

Notably for u"~*-vi € Pol"
h (" V) =Dy (" VY =u- (i) u TV iyl T = (= 24)
Y. V) = Dy(un—i_vi) =y (n—i)u" TV = (i)
X (VD) = D V) = v = gLy
As a consequence, the map
L x Pol" — Pol",(z,P) — D, P,
defines an L-module structure on Pol": We set
e:=u" € Pol"

and define fori =0,...,n

One checks by inductiononi =0, ...,n

1 o o
ei:if'-n-(n—1)-...-(n—i+1)~u”7’-v’: (n) Ut

We obtain
h.ei=(n—2i)-¢;

y.ei =y. (() ~un_l'Vl> _ <) ~(n7i)~u"—’_1~v’+1 —
1 1

= (i+1): (:-L) LV = (i 1) e

X.ej =Xx. ((n) ~u”i-vi> =i (n) Ty =
i i
(ni+1)-< n >,un—i+1,vi—1 (=it 1) e,

i—1
Due to Theorem 5.10 proof of part 1, these formulas prove Pol" ~ V(n) with
primitive element

e:=u" € Pol".

5. One checks that the isomorphy of vector spaces

Pol* = Sym}”((C-uEB(C-V) ~ Sym/l Pol'
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induces an isomorphy of s/(2,C)-modules between Pol* and the symmetric
power Pol! with exponent A of the tautological s/(2, C)-module.

The example is the particular case where the symmetric power of an irreducible
module stays irreducible. In general, tensor products of irreducible representa-
tions are reducible, and to determine the splitting behaviour of tensor products
can be a tedious task.

5.3 Root space decomposition and Cartan subalgebra

In this section the Lie algebra L denotes a non-zero, semisimple complex Lie algebra
if not stated otherwise. We generalize the splitting

sl2,C)=L"® (L*®L ™), a =2,

from Proposition 5.4.

According to Proposition 5.2 there exists a maximal toral subalgebra 7 C L, and
each toral subalgebra of L is Abelian. Hence all endomorphisms

adh:L—L heT,

are simultaneously diagonizable, and the whole Lie algebra L splits as a direct sum
of common eigenspaces of T, see Definition 5.13. The decomposition is named the
root space decomposition of L with respectto T.

Definition 5.13 is a companion to Definition 5.6: The weights of the adjoint
representation are named roots.

Definition 5.13 (Root space decomposition with L°). Consider a pair (L, T) with
a semisimple Lie algebra L and a maximal toral subalgebra 7' C L.

1. For a complex linear functional
o:T—C

set
L% :={xeL:[hx]=alh) x forallheT}.

If L% # {0} and o # O then « is a root, L* the common eigenspace with respect
to a of all endomorphism ad h, h € T, is the root space of o, and each non-zero
vector v € L% is a root vector of (L, T). The set of all roots of (L, T) is denoted P.
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2. The vector space decomposition
L=L® (EB L“)
oacP

is the root space decomposition of L with L° with respect to T.

Because L is finite-dimensional there exist only finitely many roots. The zero
eigenspace
L':={xeL: [hx]=0forall he T}

plays a distinguished role. The next task is to show
=T
and to improve Definition 5.13. By definition
L°=Cy(T):={heL: [hT] =0},

the centralizer of T'. Proposition 5.2 shows that T is Abelian, hence
T CCL(T).

Therefore, the main task is to prove the opposite inclusion
C(T)CT,

i.e. elements which commute with the maximal toral algebra T already belong to
T. This property will be proved in Theorem 5.17. The main steps of the proof are:

 The centralizer C(T') contains with each element also its ad-semisimple and its
ad-nilpotent summand, see Lemma 5.3, part i). Therefore one can consider both
types of elements separately.

* The case of ad-semisimple elements is easy, because T is maximal with respect
to ad-semisimple elements, Lemma 5.3, part ii).

* Because the subalgebra C;(T) is Abelian all its ad-nilpotent elements belong to
the null space of the Killing form restricted to Cp(T).

* The Killing form is nondegenerate on Cy (7). Hence the nullspace of x|C(T)
reduces to {0}.

We recall from Lemma 4.1 that the Killing form of L is “associative”

k([x,y],2) = k(x, [y,2]),x,y,z € L.

Lemma 5.14 and Proposition 5.16 prepare the proof of Theorem 5.17.
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Lemma 5.14 (Orthogonality of root spaces). Consider a pair (L, T) with a semisim-
ple Lie algebra L and a maximal toral subalgebra T C L. Then for each pair of
Sfunctionals o, 3 € T* holds:

(L% LP] c L*+F.
In particular, each element element
xcL% o#0,

is ad-nilpotent.

o Ifo+ B #0 then
K(L* LP) =0.

Proof. i) Assume x € L%, y € LB, h € T: The Jacobi identity implies
[h7 [x,y]} = _([xv[ vh]] + [ ,[h,x]]) = [xvﬁ(h) 'Y} - [yv (X(h) 'x]

=B)-[xyl+a(h)-[x,y] = (a+B)(h)- [x.y],

hence [x,y] € LB Because L has only finitely many roots there exists an
exponent N € N with

(ad x)" =0forallx € L*, n> N.
ii) By assumption there exists an element 4 € T with

(cr+ B) () #0.

For arbitrary elements x € L%, y € LP holds due to Lemma 4.1:

K([h,x],y) = =K ([x, A, y) = =K (x, [h,)]).

Hence
[h,x] = a(h) -x and [h,y] = B(h)-y
imply
Oé(h) : K(xvy) = _ﬁ(h) . K(x,y),
and

(a+B)(h) - x(x,y) =0

As a consequence
k(x,y) =0.

O
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Corollary 5.15 (Negative of a root). Consider a pair (L,T) with a semisimple Lie
algebra L and a maximal toral subalgebra T C L. For each root o. € @ also the
negative —a. € T* is a root, i.e. —at € P.

Proof. To show that —¢ € @, assume on the contrary that —o € T* is not a root.
Then for all roots § € &
B#—aie.a+f#0

Lemma 5.14, part ii) implies for all 8 € & and also for § =0
k(L% LP) =0.
Therefore the root space decomposition with L°
L="s | PLP
pe®

implies
k(L% L) =0.

Theorem 4.14 on the non-degeneratedness of the Killling form implies L* =0, a
contradiction to & being aroot. O

The proof of Theorem 5.17 relies on the fact that the Killing form stays non-
degenerate when restricted to a maximal toral subalgebra. Proposition 5.16 proves
this result in two steps - a posteriori Theorem 5.17 clarifies that both steps coincide.

Proposition 5.16 (Restriction of the Killing form to a maximal toral subalge-
bra).

Consider a pair (L, T) with L a semisimple Lie algebra with Killing form
kK:LxL— C,

and T C L a maximal toral subalgebra.

o The restriction of K to the centralizer Cr(T) of T
K|(CL(T) X CL(T)) : CL(T) x C(T) — C,
is non-degenerate.
e The restrictionof x to T
K|(TxT):TxT—C

is non-degenerate.
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Proof. Set C := Cy(T), the centralizer of T in L, and recall C = LY.

* Non-degenerateness of k|(C x C): Consider an arbitrary
he C = L° with k(h,C) =0, ie. k(h,L°) = 0.
Lemma 5.14 implies for each root ot € ¢
k(h,L*) =0.
Hence the root-space decomposition of L with L implies
k(h,L) =0.

Because k is non-degenerate according to the Cartan criterion from
Theorem 4.14, the last equation implies 2 = 0.

* Non-degenerateness of k|(T x T): Consider an element 2 € T C C with
k(h,T)=0.
Due to part i): In order to show i = 0, it is sufficient to show
k(h,C)=0.

For an arbitrary element x € C consider its abstract Jordan decomposition within
the semisimple Lie algebra L
xX=s+n

Lemma 5.3, part ii) implies n € C and s € T, in particular by assumption
k(h,s) =0.
Due to [i,C] = 0 by definition of C we conclude
ad[h,C] = lad h,ad(C)] =0
Therefore the ad-nilpotency of n implies the nilpotency of the composition
ad hoad n

Lemma 4.1 concludes
K(h,n) =0

Hence
k(h,x) = k(h,s)+ x(h,n) = 0.

Because x € C is arbitrary, we obtain

k(h,C) =0
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Part i) concludes & = 0.
O

Now we are prepared to complete our task by proving Theorem 5.17.

Theorem 5.17 (A maximal toral subalgebra equals its centralizer). Consider a
semisimple complex Lie algebra L and a maximal toral subalgebra T C L. Then

T =Ci(T).

Proof. According to Proposition 5.2 the toral subalgebra T is Abelian.
Therefore T C C,(T). It remains to prove the opposite inclusion

C(T)CT.
For the proof set C := C(T).
Due to Lemma 5.3, part ii) for each x € C with abstract Jordan decomposition
xX=s+n

the semisimple summand s belongs to 7'. Hence it remains to show: Any
ad-nilpotent element n € C belongs to 7. The proof relies on the
non-degenerateness of the restricted Killing k7 form.

1) C is nilpotent: According to Engel’s theorem, see Theorem 3.10, it suffices to
show that for each element x € C the endomorphism

ad x € End(C)
is nilpotent. For the proof consider the abstract Jordan decomposition in L
X=s+n.

On one hand, Lemma 5.3, part ii) implies s € T. Hence [s,C] = 0 by definition. On
the other hand, the endomorphism ad n € End(L) is nilpotent, hence a posteriori
also the restriction adc n € End(C). As a consequence,

adx=adn
is nilpotent.

ii) TN[C,C] = {0}: By definition of the centralizer [C,T] = {0}. Lemma 4.1
implies
0= K([T,C],C) = K(Tv [C,C])

Due to Proposition 5.16, part ii) the restriction x|(7 x T') is non-degenerate. Hence
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Nn[C,C] = {0}.
iii) C is Abelian: We argue by indirect proof. Assume on the contrary
[C.C]#0
Part i) implies that the Lie algebra C is nilpotent. Corollary 3.13 applies to the ideal
{0} #I1:=[C,C]cC

and provides an element
0£xeZz(C)nIC,C).

The element x is not ad-semisimple, because ad-semisimple elements from C
belong to T according to Lemma 5.3, part ii) and

TNn[C,C) = {0}
according to part ii). Therefore n # 0 in the abstract Jordan decomposition
X=s+n
and n € C according to Lemma 5.3, part i). Moreover
x€Z(C) = neZ(C)

according to Theorem 1.19. The nilpotency of ad n and the property [n,y] = 0 for
all y € C imply the nilpotency of

(ad n)o(ady).
As a consequence k(n,y) = 0 according to Lemma 4.1. We obtain
k(n,C) =0
Proposition 5.16 implies n = 0, a contradiction.

iv) C C T: We argue by indirect proof. Assume the existence of an
element x € C\ T, and consider the abstract Jordan decomposition

X=s5-+n.

First n #£ 0, because otherwise x = s is semisimple and Lemma 5.3, part ii)
implies x € T, a contradiction. Secondly, Lemma 5.3, part i) implies n € C.
Thirdly, in order to show

K(n,C) =0

we consider an arbitrary element y € C. The endomorphism ad (n) is nilpotent.
Moreover [n,y] = 0 because C is Abelian by part iii). Hence the composition
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ad(n)oad(y)

is nilpotent and
K(n,y) =tr(ad(n)oad(y)) =0.

Proposition 5.16 part 1) applies and shows n = 0, a contradiction.
O

Consider a pair (L, T) with a complex semisimple Lie algebra L and a maximal
toral subalgebra 7' € L. Theorem 5.17 allows to replace in the root space
decomposition of L with L° from Definition 5.13 the eigenspace L° = C;(T) by T.

Due to Corollary 5.15 the roots of L appear in pairs (o, —o). Chapter 6 and 7 will
explain how to choose from each pair one root such that the chosen roots can be
considered a set @ of positive roots.

Definition 5.18 (Root space decomposition or Cartan decomposition). Consider
a pair (L, T') with a semisimple Lie algebra L and a maximal toral subalgebra T C L.
Denote by @ the root set of (L, T'). The splitting of L as the direct sum of eigenspaces

of T
L=T& <€DL"‘> —T@(@ (L"@L_a)>

oacd acdpt

is named the root space decomposition or Cartan decomposition of L.

Definition 5.19 (Cartan subalgebra). Consider a Lie algebra L. A Cartan subal-
gebra H of L is a nilpotent subalgebra H C L equal to its normalizer, i.e.

H =N.(H)

Lemma 5.20 (Cartan subalgebras of a semisimple Lie algebra). For a semisim-
ple Lie algebra L each maximal toral subalgebra T C L is a Cartan subalgebra
of L.

Proof. 1) T is nilpotent: According to Proposition 5.2 any toral subalgebra 7' C L is
Abelian, in particular nilpotent.

ii) T satisfies the normalizer condition: Consider an arbitrary element x € Ny (T).
We have to show x € T. According to Theorem 5.17 it is sufficient for x € T to
show

X e CL(T)

i.e.toshow forallhe T
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[h,x] =0
For the proof apply the root space decomposition of L. It represents x uniquely as

xX=x7+ Z Xo, X7 €T, xq € L*.
acd

The assumption x € N7(T) implies

[, x] = [h,x7] + Z o(h) -xgq = Z o(h)-xq €T

acd acd

Hence

[h,x] € TN L* ={0}.

acd

The opposite inclusion 7 C Ni(T') holds obviously because 7 is a subalgebra. As a

consequence
N (T)=T.

O

Remark 5.21 (Cartan subalgebras of a semisimpleLie algebra).

1. For a semisimple Lie algebra L the two concepts Cartan subalgebra and maximal
toral subalgebra are even equivalent, see [24, Chapter 15.3].

2. A Cartan subalgebra H C L of a semisimple Lie algebra L is not uniquely de-
termined. But each two Cartan subalgebras - and a posteriori each two maximal
toral subalgebras T C L - are conjugate under the group of inner automorphisms
of L. By definition an inner automorphism of L is a map

L— L, z+ (exp ady)(z), x € L ad-nilpotent.

