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Part I
General Lie algebra theory





Chapter 1
Matrix functions

The paradigm of a Lie algebra is the vector space of matrices with the commutator
of two matrices as Lie bracket. These concrete examples even cover all abstract
finite dimensional Lie algebras. They are the focus of these notes. Nevertheless it is
useful to consider Lie algebras from an abstract viewpoint as a separate algebraic
structure like groups or rings.

If not stated otherwise, we denote by K the field R of real numbers or the field C
of complex numbers. Both fields have characteristic 0. The relevant difference is the
fact that C is algebraically closed, i.e. each polynomial with coefficients from K of
degree n has exactly n complex roots. This result allows to transform matrices over
C to certain standard forms by transformations which make use of the eigenvalues
of the matrix.

If not stated otherwise all vector spaces in this chapter are assumed finite-
dimensional K-vector spaces.

1.1 Power series of matrices

At high school every student learns the functional equation of the exponential
function

exp(x) · exp(y) = exp(x+ y)

This formula holds for all real numbers x, y ∈ R. Then exponentiation defines a
group morphism

exp : (R,+)→ (R∗, ·)

Those students who attended a class on complex analysis will remember that
exponentiation is defined also for complex numbers. Hence exponentiation extends
to a map

exp : (C,+)→ (C∗, ·)

which also satisfies the functional equation above.

5



6 1 Matrix functions

The seamless transition from the real field R to the complex field C is due to the
fact that the exponential map is defined by a power series

exp(z) =
∞

∑
ν=0

1
ν!

· zν

The series converges not only for real numbers but for all complex numbers too.

In order to generalize the exponential map one step further we now exponentiate
strictly upper triangular matrices.

Definition 1.1 (Exponentiation of strictly upper triangular matrices). For n ∈ N∗

denote by

n(n,K) :=
{
(ai j)1≤i, j≤n : ai j ∈K and ai j = 0 if j ≤ i

}
the K-algebra of strictly upper triangular matrices with a typical element of the form

0 ∗ ∗ ... ∗
0 0 ∗ ... ∗

...
0 0 0 ... 0


For A ∈ n(n,K) the exponential of A is defined as

exp A :=
∞

∑
ν=0

1
ν!

·Aν

Matrices from n(n,K) can be added and multiplied with each other, and they can be
multiplied by scalars from the field K. Note that the series in Definition 1.1 reduces
to a finite sum because An = 0. Hence there arises no question of convergence.

The goal of the present section is to extend the exponential map to all matrices
from M(n×n,K). Now we need a concept of convergence for sequences and series
of matrices. The basic ingredience is the operator norm of a matrix, a concept which
applies to each linear map between normed vector spaces.

Definition 1.2 (Operator norm). We consider the K-vector space Kn, n ∈ N, with
the Euclidean norm

∥x∥ :=

√
n

∑
i=1

|xi|2 f or x = (x1, ...,xn) ∈Kn.

For matrices A ∈ M(n×n,K) we define the operator norm
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∥A∥ := sup{∥Ax∥ : x ∈Kn and ∥x∥ ≤ 1}= sup{∥Ax∥ : x ∈Kn and ∥x∥= 1}

as the supremum on the unit ball of Kn of the linear map represented by A with
respect to the canonical basis.

Note that ∥A∥< ∞ due to compactness of the unit ball

{x ∈Kn : ∥x∥ ≤ 1}.

Intuitively, the operator norm of A measures how the linear map determined by A
with respect to the canonical basis of Kn blows-up or blows-down the unit ball of
Kn.

The K-vector space M(n× n,K) of all matrices with components from K is an
associative K-algebra with respect to the matrix product

A ·B ∈ M(n×n,K)

because
(A ·B) ·C = A · (B ·C)

for matrices A,B,C ∈ M(n×n,K).

Proposition 1.3 (Normed associative matrix algebra). The matrix algebra (M(n×n,K),∥∥)
is a normed associative algebra:

1. ∥A∥= 0 iff A = 0

2. ∥A+B∥ ≤ ∥A∥+∥B∥ (Triangle inequality)

3. ∥λ ·A∥= |λ | · ∥A∥ with λ ∈K

4. ∥A ·B∥ ≤ ∥A∥ · ∥B∥ (Product estimation)

5. ∥1∥= 1 with 1 ∈ M(n×n,K) the unit matrix.

6. For a matrix A = (ai j)i, j ∈ M(n×n,K) holds

∥A∥sup ≤ ∥A∥ ≤ n · ∥A∥sup

with the supremum norm of the matrix components

∥A∥sup := sup{|ai j| : 1 ≤ i, j ≤ n}.

7. Each eigenvalue λ ∈ C of a matrix A ∈ M(n×n,K) satisfies the estimate

|λ | ≤ ∥A∥



8 1 Matrix functions

Proof. ad 6) For j = 1, ...,n denote by e j the j-th canonical basis vector of Kn. Then
for all i = 1, ...,n

∥A∥ ≥ ∥Ae j∥=

√
n

∑
k=1

|ak j|2 ≥ |ai j|,

hence
∥A∥ ≥ ∥A∥sup.

Concerning the other estimate, the inequality of Cauchy Schwarz

|< x,y > |2 ≤ ∥x∥2 · ∥y∥2

implies for all x = (x1, ...,xn) ∈Kn, in particular for |x| ≤ 1

∥Ax∥2 =
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

ai j · x j

∣∣∣∣∣
2

≤

≤
n

∑
i=1

(
n

∑
j=1

|ai j · x j|2
)

≤
n

∑
i=1

(
n

∑
j=1

|ai j|2 ·
n

∑
j=1

|x j|2
)

≤ ∥x∥2 ·
n

∑
i=1

(
n

∑
j=1

sup
i, j

|ai j|2
)

= n2 · ∥x∥2∥A∥2
sup,

hence
∥A∥ ≤ n · ∥A∥sup

ad 7) Consider an eigenvector v ∈Kn with eigenvalue λ . If

λ ·v = A ·v

then
|λ | · ∥v∥= ∥λ ·v = ∥A ·v∥ ≤ ∥A∥ · ∥v∥,

and cancelling ∥v∥ ̸= 0 proves the claim. ⊓⊔

Remark 1.4 (Equivalence of norms).

1. Because the operator norm ∥A∥ and the sup-norm refering to the entries of A
dominate each other up to a constant, the following two convergence concepts
are equivalent for a sequence (Aν)ν∈N of matrices

Aν ∈ M(n×n,K),ν ∈ N,

and a matrix A ∈ M(n×n,K):
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• lim
ν→∞

∥Aν −A∥= 0, i.e. lim
ν→∞

Aν = A (norm convergence).

• The sequence (Aν)ν∈N converges to A componentwise.

2. In particular each Cauchy sequence of matrices wih respect to the operator norm
is convergent: The matrix algebra

(M(n×n,K),∥∥)

is complete, i.e. it is a Banach algebra.

3. The vector space M(n× n,K) is finite dimensional, its dimension is n2. Hence
any two norms are equivalent in the sense that they dominate each other. There-
fore the structure of a topological vector space on M(n×n,K) does not depend
on the choice of the norm.

Because (M(n×n,K),∥∥) is a normed algebra according to Proposition 1.3,
concepts from analysis like convergence, Cauchy sequence, continuous function,
and power series also apply to matrices. In particular, the commutator is a
continuous map: For A, B ∈ M(n×n,K)

∥[A,B]∥= ∥AB−BA∥ ≤ ∥AB∥+∥BA∥ ≤ 2∥A∥∥B∥.

We recall the fundamental properties of a complex power series

∞

∑
ν=0

cν · zν

with radius of convergence R > 0. Set

∆(R) := {z ∈ C : |z|< R},

the open disc in C with radius R. Then

• The series is absolutely convergent in ∆(R), i.e. ∑
∞
ν=0 |cν | · |z|ν is convergent

for z ∈ ∆(R).

• The series converges compact in ∆(R), i.e. the convergence is uniform on each
compact subset of ∆(R).

• The series is infinitely often differentiable in ∆(R), its derivation is obtained by
termwise differentiation.
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Lemma 1.5 (Power series of matrices). Consider a power series

f (z) =
∞

∑
ν=0

cν · zν

with coefficients cν ∈K,ν ∈ N, and radius of convergence R > 0. Let

B(R) := {A ∈ M(n×n,K) : ∥A∥< R}

be the open ball in M(n×n,K) around zero with radius R. Then:

• The series

f (A) :=
∞

∑
ν=0

cν ·Aν := lim
n→∞

(
n

∑
ν=0

cν ·Aν

)
∈ M(n×n,K)

is absolutely convergent and compact convergent in B(R).

• For each matrix A ∈ B(R) the series f (A) satisfies

[ f (A),A] = 0

with the commutator

[ f (A),A] := f (A) ·A−A · f (A).

• The function
f : B(R)→ M(n×n,K), A 7→ f (A),

is continuous.

Proof. i) We apply the Cauchy criterion: For N > M holds∥∥∥∥∥ N

∑
ν=0

cν ·Aν −
M

∑
ν=0

cν ·Aν

∥∥∥∥∥≤ N

∑
ν=M+1

|cν | · ∥A∥ν .

If
r := ∥A∥< R

then
∞

∑
ν=0

|cν | · rν

converges. Hence the Cauchy criterion is satisfied with respect to the operator
norm ∥...∥, hence a posteriori with respect to the sup-norm ∥...∥sup. The limit

lim
n→∞

(
n

∑
ν=0

cν ·Aν

)
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exists with respect to ∥...∥sup, hence also with respect to the operator norm. The
remaining statements about convergence follow from the estimate

∥ f (A)∥ ≤
∞

∑
ν=0

|cν | · ∥A∥ν

and the corresponding properties of complex power series.

ii) The equation [A, f (A)] = 0 about the commutator follows: We take the limit lim
n→∞

and employ the continuity of the commutator

[ f (A),A] =

[
A,

∞

∑
ν=0

cν ·Aν

]
= lim

n→∞

[
A,

n

∑
ν=0

cν ·Aν

]
= lim

n→∞

n

∑
ν=0

cν · [A, ·Aν ] = 0

iii) Continuity of f is a consequence of the compact convergence. ⊓⊔

Proposition 1.6 (Transposition and base change for power series of matrices).
Consider a complex power series

f (z) =
∞

∑
ν=0

aν · zν

with radius of covergence R > 0 and a matrix A ∈ M(n×n,C) with ∥A∥< R. Then:

i) Transposition:
f (A⊤) = f (A)⊤

ii) Similarity:For each invertible matrix S ∈ GL(n,C)

f (S ·A ·S−1) = S · f (A) ·S−1

Proof. i) The proof follows from the fact that transposition is a continuous map:
Proposition 1.3 implies

∥A⊤∥ ≤ n · ∥A∥

Then taking the limit lim
N→∞

of

N

∑
ν=0

aν · (A⊤)
ν
=

(
N

∑
ν=0

aν ·Aν

)⊤

ii) For each ν ∈ C
(S ·A ·S−1)ν = S ·Aν ·S−1.