For a proof see [24, Chap. 16.4, Corollary] One defines the rank of the semisim-
ple Lie algebra L as
rank L :=dimc H.






Chapter 6
Root systems from an axiomatic point of view

Our point of departure is the root space decomposition of a complex semisimple Lie
algebra

L=T& < b (L“@L“)) ,
acdt
see Definition 5.18.

We separate the concept of roots from the concept of a Lie algebra as its origin,
and study the properties of @ in the context of abstract root systems. Here we follow
Serre’s guide [40]. Different from many other authors Serre introduces a root system
in an axiomatic way by its set of reflections. The existence of an invariant scalar
product on the vector space generated by the elements of a root system is then a
consequence and not a prerequisite. Serre develops the properties of a root system
by focusing on the real vector space V spanned by the roots.

The base field in the present chapter is R, all vector spaces are real and finite-
dimensional.

6.1 Root system

The ambient space of an abstract root system is a real vector space V. One may
conceive of V as the real vector space spanned by the root set of a semisimple Lie
algebra L, i.e. as the real vector space spanned by certain non-zero, linear functionals
on a maximal toral subalgebra of L.

Definition 6.1 (Symmetry). Consider a vector space V. A symmetry of V with vec-
tor o € V, a0 # 0, is a R-linear automorphism

o V-V

205



206 6 Root systems from an axiomatic point of view

with the following two properties
l.o(a)=—a
2. The fixed space
Hs :={xeV:o(x)=x}

of elements fixed by o is a hyperplane in V, i.e. codimyHs = 1.

Lemma 6.2 (Symmetry). Consider a vector space V and a non-zero element @ € V.

1. Each symmetry

o: V=V
with vector & induces the splitting
V=R -a®Hs
In particular
(52 =idy.
If

x=u(x)-a+v(x) €V withu; € V*, v(x) € Hy,

then
o(x)=x—-2ux) o

2. Each symmetry © with vector o induces the linear functional
o =2 :V =R,

which satisfies
o* (o) =2 and ker o = Hys.

3. Conversely, for each non-zero linear functional
o*: V= Rwitha*(a) =2,

the map
c: VoV, xmx—a'(x)a,

is a symmetry with vector &, induced functional o*, and fixed space Hs = ker o*.

In the following we define a root system . It has the decisive property that for
all @ € @ the linear functional o* € V* takes on integer values on all
elements § € .



6.1 Root system 207

Definition 6.3 (Root system, rank and Cartan integers). A root system R in a
vector space V is a pair
R=(V,D)

with a real vector space V and a subset ¢ C V with the following properties:

* (R1) Finite and spanning: The set @ is finite, 0 ¢ P, and spang P =V.

* (R2) Invariance under distinguished symmetries: For each o € @ there is a sym-
metry
oc:V=V

with vector o, which leaves @ invariant, i.e. 6(P) C P.

* (R3) Cartan integers: For all o0 € @ each symmetry ¢ with vector & as in axiom
(R2) satisfies for all f € @

cB)=B—<B,a>-«a
with integer values < 8, ¢ > € Z. The integers

<B,a>€eZ,apecd,
are named the Cartan integers of ®.

* (R4) Reducedness: For each a0 € @ the only roots proportional to o are « itself
and —q, i.e.
R-a)yn® ={a,—a}.

The dimension of V is the rank of the root system, the elements of & are named the
roots of the root system.

In the literature condition (R4) is considered an additional requirement for a re-
duced root system. If the base field is not algebraically closed one has to distinguish
between reduced and non-reduced root systems. These lecture notes consider only
reduced root systems. Therefore we omit the attribute reduced.

Note that the function
<—,—>VxV->R

which defines the Cartan integers < 3, & > is linear in the first argument § but not
necessarily in the second argument . For any o € &:

<o, >=2.

Lemma 6.4 (Uniqueness of the symmetry). The symmetry ¢ with vector o from
Definition 6.3 part (R2) is uniquely determined by «.
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Proof. Assume two symmetries o;, i = 1,2, of V with vector o satisfying
ci(®)C P, i=1,2.
The symmetries satisfy
ci(®P)=d,i=1,2,

because @ is a finite set, and o; is an automorphism. Consider the automorphism
of V
u:=op00;:V—-V.

It satisfies
u(a) = a and u(P) = .

Due to the formula from Lemma 6.2, part 1 for i = 1,2 the symmetries
o;:V—-V,

and a posteriori also u, induce on the quotient V /Re the identity. There exists a
linear functional
f:V—=Rwith f(a) =0

such that forallx e V
u(x) =x+ f(x)- o

Iteration shows for arbitrary n € Nand allx € V
Wx)=x+n-f(x)-a

The restriction u|® is a permutation of &. Hence u|® has finite order, i.e. an expo-
nent ng € N exists with
(u|®)" = id|P.

Hence
U™ =id

because @ spans V. As a consequence
ng-f=0
which implies f = 0 and therefore u = idy. We obtain
0100 = idy

Because

o; = Gfl

one obtains also
61062_1 =idy or 01 = O»
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Notation 6.5 (Root Gy,). For a root system @ the unique symmetry & from Lemma 6.4
with vector @ will be denoted oy,

Definition 6.6 (Weyl group). The Weyl group # of a root system (V,®) of V is
the subgroup of GL(V') generated by all symmetries

O VoV, e d.
The symmetries 0y, ¢ € @, are named the Weyl reflections of the root system.
The Weyl group # permutes the elements of the finite set &, hence # is a
finite group. As a consequence, one may average an arbitrary scalar product over

the elements of the Weyl group, obtaining a scalar product which is invariant with
respect to /.

Lemma 6.7 (Invariant scalar product). Let @ be a root system of a vector space V.

Then a scalar product (—, —) exists on' V which is invariant under the Weyl group W
of ®@. With respect to any invariant scalar product the Cartan integers satisfy
(B, @)
<p,a>=2- ,o,ped.
P G

Proof. Take an arbitrary scalar product B on V and define the bilinear form (—, —)
as

(x,y):= Y Bw(x),w(y)), x,y €V,
wew
as the average over the Weyl group, which is a finite group. Apparently, (—,—)
is positive definite, hence a scalar product. By construction, the scalar product
is #/ -invariant. For two roots o, § € @ the corresponding Cartan integer < f3, o >
is defined by the equation

ou(f)=B—<B,a>a.

Because
Oo(0t) = —a, and (04)* = id

and due to the invariance of the scalar product:
—(0,B) = (0a(@), B) = ((0a)*(®), 0a(B)) =
= (av(jOC(B)) = (avﬁ_ < ﬁva > (X) =

= ((X,ﬁ)— <ﬁ,0€ > (aaa)7

which proves
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(@B) _, (B.a)

<ﬁ’a>:2'(a,a) (a, )

Corollary 6.8 (Fixed space of a symmetry). Consider a root system P of a vector
space V. The fixed space of the symmetry Oy of a root &. € @ is the orthogonal
space of the root

Hg, = ot

Hence Gy, is the reflection at the orthogonal hyperplane o™*.

Proof. A given element v € o' has a representation

VZZ[,"OC,’, a; € D.
i

Then
Ga(V):Z ti-Ga(OCi) ZZ ti-((xi— < 0,0 > 'OC) =
i i
o, 0 v, o
:Zti'ai_zti'z'( ! )-a:\/—z-( ).a:
i i ((X,(X) ((X,(X)
Hence

at C Hg,
Both subspaces of V have codimension = 1. Therefore

HO' :OKJ‘

o

Now, after constructing an Euclidean space (V,(—,—)) of the root system &, we
can define the length of a root and the angle between two roots. In the following we
always provide a root system @ with a fixed # -invariant Euclidean structure on its
vector space V.

Definition 6.9 (Length of roots and angle between roots). Consider a root system P
and the corresponding Euclidean vector space (V,(—,—)).

1. The length of a root o € @ is defined as
o]l := (e, ).
2. The angle included between two roots o, € @

0:=<(o,B)with0<O0<m
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is defined according to

_ (@p)
<os(8) = oA

Lemma 6.10 (Possible angles and length ratio of two roots). Consider a root sys-
tem @ and two non proportional roots o, € ®. Table 6.1 displays the only pos-
sible angles <t(et, ) included by o and B, and the ratios of the length of o. and 3

if 1B1 = llel.

)

[No.|<a,B >[<B,a>|<(a,B)|[BIF/[]*|a = {a.B}|

1 0 0 g undet. Al XAy
2 I 1 z I

3| -1 -1 pu 1 A

4 1 2 L 2

5| -1 2 S 2 B,

6 1 3 z 3

70 -1 3 2z 3 Gy

Table 6.1 Angles and length of roots

The last column of the table indicates the type of the root system of rank = 2 with
base A = {a, B }. The concept will be introduced in Definition 6.13, see also Theo-
rem 6.31.

Proof. We employ the Cartan integers < o, >,< B,0 > € Z.

Both Cartan integers have equal sign due to Lemma 6.7. If o« and 8 are not
proportional, then the angle 6 := <(a, B) is different from zero and different
from 7, hence

|cos 6] < 1
Therefore
a.p B.o
4>4.cos? =2- (||ﬁ||2) -2 (|a||2) =<o,fp>-<B,a>>0.

If | Bl > ||| then
|<a,B>|<|<B,a>]

because )
1Bl>  <B,a> |<B,a>|

o> <a.B> |<oa,p>]

<o,f>#0 =
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Hence only the combinations from the table are possible.
O

The formulas from the proof of Lemma 6.10 indicate : For two non-proportional
roots o, 8 € @ the product of their Cartan integers determines the included angle 8 = <((ct, ),
while the quotient of the Cartan integers determines their length ratio || || /| ct|| with
the only exception of the orthogonal case 6 = /2.

Example 6.11 (Root systems of rank < 3).
» Rank = 1: The only root system is & = {£a} with V =R.

* Rank =2: Figure 6.1 displays all root systems of rank = 2, see also Theorem 6.27
and Proposition 6.29.

¢ Rank = 3: See the figures in [18, Chap. 8.9] as one example.

Fig. 6.1 Root systems of rank = 2

Lemma 6.12 (Roots with acute angle). If two non-proportional roots o, € @
include an acute angle, i.e. (o, 3) > 0, then also a — f§ € P.
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Proof. According to Table 6.1 the assumption (¢, 8) > 0 implies, depending on the

ratio
2 2
1B/ lexl],
<B,o>=lor <a,f>=1.

In the first case 04(B) = B — @, in the second case og(a) = o — . In both
cases @ — 3 € @ because the Weyl reflections

Ou, O €W/

leave @ invariant and the negative of a root is also aroot. O

Definition 6.13 (Base of a root system, positive and negative roots).
Consider a root system < in a vector space V.
i) A set

A={ay,...,0}

of roots o; € @,i = 1,...,r,is a base of ¢ and the elements of A are named simple
roots iff

* The family (04);=1...,is a basis of V,

yeury

 and each root 8 € @ has a representation with integer coefficients
r
B :Zki'aia kl‘EZ,
i=1

with either all k; > 0 or all k; <O0.
ii) With respect to a base A a root 3 is
 positive, B =0, iff all k; > 0

* negative, B <0, iff all k; < 0.

The subset @ C @ is defined as the set of all positive roots and the
subset @~ C @ as the set of all negative roots.

Theorem 6.14 (Existence of a base). Every root system @ in a vector space V has
a base A.

Proof. The construction of a candidate for A is straightforward. But the proof that
the candidate is indeed a base, will take several steps.
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i) Construction of A: Because @ is finite, a linear functional t € V* exists
with #(a) # 0 for all o € P. Set

o ={acd:t(a) >0}
and call o € ®;" decomposable in ;' iff
o= o+ o withay,0p € P,
and otherwise indecomposable in @;". We claim that the set
A:={a C & : a indecomposable in &;"}
is a base of P.

ii) Representation of elements from ®;": We claim that each € &," has the form

B=Y ko-awithall kg € Zy.

acA

Otherwise consider the non-empty subset C C @, of all elements which lack such
a representation, and choose an element § € C with () > 0 minimal. By
construction § € ®," cannot be indecomposable in ®,". Hence § € &;" is
decomposable in &, i.e.

B=pB+p

with B1,8, € &, and B; € C or B, € C. We get

1(B) =1(B1)+1(B)

which implies
0 <t(B1) <t(B) and 0 <1(B2) <1(B),

a contradiction to the minimality of #(8) within 7(C).

iii) Angle between elements from A: We claim that two different roots o # 8
from A are either orthogonal or include an obtuse angle, i.e. (o, ) <O0.
Otherwise (a, B) > 0 and we obtain from Lemma 6.12 the root

y=a—B €.

As a consequence
a=p+7,
and y ¢ @;" because « is indecomposable in @;". Hence —y € &, which implies

B=a+(-7)

decomposable in @;', a contradiction which proves the claim.
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iv) Linear independency: We claim that each finite subset A C V with all different
elements o, § € A satisfying

t(a) >0and (o,B) <0

is linearly independent. For the proof assume the existence of a representation

0= Zna'(x

acA

with coefficients ny € R for all @ € A. Separating summands with positive
coefficients from those with negative coefficients gives an equation

Z kg-B = Zky-’)/ZZVEV

BeA; YEA2

with disjoint subsets Aj,A> C A and all kﬁ, ky > 0. Then

()= Y ksky(B7) <0.
BeA;,veA;

Hence v = 0. Now

0=1(v)= ¥ ks-1(B)

BeA,

with #(8) > 0 for all B € A; implies kg = 0 for all 8 € A;. Similarly k, = O for
all y € A>. Hence
Ng = 0

for all & € A. Hence the family of elements from A is linearly independent.
The sequence of all steps i) until iv) proves the claim of the theorem.

O

The proof of Theorem 6.14 constructs a base A by starting from a certain func-
tional ¢ € V*. Conversely Lemma 6.15 shows that any base can be obtained in this
way: Each base of a root system @ is the set of indecomposable elements in &, for
a suitable linear functional r € V*.