The claim of the proposition follows from the continuity of the matrix multiplication
by taking the limit lim

N→∞
of
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S ·

(
N

∑
ν=0

aν ·Aν

)
·S−1 =

N

∑
ν=0

aν ·S ·Aν ·S−1 =
N

∑
ν=0

aν · (S ·A ·S−1)ν

⊓⊔

One can even show for A ∈ M(n×n,C) the strict equality

∥A⊤∥= ∥A∥

Definition 1.7 (Derivation of matrix functions). Let I ⊂ R be an open interval. A
matrix function

A : I → M(n×n,K)

is differentiable at a point t0 ∈ I iff the limit

lim
h→0

A(t0 +h)−A(t0)
h

=: A′(t0) ∈ M(n×n,K)

exists. In this case we employ the notation

dA
dt

(t0) := A′(t0).

Lemma 1.8 (Derivation of power series of matrices depending on a parameter).
Let I ⊂ R be an open interval.

i) Consider two differentiable maps

A,B : I −→ B(R).

Then for all t ∈ I holds the product rule

d
dt

A(t) ·B(t) = A′(t) ·B(t)+A(t) ·B′(t).

ii) Consider a complex power series

f (z) =
∞

∑
ν=0

cν · zν

with radius of convergence R > 0, and

A : I → B(R)⊂ M(n×n,K)

a differentiable function, which satisfies for all t ∈ I
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[A′(t),A(t)] = 0.

Then also the function

f ◦A : I → M(n×n,K), t 7→ f (A(t)) :=
∞

∑
ν=0

cν ·Aν(t),

is differentiable for all t ∈ I and satisfies the chain rule

d
dt

f (A(t)) = f ′(A(t)) ·A′(t) = A′(t) · f ′(A(t)).

Here f ′ denotes the derivation of the complex power series f term by term.

Proof. i) The proof follows the proof of the product rule from calculus: One inserts
a suitable additional term.

lim
h→0

A(t +h) ·B(t +h)−A(t) ·B(t)
h

=

= lim
h→0

A(t +h) ·B(t +h)−A(t) ·B(t +h)+A(t) ·B(t +h)−A(t)B(t)
h

=

lim
h→0

A(t +h)−A(t)
h

· lim
h→0

B(t +h)+A(t) · lim
h→0

B(t +h)−B(t)
h

ii) i) After differentiating the series

f (A(t)) =
∞

∑
ν=0

cν ·Aν(t)

term by term, the resulting power series

∞

∑
ν=1

ν · cν ·Aν−1(t)

is again compactly convergent. Hence

f ′(A(t)) =
∞

∑
ν=1

ν · cν ·Aν−1(t)

The proof of the lemma reduces to proving

d
dt

Aν(t) = ν ·Aν−1(t) ·A′(t) = ν ·A′(t) ·Aν−1(t).
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Here the proof goes by induction on ν ∈ N. The induction step uses the product
formula from part i)

d
dt

Aν+1(t) =
d
dt

(Aν(t) ·A(t)) =

(
d
dt

Aν(t)

)
·A(t)+Aν(t) ·A′(t)

and the induction assumption

d
dt

Aν(t) = ν ·Aν−1(t) ·A′(t).

As a consequence

d
dt

Aν+1(t) = ν ·Aν−1 ·A′(t) ·A(t)+Aν(t) ·A′(t) =

= (ν +1) ·Aν(t) ·A′(t) = (ν +1) ·A′(t) ·Aν−1(t)

⊓⊔

1.2 Jordan decomposition

The central aim of Jordan decomposition:

• Decompose a complex vector space V with respect to a given endomorphism f ∈ End(V )
into eigenspaces or generalized eigenspaces of f ,

• and decompose f as the sum of two endomorphisms of special type, one semisim-
ple while the other nilpotent.

Definition 1.9 (Eigenspaces and generalized eigenspaces). Consider a K-vector
space V , a fixed endomorphism f ∈ End(V ), and λ ∈K.

• If
Vλ ( f ) := ker( f −λ ) ̸= {0}

then Vλ ( f ) is the eigenspace of f with respect to λ , which is named an eigenvalue
of f .

• If
V λ ( f ) :=

⋃
n∈N

ker( f −λ )n ̸= {0}

then V λ ( f ) is the generalized eigenspace of f with respect to λ .
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Remark 1.10 (Generalized eigenspace).

1. All generalized eigenspaces V λ ( f ) are f -invariant, i.e.

f (V λ ( f ))⊂V λ ( f ) :

For all k ∈ N
[( f −λ )k, f ] = 0.

If
x ∈V λ ( f ), i.e. ( f −λ )k(x) = 0

for suitable k ∈ N, then

( f −λ )k( f (x)) = (( f −λ )k ◦ f )(x) = ( f ◦ ( f −λ )k)(x) = f (0) = 0.

2. Every non-zero generalized eigenspace V λ ( f ) contains at least one eigenvector v ∈V
of f with eigenvalue λ : Take a non-zero vector v0 ∈ V λ ( f ) and choose n ∈ N
maximal with

v := ( f −λ )n(v0) ̸= 0.

Hence knowing a generalized eigenspace of f allows to find an eigenvector of f .

We recall the following types of matrix representation of an endomorphisms.

Definition 1.11 (Diagonalizable, triangularizable, nilpotent). Consider an n-dimensional K-vector
space V .

1. An endomorphism f ∈ End(V ) is diagonalizable iff it can be represented by a
diagonal matrix from M(n×n,K).

2. An endomorphism f ∈End(V ) is triangularizable iff V has a flag, i.e. a sequence (Vi)i=0,...,n
of subspaces of V with

dim Vi = i and Vi ⊂Vi+1,

which is f -stable, i.e. satisfying

f (Vi)⊂Vi, i = 1, ...,n.

3. An endomorphism f ∈ End(V ) is nilpotent iff f k(V ) = 0 for a suitable k ∈ N.

A matrix A = (ai j) ∈ M(n×n,K) is an upper triangular matrix iff ai j = 0 for
all j < i. Apparently an endomorphism is triangularizable iff it can be represented
by an upper triangular matrix from M(n×n,K).
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For a vector space V ̸= {0} each nilpotent endomorphism f ∈ End V has an
eigenvector v ∈V with eigenvalue zero: For the proof one chooses a non-zero
element w ∈V and considers the greatest index n ∈ N∗ with

f n(w) ̸= 0.

By nilpotency of f such an index exists. Then

v := f n(x)

is an eigenvector of f with eigenvalue zero.

Note: The only endomorphism f ∈ End(V ), which is both diagonalizable and
nilpotent, is f = 0.

It is well-known from Linear Algebra that the sum of two diagonalizable
endomorphisms, which commute with each other, is diagonalizable. A similar
result holds for nilpotent endomorphisms.

Proposition 1.12. Consider a finite-dimensional K-vector space V and two nilpo-
tent endomorphims f , g ∈ End(V ) with commutator [ f ,g] = 0. Then

f +g ∈ End(V )

is nilpotent.

Proof. We choose an index N ∈ N with

f N = gN = 0.

Because [ f ,g] = 0 the binomial theorem applies and shows

( f +g)2N =
2N

∑
ν=0

(
2N
ν

)
f ν ·g2N−ν = 0

because each summand has at least one factor equal to zero. ⊓⊔

The question whether an endomorphism f is triangularizable or even diagonaliz-
able depends on the roots of its characteristic polynomial. These roots are the eigen-
values of f . The corresponding crtieria are stated in Propositions 1.14 and 1.15.

Definition 1.13 (Characteristic polynomial of an endomorphism). Denote by V
a K-vector space and by f ∈ End(V ) an endomorphism.
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1. The characteristic polynomial of f is the polynomial

pchar(T ) := det(T ·1−A) ∈K[T ]

with 1 ∈ M(n× n,K) the unit matrix and A ∈ M(n×n,K) an arbitrary matrix
representing f . The polynomial is independent from the representing matrix.

2. It is well-known that the roots λ ∈C of pchar are the eigenvalues of f . We denote
by

µ(pchar;λ ) ∈ N

the multiplicity of the root, i.e. the algebraic multiplicity of λ .

For later aplication we prove the following lemma about diagonal approximation.

Proposition 1.14 (Triangular form). For an endomorphism f ∈ End(V ) with a
finite dimensional K-vector space V are equivalent:

1. The endomorphism f is triangularizable.

2. The characteristic polynomial pchar splits over K into a product of - not neces-
sarily pairwise distinct - linear factors.

For the proof see [12].

In particular, over K= C every endomorphism is triangularizable.

Proposition 1.15 (Diagonal form). For an endomorphism f ∈ End(V ) with a finite
dimensional K-vector space V are equivalent:

1. The endomorphism f is diagonalizable.

2. The characteristic polynomial pchar splits over K into linear factors, and for all
eigenvalues λ of f the algebraic multiplicity equals the geometric multiplicity,
i.e.

µ(pchar;λ ) = dim Vλ ( f )(Geometric multiplicity).

3. The vector space V splits as direct sum of eigenspaces

V =
⊕

λ eigenvalue

Vλ ( f ).

For the proof see [12].
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Lemma 1.16 (Diagonal approximation). For each matrix B ∈ M(n×n,C) exists a
sequence (Bν)ν∈N of diagonalizable matrices Bν ∈ M(n×n,C) with

B = lim
ν→∞

Bν .

Here the limit of matrices is to be understood componentwise.

Proof. Over the algebraically closed base field C the given matrix B is triangulariz-
able: There exists an invertible matrix S ∈ GL(n,C) such that

A := S ·B ·S−1

is an upper triangular matrix of the form

A = ∆ +N

with a diagonal matrix
∆ = diag(λ1, ...,λn)

and a strictly upper triangular matrix

N = (ai j),ai j = 0 if i ≥ j.

For all i = 1, ...,n one defines successively sequences

ai = (ai
ν)ν∈N

of complex numbers converging to zero, such that for each fixed ν ∈N the numbers

λi +ai
ν , i = 1, ..,n,

are pairwise distinct. Then one defines for each ν ∈ N

Aν := diag(λ1 +a1
ν , ...,λn +an

ν)+N.

Each matrix Aν has the n pairwise distinct eigenvalues

λi +ai
ν , i = 1, ...,n,

and is therefore diagonalizable due to Proposition 1.15. By construction

A = lim
ν→∞

Aν ,

which implies

B = S−1 ·A ·S = S−1 · ( lim
ν→∞

Aν) ·S = lim
ν→∞

(S−1 ·Aν ·S)

The matrices
Bν := S−1 ·Aν ·S, ν ∈ N,
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are diagonalizable because the corresponding matrices Aν are diagonalizable. ⊓⊔

A second polynomial from K[T ] which encodes important properties of an
endomorphism f is the minimal polynomial of f .