Lemma 6.15 (Base and a determining linear functional). In a vector space V
consider a root system @ with a base A. Denote by

b=t UP
the induced decomposition of . Then

* A functional t € V* exists with t(a) # 0 for all o € ® such that

=@ ={acd:t(a)>0}and ® =P, :={acd: t(a) <0}
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e For each functional t € V* with & C &;" holds
A ={o € ® : aindecomposable in d;" }.
Proof. The base A defines the decomposition
=" UD.

First, because the family of elements from the base A are a basis of V there exists a
linear functional r € V* with #(a) > 0 for all & € A. Then

O =P and @ =P,
Secondly, for each functional t € V* with
AC P

follows
T C P and @ C P .

And the decomposition
PTUP == U,

implies
O = and ®” =P, .

As a consequence, the indecomposable elements from both sets @ and @;" are
equal,ie. A=A'. 0O

Corollary 6.16 (Two distinct roots of a base are orthogonal or include an obtuse
angle). Consider a base A of a root system @ in a vector space V. Then any two
different roots

atBeA

are orthogonal or include an obtuse angle, i.e. (o, 3) <O0.
Proof. According to Lemma 6.15 a suitable functional 1 € V* exists with
A={a € ®": oindecomposable in &, }.

Part iii) in the proof of Theorem 6.14 shows (¢, ) <0. O
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6.2 Action of the Weyl group

Our aim in the present chapter is the classification of all possible root systems. This
result derives from two facts.

First, the Cartan numbers of a root system & of a real vector space V are integers.
This fact restricts the angle and the relative length of two roots, see Lemma 6.10.
The second fact results from investigating different group actions of the Weyl group,
in particular the transitive action on the set of bases of a given root system. Besides
the action of the Weyl group # on &

W xP— D, (wa) = wla),

we study the action of %

* on the linear functionals induced by & € @ as

(v, a)
o, )

<—0a>VoR vee<v,a>=2-

—~

* on the Weyl reflections
Og: V=V, aed,

¢ and on the bases A of @.

We will show: A root system is characterized by the matrix of its Cartan integers,
the Cartan matrix. Only finitely many types of Cartan matrices exist.
Definition 6.17 (Group action). A group G acts on a set X if a map exists
GxX—X, (g,x)—gx
with the following properties:
e.x =x for all x € X, e € G the neutral element,

and
(g1-82)x=g1-(g2.x) forall g;,g0 € Gand all x € X.

The group acts transitive if for all x € X the induced map
G—X, g—gux,

is surjective.

Lemma 6.18 (Action of the Weyl group on Cartan integers and on symmetries).
Consider a root system ® in a vector space V with Weyl group W'.
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1. Set
A={<—a>eV': € P}.

The map
W xA—=A (w<—a>)—=<—wa)>

is a group action.
2. The conjugation
WXHW =W, (wi,w) = wy owzowfl,
is a group action.

3. Denote by
C:={A C ®:Aabase of P}

the set of all bases of ®. The map
W xC—=C, (wA)—»w(A):={w(a):ac A},
is a group action.

Remark 6.19 (Action on the dual space). Consider a root system & with Weyl
group #'.

1. For all @ € @ and w € # holds

< —w(o) >=< —, 00> ow™!

For the proof it is sufficient to consider a Weyl reflection w = og, § € ®. The

proof employs the invariance of the scalar product (—, —) with respect to og, and
the property
o5 =id, i.e. o = G,;I.

Then

1 _ _, (op(=)a)

<—,00>005 =< —,0>00p =< og(—), o >_2'W_
2
L, @) Cop@) (o)
(o, ) (o, 0x) (op(a),0p(a))
=< —,0p(0) >

2. Accordingly one extends the action of 7 to an action on the dual space V*:

WXV 5V (wit) = w(t) =tow .



6.2 Action of the Weyl group 219

Proposition 6.20 (Properties of the Weyl group). Consider a root system @ of a
vector space V and denote by W' its Weyl group. Denote by A a fixed base of P.
Then

1. Embedding A into half-spaces: For each functional t € V* an element w € W
exists such that all a@ € A satisfy

w(a) € &F

2. Transitive action on bases: The action of # on the set of bases of @ is transitive,
i.e. for any base A’ of ® an element w € W exists with

w(A)=A".
3. Any root extends to a base: For any root o € ® an element w € W exists with
w(a) €A, ie. D=W(A).

4. Generators of % : The Weyl group W is generated by the Weyl reflections 6y of
the roots o € A.

Proof. Denote by #, C # the subgroup generated by the Weyl reflections o, of
the roots o € A. We first show that the first three claims of the Proposition can be
satisfied with Weyl reflections from #/4. The final step of the proof will show

W =Wh.

i) Each Weyl reflection 0, € # with o € A leaves the set @1\ {ot} invariant:
Assume that A comprises at least two roots. Consider an element € @\ {a}. It
has a representation

B=Y kyv, ky>0, forallyeA.
YEA

Due to axiom (R4) from Definition 6.3 the root 3 is not proportional to «,
because —o ¢ PT. Hence ky > 0 for at least one y € A\ {ot}. We get

ou(B)=B—<B.a>a=

:(Z@q>—<&a>a=mr<ﬁﬁ>ya+ Z ky-y.

yeA yea\{a}

Hence also 0, (f) has at least one coefficient k, > 0. Because A is a base, all
coefficients are non-negative and

ou(B) € 27\ {a}.
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ii) We introduce the distinguished vector p € V, which is defined as half the sum of

all positive roots
p:=(1/2)- Y B.
pedt

According to part i) each Weyl reflection o, € # with o0 € A permutes all positive
roots different from ¢ and 64 () = —a. Hence

ou(p) = oul(p — 0/2) + @/2) = (p— a/2) ~ /2= p — a

We now show that the first three claims can be satisfied already by taking Weyl
reflections from #.

iii) Claim: Part 1 of the Proposition can be achieved with an element w € #,: For a
given functional r € V* we choose an element w € # with #(w(p)) maximal with
respect to all elements from #,. For all a € A holds according to part ii):

o =p—0a(p)
w(a) =w(p) —w(oa(p))
t(w(a)) =t(w(p)) —t(w(oa(p))).
Because also wo oy € #, we have due to the choice of w € #,4
t(w(p)) = t(w(oa(p)))

orforallx € A
tw(@)) >0, ie. w(a) € &

iv) Claim: Part 2 of the proposition can be achieved with an element w € #,: First,
Lemma 6.15 applies to A’ and provides a functional ¢’ € V*

* satisfying
forallx € @

e and

forall o/ € A'.

Secondly, the already proved Part 1 of the proposition applies to ¢ and provides an
element w € %, such that all @ € A satisfy

7 (w(a)) >0

Then the functional
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t:=toweV*

satisfies for all ¢ € A
t(a) > 0.

Here the case ¢(o) = 0 is excluded, because otherwise the root w(a) € @ would
satisfy
t'(w(a)) =0,

which is excluded because ' does not vanish on any root from .

Applying now Lemma 6.15 to the pairs (A,r) and (A’,#') characterizes A as the set
of indecomposable elements of @, and A’ as the set of indecomposable elements
of CDj. Therefore

w(A) = {w(a) € ®: a € &, indecomposable in &;"} =
={w(a) e @: 1(a) =1'(w(a)) >0, w(a) indecomposable in &} =

={B e G‘Dj : B indecomposable in @t,*} =A'

v) Claim: Part 3 of the Proposition can be achieved with an element w € #4: For
fixed a € & we find a functional 7y € V* with

fo(a) =0 but 7o(B) # 0
for all roots 3 not proportional to o.. Because @ is a finite set, the minimum
min{|to(B)|: B € P not proportional to o}

is positive. Hence a small perturbation of 7y provides a linear functional t € V* and
an € > 0 such that for all roots 3 not proportional to &

1(B)| > &

but
t(o) = €.

Denote by A, the base of @ induced by ¢ according to the proof of Theorem 6.14.
By part iv) an element w € #/4 exists with

w(4A) = A.

The root o € P is contained in &;". It is indecomposable because #(f) > € for all
roots B € @, which are non-proportional to &. Therefore & € A, which
implies w(ot) € A.

vi) Claim #, = #: Because the Weyl group is generated by all
symmetries Oy, o € D, it suffices to show that
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Oy € W

for all ¢ € @. We choose an arbitrary root o0 € @. According to part v) an
element w € #, exists with
B:=w(a)eA.

First, we show
wlo Oy(a) = Ou ow !

We apply both sides to a root y € P. Left-hand side:

oo, @) (1) =w (= < rw(@) > w(a)) =

(w
=w (1) = <yw(@) > w (W) =
=w l(y)— <ywa) > a
Right-hand side:
(caow (1) =calw ' (M) =w ' ()= <w ' (.a> «a

It remains to show:
<yw(a) >=<w(y),a>,

i.e the equality of the two linear functionals
< —w(a)>=<w(=),a>.
According to Remark 6.19 for the left-hand side holds
< —w(a)>=<—a>ow l=<w (=), a>,
which proves the claim.

Asa consequence

w! oog = wl ©Oy(q) = Oa ow ™!

i.e
Gazwflocﬁowe%.

Definition 6.21 (Cartan matrix).

Consider a root system & in a vector space V and a base A = {ay, ..., &} of P.
The Cartan matrix of A is the matrix of the Cartan integers of the roots from A

Cartan(A) := (< 04,0 >1<ij<r) € M(rxr7Z).

Here the index i denotes the row and the index j denotes the column.
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Note that the Cartan matrix is not necessarily symmetric. All diagonal elements
of the Cartan matrix have the value

<oy, 0 >=2,

which follows from
—a=og(a)=0a—<a,a>- o

for each root o € P.

For i # j only values
< O, O ><0

are possible according to Corollary 6.16. Moreover, these values are restricted to the
set
{07 717 727 73}

according to Lemma 6.10 and Corollary 6.16.

The Cartan matrix is defined with reference to a base A and with reference to a
numbering of its elements. Lemma 6.22 shows: Each two bases of ¢ have the same
Cartan matrices.

Lemma 6.22 (Independence of the Cartan matrix from the choosen base).
Consider a root system P of rank
r = rank ®.

Any two bases A, A’ of ® have the same Cartan matrix up to a renumbering of the
elements of the bases. More specifically:

An element w € W of the Weyl group of @ exists with w(A) = A’ and
Cartan(A) = Cartan(A).

Proof. According to Proposition 6.20 an element w € # exists with w(4) = A’
after renumbering, i.e.

A={an, i 0} = A= {w(an), .. w(a)}.
According to Remark 6.19
< —w(e) >=< —, ;> ow™ !

which implies

< W((Z,'),W(Otj) >=< Wﬁl(W((X,')),(Xj >=< 0,05 >
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As a consequence of Lemma 6.22 one speaks of the Cartan matrix of a root system,
independently from the choice of a base.

The Cartan matrix encodes the full information of the root system @, notably the
dimension of its ambient space V. Theorem 6.23 shows that each bijective map
between two bases of root systems with the same Cartan matrix extends to an
isomorphism of the ambient vector spaces of the root systems.

Theorem 6.23 (The Cartan matrix characterizes the root system).
Consider a root system @ in a vector space V and a base
A=A{ay,...,o}
of D. Let V' be a second vector space and
A ={af,...,a}
a base of a root system @' inV'. If a bijective map
fiA—=A

exists with
Cartan(A) = Cartan(A’),

then a unique isomorphism of vector spaces
F:V—V

exists with
F(®)=® and F|A = f.

Proof. 1) Construction of F: Because the elements from A form a basis of the
vector space V we may define
F:V—=V

as the uniquely determined linear extension of f. And because A and A’ have the
same cardinality the linear map F' is an isomorphism.

ii) Conjugation of the Wely groups: We show that the Weyl groups % and %' are
conjugate via F, i.e.

W' =FoW oF lie. W oF=Fo¥ :
For the proof it is sufficient two consider two roots o, 3 € A. Then

(Of(@) o F)(B) = 07(a)(f(B)) = f(B)— < f(B),f(e) > f(e)
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and

(Fooa)(B)=F(0a(B)) = F(B—<B,0,>a) = f(B)— <B,a,> f(@)
Hence for every root o € A
Gf(a)OF =Foo0y.

Moreover, the conjugation is compatible with taking the product of Weyl
reflections. The Weyl groups # and %" are generated by the Weyl reflections of
the elements from respectively A and A’, see Proposition 6.20. Hence

W' oF =Fo¥.
iii) Mapping @: According to part ii) in combination with Proposition 6.20, part 3

& = W(A) = W' (F(A) = F(#(4)) = F(®)

6.3 Coxeter graph and Dynkin diagram

Due to Theorem 6.23 a root system & in a vector space is completely determined
by its Cartan matrix. Hence the classification of root systems reduces to the
classification of possible Cartan matrices. The Cartan integers satisfy a set of
restrictions. The present section shows how the language of Cartan matrices
translates to a data structure from Discrete Mathematics. The data structure is an
undirected graph with multiple edges, called the Coxeter graph of the root system.

Therefore, we first define the Coxeter graph of @, and then classify all possible
graphs from a class of graphs, which covers all Coxeter graphs. The classification
is achieved by calculating within Euclidean vector spaces. Theorem 6.27 gives the
final classification. A minor shortcoming of the Coxeter graph of a root system is
the fact that it contains no information about the relative length of the roots.
Therefore one upgrades the Coxeter graph by orientating the edges by a pointer
from a long root to a short root. The result is the Dynkin diagram of .

Definition 6.24 (Coxeter graph of a root system). Consider a root system @ of a
vector space V and a base A of @. The Coxeter graph of @ is the undirected graph

Coxeter(®) = (N,E)

with

e vertexsetN:= A
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» and edge set E: Each pair of distinct roots

oa,ped, a#p,

is joined by exactly
<a,Bp>-<B,a>

undirected edges.

Note: The Coxeter graph of @ does not depend on the choice of the base A of P,
see Theorem 6.23.