Definition 1.17 (Minimal polynomial and semisimpleness). Let V be an n-dimensional K-vector
space. The K-vector space End(V ) of endomorphisms has dimension = n2. Hence
for each endomorphism f ∈ End(V ) the family ( f k)k∈N is linearly dependent and
each endomorphism f ∈ End(V ) satisfies a polynomial equation

f k =
k−1

∑
i=0

αi · f i, αi ∈ C.

with suitable k ∈ N∗.

1. Because the ring R := K[T ] is a principal ideal domain, the ideal of all polyno-
mials which annihilate f

< p ∈ R : p( f ) = 0 ∈ End(V )>

has a unique generator of positive degree with leading coefficient = 1. It is named
the minimal polynomial of f

pmin(T ) ∈ R.

2. The endomorphism f is named semisimple if its minimal polynomial splits as

pmin(T ) = ∏
j=1,...,k

g j(T )

with irreducible polynomials

g j(T ) ∈K[T ], j = 1, ...,k,

which are pairwise distinct up to scalars.

If V is a complex vector space and f ∈ End(V ), then semisimpleness of f re-
duces to the property, that the roots of the minimal polynomial of f are pairwise
distinct, i.e. pmin(T ) is a product of pairwise distinct linear factors.

Lemma 1.18 (Restriction of semisimple endomorphisms). Consider a complex
vector space V , an endomorphism f ∈End(V ), and an f -invariant subspace W ⊂V .
If f is semisimple, then also the restriction

f |W : W −→W

is semisimple.
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Proof. The minimal polynomial

p(min, f |W )(T )

of the restriction f |W divides the minimal polynomial pmin(T ) of f . Hence also

p(min, f |W )(T )

splits into pairwise distinct linear factors. ⊓⊔

Note that Lemma 1.18 also holds in the real context.

Theorem 1.19 (Jordan decomposition). Let f ∈ End(V ) be an endomorphism of
a finite dimensional complex vector space V .

1. A unique decomposition

f = fs + fn (Jordan decomposition)

exists with a semisimple endomorphism fs ∈ End(V ) and a nilpotent endomor-
phism fn ∈ End(V ) such that both satisfy

[ fs, fn] = 0.

2. The two summands fs and fn depend on f in a polynomial way, i.e. polynomials

ps(T ), pn(T ) ∈ C[T ]

exist with ps(0) = pn(0) = 0 such that

fs = ps( f ) and fn = pn( f ).

In particular, if [ f ,g] = 0 for an endomorphism g ∈ End(V ) then

[ fs,g] = [ fn,g] = 0.

3. The vector space V splits as direct sum of the generalized eigenspaces of f

V =
⊕

λ eigenvalue

V λ ( f ).

For each eigenvalue λ the generalized eigenspace of f equals the eigenspace
of fs:

V λ ( f ) =Vλ ( fs).

4. The minimal polynomial pmin(T ) of f and the characteristic polynomial pchar(T )
of f have the same roots.
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The proof uses the fact that the field C is algebraically closed. Hence the minimal
polynomial pmin of f splits completely into linear factors. If pmin has the roots

λi, i = 1, ...,r,

then the linear factors of pmin induce a family of polynomials without a common
factor. Because

R := C[T ]

is a principal domain, the factors generate a partition of unity in R. It induces a
partition of the identity id ∈ End(V ). The corresponding summands form a family
of pairwise commuting projectors

Ei : V −→V, i = 1, ...,r

Setting
Vi := im Ei ⊂V, i = 1, ...,r,

decomposes V as the direct sum

V =
r⊕

i=1

Vi,

of f -stable subspaces Vi. One checks that

fs :=
r

∑
i=1

λi ·Ei

is semisimple and that
f − fs =: fn

is the searched nilpotent summand of f . One checks that the direct summands Vi
equal the generalized eigenspaces of f , and that these are also the eigenspaces
of fs.

Proof (of Theorem 1.19).

i) Splitting idV as a sum of pairwise commuting, non-zero projectors: Because the
field C is algebraically closed, the minimal polynomial pmin(T ) of f splits into
linear factors with positive exponents mi ∈ N∗

pmin(T ) =
r

∏
i=1

(T −λi)
mi

with λi ̸= λ j if i ̸= j. For i = 1, ...,r consider the polynomials

pi :=
pmin(T )

(T −λi)mi
∈ R,
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obtained by cancelling the corresponding factor from the minimal poylnomial. By
construction these polynomials are coprime, their greatest common divisor
is ±1 ∈ R. Because R is a principal ideal domain there exist
polynomials ri ∈ R, i = 1, ...,r, with

1 =
r

∑
i=1

ri · pi ∈ R.

Applying the polynomial equation to the endomorphism f creates the
endomorphisms

Ei := ri( f ) · pi( f ) ∈ End(V ), i = 1, ...,r.

They satisfy:

• By construction

idV =
r

∑
i=1

Ei

• For each i = 1, ...,r
Ei ̸= {0}.

Otherwise assume the existence of an index i ∈ {1, ...,r} with Ei = {0},
w.l.o.g. i = 1. Then

r1( f ) · p1( f ) = 0

The minimality of pmin implies

pmin divides r1 · p1 in R,

and by definition of p1
pmin = (T −λ1)

m1 · p1

Therefore
(T −λ1)

m1 · p1 divides r1 · p1 in R,

and because R is a domain of integrity

(T −λ1)
m1 divides r1.

By definition (T −λ1)
m1 also divides all p j, j = 2, ...,r. Hence

(T −λ1)
m1 divides 1 =

r

∑
i=1

ri · pi,

a contradiction.

• If i ̸= j then pmin divides

(ri · pi) · (r j · p j) ∈ R.
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Hence pmin( f ) = 0 ∈ End(V ) and the minimality of pmin imply

Ei ·E j = 0 ∈ End(V ).

• The family (Ek)k=1,...,r is a family of projectors:

E2
k = Ek ◦

r

∑
i=1

Ei = Ek ◦ idV = Ek.

Hence the family (Ei)i=1,...,r splits the identity idV as a sum of pairwise
commuting, non-zero projectors. We define the ranges

Vi := im Ei ⊂V, i = 1, ...,r

of the projectors, and obtain the direct sum decomposition

V =
r⊕

i=1

Vi.

For all i = 1, ...,r the projector Ei is as a polynomial in f by definition, hence it
satisfies

[ f ,Ei] = 0,

which implies that the subspace Vi is f -stable.

ii) The semisimple summand and Vi ⊂V λi( f ): On each subspace

Vi, i = 1, ...,r,

the corresponding projector Ei acts as identity, hence the endomorphism

λi · (Ei|Vi) ∈ End(Vi)

acts as multiplication by λi. We define the polynomial

ps(T ) :=
r

∑
i=1

λi · ri(T ) · pi(T ) ∈ R

and the endomorphism

fs := ps( f ) =
r

∑
i=1

λi ·Ei ∈ End(V ).

Recall from part i) for all i = 1, ...,r

Vi ̸= {0}.

Due to Proposition 1.15 the decomposition
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V =
r⊕

i=1

Vi

implies that fs is diagonalizable with eigenspaces

Vi =Vλi( fs), i = 1, ...,r.

In particular, fs is semisimple with minimal polynomial

pmin, fs =
r

∏
i=1

(T −λi)

For each i = 1, ...,r
Vi ⊂V λi( f )

because for each v ∈Vi holds

( f −λi)
mi(v)= ( f −λi)

mi(Ei(v))= ( f −λi)
mi(ri( f )◦ pi( f ))(v)= (ri( f )◦ pmin( f ))(v)= 0,

the penultimate equality is due to the definition

pi :=
pmin

(T −λi)mi

iii) The nilpotent summand: To obtain the nilpotent summand of f we consider the
polynomial

pn(T ) := T − ps(T ) ∈ C[T ]

and define the corresponding endomorphism

fn := pn( f ) = f − fs ∈ End(V ).

Then
f = fs + fn.

The two definitions
fs := ps( f ) and fn := pn( f )

imply
[ f , fs] = [ f , fn] = 0.

In order to prove the nilpotency of fn we consider an arbitrary index i ∈ 1, ...,r and
the restriction of fn to Vi. Set

m := dim Vi

On Vi
fn = f − fs = ( f −λi)− ( fs −λi).

Using [ fs, f ] = 0 the binomial theorem implies
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f m
n =

m

∑
µ=0

(
m
µ

)
(−1)m−µ( f −λi)

µ ◦ ( fs −λi)
m−µ .

Here the second factor
( fs −λi)

m−µ

of each summand with index 0 ≤ µ < m vanishes, because λi is an eigenvalue of
the restriction fs|Vi. The first factor

( f −λi)
µ

vanishes for the summand with index µ = m as proved in part ii). As a
consequence of the binomial theorem

f m
n (Vi) = 0.

Hence the restriction fn|Vi is nilpotent for every i = 1, ...,r, which implies the
nilpotency of fn ∈ End(V ).

iv) Inclusion V λi( f )⊂Vi: Consider an arbitrary, but fixed i = 1, ...,r. We use the
direct sum decomposition from part ii)

V =
r⊕

j=1

Vj.

Consider an arbitrary vector v ∈V λi( f )⊂V and decompose

v =
r

∑
j=1

v j,v j ∈Vj for j = 1, ...,r.

We have to show that v reduces to vi, i.e.v j = 0 for j ̸= i.

For large n ∈ N by assumption

0 = ( f −λi)
n(v) =

r

∑
j=1

( f −λi)
n(v j).

The f -stableness of each Vj implies

( f −λi)
n(v j) ∈Vj.

Assume the existence of an index j = 1, ...,r such that v j ̸= 0. Then

( f −λi)
n(v j) = 0,

i.e. f has the generalized eigenvector v j belonging to the eigenvalue λi:
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v j ∈V λi( f ).

Due to Remark 1.10 the endomorphism f has also an eigenvector w ∈Vλi( f ). The
f -stableness of Vj implies w ∈Vj. We obtain for large m

0 = ( f −λ j)
m(w) = (λi −λ j)

m ·w.

Here the left equality is due to

w ∈Vj ⊂V λ j( f )

with the last inclusion proven in part i). And the right equality is due to

w ∈Vλi( f ).

The equality
0 = (λi −λ j)

m ·w

implies j = i. As a consequence v = vi ∈Vi, which finishes the proof of the
inclusion

V λi( f )⊂Vi

Together with the opposite inclusion from part iii) we obtain

Vi =V λi( f )

and

V =
r⊕

i=1

Vi =
r⊕

i=1

V λi( f ) =
r⊕

i=1

Vλi( fs).

In particular, the vector space V splits as the direct sum of the generalized
eigenspaces of f . The corresponding generalized eigenvalues of f are the roots of
the minimal polynomial pmin of f .

v) Both polynomials pmin and pchar have the same roots:

• Due to part iv) each root λ of the minimal polynomial of f defines a generalized
eigenspace V λ ( f ). Due to Remark 1.10 the latter contains an eigenvector of f
with eigenvalue λ . The eigenvalue λ is a root of the characteristic polynomial
of f . Hence all roots of the minimal polynomial are also roots of the
characteristic polynomial.

• For the oppposite direction we consider an eigenvalue λ of f with
corresponding eigenvector v ∈V :

f (v) = λ ·v.

Because pmin( f ) = 0 ∈ End(V ) we have in particular

pmin( f )(v) = 0 ∈V.
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Hence
0 = pmin( f )(v) = pmin(λ ) ·v ∈V.

Because v ̸= 0 we conclude

pmin(λ ) = 0 ∈ C,

i.e. the eigenvalue λ is a root of the minimal polynomial.

vi) Semisimplicity implies diagonalizability: If f is semisimple then each λ j is a
simple root of the minimal polynomial of f , i.e.

pmin(T ) =
r

∏
j=1

(T −λ j)

We show for each arbitrary but fixed index i = 1, ...,r

V λi( f ) =Vλi( f )

To prove the non-trivial inclusion

V λi( f )⊂Vλi( f ),

i.e. that generalized eigenvectors are eigenvectors, we consider a generalized
eigenvector v ∈V λi( f ). We have

0 = pmin( f )(v) =
r

∏
j=1

( f −λ j)(v) =

(
(∏

j ̸=i
( f −λ j))◦ ( f −λi)

)
(v)

In case
( f −λi)(v) ̸= 0

we obtain due to the f -stableness of V λi( f ) by iteration a non-zero
vector w ∈V λi( f ) and an index j ̸= i with

( f −λ j)(w) = 0

In particular
w ∈Vλ j( f )⊂V λ j( f ).

Hence
0 ̸= w ∈V λ j( f )∩V λi( f ),

a contradiction to
V λ j( f )∩V λi( f ) = /0

according to part iv). Therefore

( f −λi)(v) = 0, i.e. v ∈Vλi( f ).
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vii) Uniqueness of the Jordan decomposition: Assume a second decomposition

f = f ′s + f ′n

with the properties stated in part 1) of the theorem. From

[ f ′s , f ′n] = 0

follows
[ f , f ′n] = [ f ′s , f ′n]+ [ f ′n, f ′n] = [ f ′n, f ′n] = 0.

Part iii) with
fn = pn( f )

shows
[ fn, f ′n] = 0.

Analogously, one proves
[ fs, f ′s ] = 0.

As a consequence
fs − f ′s = f ′n − fn ∈ End(V )

is an endomorphism which is both

• semisimple, as the sum of two commuting semisimple, i.e. diagonalizable
according to part vi), endomorphisms,

• and nilpotent - being the sum of two commuting nilpotent endomorphisms, see
Proposition 1.12.

Hence the endomorphism is zero, i.e.

fs = f ′s and fn = f ′n.

viii) Killing the constant terms: We prove that the polynomials ps and pn can be
choosen with

ps(0) = pn(0) = 0 :

• Either λi = 0 for one index i = 1, ...,r. Then

V 0( f ) ̸= {0}

and the generalized eigenspace of f contains also an eigenvector of f with
eigenvalue 0, i.e.

{0} ̸= ker f .

The representation

ps(T ) = a0 +a1T + ...+akT k ∈ C[T ]

implies
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fs = ps( f ) = a0 · id +a1 · f + ...+ak · f k End(V ).

The last equation applied to an eigenvector

v ∈ ker f = ker fs

shows a0 = 0. Hence ps(T ) ∈ C[T ] has no constant term, i.e. ps(0) = 0. From
the definition

pn(T ) := T − ps(T )

follows
pn(0) =−ps(0) = 0.

• Or λi ̸= 0 for all indices i = 1, ...,r: Then

pmin(0) =±
r

∏
i=1

λi ̸= 0

Now one replaces the polynomials ps and pn respectively by

p̃s := ps −
ps(0)

pmin(0)
· pmin

and

p̃n := pn −
pn(0)

pmin(0)
· pmin.

Then
p̃s(0) = p̃n(0) = 0

without changing the polynomial representations

fs = p̃s( f ) and fn = p̃n( f ),

because pmin( f ) = 0.
⊓⊔

The decomposition of a complex endomorphism into the sum of its semisimple
and its nilpotent part points to the two fundamental classes of Lie algebras. Nilpotent
- and slightly more general - solvable Lie algebras are the subject of Chapter 3.
While the study of semisimple Lie algebras will start in Chapter 4 and continue as
the subject of Part II.

The Cayleigh-Hamilton theorem relates the minimal polynomial of an endomor-
phism to its characteristic polynomial. The theorem can be obtained as a corollary
of the Jordan decomposition.

Theorem 1.20 (Cayleigh-Hamilton). Consider a complex, finite-dimensional vec-
tor space V and an endomorphism f ∈ End(V ).
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• The characteristic polynomial pchar(T ) ∈ C annihilates f , i.e.

pchar( f ) = 0 ∈ End(V ).

• The minimal polynomial pmin(T ) of f divides the characteristic polynomial pchar(T )
in the ring C[T ].

Proof. We denote by
f = fs + fn

the Jordan decomposition of f according to Theorem 1.19 and take over the
notation from its proof. The minimal polynomial of f has the form

pmin(T ) =
r

∏
i=1

(T −λi)
mi

with pairwise distinct λi.

i) We choose an arbitrary but fixed index j ∈ {1, ...,r}, set

λ := λ j, W :=V λ ( f ), and k := dim W,

and denote the restriction of endomorphisms to the f -stable subspace W by
priming. Then the restrictions

f ′s = λ · idW and f ′n

are semisimple respectively nilpotent, and

f ′ = f ′s + f ′n

The nilpotency of f ′n implies

( f ′−λ )k = ( f ′− f ′s)
k = ( f ′n)

k = 0

ii) For each i = 1, ...,r we use the shorthand

Vi :=V λi( f )

The characteristic polynomial of f is

pchar(T ) =
r

∏
i=1

(T −λi)
dim Vi

Part i) shows for each i = 1, ...,r

( f −λi)
dim Vi |Vi = 0

As a consequence of the Jordan decomposition
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V =
r⊕

i=1

Vi

holds

pchar( f ) =
r

∏
i=1

( f −λi)
dim Vi = 0

Due to the minimality of pmin(T ) the minimal polynomial pmin(T ) divides the
characteristic polynomial pchar(T ). ⊓⊔

Apparently the statement pchar( f ) = 0 of the Cayleigh-Hamilton theorem also
holds for an endomorphism of a real vector space V . Because any real endomor-
phism f defines the complex endomomorphism

f ⊗ id

of the complexification V ⊗RC.

1.3 The exponential map of matrices

The complex exponential series

exp(z) =
∞

∑
ν=0

zν

ν!

has convergence radius R = ∞. We now generalize the exponential series from
complex numbers z ∈ C as argument to matrices A ∈ M(n×n,K) as argument.

Definition 1.21 (Exponential of matrices). For any matrix A ∈ M(n× n,K) one
defines the exponential

exp(A) :=
∞

∑
ν=0

Aν

ν!
∈ M(n×n,K).

In Definition 1.21 the defining power series of matrices is absolutely and
compactly convergent due to Lemma 1.5.
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Proposition 1.22 (Derivation of the exponential with respect to a parameter).
Consider an open interval I ⊂ R and a differentiable function

A : I → M(n×n,K)

with
[A′(t),A(t)] = 0

for all t ∈ I. Then for all t ∈ I

d
dt
(exp A(t)) = A′(t) · exp A(t) = (exp A(t)) ·A′(t).

Proof. We apply Lemma 1.8 with the power series

f (z) =
∞

∑
ν=0

1
ν!

· zν

and its derivative
f ′(z) = f (z).

We obtain

d
dt
(exp A(t)) =

(
∞

∑
ν=0

1
ν!

·Aν(t)

)
·A′(t) = (exp A(t)) ·A′(t) = A′(t) · exp A(t).

⊓⊔

Theorem 1.23 (Exponential of commuting matrices). The exponential of matrices A,B ∈ M(n×n,C)
satisfies the following rules:

1. Functional equation in the commutative case: If [A,B] = 0 then

exp(A+B) = exp(A) · exp(B).

2. Determinant and trace: det(exp A) = exp(tr A).

Proof. 1. First we apply the binomial theorem making use of the assumption [A,B] = 0:

exp(A+B) =
∞

∑
ν=0

(A+B)ν

ν!
=

∞

∑
ν=0

1
ν!

(
ν

∑
µ=0

(
ν

µ

)
Aν−µ ·Bµ

)
=

=
∞

∑
ν=0

(
ν

∑
µ=0

Aν−µ

(ν −µ)!
·

Bµ

µ!

)
Secondly we invoke the Cauchy product formula. It rests on the fact that any
rearrangement of absolutely convergent series is admissible:
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exp(A) · exp(B) =
∞

∑
ν=0

Aν

ν!
·

∞

∑
ν=0

Bν

ν!
=

∞

∑
ν=0

(
ν

∑
µ=0

Aν−µ

(ν −µ)!
·

Bµ

µ!

)
.

2. According to Proposition 1.14 and 1.6 w.l.o.g.

A =

λ1 ∗
. . .

0 λn

 , λi ∈ C, i = 1, ...,n,

is an upper triangular matrix. We obtain

Aν =

λ ν
1 ∗

. . .
0 λ ν

n

 ,ν ∈ N,

and conclude

det(exp A) = det

(
∞

∑
ν=0

Aν

ν!

)
= det

 eλ1 ∗
. . .

0 eλn

 .

Hence

det(exp A) =
n

∏
i=1

eλi = eλ1+...+λn = exp(tr A).

⊓⊔

Corollary 1.24 (Exponential map). The exponential defines a map

exp : M(n×n,K)→ GL(n,K), A 7→ exp(A),

i.e. the matrix exp(A) is invertible, and exp(A)−1 = exp(−A).

The inverse of exponentiation is taking the logarithm. But even in the case of
complex numbers the exponential map is not injective because

exp(z+2πi) = exp(z)

Anyhow the exponential map of complex numbers is locally invertible. And this
property carries over to the exponential of matrices around the unit 1 ∈ GL(n,C).
We first recall the complex power series of the logarithm

log(1+ z) =
∞

∑
ν=1

(−1)ν+1

ν
· zν , z ∈ C,
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and the complex geometric series

∞

∑
ν=0

zν , z ∈ C.

Both power series have radius of convergence R = 1.

Definition 1.25 (Logarithm and geometric series of matrices). For a matrix A ∈ M(n×n,K)
with ∥A∥< 1 one defines its logarithm

log(1+A) :=
∞

∑
ν=1

(−1)ν+1 · Aν

ν
∈ M(n×n,K)

and its geometric series
∞

∑
ν=0

Aν ∈ M(n×n,K).

Proposition 1.26 (Inverse matrix and derivation of logarithm).

1. For a matrix A ∈ M(n× n,K) with ∥A∥ < 1 the matrix 1−A is invertible with
inverse the geometric series

(1−A)−1 =
∞

∑
ν=0

Aν .

2. Consider an open interval I ⊂ R and a differentiable function

B : I → M(n×n,K)

with ∥B(t)−1∥< 1 and [B′(t),B(t)] = 0 for all t ∈ I.