Recall from Lemma 6.10 and Corollary 6.16: The angle 6 between two

roots & # B € A is determined by the product of their Cartan integers as

<a,B><B,a>=4-cos* 0 €{0,1,2,3}, 1/2<6 < 7.
If (—, —) denotes a scalar product on V which is invariant under @, then

(o, B)

<o,B><poo>=4 —"—-

el 181>

In order to classify all Coxeter graphs, we introduce the concept of an ad-
missible graph. Each Coxeter graphs defines an admissible graph. The next step,
Theorem 6.27, classifies all connected admissible graphs. A second step must show
that all connected admissible graphs are Coxeter graphs. We will show a partial
result for the second step in Chapter 7 and give a reference for the remaining part.

Definition 6.25 (Admissible graph). Consider an Euclidean space (V,(—,—)) and
an undirected graph (N,E) with a finite vertex set N C V and with edge set E.
Assume that the vertex set

N=A{vi,.,v,}CV

is a linearly independent family (v;);—; ... - of unit vectors satisfying for 1 <i# j<r

(vi,vj) <0,
and that each pair of distinct vertices v; v; € V is joined by
4. (V,‘,Vj)2 eN

edges from E. Then the graph (N, E) is named admissible if each pair of distinct
nodes is joined by at most 3 edges, otherwise the graph is named non-admissible.
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Lemma 6.26 (Coxeter graph and admissible graph). Each Coxeter graph of a
root system © defines an admissible graph after normalizing the lenght of the roots
of a base A of P.

Proof. After choosing a scalar product (—, —) on V, which is invariant under the
Weyl group of @, one defines for each o € A the unit vector

o
oy = me (V,(=,—)).

Then the following graph (N, E) is admissible: Vertex set
N:={o,: acA}
and edge set E: Each pair of distinct vertices &, B, € N is joined by exactly

<a,pf><p,a>

edges. The claim
4(o. Bu)* €1{0,1,2,3}

follows immediately from the formula

(a,B)

P St L
HewBo)” =4 5B BT

=<a,p><p,00>€{0,1,2,3}
as noted above. O
Theorem 6.27 (Classification of connected admissible graphs). Each connected

admissible graph belongs to exactly one of the classes from Figure 6.2 - up to a
numbering of the vertices:
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Fig. 6.2 Connected admissible graphs

Figure 6.2 means:

* The integer at a link between two vertices v; # v; is the number of edges between
the two vertices; a link without a number indicates a single edge.

*  Graphs from series Ar,r > 1: Each pair of subsequent roots include the angle ZT”
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Graphs from series B, /Cy,r > 2: The first r — 2 pairs of subsequent roots include
the angle 27”, the last two roots include the angle %.

Graphs from series D,,r > 4: The first r — 3 subsequent pairs of roots include the
angle 27” root O_3 includes with each of the two roots o, and o, the angle 27”

; DA . 5
Exceptional graph Gy: A = (o1, &). The two roots include the angle .

Exceptional graph Fy: A = (0, ..., Q4 ). The pairs (ay,0,) and (a3, 04) include
the angle 27” the pair (0, a3) includes the angle 37.

Exceptional graphs E,,r € {6,7,8} : A = (ay,..., ). All subsequent pairs of

the chain include the angle 27” Also the distinguished root 0 and the root Oy
include the angle 27”

Proof. The proof is taken from [24, Chap. 11.4].

1.

Removing vertices and incident edges: For an admissible graph each subgraph,
which is obtained by removing a subset of vertices and their incident edges, is
admissible.

2. Number of vertices and edges: An admissible graph has less edges, counted

without multiplicity, than vertices, i.e. |E| < |[N|:

Assume N = {vy,...,v,} C V. Consider the element

Vi= Zr’Vi evV.
i=1

Then v # 0 because the family (v;);—1 ., is linearly independent. We obtain

0<(v,v) = i(vi,vi)+2- Z (Vi V).

1 1<i<j<r

If (vi,v;) # O then
4-(vi,vj)? €{1,2,3} and (v;,v;) <0,

which implies
2. (V,‘,Vj) S —1.

Therefore

0<r+2- Z (vi,vj) <r+2-|E|-(-=1/2) =r—|E|
1<i<j<r

229
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and
|E| <IN/

3. Cycle-free: A cycle C = (N¢, Ec) were an admissible graph according to part 1,
but would violate part 2 because

|Ec| = [Nc|.

4. Bounded fan: For each vertex of an admissible graph the number of incident
edges, counted with multiplicity, is at most = 3: Denote by

Inc(v) :={e € E : e incident with v}
the set of edges incident to a vertex v. We have to show
[Inc(v| < 3.

Denote by {wy,...,w;} the set of vertices adjacent to v, see Figure 6.3.

’ AT 2.
°

%A
-
\"MR /

& N

Fig. 6.3 Vertex v with incident edges

Because an admissible graph is cycle free due to part 3, two different vertices
wiAwi, 1<i#j<k
are not adjacent, and therefore
(wi,wj) =0

i.e. the family
B = Wi)i=1,.k

is an orthogonal family in (V,(—,—)). Because the family
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(V, Wiy.eny Wk)

is linearly independent as a subfamily of the linearly independent family of all
vertices in N, the family Z extends to an orthomormal family

by adding a unit-vector
wo € span < V,Wi,...,Wi >

It satisfies

(wo,v) #0
because otherwise wy = 0. The orthogonal decomposition with respect to 2
k
V= Z(V,W,’) W
i=0
implies
d 2
=(v,v) = Z(V,W,’)
i=0
and therefore )
Z(v,w,) <1
i=1
As a consequence
k
24- (v,w;)* <4

which excludes more than 3 edges incident with v.

5. Triple edge: The only connected admissible graph with a triple edge is the graph
of type G, from Figure 6.2. Apparently the graph is admissible. The fact that
type G is the only connected admissible graph with a triple edge follows from
part 4.

6. Blowing down simple paths : Blowing down a simple path, i.e. a path without
multiple edges, results in a new admissible graph (N, E’). Figure 6.4 shows a
graph (N, E) which cannot be admissible because its blow-down (N, E’) is
non-admissible:
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Llow - douwn

Fig. 6.4 Blowing down a simple path with non-admissible resulting graph

Denote by C = {wj,...,w, } C N the vertices of the path. By assumption
fori=1,...n—1

4. (Wi,Wi+1)2 =1, 1e 2 (wi,wit1)=—1.

The graph (N, E’), resulting from blowing down the original path, has

* vertex set "
N'=(N\C)U{wo}, wo:=) wi€V,
i=1

* and edge set E’ obtained from E by removing all edges of the path C and
replacing each edge of E, which is incident with a vertex of C, by a
corresponding edge incident with wy.

We show that the graph (N, E’) is admissible: Linear independence of the
vertex set N’ is obvious. We compute

n

(wo,wo) = Y, (wiwj) =

1<i,j<n i

D=

(wi,wi)+2- Z (W,’,Wj) =

1<i<j<n

Il
-

n—1
n+2- Z(W[,W,’+1) =n+2-n—1)-(-1/2)=n—(n—-1)=1,
=1

i=

which shows that also the vector wy is a unit vector. In (N, E) any vertex w
from N\ C is adjacent to at most one vertex from the path, because an
admissible graph is cycle free according to part 3. Hence

o either (w,wg) =0

 orexactly one index i = 1,...,n exists with 0 % (w,w;).

In either case holds
4-(w,wp)* € {0,1,2,3}.
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7. Prohibited subgraphs: A connected admissible graph does not contain any
subgraph from Figure 6.5:

a)

h) 2 . 2. 9L DL

o @ wea '/
d) - e

Fig. 6.5 Types of prohibited subgraphs and their non-admissible blow-down in cases b)-d)

Here a number 2 on a line connecting two vertices means that the two vertices
are joined by 2 edges. The prohibited subgraphs from Figure 6.5 contain at least
one of the following constellations of nodes respectively edges:

a) A vertex with more than 3 incident edges is prohibited according to part 4.

b) Two pairs of adjacent vertices connected by a multiple edge.

¢) One pair of adjacent vertices connected by a multiple edge, and another
vertex with 3 incident edges.

d) Two distinct vertices, both have at least 3 incident edges.

In any of the subgraphs b)-d) it would be possible to blow down a path to a
vertex with at least 4 incident edges, which contradicts part 4 and part 6.

8. The types of admissible connected graphs: Each connected admissible graph
belongs to one of the types from Figure 6.6:
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a) - R Jm——-
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Fig. 6.6 Admissible connected graphs
a) No multiple edges, no vertex with 3 incident edges: All connected admissible
graphs from Figure 6.6 type a) belong to type A,, r > 1, from Figure 6.2.

b) A single pair of vertices with a double edge, no vertex with 3 incident edges:
See part 9.

¢) A single pair of vertices with a triple edge, no further vertices. The only
connected admissible graph from Figure 6.6 type c) is the exceptional graph G
from Figure 6.2. For the proof see part 5.

d) No multiple edges, a single vertex with 3 incident single edges: See part 10.

These graphs are admissible. The fact, that there are no other types of
admissible graphs, result from excluding the prohibited subgraphs from part 7.

9. Admissible graphs from series B,, C, and exceptional graph Fy: All connected
admissible graphs from Figure 6.6 type b) belong to series B, or are the
exceptional graph Fj in Figure 6.2.

Consider the two vectors from V
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M'u

-u; and v —Zz Vi.

i=1 i=
They are linearly independent. Using
2. (uiaui+1) =-1
we compute
p —1
(u,u) = Z (ui uj) le ui,u;)+2- Z i+ 1) (i uip1) =
1<i,j<p =1 i=1
p—1 p— p—1

:iiz—l-Z (=1/2)-i(i+1) Zl —212—21—

i=1 i=1 i=1 i=1

=p*—(1/2)p(p—1)=(p/2)(p+1).

Analogously
(v,v)=(q/2)(g+1).
Because
4 (up,vy)* =2
we obtain

(V) = (P tp,q-Vg)* = P> - (p,vg)* = (1/2)- p?
Employing the Cauchy-Schwarz inequality
(u,v)? < (u,u) - (v,v)
with u and v linearly independent gives
(1/2)-p°¢* < (p/2)(p+1)-(¢/2)(q+1).
Multiplying both sides by 2 implies
p*-q* < (1/2)p(p+1)g(g+1) = (1/2)pa(p+1)(g+1)

pg<(1/2)(p+1)(g+1)=(1/2)pg+(1/2)(p+q+1)
pa<(p+q+1)
(p—1(g-1)-2<0

and eventually
(p—1)(g—1)<2.

This restriction allows only the possibilities
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(paQ) = (172 2)7(17761) = (Z 2,1),([7,5]) = (2,2),([7,Q) = (17 1)

The first two give the same Coxeter graph. It has type B, = C,,r > 3. The third
possibility is the exceptional type Fy. The fourth possibility is type B,.

10. Admissible graphs from series D, and exceptional graphs E,, r = 6,7,8 : All
admissible graphs from Figure 6.6 type d) belong to series D, r > 4, in
Figure 6.2 or are the exceptional graphs types E,,r € {6,7,8} in Figure 6.2.

Similar to the proof of part 9 we define the vectors from V

r—1 p—1 q-1
u:= Zi-ui,v:: Zi~vi and w:= Zi-wi.
i=1 i=1 i=1

Note
np,q > 2.

The three vectors (u, v, w) are pairwise orthogonal and the four
vectors (x,u,v,w) are linearly independent. Denote by

0, := <I(X, I/t), 0 := <[()C7V)7 6; := Q(X,W)

the angles between the vector x and each of the other three vectors. Similarly to
the calculation in part 4 we obtain

3
1> z:cos2 ;.
i=1

=

Similarly to the calculation in part 9 we have

(w,u) = (r/2)(r=1), (v,v) = (p/2)(p—1), (w,w) = (q/2)(¢—1).

Using in addition

4-(xyur_1)t=1
we obtain
x,u)? r—172%(x,u,_))>  (r—1)%-2.
oo o= = e ey 20-(/0)

and analogously for cos? 6, and cos” 65. Hence

3

1> Y cos® 6; = (1/2)[(1 = (1/r) + (1= (1/p)) + (1 = (1/9))]

i=1
L<(1/r)+1/p)+(1/q).

W.l.o.g we may assume
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gq<p<r

Hence
L<(1/r)+(1/p)+(1/q) <3/q

which implies
3>g>2,ie.q=2.

We obtain
1< (1/r)+(1/p)+(1/2),ie. 1/2< (1/r)+(1/p),
Because p < r we obtain
1/2<2/pand2 < p<4.

In case p = 3 we have r < 6. In case p = 2 the parameter r may have any
value > 2.

Summing up: When r > p > g then the only possibilities for (7, p,q) are
(57372)’ (47 372)7 (37 372)7 (Z 27272)'

These possibilities refer to the exceptional graphs Eg, E7, E¢ or to the graphs
from series D,,r > 4.
O

Definition 6.28 (Irreducible root system). Consider a root system @ of a vector
space V and denote by (—,—) a scalar product on V invariant with respect to the
Weyl group # of &.

1. The root system @ is reducible iff it splits into two non-empty, orthogonal sub-
sets. iff a decomposition

(D:@l U(PZ, q)l #07 ¢2#05

exists with
(Py,P,) =0.

Otherwise @ is irreducible.

2. Analogously defined are the terms reducible and irreducible for a base A of P.

Proposition 6.29 (Irreducibility of a root system and connectedness of its Coxeter
graph). Consider a root system @ of a vector space V and a base A of P.

1. @ is irreducible if and only if A is irreducible.
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2. A is irreducible if and only if the Coxeter graph of ® is connected.

Proof. 1. i) Suppose @ reducible with decomposition
D=PUDy; O #0, Dy #0.
Define A; := &;NA,i=1,2. Then
A=A1UA
and (A},4;) =0.
Assume A} = 0. Then A = Ay C &, which implies

(qslaA2) C (¢1a¢2) =0.

Because
V =spang A = spang A
we even get
((pl 7V) = ((plaAZ) =0.
Therefore

¢1 :Oa

which is excluded. As a consequence:
A # 0 and similarly A, # 0.

The decomposition
A =AUA

proves the reducibility of A.
ii) For the opposite direction suppose A reducible with decomposition
A=A UA;.
Denote by # the Weyl group of &. Define
D =W (Ai), i=1,2.