Then for all t ∈ I the inverse B(t)−1 exists and

d
dt
(log B(t)) = B(t)−1 ·B′(t) = B′(t) ·B(t)−1.

Proof. ad 1) For each n ∈ N

(1−A) ·
n

∑
ν=0

Aν =
n

∑
ν=0

Aν −
n+1

∑
ν=1

Aν = 1−An+1.

Because ∥A∥< 1 it follows

(1−A) ·
∞

∑
ν=0

Aν = 1− lim
n→∞

∥A∥n+1 = 1.

ad 2) For t ∈ I define
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A := 1−B(t).

Because ∥A∥= ∥1−B(t)∥< 1 apply part 1) to A:

B(t) = 1−A

has the inverse

B(t)−1 =
∞

∑
ν=0

Aν =
∞

∑
ν=0

(1−B(t))ν .

In addition,
log(B(t)) = log(1+(B(t)−1))

is well-defined. The chain rule from Lemma 1.8 with the power series of the loga-
rithm

f (1+ z) =
∞

∑
ν=1

(−1)ν+1

ν
· zν

and its derivative

f ′(1+ z) =
∞

∑
ν=0

(−z)ν

implies

d
dt
(log B(t)) =

d
dt

log(1+(B(t)−1)) =

(
∞

∑
ν=0

(1−B(t))ν

)
·B′(t) =

= B(t)−1 ·B′(t) = B′(t) ·B(t)−1.
⊓⊔

Proposition 1.27 (Exponential and logarithm of matrices as locally inverse maps).
For a matrix A ∈ M(n×n,C) holds:

1. If ∥A−1∥< 1 or A−1 nilpotent, then

exp(log A) = A

2. If ∥A∥< log 2 or A nilpotent, then

log(exp A) = A

Proof. 1. i) Assume ∥A−1∥< 1: For the proof cf. [18, Theor. 2.8].

First we consider the case that the matrix A is diagonalizable: Assume the exis-
tence of matrix S ∈ GL(n,C) with

S ·A ·S−1 = ∆

a diagonal matrix
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diag (λ1, ...,λn).

Then for all ν ∈ N

(A−1)ν = S−1 ·


(λ1 −1)ν 0 ... 0 0

...

0 0 ... 0 (λn −1)ν

 ·S

The complex numbers λ j, j = 1, ...,n are the eigenvalues of A, while

λ j −1, j = 1, ...,n

are the eigenvalues of A−1. Hence according to Proposition 1.3

|λ j −1| ≤ ∥A−1∥< 1, j = 1, ...,n.

We obtain

log A = log(1+(A−1)) =
∞

∑
ν=1

(−1)ν+1 ·
(A−1)ν

ν
=

= S−1 ·


log λ1 0 ... 0 0

...

0 0 ... 0 log λn

 ·S

Then by Theorem 1.23

exp(log A) = S−1 ·


exp(log λ1) 0 ... 0 0

...

0 0 ... 0 exp(log λn)

 ·S = A

Secondly, for a general matrix A ∈ M(n×n,C) Lemma 1.16 provides a sequence
(Aν)ν of diagonalizable matrices with

A = lim
ν→∞

Aν

Due to the continuity of the matrix functions exp and log, see Lemma 1.5,

exp(log A) = exp(log( lim
ν→∞

Aν)) = lim
ν→∞

(exp(log Aν)) = lim
ν→∞

Aν = A

ii) Assume A−1 nilpotent, but not necessarily
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∥A−1∥< 1,

Consider for each t ∈ R the matrix

A(t) := 1+ t · (A−1)

For all t ∈ R the matrix
A(t)−1= t · (A−1)

is nilpotent, and for small |t| holds

∥A(t)−1∥= |t| · ∥A−1∥< 1

For all t ∈R the power series

log A(t) = log(1+(A(t)−1))

reduces to a finite series, and for small |t| holds due to part i)

exp(log A(t)) = A(t)

Both sides of the last equality are power series in t ∈ R. The identity theorem
for real power series implies that the equality holds for all t ∈ R. For t = 1 one
has A(t) = A, hence

exp(log A) = A

2. i) Assume ∥A∥< log 2. Then

∥exp(A)−1∥= ∥
∞

∑
ν=1

Aν

ν!
∥ ≤

∞

∑
ν=1

∥A∥ν

ν!
= exp(∥A∥)−1 < 2−1 = 1.

Hence
log(exp A) = log(1+(exp(A)−1))

is a well-defined convergent power series.

For a diagonal matrix

∆ =

λ1 0
. . .

0 λn

 .

holds
max{|λ j| : 1 ≤ j ≤ n}= ∥∆∥.

If ∥∆∥< log 2 then

log(exp(∆)) =

 log(eλ1) 0
. . .

0 log(eλn)

=

λ1 0
. . .

0 λn

= ∆
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Here we use that the power series of the logarithm computes the principal
value of the logarithm.

According to Lemma 1.16 an arbitrary complex matrix A ∈ M(n×n,C) can
be approximated by a series of diagonalizable matrices (Aν)ν∈N

A = lim
ν→∞

Aν .

If ∥A∥< log 2 then for sufficiently large index ν also

∥Aν∥< 2

For each sufficiently large fixed ν ∈ N there exists an invertible matrix
S ∈ GL(n,C) such that

∆ν := S ·Aν ·S−1

is a diagonal matrix, and estimating the operator norm against the modulus
of the largest eigenvalue shows

∥∆ν∥= ∥Aν∥< log 2.

The previous step implies

log(exp S ·Aν ·S−1) = log(exp ∆ν) = ∆ν

Hence
S · log(exp Aν) ·S−1 = log(exp S ·Aν ·S−1) = ∆ν

implies
log(exp Aν) = S−1 ·∆ν ·S = Aν

Taking the limit of the outer terms of the last equation and using the
continuity of the functions log and exp gives

log(exp(A)) = A.

ii) Assume A nilpotent, but not necessarily

∥A∥< log 2

Then the reduction is similar: For each t ∈ R the matrix

A(t) := t ·A

is nilpotent, and satisfies for small |t|

∥A(t)∥< log 2

For all t ∈R the power series
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exp(A(t))−1=
∞

∑
ν=1

A(t)ν

ν!

reduces to a finite series, and its value

exp(A(t))−1

is nilpotent as finite sum of pairwise commuting nilpotent matrices. Hence

log(exp A(t)) = log(1+(exp(A(t)−1)) =
∞

∑
ν=1

(−1)ν+1 ((exp A(t))−1)ν

ν

also reduces to a finite sum and is therefore well-defined. For small |t| holds
due to part i)

log(exp A(t)) = A(t)

Both sides of the last equality are power series in t ∈ R. The identity theorem
for real power series implies that the equality holds for all t ∈R. For t = 1 one
has A(t) = A, hence

log(exp A) = A
⊓⊔

Remark 1.28 (Counter example against invertibility). In Proposition 1.27, part 2 the
assumption ∥A∥< log 2 cannot be dropped: Consider the matrix

A = 2π i ·1 ∈ M(n×n,C)

with ∥A∥= 2π > log 2. We have

exp(A) = e2π i ·1= 1

hence
log(exp(A)) = log(1) = 0 ̸= A.

Theorem 1.29 (Surjectivity of the complex exponential map). The exponential
map of complex matrices

exp : M(n×n,C)→ GL(n,C), A 7→ exp A,

is surjective.

To obtain an inverse image of the endomorphism f ∈ End(Cn) represented by a
given matrix B ∈ GL(n,C) the Jordan decomposition of f allows to focus on a gen-
eralized eigenspace V λ ( f ) of f . Therefore we have to find an inverse image of the
restriction
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fλ := f |V λ ( f ).

The Jordan decomposition decomposes

fλ = λ ·1+ fn = λ ·

(
1+

1
λ
· fn

)

with a nilpotent endomorphism fn and λ ̸= 0 because f is invertible. We find inverse
images separately for each factor of the induced multiplicative decomposition by
using the logarithm for nilpotent matrices and for complex numbers. Then the sum
of both inverse images maps to fλ and solves the problem.

A given matrix B ∈ GL(n,C) is similar to a block matrix with respect to the Jordan
decomposition and the exponential map is compatible with conjugation due to
Proposition 1.6. Hence we may assume B as a block matrix.

Proof. Consider a fixed but arbitrary matrix B∈GL(n,C). According to Theorem 1.19
the vector space Cn splits up to conjugation into the sum of the generalized
eigenspaces with respect to the generalized eigenvalues λ of B

Cn ∼=
⊕

λ

V λ (B)

and for each generalized eigenvalue λ the restriction

Bλ := B|V λ (B)

is an endomorphism of the B-stable subspace V λ (B).

W.l.o.g. we may assume B = Bλ with a fixed λ ∈ C. Note λ ̸= 0 because the
matrix B is invertible. According to the Jordan decomposition of B the matrix

N := Bλ −λ ·1

is nilpotent. We obtain an additive and a multiplicative decomposition

Bλ = λ ·1+N = λ ·
(
1+

1
λ
·N
)

Then

Aλ := log
(
1+

1
λ
·N
)
=

∞

∑
ν=1

(−1)ν+1

ν
· Nν

λ ν

is well-defined because the sum is finite. We have

exp Aλ = exp
(

log
(
1+

1
λ
·N
))

= 1+
1
λ
·N

according to Proposition 1.27. In order to deal with the numerical factor λ ∈ C we
choose a complex logarithm µ ∈ C with



1.3 The exponential map of matrices 41

eµ = λ .

Combining both steps we set

A := µ ·1+Aλ ,

Theorem 1.23 implies

exp A= exp(µ ·1+Aλ )= exp(µ ·1)·exp Aλ =(λ ·1)·exp Aλ = λ

(
1+

1
λ
·N
)
=B.

⊓⊔

Remark 1.30 (Counter examples against surjectivity). In general, the exponential
map of matrices is not surjective on domains where one possibly expects it to be.

1. Complex case: Set

sl(2,C) := {A ∈ M(2×2,C) : tr A = 0}

and
SL(2,C) := {B ∈ GL(2,C) : det B = 1}

and consider
exp : sl(2,C)→ SL(2,C).

The map is well-defined due to Theorem 1.23. Each matrix

B :=
(
−1 b
0 −1

)
∈ SL(2,C), b ∈ C∗,

has no inverse image.

2. Real case: Set

GL+(2,R) := {B ∈ GL(2,R) : det B > 0}

and consider
exp : gl(2,R)→ GL+(2,R).

Each matrix

B :=
(
−1 b
0 −1

)
∈ GL+(2,R), b ∈ R∗,

has no inverse image.

Proof. 1. Assume the existence of a matrix A ∈ sl(2,C) with

exp A = B.
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The two complex eigenvalues

λi, i = 1,2,

of A satisfy
0 = tr A = λ1 +λ2.

• The case λ1 = λ2, i.e. 0 = λ1 = λ2 is excluded, because then exp A has the
eigenvalue e0 = 1. But B has the only eigenvalue −1.