According to Lemma 6.20 any root 3 € & has the form 8 = w(a) for suitable w € #
and @ € A. Therefore
b =¢ U P,

The Weyl group is generated by the symmetries 64, 0t € A. Explicit calculation
shows for each root & € span Ay:

o If oy € Aj then also O, (&) € span A;.
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* If ap € A then 0, (@) = Q.

As a consequence # (A1) C span Ay and similarly #(A;) C span A;. The or-
thogonality (A,A;) = 0 implies the orthogonality

(®y,P,) =0, notably &; N P, =0.

Because A; # 0 and id € W also &; # 0, i = 1,2. Therefore @ is reducible with
decomposition
D=9 U P,

2. The claim is obvious: Two roots of A are not joined by an edge of the Coxeter
graph if and only if the roots are orthogonal. O

The Coxeter graph, which employs the product of Cartan integers as its weights,
does not encode the relative length of two roots, i.e. their length ratio. The length
ratio derives from the quotient of the Cartan integers

<||B|>2 <ﬁ’7a>if <o,B>#0.

lafl ) <a,B>

Knowing the product of the Cartan integers is not sufficient to reconstruct the
Cartan matrix. Hence the Coxeter graph does not encode the full information about
the root system. We will see that a base of the root systems belonging to the

types B;,C,, G», Fy is made up by roots with different lengths. As a consequence,
after complementing the Coxeter graph by the information about the length ratio
the series B, and C, of root systems will differ for » > 3, see Theorem 6.31.

The Dynkin diagram of a root system complements the Coxeter graph by the
information about the length ratio of the elements from a base. This information
can be encoded by an orientation of the edges pointing from the long root to the
short root in case two non-orthogonal roots have different length.

But in any case, the (absolute) length of a root is not defined because an invariant
scalar product of a root system is not uniquely determined.

Definition 6.30 (Dynkin diagram of a root system). Consider a root system ¢ and
its Coxeter graph
Coxeter(P) = (N,E)

The Dynkin diagram of @ is the directed graph
Dynkin(®) := (N,Ep)

with
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 the same vertex set: N = A.
* and the same edges from E, but some edges provided with an orientation: Each

edge between two vertices, which represent roots of different lenght, carries an
arrow pointing from the vertex of the long root to the vertex of the short root.

Note: The Coxeter graph and the Dynkin diagram of a root system have the same
set of vertices and edges. In the Dynkin diagram an edge with a orientation
indicates that the incident roots have different length.

Theorem 6.31 (Classification of connected Dynkin diagrams).
Consider an irreducible root system . Then its Dynkin diagram belongs to exactly
one the following types, see Figure 6.7:

o SeriesA,,r>1
e Series B,,r > 2
e SeriesCr,r >3
e Series D,,r > 4
o Exceptional type G,
e Exceptional type Fj

 Exceptional types E,, r € {6,7,8}.

In Theorem 6.31 the two types B, and C, are distinguished only by the length ratio
of their roots. Moreover, if one dismisses the restriction of the rank r then one has
the following repetitions of low rank:

C1 ZBl =A1 andCz :BQ andD3 =A3.
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Fig. 6.7 The Dynkin diagrams of irreducible root systems

Proof. The statement follows from the classification of Coxeter graphs according
to Theorem 6.27 and the restriction of the length ratio of two roots from a base
according to Lemma 6.10: An edge from the Coxeter graph links two roots with
length ratio # 1 if and only if the edge has multiplicity m € {2,3}. Therefore the
Dynkin diagrams distinguish between the two series B, and C, if r > 3. O

The Dynkin diagram of a root system contains the full information of the Cartan
matrix of the root system. Conversely from a Dynkin diagram one can construct a
corresponding root system, cf. [24, Chap. 12.1].






Chapter 7
Explicit calculation of the root system

The objective of the present chapter is to classify complex semisimple Lie algebras L
by their Dynkin diagram, more precisely the Dynkin diagram of a root system of L.
The result is one of the highlights of Lie algebra theory. It completely encodes the
structure of these Lie algebras by a certain finite graph, a data structure from discrete
mathematics.

In the present chapter L denotes a complex semisimple Lie algebra, H C L a
maximal toral subalgebra and @ the root set of L with respect to H, if not stated
otherwise. The corresponding root set decomposition of (L,H) is

LH@(@L"‘).

acd

According to the Cartan criterion the semisimpleness of L is equivalent to the non-
degenerateness of the Killing form x of L. Due to Proposition 5.16 also the restric-
tion of the Killing form « of L to H

K|(HxH):HxH—C

is non-degenerate.

7.1 Root systems of complex semisimple Lie algebras

In the present section Theorem 7.5 will show that the pair
R := (V :=spang P, D)

satisfies the axioms of a root system from Definition 6.3.

243
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Roots of L are linear functionals on H. Therefore we translate properties of H
to properties of the dual space H* and vice versa. The transfer is achieved by the
restriction of the Killing form

K|(HxH):HxH— C,
which is non-degenerate according to Proposition 5.16. We obtain an isomorphism
j:H = H
For each A € H* we denote by
n=j'A)eH

the inverse image. Then

A=jn) =x(tr,—).
In particular, each root a € & C H* defines an elements t, € H with

o =xK(tgq,—):H—C

relating roots from @ to well-determined elements from the maximal toral subalgebra H.

Next we transfer the restriction x|(H x H) of the Killing form to a non-degenerate
bilinear form on the dual space H*.

Definition 7.1 (Non-degenerate bilinear form on H*). For the pair (L, H) the non-
degenerate form x|(H x H) on H induces a symmetric bilinear form on the dual
space H*

K H*xH" = C,x" (A, 1) := (1), 1)

which is non-degenerate.

Combining the definition of k*(A,u) with the definition of 7, and 7, results in
the following formula

K (A, ) = k(1) = Alty) = p(t)-

Recall from Corollary 4.18 the semisimpleness of all complex Lie algebras L of the
A, B,C,D-series within the range of Proposition 2.15. To motivate the separate
steps in calculating the root system of L we first consider Example 7.2.

Example 7.2 (The root system of sl(3,C)).
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Set L := s51(3,C) and recall the standard basis (E;;), _; i<
1) Maximal toral subalgebra: The subalgebra
H :=span < hy:=E\ —Ex,hy:=E»p—E;3 >CL

is a maximal toral subalgebra. It has dimension dim H = 2.

ii) Rootspace decomposition: The rootspace decomposition of (L, H) is
L=H® b oL
ac{oy,m,03}
All root spaces are 1-dimensional. The root set
b = {:I:(X17:|:O£27:|:O£3}

satisfies

o L% =gspan <xy:=Ep >, L % =span <y :=Ey >
o :H—C, ai(h)=2, aj(h)=-1
o L% =span <xy:=Ey >,L % =span <y, :=E3 >
o:H—C, ap(h)=—1, ap(hp) =2
o LB =span <x3:=Ej3>,L % =span <y3:=E3 >
oz:H—C, o3(h)=1, az(hy) =1

Therefore
o3 =01+ 0

and
A= {061 s 062}

is a base of ®.
iii) Killing form: To compute the Killing form «k and its restriction
K|(HxH):HxH—C
one can use the formula
K(z1,22) =2n-tr(z1022),21,22 € sl(n,C),

with n = 3, see [24, Chapter 6, Ex. 7]. E.g.,

5 of M(3x3,C).
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246 7 Explicit calculation of the root system
tr(hl Ohg) = tr((E1 1 — Ezz) o (E22 —E33)) = tr(—Ezz OE22) = —l‘r(Ezz) =-—1.
We obtain
(xc(hishj)i<ij<2) =6- 2 1
1yfv] SLS _ 1 2 b
a positive-definite matrix.
iv) Lenght of roots: With respect to the isomorphy
JiH S H 1) A,

we get
ta, = (1/6)-hy, ta, = (1/6) - hy.

The family (o4, o) is linearly independent and a basis of H*. According to
Definition 7.1, the Kiling form x induces on H* the bilinear form

k" :H"xH* = C.

The induced bilinear from has with respect to the basis (o, o) of H* the matrix

% 2 —1
(601,11 722) = (64 22) = (K ) = 1760 ( 25 )
In particular, all roots ¢;,i = 1,2,3, have the same lenght:

K* (o4, 04) =2-(1/6) =1/3.

The real vector space
Vi=spang <oq,0p>.

satsifies
dimg V = dimc H* = 2.

The restriction of the bilinear form k* to V is a real, positive-definite form (—, —)
on V, hence a scalar product. We now prove by explicit computation: The root
set @ of (L, H) defines a root system (V, @) in the sense of Definition 6.3.

v) Weyl reflections: Consider the Euclidean space (V, (—,—)). For i = 1,2,3 define
the symmetries with vector o; € V

ci: V=V, x—x—6-(x,0) 0.
Here the factor 6 has been choosen in order to get

G,'((X,’) = —Q;.
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One checks
o1(m) =03,01(03) =0o1(a1)+o1()=—u+0m+a; =0
ox(a1) = 03,02(0) = o
os(o)=0a1—6-(0og,3) -3 =0y — (01 + ) = — 01z,

o3(m) = — (o +ap) = —a.

Hence the restriction
Ci|l®:P— P

is well-defined and permutes the elements of @. Therefore
0, = 0q,;, i =1,2,3,
Moreover
Gfa,- = GOtia i= 172737

because according to Corollary 6.8 these symmetries are the reflections on the

hyperplanes
(o)t =0y

Each symmetry leaves the scalar product invariant, because for ¢ € @, x,y €V,
(Ga(x)760!(y)) = (x_ 6(xa (X) 0L,y — 6(y7 a) ' (X) =
(xvy) - 6(}1, a)(xv (X) - 6(}67 a)(aay) + 36(}67 a)(y7 a)(av (X) = (xvy)
using (o, ) = 1/3.

vi) Cartan integers: From the symmetries of part v) one reads off the Cartan
numbers

<, >=2,i=1,2, and < 1,00 >=< 0,01 >= —1
which are integers indeed.

vii) Reducedness: Apparently for each o € @ the only roots proportional to ¢
are Q.

viii) Cartan matrix, Coxeter graph, Dynkin diagram: The Cartan matrix with
respect to
A= { o, 062}

and the given numbering is

Cartan(A) = (_21 _21> :
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According to Lemma 6.10 both roots from A have the same lenght and include the
angle (2/3) - m. Therefore Coxeter graph and Dynkin diagram of & contain the
same information. According to the classification from Theorem 6.31 the root
system of s/(3,C) has type A;. The scalar product (—, —) induced from the Killing
form is invariant with respect to the Weyl group

W =span < O ,0q, > .

The following two propositions collect the main properties of the root set @ of a
semisimple complex Lie algebra L. They generalize the result from Proposition 5.4
about the structure of si(2,C).

Proposition 7.3 considers the complex linear structure of L and its canonical
subalgebras s/(2,C) C L. While Proposition 7.4 considers the integrality proper-
ties of the root set @ with respect to the bilinear form induced by the Killing form,
see Definition 7.1. These properties assure that @ is a root system in the sense of
Definition 6.3. They allow to apply the classification of respectively Coxeter graphs
from Theorem 6.27 and Dynkin diagrams from Theorem 6.31. They show which
Dynkin diagrams result from the roots systems of the classical Lie algebras of the
ABCD-series in Proposition 7.6 - 7.9.

Recall from Corollary 5.15 that for any root & € @ of L also the negative —a. is
aroot of L.

Proposition 7.3 prepares the proof of Theorem 7.5 by investigating in detail the
root spaces L*, o € @, of L.

Proposition 7.3 (Complex semisimple Lie algebras as s/(2,C)-modules). Con-
sider a pair (L,H) with L a complex semisimple Lie algebra and H C L a maximal
toral subalgebra. Denote by (—,—) the non-degenerate bilinear form on H* from
Definition 7.1.

Then the root set @ and the root spaces L* from the rootspace decomposition

LH@(EBL“)

acd

have the following properties:

1. Spanning: The root set spans H*
spanc® = H*

2. Duality of root spaces: For each o, € ® the vector spaces L* and L% are dual
with respect to the Killing form, i.e. the bilinear map

L* XL % = C, (x,y) = x(x,y),
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is non-degenerate. For each x € L*, y € L% holds
[x7y] = K(XJ’) la,

in particular
[La,Lia] = C . t(x

3. Subalgebras Sy, =~ s1(2,C): For each a € ® holds
(o) £0
and there exists a unique element
he € [L*,L™%] with o(hg) = 2,

in particular
2

hy = ———-
“= (o) @

For each non-zero xq € L% exists an element yo, € L% satisfying
[xmyoc] = hq
The morphism of Lie algebras
sl(2,C) = Sy :=spanc < hg, X, Yo > C L,

defined on the standard basis of s1(2,C) as

10 01 00
h:= 0_1 — hy, X:= 00 — Xg, V= 10 — Ya,

is an isomorphism. Thereby L becomes an sl(2,C)-module.

Note: In Proposition 7.3, part 3 the element y,, € L~% is uniquely determined, see
Proposition 7.4.

Proof. 1. Spanning: For an indirect proof assume
spanc® G H
is a proper subspace. A non-zero linear functional
he(H')* ~H
exists which satisfies for all ¢ € @
h#0and o(h) =0.

Then for all o € @
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h,L% =0,

and also

lh,H] =0

because the maximal toral subalgebra subalgebra H is Abelian due to
Proposition 5.2. The root space decomposition of L implies [#,L] =0, i.e.

heZ(L).

Because the center of the semisimple Lie algebra L is trivial, one obtains

h=0

This contradiction proves spanc ® = H*.

In order to prove the remaining claims we recall from Lemma 5.14: For two
linear functionals A, u € H* with

A+u#0

the orthogonality of the eigenspaces, i.e.

K(L* L*) = 0.

As a consequence, for two roots @, B with § # —a,, i.e.

a+p #0,
holds
k(L% 1P) =0,
and due to H = L° also
k(L% H) =0.
2. Duality of root spaces:
o If
xel* oc P,

satisfies x(x,L~%) = 0, then the root space decomposition from
Definition 5.13 and Lemma 5.14 imply x(x,L) = 0. The non-degenerateness
of k implies x = 0. Hence the bilinear map

L* X L% = C, (x,y) = &(x,y)
is non-degenerate.

We have
L% L % cl®=H
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according to Theorem 5.17. The Killing form is associative according to
Lemma 4.1. Hence for all & € H and arbitrary, but fixed (x,y) € L* x L™

K(h, [ y]) = k([h,x],y) = k(a(h)x,y) = a(h)K(x,y) =
= K(ta,h) - K(x,y) = K(h,ta) - K(x,y) = K(h, K(x,y) -ta),
here we used the definition of ¢, with
o =K(te,—).
Non-degenerateness of the restriction x|(H x H) implies
beoy] = x(x,y) o

The duality between L* and L~% provides for each non-zero xo € L% an
element y, € L™ %, such that

K(xXa,va) #0,
which proves in particular
[L* L% =C-tq
3. Subalgebra Sq ~ s1(2,C):

e We first claim
a(ta) #0:

For the proof choose an arbitrary, but fixed non-zero xo € L*. Because L*
and L~% are dual according to part 2 one can find an element

y € L™% with k(x¢,y) # 0,

w.lo.g.
K(xg,y) =1 and [xq,y] = K(Xq,Y) - tq = ta

For an indirect proof of the claim assume on the contrary
o(ty) = 0.
Consider the subalgebra
S:=<Xxq, )y, tq > CL.

Because
to €H, xq € L% andy € L™%,

the commutators satisfy
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[ta,Xa] = Q(ta)Xa =0, [ta,y] = —0(ta)y = 0, [xq,y] = tq-

Apparently the Lie algebra S is nilpotent, in particular solvable. The
semisimplicity of L implies that the adjoint representation

ad:L— gl(L)

embeds L into the matrix Lie algebra g/(L). According to Lie’s theorem, see
Theorem 3.21, with respect to a suitable basis of L the solvable subalgebra S
embeds into the subalgebra of upper triangular matrices. Thereby the element

ad(tq) = ad [xg,y] = [ad xq,ad y),

the commutator of two endomorphisms, becomes a strict upper triangular
matrix. Therefore ad(ty) is a nilpotent endomorphism, i.e. o € L is
ad-nilpotent. Because H is a maximal toral subalgebra, the element t, € H is
also ad-semisimple, hence ¢, = 0. This contradiction proves the claim

0#£a(ty) = (o, ).

¢ Because
[L*, L %] =C tq and a(tg) #0

there exists an element hq € [L%, L™%] satisfying

(hy) =2
From
a(ha)  ofla)
2 (o)
follows
5 2
o (a7 a) [04
Multiplying y € L~% by a suitable constant provides an element y, € L™%
with
[Xa, Vo] = ha
We obtain

[hoyxa) = 0t(hg)  Xg =2 Xq
h,ya] = —t(ha) - Yo = =2 ya
[xom)’oc] = hq.

Therefore the subalgebra

So :=spanc < hg, Xa, Yo >
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is isomorphic to si(2,C).
O

Because L is a s/(2,C)-module with respect to each subalgebra Sy, the results from
section 5.2 about the structure of irreducible s/(2, C)-module apply. They imply a
series of integrality and rationality properties of L, see Proposition 7.4. For two
roots a, B € @ we will often employ the formula

,B(ha): 2'[3([05)7 Z'K(tﬁata) . 2‘(ﬁaa)

(o, ) (o,00) (a,¢)

It derives from the relation between A, and ¢y from Proposition 7.3 and from the
defining relation

KH(tﬁ7_) :ﬁ

The numbers 3 (hq) will turn out as the Cartan integers < 3, a > of the root
system. Notably they are integers.

Proposition 7.4 (Integrality and rationality properties of the root set). Consider
a pair (L,H) with L a complex semisimple Lie algebra and H C L a maximal toral
subalgebra. Denote by ® the roots of (L,H ), Then the roots and the rootspaces from
the rootspace decomposition

LzH@(%L‘”)

have the following properties:
1. Root spaces are 1-dimensional: For each root o € @ also —o. € @ and
dim L* =dim L™% = 1.
As a consequence
|®| =dim L—dim H

2. Integrality: For each pair o, € ® and the element hy from Proposition 7.3
holds

Bhe) € Z and B —B(hy) - € P.

3. Rationality and scalar product: Consider a basis 8 = (Qy, ..., Q) of the complex
vector space H* made up from roots o; € ®@,i=1,...,r. Then any root § € ® is
a rational combination of elements from 2, i.e.

D C Vg :=spang{a, ..., 0}

and
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dimg Vg = dimc H.

The bilinear form (—,—) from Definition 7.1 restricts from H* to a rational
form (—,—)q on Vg C H*, and

(—-)o:VoxVgp—Q
is positive definite, i.e. a scalar product.
4. Symmetries: Extending scalars from Q to R shows
dimg ® = dimc H*
and extends the scalar product from Vg to a scalar product (—,—) on'V.

For each root oc € @ the map

2. (Va a)

0o V=V, v og(v)i=v— (@) -,

is a symmetry of V with vector @ and Cartan integers
2 (ﬁa OC)
<B,a>=——-=PB(hy) €Z, B € PD.
B ey~ BB
It satisfies
ou(P)C P

In addition: Each symmetry Gy leaves invariant the scalar product (—,—) on'V.

5. Proportional roots: For each o € P the only roots proportional to & are Q.

Proof. 1. Root spaces are 1-dimensional: According to Proposition 7.3, part 2 the
root spaces L* and L~ are dual with respect to the Killing form x, i.e. the
bilinear form

K[(L* X L™%): L* x L% = C, (x,y) — K(x,y),
is non-degenerate. In order to show
dim L* =1
we assume on the contrary
dim L* =dim L™% > 1.
Consider an element x, € L%, x¢ # 0, and the correponding subalgebra

Sa >~ s1(2,C)
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from Proposition 7.3, part 3. According to Proposition 7.3, part 1 an
element hy € S exists with
a(ha) == 2.
The restriction
K(xgq,—)|L™*:L™% - C

is non-zero. The linear functional has a non-trivial kernel, i.e. an element
ecL™® y#0,

exists with

K(xg,e) =0
The latter formula implies [xq,e] = 0, see Proposition 7.3, part 2. As a
consequence e € L is a primitive element of an irreducible S-submodule of L

with weight
(—a)(hg) =-2<0.

The latter property contradicts the fact that all primitive elements of an
irreducible s/(2,C)-module have a non-negative weight, see Proposition 5.7.

2. Integrality: Choose a non-zero element y € LB . The element y can be considered
in two different roles. On one hand, being a root vector of L the element y € LB
satisfies

[hou}’] = B(hqa)-y.

On the other hand considered as an element of the Sy-module L according to
Proposition 7.3, part 3, the element y € L is a weight vector with weight

B(ha) € Z.

Applying yo € Sq reduces the weight in K by subtracting the number 2 and
reduces the corresponding root of L by subtracting the linear functional c.
Similarly, applying xo € Sy adds respectively the number 2 and the linear
functional o.

K= LPrie,

Jjez

is a Sg-submodule of L. The action of Sy on K moves y € K through weight
spaces of K: For each j € Z

e either
Prie—g

dim IP*7* =1 and (B+j-ac Porf+j o =0).

After finitely many applications of x4 to y € L a primitive element of K is
obtained and Proposition 5.7 applies, see Figure 7.1.
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Fig. 7.1 The double role of y € LP (Case B(hq) > 0)

In particular
B(ha) weight = —B(hqy) = B(ha) —2- B(he) weight
which implies
B—B(ha)-ac®

Note: All weight spaces of K displayed on the right-hand side are non-zero.
Hence also the corresponding eigenspaces of the linear functionals on the
left-hand side are non-zero. In particular

B—B(ha)-ac®

is a root.

3. Rationality and scalar product: First, due to Proposition 7.3, part 1 the complex
vector space H* has a basis

% =(0))1<j<r

of roots.

The subsequent proof goes along the following steps:

* Claim: @ C V. We show for the proof that for each root 8 € @ the uniquely
determined coefficients ¢; € C, i = 1, ..., r, in the representation
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-
B= Zci'ai
i=l

are even rational,i.e. c; € Qfori=1,...,r.

Multiplying the above representation of 8 successively for j = 1,...,r by

2
(o, 0tf)

and applying the bilinear form (—, @;) to the resulting equation gives a
system of linear equations
b=A-c

for the vector of indeterminates ¢ := (cy,...,c,) . The left-hand side is the

vector

and the coefficient matrix is

s (aﬁ _ 2- (oc,-,ocj)>

(aj, 0t)

The system is defined over the ring Z because for two roots y,8 € @

(v,6)
2 15.9) = 1(hs)
and
Y(hs) €Z

according to part 2. The coefficient matrix
AeM(rxnZ)

is invertible as an element from GL(r,Q). It originates by multiplying
for j =1,...,r the row with index j of the matrix

(04, ))1<i,j<r € GL(r,C)

by the non-zero scalar 2/(¢t;, o;). And the latter matrix defines the bilinear
non-degenerate form (—, —) on H*. As a consequence, the unique solution of
the linear system of equations is already defined over the base field Q, i.e.

cj€Qforall j=1,..,r.

Hence @ C V. As a consequence
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dimg spang @ = dimg Vo = dimc H”,

and
V:=spang ® = dimg V =dimc H".

We claim that the restricted bilinear form
(= =)= (=,-)IVa

is a scalar product, i.e. that it is defined over the field Q and is positive
definite:

— Positive-definiteness: For two linear functionals A, € Vg we compute
(A, u) =x(ty,ty) =tr(ad ty oad t,)
for the endomorphism
adtyoadty :L—L

In order to evaluate the trace we employ the defining property of a root
space: If z € LY then

(ad 1) (2) = ¥(ty) -2
and
(ad 1y 0ad 1y)(2) = ¥(t2) - V(1) - 2-
Using the Cartan decomposition

L=H®& (gﬂ>

and observing [H,H] = 0 and dim LY = 1 due to part 1, we obtain

(A u) =tr(ad ty oad ty) =Y v(1a) - ¥(tu)
yED

as sum of the eigenvalues of
adtyoadty :L— L.

In particular

(2, A) =Y 1(1)* >0.
yED

The vanishing

(A1) =0
implies: For all ¥ € & holds
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0=7r(nn) =« (A7),
and therefore A = 0 because
spanc ® = H*

and
K" :H*xH" = C

is non-degenerate.

— Defined over Q: For each root a € @ the relation between the two
elements #, and A, from H due to Proposition 7.3, part 3 and the
integrality ¥(hg) € Z from part 2 show

(v,0) ()
2- (@.0) =2 (@.0) =y(hg) €Z
Hence
4-y(ta)” = (a, @) y(ha)*.
We obtain

(a,0) =Y 71(ta)? = (1/4) - (a,0)*- ¥ (ha)?.

YeDP Ye®

Dividing both sides by (o, o) > 0 shows

1=(1/4)-(a,a) Y y(ha)?
red
and
(a,a) = S €Q
T Tyeav(hg)? T

As a consequence for each ff € @,

(B,a) = (1/2)(e, @) - B(ha) € Q.

The general elements
A, ueVy

have the representations
r r
A :Z ci-ogand U = Z dj-OCj with ¢;, dje(@, i, j=1,..,r
i=1 j=1
Therefore

(laﬂ) = Z Ci'dj'(aﬁaj) EQ

i,j=1



260 7 Explicit calculation of the root system

Hence the restriction
(=)o
is defined over Q.

4. Symmetries: The map
Oq:V—oV

is a symmetry of V with vector o. Due to part 2) its Cartan number is an integer

2'([3705)
<B,a>=W:ﬁ(ha)eZ.

The inclusion
oo(P)C P

has been proven in part 2). In order to prove the invariance of the scalar product
with respect to the Weyl group it suffices to consider three roots @, 3,y € &:

(0a(B),0a(y)) = (B—B(ha)a,y—Y(ha) - &) =
= (B,7) — B(ha)(a,y) = v(ha)(B, @) + B (ha)y(ho) (et 1)
Using
(a,7) = (1/2)(e, &) y(he) and (@, B) = (1/2)(e, &) B (he)

we confirm
(0a(B),0a(y)) = (B, 7).

5. Proportional roots: Assume the existence of a root ¥ € @ such that also
t-y € @ for asuitable t € R\ {£1}
Then exists aroot § € @ and ¢ € R with 0 < ¢ < 1 such that also
o:=t-fed

We calculate
op(a) =a—alhg)-B=oc—1-B(hg) -
For the Cartan integer
<a,B>=t-B(hg) =2t

follows
2t € 7

which - due to 0 < ¢ < 1 - implies

t=1/2and o, 20t € P.
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But 30 ¢ ®: Otherwise repeating the argument with the two proportional
roots 2 and 3o would imply

2a = % 3a,
a contradiction.
With respect to the s/(2,C)-module structure of L induced from the action of
So =< Xa, Yo, e >,
see Proposition 7.3, part 3), we have for each root vector z € L>%:
o hg.z=2-2-z, because z € L**.
* xq.z € L3* = {0} implies x¢.z =0
* From hy = [X¢,Yq] results

ho.z=Xa-(Ya-2) = Ya-(Xa-2) = Xq.(Va-2)

Then
Yo -2 EL(X = C'Xa - X(‘x.(y(x.z) S (C . [.X(x,xd} = O,

which implies
hg.z=4z={0},

a contradiction to z # 0.

O

We now combine the result of Proposition 7.3 and 7.4, and construct the root
system of a semisimple complex Lie algebra L.

Theorem 7.5 (Root system of a complex semisimple Lie algebra). Let L be a
complex semisimple Lie algebra.

1. After choosing a maximal toral subalgebra H C L the root space decomposition
from Definition 5.18

L:HEB(@L“)

acd

determines the set ®@ of roots, and
R:=(V :=spang ®, D)

is a root system according to Definition 6.3.
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2. From the Killing form x of L derives a scalar product (—,—) on'V
(A ) =x(ty,tn), A, LV,
which is defined over Q, i.e. satisfying for a,3 € @
(a,B) €Q.
The scalar product is invariant with respect to the Weyl group %" of R.