• Hence λ1 ̸= λ2. Then A is diagonalizable: A matrix S ∈ GL(2,C) exists with

S ·A ·S−1 =

(
λ1 0
0 λ2

)
.

We obtain

S ·B ·S−1 = S · (exp A) ·S−1 = exp(S ·A ·S−1) =

(
eλ1 0
0 eλ2

)
Hence B is diagonalizable. Then its minimal polynomial is

pmin(T ) = T +1 ∈ C[T ],

but
pmin(B) ̸= 0 because b ̸= 0.

We obtain a contradiction.

2. Assume the existence of a matrix A ∈ M(2×2,R) with

exp A = B.

The real matrix A has two complex eigenvalues

λi, i = 1,2,

which are conjugate to each other.

• If both eigenvalues are real, then

λ1 = λ2 =: λ ∈ R

and exp A has the eigenvalue eλ > 0, while B has the single eigenvalue −1, a
contradiction.

• If λ1 is not real, then
λ2 = λ1 ̸= λ1.
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Hence A has two distinct eigenvalues. Therefore A is diagonalizable. Hence
also B is diagonalizable, a contradiction according to the end of part 1.

⊓⊔

For later application in Proposition 2.13 we provide the following useful formula:

Proposition 1.31 (Lie-Trotter product formula). For each pair of matrices A,B ∈ M(n×n,C)
the exponential map satisfies

exp(A+B) = lim
ν→∞

(
exp

A
ν
· exp

B
ν

)ν

.

In the proof we will use the standard notation: A function f belongs to the class

O(1/ν
k)

iff there exists a positive constant C such that | f | remains bounded by
C
νk

for limν→∞. Note
f ∈ O(1/ν

2) =⇒ ν · f ∈ O(1/ν),

in particular
lim

ν→∞
ν · f = 0

Proof. We conside the Taylor series

exp
A
ν
= 1+

A
ν
+O(1/ν

2)

exp
B
ν
= 1+

B
ν
+O(1/ν

2)

and

exp
A
ν
· exp

B
ν
= 1+

A
ν
+

B
ν
+O(1/ν

2).

For large ν ∈ N we have∥∥∥∥∥
(

exp
A
ν

)
·

(
exp

B
ν

)
−1

∥∥∥∥∥< log 2.

Therefore the logarithm is well-defined:

log

(
exp

A
ν
· exp

B
ν

)
= log

(
1+

A
ν
+

B
ν
+o(1/ν

2)

)
=

A
ν
+

B
ν
+O(1/ν

2).

• Then on one hand, applying exp to the last equality
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(exp◦ log)

(
exp

A
ν
· exp

B
ν

)
= exp

(
A
ν
+

B
ν
+O(1/ν

2)

)
.

• While on the other hand, Proposition 1.27 implies

(exp◦ log)

(
exp

A
ν
· exp

B
ν

)
= exp

A
ν
· exp

B
ν
.

We get

exp
A
ν
· exp

B
ν
= exp

(
A
ν
+

B
ν
+O(1/ν

2)

)
and(

exp
A
ν
· exp

B
ν

)ν

=

(
exp

(
A
ν
+

B
ν
+o(1/ν

2)

))ν

= exp(A+B+O(1/ν)).

Here the last equality follows by expanding the exponential on both sides up to
linear terms, and expanding on the left-hand side the ν-th power. Now for lim

ν→∞
the

continuity of the exponential proves the claim

lim
ν→∞

(
exp

A
ν
· exp

B
ν

)ν

= exp(A+B)

⊓⊔

How does the functional equation of the exponential map from the commutative
case of Theorem 1.23 generalize to the non-commutative case?

Example 1.32 (Counter example against the expected functional equation). We con-
sider two strictly upper triangular matrices of the form

P =

0 p 0
0 0 0
0 0 0

 , Q =

0 0 0
0 0 q
0 0 0

 ∈ n(3,K), p,q ̸= 0.

Note that

[P,Q] =

0 0 pq
0 0 0
0 0 0

 ̸= 0

We compute

exp(P) :=
∞

∑
ν=0

1
ν!

·Pν = 1+P =

1 p 0
0 1 0
0 0 1


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exp(Q) :=
∞

∑
ν=0

1
ν!

·Qν = 1+Q =

1 0 0
0 1 q
0 0 1

 .

Note: For all ν ≥ 2
Pν = Qν = 0

Hence we do not need to care about questions of convergence.

i) Failure of the expected functional equation: To test the functional equation we
compute on one hand

exp(P) · exp(Q) =

1 p 0
0 1 0
0 0 1

 ·

1 0 0
0 1 q
0 0 1

=

1 p pq
0 1 q
0 0 1

= 1+P+Q+PQ.

On the other hand we compute

exp(P+Q).

For the computation of matrix products it is often helpful to introduce the
basis (Ei j)1≤i, j≤n of the K-vector space M(n×n,K) with the matrices

Ei j ∈ M(n×n,K)

having value = 1 at the position with index i j and value = 0 at all other positions.
Then

Ei j ·Ekm = δ jk ·Eim

We have
P = p ·E12 and Q = q ·E23

Then
(P+Q)2 = (pE12 +qE23) · (pE12 +qE23) = pqE13 = PQ

and
(P+Q)ν = 0, ν ≥ 3,

which implies

exp(P+Q) = 1+P+Q+(1/2) · (P+Q)2 = 1+P+Q+(1/2) ·PQ.

As a consequence
exp(P+Q) ̸= exp(P) · exp(Q)

and the expected functional equation is not satisfied.

ii) Correction term: Fortunately, the defect can be fixed by introducing a correcting
term C. Because the expected functional equation holds for arbitrary commuting
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matrices according to Theorem 1.23, the most simple ansatz for the correction term
is

C := α · [P,Q] with suitable α ∈K

and the commutator
[P,Q] := PQ−QP ∈ n(3,K).

With
PQ = pq ·E13 and QP = q ·E23 ·E13 = 0

we obtain

PQ = [P,Q] =
1
α
·C, [P,Q] = pq ·E13, and C = α · pq ·E13 = α · [P,Q]

(P+Q+C)2 =(pE12+qE23+(α · pq)·E13)·(pE12+qE23+(α · pq)·E13)= pq ·E13

and
(P+Q+C)ν = 0, ν ≥ 3.

Hence
exp(P+Q+C) = exp(P) · exp(Q)

⇐⇒

1+(P+Q+C)+(1/2)(P+Q+C)2 = 1+P+Q+C · (1+
1

2α
) = 1+P+Q+

C
α

⇐⇒

α = 1/2.

The correction term is

C =
1
2
· [P,Q],

proportional to the commutator:

exp

(
P+Q+

1
2
· [P,Q]

)
= exp(P) · exp(Q)

iii) Generalization: More general one can show: The exponential

exp : n(3,K)→ GL(3,K).

satisfies the functional equation in the generalized form: For A, B ∈ n(3×3,K)

exp(A) · exp(B) = exp

(
A+B+

1
2
· [A,B]

)

The exponential map of matrices
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exp : M(n×n,K)−→ GL(n,K)

is a well-defined map according to Corollary 1.24. But the map is not a group
morphism

exp : (M(n×n,K),+)−→ (GL(n,K), ·)

as the counter example from Example 1.32, part i) shows. Instead, the functional
equation of the exponential map depends in a certain way on the commutator of the
matrices in question. The correct statement of the functional equation in the case of
two arbitrary matrices is the special case of a deep theorem from general Lie group
theory, see also [47]:

Remark 1.33 (Baker-Campbell-Hausdorff formula for matrices). There exists a
sequence of polynomials in two matrix-valued indeterminates X and Y

Hν(X ,Y )ν∈N∗

with values in M(n×n,K) and homogeneous with respect to commutators of
degree ν , and an open zero-neighbourhood

U ⊂ M(n×n,K),

which together satisfy the following properties:

• The Hausdorff polynomials of low order are

H1(X ,Y ) = X +Y

H2(X ,Y ) = (1/2)[X ,Y ]

H3(X ,Y ) = (1/12)[[X ,Y ],Y ]− [[X ,Y ],X ])

H4(X ,Y ) =−(1/24)[Y, [X , [X ,Y ]]]

• The Baker-Campbell-Hausdorff series

H(X ,Y ) :=
∞

∑
ν=1

Hν(X ,Y )

is absolute and compact convergent in U ×U . It satisfies for all X ,Y ∈U the
functional equation

exp X · exp Y = exp(H(X ,Y ))





Chapter 2
Fundamentals of Lie algebra theory

In this chapter the base field is either K= R or K= C.

2.1 Definitions and first examples

In general, in the associative algebra M(n×n,K) the product of two matrices is not
commutative:

AB ̸= BA, A,B ∈ M(n×n,K).

The commutator
[A,B] := AB−BA ∈ M(n×n,K)

measures the degree of non-commutativity. The commutator depends K-bilinearly
on the matrices A and B. In addition, it satisfies the following rules:

1. Permutation of two matrices: [A,B]+ [B,A] = 0.

2. Cyclic permutation of three matrices: [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0.

These properties make

gl(n,K) := (M(n×n,K), [−,−])

the prototype of a Lie algebra.

Definition 2.1 (Lie algebra).

1. A K-Lie algebra is a K-vector space L together with a K-bilinear map

[−,−] : L×L → L (Lie bracket)

such that

• [x,x] = 0 for all x ∈ L and

49
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• [x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 for all x,y,z ∈ L (Jacobi identity).

2. A morphism of K-Lie algebras is a K-linear map f : L1 → L2 between two K-Lie
algebras satisfying

f ([x1,x2]) = [( f (x1), f (x2))], x1,x2 ∈ L1.

Note that the Lie bracket satisfies

[x,y]+ [y,x] = 0 f or all x,y ∈ L.

For the proof one computes [x+ y,x+ y] ∈ L.

As a consequence
[x,y] =−[y,x].

We have just seen that the Lie algebra gl(n,K) derives from the associative al-
gebra M(n× n,K). Actually, any finite dimensional K-Lie algebra derives from a
matrix algebra. But the theory becomes more transparent when considering Lie al-
gebras and their morphisms as abstract mathematical objects.

A Lie algebra is a vector space with the Lie bracket as additional operator. This
additional algebraic structure resembles the multiplication within a group or a ring.
The Lie algebra concept of the commutator is taken from group theory while the
concept of an ideal comes from ring theory.

Definition 2.2 (Basic algebraic concepts). Consider a K-Lie algebra L. One de-
fines:

• A vector subspace M ⊂ L is a Lie subalgebra of L iff

[M,M]⊂ M,

i.e. iff M is closed with respect to the Lie bracket of L.

• A vector subspace I ⊂ L is an ideal of L iff

[L, I]⊂ I,

i.e. if I is L-invariant.

• The normalizer of a subalgebra M ⊂ L is the subalgebra

NL(M) := {x ∈ L : [x,M]⊂ M} ⊂ L,

i.e. the largest subalgebra of L which includes M as an ideal.
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• The center of L is the ideal

Z(L) := {x ∈ L : [x,L] = 0}.

The center of L collects those elements from L which commute with all elements
from L.

• The centralizer CL(Y ) of a subset Y ⊂ L is the largest subalgebra of L which
commutes with all elements from Y

CL(Y ) := {x ∈ L : [x,Y ] = 0}

• The derived algebra or commutator algebra DL of L is the subalgebra generated
by all commutators

DL := [L,L] := spanK{[x,y] : x,y ∈ L}.

Iff [L,L] = 0 then L is named Abelian because the condition is equivalent to

[x,y] = [y,x] for all x,y ∈ L.

For a morphism
f : L1 → L2

between to K-Lie algebras the kernel

ker( f ) ∈ L1

is an ideal. Apparently, for each Lie algebra L the derived algebra [L,L]⊂ L is an
ideal.

If one compares these basic concepts from Lie algebra theory with concepts from
group theory then subalgebras correspond to subgroups, while ideals are an ana-
logue to normal subgroups.

Definition 2.3 (Specific matrix Lie algebras).

1. For a finite dimensional K-vector space V we define the K-Lie algebra

gl(V ) := (End(V ), [−,−])

with
[ f ,g] := f ◦g−g◦ f .

In particular
gl(n,K) := gl(Kn).
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Lie subalgebras of the Lie algebra gl(n,K) are named matrix Lie algebras or
embedded Lie algebras.

2. The subalgebra of gl(n,K) of strictly upper triangular matrices is

n(n,K) := {A = (ai j) ∈ gl(n,K) : ai j = 0 if i ≥ j}.

Each strictly upper triangular matrix has the form0 ∗
. . .

0 0


3. The subalgebra of gl(n,K) of upper triangular matrices is

t(n,K) := {A = (ai j) ∈ gl(n,K) : ai j = 0 if i > j}.

Each upper triangular matrix has the form∗ ∗
. . .

0 ∗


4. The subalgebra of gl(n,K) of diagonal matrices is

d(n,K) := {A = (ai j) ∈ gl(n,K) : ai j = 0 if i ̸= j}.

Each diagonal matrix has the form∗ 0
. . .

0 ∗



Moreover for n ≥ 2

n(n,K)⊊ t(n,K)⊊ gl(n,K)

and
d(n,K)⊊ t(n,K).

We will see in Chapter 3.1 and Chapter 3.2 that n(n,K) and t(n,K) are the prototype
of the important classes of respectively nilpotent and solvable Lie algebras.

The fundamental tool for studying Lie algebras are their representations. To rep-
resent an abstract Lie algebra L means to define a map from L to a matrix Lie al-
gebra. The concept of a representation has also many applications in physics. Some
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examples we will see in later chapters. The scope of the concept of a representation
is not restricted to Lie algebra theory.

Definition 2.4 (Representation of a Lie algebra). Consider a K-Lie algebra L.

1. A representation of L on a finite dimensional K-vector space V is a morphism of
Lie algebras

ρ : L → gl(V ).

In particular,

ρ([x,y]) = [ρ(x),ρ(y)] = ρ(x)◦ρ(y)−ρ(y)◦ρ(x).

The vector space V is named an L-module with respect to the multiplication

L×V →V,(x,v) 7→ x.v := ρ(x)(v).

It satisfies

[x,y].v = ρ([x,y])(v) = [ρ(x),ρ(y)](v) = ρ(x)(ρ(y)(v))−ρ(y)(ρ(x)(v)) =

x.(y.v)− y.(x.v).

The representation ρ is faithful iff ρ is injective, i.e. ρ embeds L into a Lie algebra
of matrices.

2. A linear map
f : V −→W

between two L-modules is a morphism of L-modules if for all x ∈ L, v ∈V :

f (x.v) = x. f (v).

3. The adjoint representation of L is the map

ad : L → gl(L), x 7→ ad x,

defined as
ad x : L → L, y 7→ (ad x)(y) := [x,y].

Note. One often speaks about an L-module V by surpressing the name of the
defining map of the representation

ρ : L → gl(V ).
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Lemma 2.5 (Adjoint representation of a Lie algebra). The adjoint representation
is a representation, i.e. a morphism of Lie algebras.

Proof. For a Lie algebra L we have to show for all x,y ∈ L

ad [x,y] = [ad x,ad y] : L → L.

Consider z ∈ L. On one hand,

ad[x,y](z) = [[x,y],z] =−[[y,z],x]− [[z,x],y] (Jacobi identity)

On the other hand

[ad x,ad y](z) := (ad x ◦ad y−ad y ◦ad x)(z) = [x, [y,z]]− [y, [x,z]].

Both results are equal because the Lie bracket is antisymmetric. ⊓⊔

The adjoint representation maps any abstract Lie algebra to a matrix algebra.
But in general the adjoint representation is not injective. The kernel of the adjoint
representation of a Lie algebra L is the center Z(L). While the adjoint representation
is not always faithful, it is theorem of Ado, [4, Chap. I, §7.3, Theor. 3], that each
Lie algebra has a faithful representation, i.e. each Lie algebra is a matrix algebra.

The characteristic feature of a Lie algebra L is the Lie bracket. It refines the
underlying vector space of L. In order to investigate the Lie bracket of L one studies
how each given element x ∈ L acts on L as the endomorphism ad x.

This procedure is similar to the study of number fields Q ⊂ K ⊂ C. The multi-
plication on K refines the underlying Q-vector space structure. And one studies the
multiplication by considering the Q-endomorphisms which result from the multipli-
cation by all elements x ∈ K. Norm and trace of these endomorphisms are important
concepts in algebraic number theory.

For all x ∈ L the element ad x is not only an endomorphism of L but also a
derivation of L: With respect to the Lie bracket it satisfies a rule similar to the
Leibniz rule for the derivation of the product of two functions.

Definition 2.6 (Derivation of a Lie algebra). Let L be a Lie algebra. A derivation
of L is an endomorphism

D : L → L

which satisfies the product rule

D([y,z]) = [D(y),z]+ [y,D(z)].
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Lemma 2.7 (Adjoint representation and derivation). Consider a Lie algebra L.
For every x ∈ L the endomorphism

ad x : L → L

is a derivation of L.

Proof. Set D := ad x ∈ End(L). The Jacobi identity implies

D([y,z]) := (ad x)([y,z]) = [x, [y,z]] =−[y, [z,x]]− [z, [x,y]] = [y, [x,z]]+ [[x,y],z] =

= [y,(ad x)(z)]+ [(ad x)(y),z] = [y,D(z)]+ [D(y),z].

⊓⊔

Derivations arising from the adjoint representation are named inner derivations,
all other derivations are outer derivations.

Lemma 2.8 (Algebra of derivations). Let L be a Lie algebra. The set of all deriva-
tions of L

Der(L) := {D ∈ End(L) : D derivation}

is a subalgebra Der(L)⊂ gl(L).

Proof. Apparently Der(L)⊂ End(L) is a subspace. In order to show that Der(L) is
even a subalgebra, we have to prove: If D1,D2 ∈ Der(L) then [D1,D2] ∈ Der(L).

[D1,D2]([x,y]) = (D1 ◦D2)([x,y])− (D2 ◦D1)([x,y]) =

= D1([D2(x),y]+ [x,D2(y)])−D2([D1(x),y]+ [x,D1(y)]) =

= [D1(D2(x)),y]+ [D2(x),D1(y)]+ [D1(x),D2(y)]+ [x,D1(D2(y)]

−[D2(D1(x)),y]− [D1(x),D2(y)]− [D2(x),D1(y)]− [x,D2(D1(y)] =

= [[D1,D2](x),y]+ [x, [D1,D2](y)].

Hence the commutator of two derivations satisfies the product rule, i.e. is again a
derivation. ⊓⊔

2.2 Lie algebras of the classical groups

An important class of Lie algebras are the Lie algebras attached to the classical
groups. The classical groups are groups of matrices, and the corresponding Lie al-
gebras are the Lie algebras of the infinitesimal generators of their 1-parameter sub-
groups.
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Definition 2.9 (1-parameter subgroup and infinitesimal generator). For a given
matrix X ∈ M(n×n,K) the differentiable group morphism

fX : (R,+)→ (GL(n,K), ·), t 7→ exp(t ·X),

with derivation (
d
dt

exp(t ·X)

)
(0) = X

according to Proposition 1.22 is named the 1-parameter subgroup of GL(n,K) with
infinitesimal generator X .

Definition 2.10 (Matrix group and 1-parameter subgroups).

1. A matrix group G is a closed subgroup

G ⊂ GL(n,K).

Here GL(n,K)⊂K(n2) is equipped with the subspace topology of the Euclidean
space.

2. Consider a matrix group G. For a matrix X ∈ M(n×n,K) the group morphism

fX : R→ GL(n,K), t 7→ exp(t ·X),

is a 1-parameter subgroup of G iff for all t ∈ R

fX (t) ∈ G.

Note that the definition of 1-parameter subgroups refers to real parameters t.
A 1-parameter subgroup of G with infinitesimal generator X is a differentiable
curve in G which passes through the unit element e ∈ G with tangent vector X .

Remark 2.11 (Matrix group and 1-parameter subgroups).

1. The term closed subgroup of G ⊂ GL(n,K) in Definition 2.10 refers to the
topology of G which is induced as a subset of GL(n,K). A subgroup

G ⊂ GL(n,K)

is closed iff for any sequence (Aν)ν∈N of matrices Aν ∈ G,ν ∈ N, which con-
verges in GL(n,K), also the limit belongs to G, i.e.

A = lim
ν→∞

Aν ∈ GL(n,K) =⇒ A ∈ G.
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2. For a real Lie group G each closed subgroup H ⊂ G has a unique real Lie
group structure such that the injection H ↪−→ G becomes an embedding of real
Lie groups. Therefore matrix groups according to Definition 2.10 are Lie groups.

Note that closed subgroups of a complex Lie group are not necessarily complex
Lie groups; a simple counter-example are the real Lie groups

SU(n)⊂ GL(n,C).

3. The general definition of a 1-parameter subgroup of an arbitrary Lie group G
requires only a continuous group morphism

f : R→ G.

But one can show: All continuous 1-parameter subgroups of a Lie group G have
the form

f (t) = exp(t ·X)

with an element X ∈ Lie G, the Lie algebra of G, and with respect to the expo-
nential map

exp : Lie G −→ G.

In particular, every continuous 1-parameter subgroup depends on the parameter t
in a differentiable - even analytic - manner.

Notation 2.12 (Restricting scalars from C to R).

For a complex vector space V there is a method of restricting scalars: The real
vector space VR has the same elements as V , but the elements are multiplied only
by scalars from R.

An analogous notation applies to a complex Lie algebra L. By restricting scalars
from C to R the elements of L form a real Lie algebra which is denoted LR. The Lie
algebra LR has the same elements as L, but they are multiplied only by scalars
from R.

Be aware that the notation is not standard in the literature.