Note: Due to Remark 5.21 each two maximal toral subalgebras of L are conjugate
under an automorphism of L.

Proof. The pair R = (V, @) has the following properties:

* (RI) Finite and spanning: The root set & is finite because L has finite dimension, 0 ¢ &P,
and @ spans V by definition.

* (R2) Invariance under distinguished symmetries: We choose a basis
B = Bj)j=y. ,» ri=dimc H
of V formed by elements from &. For each o0 € ¢ we define a symmetry
Og:V—oV
as follows: For f € & set
0u(B) =B —B(ha)-
and extend the definition by linearity. Here
he € [L*L™%| CH
denotes the uniquely determined element from Proposition 7.3, part 3 with
o(hg) =2.
Then for all roots § € @
oa(B) =B —B(ha)- .

and
ou(0) = —a.

Proposition 7.4, part 4 and part 2 imply that oy is a symmetry with vector o € V
and
0 (P) C D.

* (R3) Cartan integers: By construction, for each pair of roots ¢, § € & holds
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<B,a>=p(ha)
The integrality result from Proposition 7.4, part 2 shows
< B,0> € Z.

* (R4) Reducedness: The reducedness of R holds due to Proposition 7.4, part 5.

The bilinear form (—,—) was introduced in Definition 7.1. Its properties follow
from Proposition 7.4, part 3 and part4. 0O

7.2 Root systems of the A, B,C, D-series in explicit form

We will show in the present section that the Dynkin diagrams of type A, B,,C, D,
from Theorem 6.31 are the Dynkin diagrams of the root systems of the complex Lie
algebras belonging to the classical groups of the correponding types, see Proposition
2.15. We show the simpleness of these Lie algebras as a consequence of their Cartan
decomposition. We follow [21, Chap. III, §8, Chap. X, §3] and [18, Chap. 7.7].

The Lie algebras of the classical groups are subalgebras of the Lie algebra s/(n,C).
We introduce the following notation for the elements of the canonical basis of the
vector space M (n x n,C):

E;; € M(nxn,C)

is the matrix with entry = 1 at place (i, j) and entry = O for all other places. Our
matrix computations are based on the formulas

Eij-Ey=0j-Ey, 1 <i,j,k1<n.

The family
(Eii)1<i<n

is a basis of the subspace of diagonal matrices d(n, C). Denote the elements of the
dual base by
&= (E,',')* eon,C)i=1,..,n.

Due to Corollary 4.18 the Lie algebras
sl(n,C), so(n,C), sp(2n,C)

of the classical complex matrix groups from the A, B, C, D-series are semisimple.
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Proposition 7.6 (Type A,). The Lie algebra

L:=sl(r+1,C),r>1,

has the following characteristics:

1.

2.

6.

dimL=(r+1)>—1

The subalgebra
H:=r+1,C)nL

is a maximal toral subalgebra with dim H = r.

. The family (h;)i=1...., with

hi = Ejj — Eiy1,it1

is a basis of H.

. Define the functionals

g:=(§H)eH", i=1,..,r+1.
Then the root set P of L has the elements
g§—¢, 1<i#j<r+1.
The corresponding root spaces are 1-dimensional, generated by the elements
Ej, 1<i#j<r+1.

A base of @ is the set A := {0y : 1 <i<r} with

The positive roots are the elements of @ = {& —¢&; : i < j}. They have the
representation
j—1
& —€= oy € o,
k=i

. For each positive root o, := € — €; € D the subalgebra

Sa ~s1(2,C)
is generated by the three elements
he = Eii—Ejj, xo := Ejj, Yo := Ejj;.

The Cartan matrix of @ is
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2 -10...0
-12 —-1...0

Cartan(A) = eM((r+1)x(r+1),2Z).

0 ...—-12 -1
0 ... 0 -1 2

All roots a € A have the same length. The only pairs of roots from A, which are
not orthogonal, are
(04,0411),i=1,....,r— 1.

Each pair includes the angle (2/3)7. In particular the Dynkin diagram of the
root system ® from Figure 7.2 has type A, from Theorem 6.31.

AT % oi_e” 4

Fig. 7.2 Dynkin diagram of the root system of type A,

Proof. 4) For i # jelements h € H act on E;; according to
[/’l,E,‘j] = /’l'E,'j —E,'j -h= Si(h) ~Eij — Ej(h) -E,'j = (8,'(]’1) — Sj(l’l)) -E,'j
Due to the formula from Proposition 7.4, part 1 there are no further roots.

5) According to part 4) the commutators are
lha,xa] = [ha, Eij] = (€i(ha) — €j(ha))Eij =2 Eij = 2-xq
lha:ya] = [ha Eji] = (gj(ha) — &i(ha))Eji = =2 Eji = =2-yq
[Xa,Ya| = [Eij,Eji) = Eii — Ejj = hq.
6) The Cartan matrix has the entries
< B,o>=B(hg),0,B €A.
We have to consider
e Bi=&—¢&y1,1 <k<rand

* a;j=¢;—¢€j;1,1 < j<r, with corresponding elements h; = E;; —E;yq j+1 € H.

We compute
Bx(ha;) = (& — €k41)(Ejj — Eji1,j4+1) =

= Ok = Ok j+1 — Otr1,j+ Oprt,j1 = 20 — O j1 — B, =
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2, ifk=j
={ -1, iflk—jl=1

The angle between each pair (o, 8) of distinct, non-orthogonal roots in A is (2/3),
and the symmetry of the Cartan matrix implies

_<Ba> _[BIP
<ap> o

Hence all simple roots have the same length. The root system @ has a connected
Dynkin diagram, it has type A, from Theorem 6.31. O

In dealing with the Lie algebra sp(2r,C) we note that X € sp(2r,C) iff

c-X -o=X

(01 1
G.—<10) ando™ = —o.

This condition is equivalent to
A B
(o)

with symmetric matrices B= B and C = C". The following proposition will refer
to this type of decomposition.

with

Proposition 7.7 (Type C,). The Lie algebra
L:=sp(2r,C), r >3,

has the following characteristics:

1.dimL=r(2r+1).
2. The subalgebra
H:= b0 eL:Ded(r,C)
= 0 _D : r,
is a maximal toral subalgebra with dim H =r.

3. The family
(hi == Eii —Eryiryi)i<i<r

is a basis of H.
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4. Define the functionals
g =§HeH" i=1,..2r
Then the root spaces and their corresponding roots are

Ej—Erjri, 1<i#j<r &—¢;
Eirij+Ejmin1<i<j<r &+¢;
Eqij+E ;i 1<i<j<r —¢&—¢;

Grouped in a different way the root set ® comprises the elements

g§—¢€:1<i#j<r Type a
+(g+e):1<i#j<r Tpeb
+2.:1<i<r Type ¢
A base of D is the set
A={a,...,0}

with - note the different form of the last root o -

s ajii=g—gy,1<j<r—1

e o =2-8&

The set @ of positive roots comprises the elements

g§—¢€:1<i<j<r Typea
g+eg:1<i<j<r TDpeb
2-:1<i<r Type ¢

5. For each positive root o, € P the subalgebra
Sa =< hg,Xe, Yo >==s1(2,C)

has the generators:

o Typea:lfo:=¢—¢ €D, 1<i<j<r, then

ho :=(Eii—Ertir+i) = (Ejj—Ertjr+j), Xa : =Eij—Ersjrti, Ya :=Eji—Epyiryj.
e Typeb:Ifa:=¢+e € Pt 1<i<j<r, then

ho :=(Eii—Eryiyi) +(Ejj—Erijrij), Xa = Eipy j+Ejriis Yo = Ervi j+Erp i
o Typec:Ifa:=2& ¢ D, 1 <i<r, then

ho = Eij — Ertirtis Xo := Eirtis Yo := Eryie
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6. The Cartan matrix of the root system P referring to the basis A is

2 -1 0 ... 0
-1 2 —1... 0
Cartan(A) = R EM(rxnZ),
0O..—-12-10
0.. 0-12 -1
0 ... 0 -2 2

entry < @i, 0tj > at position (row,column) = (i, j). Note the distinguished entry —2
in the last row: The Cartan matrix is not symmetric.

All roots a; € A,1 < j <r—1 have equal length, they are the short roots. The
root Q. is the long root:

o
V2= | H,lgjgr—l.
[ o]

The only pairs of simple roots with are not orthogonal are

(04,0441),i=1,...,r—1.

2r
For i =1,...,r — 2 these pairs include the angle 3 while the pair (0t—1,0)

3n
inludes the angle e In particular the Dynkin diagram of the root system &
from Figure 7.3 has type C, according to Theorem 6.31.

Fig. 7.3 Dynkin diagram of the root system of type C,

Proof. 1) Using the representation
A B
X= (C AT> € sp(2r,C)
with symmetric matrices B= B’ and C = C' we obtain from the number of free

parameters for A, B,C

rzfr

dimL=r*+2- <2+r> =2 +r=r(2r+1).
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269
4) Note forallh € H

gi(h) = 7£r+i(h)-
For h € H the commutators are:
[h,Eij—E

rijrvil =h-(Eij —Eryjryi) — (Eij = Eryjryi) -h=
= &/(h)Eij

— &1 j(h)Ersjrvi — &(WEij + &i(h)Ertjri =
(&i(h) —&;(h))Eij — (&1 j(h) = &+i(h))Eryjryi =

= (&i(h) —&;(h))Eij + (&;(h) — &(h)Ery jrvi =
(ei(h) —&;(h))(Eij

- Er+j,r+i)

(M Eirij+Ejriil = &(M)Eirij+ E(MEj rii — &+ j(h)Eirsj — Ei(W)E) r1i =

(&i(h) — &4 j(h)Ei s+ (€j(h) — &4i(h)Ej ryi =

_(Si(h)+£j(h))Ei,r+j+( ( )+£l(h)) Jor+i =
(Ei(h)JrEj(h))(E, r+j JrEJ r+l)

M Eryij+Erjil = &4i(R)Eryij+ &y j(h)Eryji — €(h)E 1ij—&(h)E ;=

= (&r+i(h) —&j(h))Ersij+ (&1 j(h) — &(h))Epsji =
= (—¢&i(h) —&j(h))Ertij+ (—€j(h) — &(h))Ertji =

= (—&(h) =& (h)(Ertij+Ersji)
The positive roots have the base representation

j-1
Si*Ej:Z(Xk,lgi<j§r.
k=i
r—1
g+eg =2 8r+Z o +2- Z o, 1<i<j<r
=i =j
r—1
2-g=a+ ) 2-04,1<i<r—1
k=i

Part 6) The Cartan matrix has the entries (h¢), o, € A. We have to consider the
roots

B =& —&41,1 <k<r—1,and

ﬁr = 2£r
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and the roots

* aj=¢—¢&j1,1 < j<r—1, withelements hq; = h; —hji and

* @ = 2¢, with element hy, = h,.
Accordingly, we calculate the cases:
e Forl1<jk<r—1:
Bi(ha;) = (& — &y1)(Ejj — Ejt1,j+1) = Ok j— Ok jr1 — Sk1,j+ Okr1 jr1 =

=28~ O jr1— Ok j1
e For1<j<r—lk=r:

Br(ha;) =2-€(Ejj — Eji1,j+1) = 2(6j — O, j41) = =28, 11
e Forl1<k<r—1,j=r:
Bi(ha,) = (& — €k+1)(Err) = Opr — 5k+1,r = —5k+1,r

e Forj=k=r
Br(ha,) =2-&(Ep) = 2.

Ifoo# P and < a,f >, <f,a>#0then

Blha) _ ]2
alhg) le?
Hence
5 ;2: o (ha, ) _ o ||
-1 ai(hg) llop-1]*
O

In dealing with the Lie algebra
s0(2r,C)

it is useful to consider a matrix M € so(2r,C) as a scheme having 2 x 2-matrices as
entries: We introduce the non-Abelian C-algebra

R:=M(2x2,C)
as ring of coefficients and consider matrices
M = ((aju)1<jk<r) € M(rxr,R) ~M(2r x 2r,C)

as matrices with entries from R
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ajp €ER, 1< j k<
For each 1 < j,k < r we introduce the matrix
Ejx € M(rxr,R)

with only one nonzero entry, namely 1 € R, at place (j,k). We distinguish the
following elements from R, which can be expressed by using the Pauli matrices,
see Remark 2.21, extended by
10
Op .= 1= (0 1) :

pma= (1)

8= 1<i1 _1-) =(1/2)-(ic3—o01), t := ;(i : )):(1/2)'(1'03-1-01)

i —i

L/i . R YAES A .
u.2(_1 l.)(l/Z)-t(Go+0'2)V.2(] i>(1/2)«l(c7062)
satisfying

o s=s',h-s=5,5-h=—s

e t=t',ht=—tt-h=t

e u'=vhu=uh=u

e vi=u h-v=v-h=—v
o [s,f]=—h
e wW—wr=—h

E.g. the matrix /- E;; € M(r x r,R) is the block matrix with the single block & € R
at the diagonal place with index (j, j). The block is

0—i
h:(l. 0) EM(2x2,C)

which implies

h-Ejj=i-(Ezjy12j — E2j2jr1) € M(2r x 2r,C).
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Proposition 7.8 (Type D,). The Lie algebra
L:=s50(2r,C), r >4,

has the following characteristics:

1.dimL=r(2r—1).
2. The subalgebra
H:=spanc <h-E;;:1<j<r>c (0(rR)NL)
is a maximal toral subalgebra with dim H = r.
3. For any pair 1 < j < k < r each of the four elements
s (Ejx—Exj), t-(Ej—Egj), u-Ejg—v-Egj, v-Ejg—u-Ey;
generates a 1-dimensional root space, belonging to the respective root

Ej+ &
—&—&
Ei— &
—Ej+ &

o =

Here
g:H—C

are the C-linear functionals which are dual to the family

ie.

4. The root set @ of L has the elements
—E&— &, Ej+ &, —€+&, €—&,1<j<k<r
for short
@ ={tejteg: 1 <j<k<r} (each combination of signs).

A base of D is the set
A={a,....,0}
with - note the different form of the last root o -

s aji=g—gy,1<j<r—1
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* O =&_11¢&
The set of positive roots is @+ ={e; g : 1 < j<k<r}.
5. For each positive root o, := €j+ & € @, 1 < j <k < r, the subalgebra
Sq ~51(2,C)
is generated by the three elements
he :=h-(Ejj+Ew), xa =5 (Ejx —Eyj), ya :=1-(Ejx — Eyj).
For each positive root o, := €j — & € @, 1 < j <k <r, the subalgebra
Sa ~=s1(2,C)
is generated by the three elements
ha :=h-(Ej; — Ew), xq := u'Ejk —v~Ekj, Ya = V’Ejk —u-Ekj.

6. The Cartan matrix of the root system P referring to the basis A is

2 -1 0 ... 0
-1 2 —1... 0

Cartan(A) = Lo EM(rxnZ).
0 ..-12 —-1-1
0O..0-1220
0 -1 0 2

Note the distinguished Cartan integers
< Oy, 0 >=< 0, Op_2 >

All roots o € A have the same length. The only pairs of simple roots with are not
orthogonal are

(aj, &ti1),i=1,....,r =2, and (Qy_2,0,).

These pairs include the angle (2/3)m. The Dynkin diagram of the root system &
from Figure 7.4 has type D, from Theorem 6.31.
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a1
- A

- e [ ——

i N

°
Fig. 7.4 The Dynkin diagram of the root system of type D,

Proof. 3) The general element of H has the form

,
= Z aV'(h'EVV)a ay € C.
v=1

The element z acts on s (Ejx — Ey;) according to
[Z,S'(Ejk—Ekj)] :Sj(Z)'hS'Ejk—Ek(Z)'/’1S~E~kj—8k(Z)'S/’l-E~jk+8j(Z)'Sh~E~kji
€i(z)-s-Ejx—&(2)-s-Exj+&(z)-s-Ejx—€j(2)-s-Exj =
= (gj(z) +&(2)) s (Ejx — Ex;)
The element z acts on ¢ - (E j; — Ey ) according to
[Z,t- (Ejk _Ekj)] = Sj(Z) 'ht-Ejk —Sk(Z) 'hl‘-Ekj —Ek(Z) 'l/’l'Ejk—l—Sj(Z) 'lh-Ekj =
—€j(z) 1 Ep+e(z) t-Ej—e(2) t-Ej+¢i(z) 1-Ej=
= (—¢j(z) —&(2) 1+ (Ejp — Exj)
The element z acts on u - E jk7v~Ekj according to
[Z,M-Ejk—V-Ekj] =8j(Z)-hu~E~jk—8k(Z)'hV'Ekj—Sk(Z)-uh~E~jk+€j(Z)-Vh-Ekj:
ej(z)-u-Ejk—i—Sk(z) -V-Ekj—Sk(Z) -u-Ejk—Sj(Z) ~V~Ekj =
= (gj(z) —&(2)) - (u-Ejp —v-Ey;)
The element z acts on v - E jkfuf?kj according to
[Z,V-Eik—u-Ekj] :Sj(Z)'hV'Ejk—Sk(Z)'hu'Ekj—Sk(Z)'Vh'Ejk+8j(Z)'uh-Ekj:

—Sj(Z)-V-Ejk—gk(z)-M-Ekj+£k(z)~V-Ejk+8j(Z) -M~Ekj =
= (—¢&j(2) +&(2) - (v-Ejp—u-Eyj).
We have

—1
M =2r-(r—1)=r-2r—1)—r=dimL—dimH

b =4
B =47

in accordance with the formula from Proposition 7.4, part 1.
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4) The positive roots have the base representation

j—1
8i—8j:ZOCk,1§i<j§r,
k=i
r=2 r
gt+ei=Y o+ Y o l<i<j<r
k=i k=j

S)Foro:=¢;j+¢ € &7",1 < j <k<r, the commutators are
lho,xe) = [h-(Ejj+ Ew),s- (Ejx — Exj)] =
= hs-(Ejj+ Ew)(Ejx — Exj) — sh- (Ejx — Exj) (Ejj+ Ew) =
=5 (Ejk—Eij) +5 (Ejp — Exj) =2 xq
lha,ya] = [h-(Ejj+ Ex) - (Ejx — Exj)] = =t - (Ej — Exj) =t - (Eji — Exj) = =2 ya
osYa] =[5 (Eji — Eij),t(Ej— Exj)] = [5,1] - (Ejr— Exj)” =
=(=h)-(—Ej; — Ex) = ha

For a:=¢j—¢g € ®",1 < j < k <r, the commutators are
(ho,xo) =[h+(Ejj—Exks u-Ejx—Vv-Epj) =hu-Ey+hv-Egj+uh-Ey+vh-Ep; =
u-Ejp—v-Ej+u-Ep—v-Ej=2u-Ey—2v-E;=2xq
ha,ya] = [h(Ejj — Ex),v-Ejk — - Egj) = hv Eji+hu- Egj +vh- Eji +uh - Egj =
7v~E~jk+u-Ekjfv~Ejk+u-Ekj :2u~E~kj72V‘Ejk =—2yq
e va] = [u-Ejg—v-Egj,v-Ej—u-Eyj) =
= —u2Ejj—szkk+v2Ejj+u2Ekk =
= (V= u’)-Ejj+ @’ —v*)-Eg = h-(Ejj— En) = ha
6) The Cartan matrix has the entries
<B,a>=PB(hq),a,B €A.

We have to consider

© aj=¢g—gj1,1 < j<r—1withelements hg, = h-(Ej; —Ej1,j41) and

* 0, =¢&_1+¢& withelement hg, = h-(E,—1,—1 +E,,)
and

. ﬁkzek—£k+],1§k§r—1and
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B,«:Erf] + &
If1 <j,k<r—1then

(& —&k1) (A (Ejj—Eji1,j+1)) = Okj— Sk jor1 — Gt j+ Sy j1 = 28k — 8 jr1 — Skp1 j =

2, ifj=k
={ -1, if|j—kl=1
0, if|j—kl>2

Ifk=rand 1 <j<r—1then

) =01, —0r—1,j41+06rj — O j11 = =042
-1, ifj=r-2
0, ifj#r—2
(&x—&+1)(h- (Er—1p—1 +Err) = 8 r—1 + 0y — Ot p—1 — Okp1r = — O p2
-1, ifk=r—2
Sl o0, ifk#£r—2

(8,_1 + Er)(h' (Erfl,rfl +Er,r)) = 6r717r71 + 6r.,r =2

(Sr—l +8r)(h ( j+1 j+1

If 1 <k<r—1and j=rthen

If k = r =2 then

Ifo#pand <a,p > < B,a>#0then

<a,p>_|BI?_

<B,a> |al>

We read off

< Op—2,0—1 >< 01,02 >=< 02,0 >< 0,02 >=

and
<O 1,0 >< 0,01 >=0-0=0

As a consequence, there is a single edge between the vertices of the pair
o, and Q|
and between the vertices of the pair

a,_5 and Qi
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but no edge between the vertices of the pair

o,_1 and Q.

In order to employ the result of Proposition 7.8 for the investigation of the Lie
algebra
so(2r+1,C)

we consider the matrices from M(r x r,R), used in Proposition 7.8, as matrices
from M(2r x 2r,C), and embedd them via the canonical embedding

M(2rx2rC) > M(2r+1)x (2r+1),C)

as block matrices

AQ

A A= (0 0) eM((2r+1)x (2r+1),C).

Proposition 7.9 (Type B,). The Lie algebra
L:=s50(2r+1,C),r > 2,
has the following characteristics:
1.dimL=r(2r+1).
2. The subalgebra
H:=spanc <h-Ej;:1<j<r>cC (02r+1,C)NL)
is a maximal toral subalgebra with dim H = r.

3. For 1 < j < rdenote by
g = (h~Ejj)* CcH*

the dual functionals. For each pair 1 < j < k < r each of the four elements
§- (Ejk 7EA'kj), t- (Ejk 7EA‘kj)7 M~Ejk 7V'EAkj, V~EA'jk7M~Ekj

generates the 1-dimensional root space belonging to the respective root

Ej+ &

—& — &
a= /

€ — &

—Ei+&
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In addition, for each index j=1,....r

* a l-dimensional root space is generated by the matrix
Xjeso(2r+1,C)

with exactly four non-zero entries: The vector

By = (li) eM(2x1,C)

atplaces (2j—1,2r+1) and (2j,2r+ 1) and the vector —B| at places (2r+1,2j— 1)
and (2r+1,2j).

* and a 1-dimensional root space is generated by the matrix
Y;es0(2r+1,C)

with exactly four non-zero entries: The vector
1
By:= | eM(2x1,C)

atplaces (2j—1,2r+1) and (2j,2r+ 1) and the vector —B, at places (2r+1,2j— 1)
and (2r+1,2j).
For j=1,...,r the respective roots belonging to Xj and Y; are
o = t¢g;.
4. The root system @ of L is
D={ftg+te:1<k<n<riU{xe:j=1,.,r}

A base of ¢ is the set
A= {a]a"'7ar}

with - note the different form of the last root -

* (XjIZSj—Sj_H,lSer—l,

e O i=¢.

The set of positive roots is

(I)+:{8i:|:8j11§i<j§}’}U{8ji1§j<r}.
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5. For a positive root oo € @ the subalgebra
Sa =< hg, Xa, Yo > >~ 51(2,C)

has the generators:

e Ifa=¢j+¢&, 1< j<k<r, then
hy :=h- (E,-.,-Jrf?kk), Xo ::s~(Ejkakj), Yo ::t~(Ejkakj).
e Ifa=¢j—¢g,1<j<k<r, then
he ::h-(Ejj—Ekk),xa ::u~Ejk—v~Ekj,ya::vﬁjk—uﬁkj.
e Ifoo=¢;,1<j<r,then
he :=2h-Ej;, xa =X, ya =Y.

6. The Cartan matrix of the root system @ referring to the base A is

2 -10 ... 0
-1 2 —1... 0
0
Cartan(A) = o | EM(rxnZ).
0
0 0 -1 2 -2
0 0 -1 2

Note the distinguished entries in the last row and the last column.
The roots aj,j = 1,...,r — 1, have equal length; they are the long roots. The
root Q. is the single short root. The length ratio is

a.
| ’”—\fz,j:l,...,r—L

o]l

The non-orthogonal pairs of roots from A are

(ajaajJrl)?j = 1,...,}"— 1.

27
Each pair (Qj,0j11),j = 1,...,r — 2, encloses the angle R while the last

3n
pair (0,_1, &) encloses the angle —. The Dynkin diagram of ® from Figure 7.5
has type B, from Theorem 6.31.
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Fig. 7.5 The Dynkin diagram of the root system of type B,

Proof. Most part of the proof follows from the corresponding statements in
Proposition 7.8. In addition:

3) The general element of H has the form

= av'h'Evv,avec.

’
v=1

In addition to the action of H on the root space elements from Proposition 7.8 one
has the action on the additional elements X; and Y;: For 1 < j < r the
element z € H acts according to

[2.Xj] = —€(2) - X}, [2,Y;] = €;(2) - ¥}
We have

|P|=4- +2r=2r=r-(2r+1)—r=dim L—dim H

r(r—1)
2

in accordance with the formula from Proposition 7.4, part 1.4) The positive roots

have the base representation:

r

SjZZOCk,lSjSI’,
k=j

j—1
& —§& = Zak,1§i<j§r.
k=i
5) Note:
By -By —By-B;' =2-he M(2x2,C).

6) The computation of the Cartan matrix is similar to the computation in the proof
of Proposition 7.8.
O

Theorem 7.10 (The classical complex Lie algebras are simple). The Lie algebras
of the complex classical matrix groups of the types

Ar7r2 I;Br7r22;cr,r23;DrarZ47

are simple.
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Proof. We know from Corollary 4.18 that each classical Lie algebra L is semisim-
ple. According to Theorem 4.21 the semisimple Lie algebra L splits into a direct
sum of simple Lie algebras:

L= L;

j=1
with simple Lie algebras L;, j = 1,...,m. The direct sum of maximal toral subalge-
bras

T,CLj, j=1,...m

is a maximal toral subalgebra of L. For each pair i # j and each pair of roots o; of L;
and a; € L; the corresponding Cartan integers vanish

<o, 0 >=0.

Hence the Coxeter graph and a posteriori the Dynkin diagram has m connected
components, which impliesm=1. 0O

Remark 7.11 (Real simple Lie algebras). Also the Lie algebras of the real classical
groups belonging to types

Ara”EIQBra”Zz;cr7r23;Dr7rZ4§

are simple.

7.3 Review and outlook

Remark 7.12 (Classifying complex semisimple Lie algebras by Dynkin diagrams).
Denote by
LR, D

respectively the set of isomorphism classes of complex semisimple Lie algebras,
the set of roots systems, and the set of Dynkin diagrams. Then exist maps

Fy: L —>RandFy:%— 9

and
F:=FpoFy:¥% — 9,
defined as follows and satisfying the following properties:

1. Theorem 7.5 constructs the map F .
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2. The map F¢ does not depend on the choice of a maximal toral subalgebra. For a
proof see the reference in Remark 5.21.

3. The map F¢ is bijective. The proof follows from a theorem of Serre,
see [24, Sect. 18.4, Theor.]. For a simple Lie algebra L the root system F (L) is
irreducible, see [24, Chap. 14.1, Prop.].

4. Definition 6.24 and 6.30 define the map F.
5. Theorem 6.23 implies: The map F is injective.
6. The map Fz is surjective. For a proof see [24, Sect. 12.1, Theor.].

7. Propositions 7.6 - 7.8 show: At least the Dynkin diagrams of type A,B,C,D
from Theorem 6.31 are contained in the image of F.

Part 1 - 6 imply: The map
F: -9

is bijective, i.e. the isomorphism classes of complex semisimple Lie algebras
correspond bijectively to the Dynkin diagrams from Theorem 6.31.

For further topics in a more general context see Figure 0.1.
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