The infinitesimal generators of all 1-parameter subgroups of a matrix group form
a real Lie algebra. Recall Notation 2.12.
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Proposition 2.13 (Infinitesimal generators of a matrix group). For a matrix
group

G ⊂ GL(n,C)

the set of infinitesimal generators of all 1-parameter subgroups of G

L := {X ∈ M(n×n,C) : fX (t) ∈ G for all t ∈ R}

with the functions fX from Definition 2.10, is a real Lie-subalgebra of gl(n,C)R.

Proof. i) Scalar multiplication: For X ∈ L and s ∈ R also

s ·X ∈ L

because for all t ∈ R

exp(t · (sX)) = exp((t · s)X) ∈ G.

ii) Additivity: If X , Y ∈ L then Proposition 1.31 implies for all t ∈ R

exp(t(X +Y )) = lim
ν→∞

(
exp

tX
ν
· exp

tY
ν

)ν

.

The closedness of G ⊂ GL(n,C) implies

exp(t(X +Y )) ∈ G.

iii) Lie bracket: First, for all X ∈ L and all A ∈ G also the conjugate

AXA−1 ∈ L :

Proposition 1.6 implies for all t ∈ R

exp(t(AXA−1)) = exp(A(tX)A−1) = A · exp(tX) ·A−1 ∈ G.

Secondly, consider for arbitrary fixed X , Y ∈ L the differentiable map

f : R−→ M(n×n,C), f (t) := exp(tX) ·Y · exp(−tX).

Due to the first step
f (t) ∈ L for all t ∈ R.

The chain rule and the product rule from Proposition 1.8 imply:

d
dt

f (t) =
d
dt
(exp(tX) ·Y · exp(−tX)) =

= X · exp(tX) ·Y · exp(−tX)− exp(tX) ·Y ·X · exp(−tX)

Hence
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d f
dt
(0) = XY −Y X = [X ,Y ].

On the other hand
d f
dt
(0) = lim

t→0

f (t)− f (0)
t

Because each fraction belongs to L, which is a subspace of the finite dimensional
vector space M(n×n,C) due to part i) and ii), and is therefore closed. In the limit
we get

[X ,Y ] =
d f
dt
(0) ∈ L.

⊓⊔

According to Proposition 2.13 the infinitesimal generators of all 1-parameter sub-
groups of a matrix group form a Lie algebra.

Definition 2.14 (Lie algebra of a matrix group). Consider a matrix group G.
The Lie algebra of all infinitesimal generators of 1-parameter subgroups of G is
named Lie G, the Lie algebra of G.

If for each X ∈ Lie G also i ·X ∈ Lie G then G is named a complex matrix group.

Not each matrix group G ⊂ GL(n,C) which contains non-real, complex matrices is
a complex matrix group. Counter examples are the unitary groups U(m). Whether
a matrix group is a complex matrix group depends on the possibility to multiply the
elements of its Lie algebra by the imaginary unit i ∈ C. It does not depend on the
question whether the entries of the matrices are complex numbers.

Proposition 2.15 (The Lie algebras of the classical groups). Consider a parame-
ter r ∈ N and a number m = m(r) ∈ N. We use the shorthand

G := (GL(m,K), ·)

for the matrix group and
L := (gl(m,K), [−,−])

for the Lie algebra Lie G. Then the classical groups and their Lie algebras are:

i) Series Ar, r ≥ 1, m := r+1: The special linear group

SL(m,K) := {g ∈ G : det g = 1} ⊂ G

has the K-Lie algebra

sl(m,K) := {X ∈ L : tr X = 0}
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of traceless matrices .

ii) Series Br, r ≥ 2, m := 2r+1: The special orthogonal group

SO(m,K) := {g ∈ G : g ·g⊤ = 1, det g = 1}

has the K-Lie algebra

so(m,K) := {X ∈ L : X +X⊤ = 0}

of skew-symmetric matrices .

iii) Series Cr, r ≥ 3, m = 2r: The symplectic group

Sp(m,K) := {g ∈ G : g⊤ ·σ ·g = σ}

with

σ :=
(

0 1

−1 0

)
, σ

−1 =

(
0 −1
1 0

)
=−σ , 1 ∈ GL(r,K) unit matrix,

has the K-Lie algebra

sp(m,K) := {X ∈ L : X⊤ ·σ +σ ·X = 0},

named the symplectic algebra.

Note that any g ∈ Sp(m,K) has det g = 1, see [38]. Moreover, each X ∈ sp(m,K)
has tr X = 0, see [24, Chap. 1.2].

iv) Series Dr, r ≥ 4, m = 2r: The special orthogonal group

SO(m,K) := {g ∈ G : g ·g⊤ = 1,det g = 1}

has the K-Lie algebra

so(m,K) := {X ∈ L : X +X⊤ = 0}

of skew-symmetric matrices .

v) Special unitary group: For each m ∈ N the special unitary group

SU(m) := {g ∈ GL(m,C) : g ·g∗ = 1, det g = 1}, g∗ := g⊤ Hermitian con jugate,

has the real Lie algebra

su(m) := {X ∈ L : X +X∗ = 0, tr X = 0}

of traceless skew-Hermitian matrices .
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Proof (of Proposition 2.15).

Proposition 2.13 ensures that the infinitesimal generators of all these matrix groups
form a Lie algebra. Hence we have to show

• Each infinitesimal generator of a 1-parameter subgroup of the matrix group in
question belongs to the defined “small-letter”-set.

• Each element of the defined “small-letter” set generates a 1-parameter subgroup
of the matrix group in question.

i) Consider an infinitesimal generator X ∈ gl(m,K) of a 1-parameter subgroup

of SL(m,K). Taking the derivative
d
dt

at t = 0 on both sides of the equation

1 = det(exp(t ·X)) = exp(tr (t ·X))

gives
0 = (tr X) · exp(tr (t ·X)).

Hence tr X = 0 because the exponential function has no zeros.

In the opposite direction: If tr X = 0 then

det etX = etr (tX) = et·(tr X) = e0 = 1.

ii) and iv) Taking the derivative of

1= exp(t ·X) · exp(t ·X)⊤

and using the product rule gives

0 = X · exp(t ·X) · exp(t ·X⊤)+ exp(t ·X) ·X⊤ · exp(t ·X⊤).

Hence for t = 0:
X +X⊤ = 0.

In the opposite direction:
X +X⊤ = 0

implies
exp(tX) · exp(tX⊤) = exp(t(X +X⊤)) = e0 = 1

because
[X ,X⊤] = 0 due to X⊤ =−X .

And tr X = 0 implies
det(exp(tX)) = etr X = 1.

iii) Taking the derivative of



62 2 Fundamentals of Lie algebra theory

σ = exp(t ·X)⊤ ·σ · exp(t ·X)

gives

0 = X⊤ · exp(t ·X⊤) ·σ · exp(t ·X)+ exp(t ·X⊤) ·σ ·X · exp(t ·X).

Hence for t = 0:
0 = X⊤ ·σ +σ ·X .

In the opposite direction:
0 = X⊤+σ ·X ·σ−1

implies
(exp(tX))⊤ ·σ · exp(tX) ·σ−1 = 1

because
[X⊤,σ ·X ·σ−1] = [X⊤,−X⊤] = 0

v) Taking the derivative of

1= exp(t ·X) · exp(t ·X)∗

and using the product rule gives

0 = X · exp(t ·X) · exp(t ·X∗)+ exp(t ·X) ·X∗ · exp(t ·X∗).

Hence for t = 0
X +X∗ = 0.

For all t ∈ R
1 = det exp(tX) = et·tr X = 0

implies
t · tr X ∈ Z2πi.

Therefore
tr X = 0.

In the opposite direction:
X +X∗ = 0

implies
[X ,X∗] =−[X ,X ] = 0

and

exp(tX) · (exp(tX))∗ = exp(tX) · exp(tX∗) = exp(t(X +X∗)) = 1.

And
tr X = 0 =⇒ det(exp X) = etr X = 1.

⊓⊔
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Note that su(m) is not a complex Lie algebra:

X ∈ su(2) ⇐⇒ X =

(
ia b
−b −ia

)
, a ∈ R, b ∈ C.

If X ∈ su(2) and X ̸= 0 then iX /∈ su(2). Therefore SU(2) and more general the
groups SU(n) are examples of real matrix groups which are not complex matrix
groups.

• Elements of the complex matrix groups of the series Br, Dr preserve the K-bilinear
form on Km

(z,w) =
m

∑
j=1

z j ·w j.

• Elements of the complex matrix groups of the series Cr preserve the K-bilinear
form on Km

(x,y) =
r

∑
i=1

xi · yr+i − xr+i · yi.

• Elements of the special unitary group SU(m) preserve the sesquilinear (Hermi-
tian) form on Cm

(z,w) =
m

∑
j=1

z j ·w j.

The sesquilinear form (z,w) is C-linear with respect to the first component
and C-antilinear with respect to the second component.

Remark 2.16 (Classical Lie groups of low dimension).

The reason for introducing the different series in Proposition 2.15 and for
distinguishing the two series Br and Dr of special orthogonal groups will become
clear later in Chapter 6.

The lower bound for the parameter r ∈ N has been choosen to avoid duplicates or
product decompositions. Otherwise we would have for the base field K= C and
the corresponding Lie algebras, see [40, Chap. II,7]:

A1 = B1 =C1, B2 =C2, D1 not simple, D2 = A1 ×A1, D3 = A3

When the term classical Lie group is taken in a narrow sense, then it applies only
to the complex matrix groups of the A−D-series.
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Proposition 2.17 (Exponential map of SU(n)). For each n ∈ N the exponential
map

su(n)−→ SU(n)

is surjective.

For the proof cf. [12, Kor. 6.4.9].

Proof. i) Assume A ∈U(n): Each unitary matrix is diagonalizable. Hence there
exists an invertible matrix S ∈U(n) with

S ·A ·S∗ = diag(λ1, ...,λn)

and for j = 1, ...,n
|λ j|= 1,

hence
λ j = eiθ j with θ ∈ [0,2π[

Set
B := S∗ ·diag(iθ1, ..., iθn) ·S ∈ u(n)

Then
exp(B) = S∗ ·diag(eiθ1 , ...,eiθn) ·S = A

ii) Assume A ∈ SU(n): The eigenvalues

λ j = eiθ j , j = 1, ...,n

satisfy
n

∑
j=1

iθ j = k ·2πi, k ∈ Z.

Replace θn by

θ
′
n :=−

n−1

∑
j=1

θ j

Then
θ
′
n −θn =−k ·2π

which implies
eiθ ′

n = eiθ

Set
B′ := S∗ ·diag(iθ1, ..., iθn−1, iθ ′

n) ·S ∈ su(n)

Then
exp B′ = exp B = A

⊓⊔
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2.3 Topology of the classical groups

The present sections investigates topological properties of some classical matrix
groups. The study of matrix groups often reduces to the study of simply connected
matrix groups and covering maps. The simply connected matrix groups can be stud-
ied by their Lie algebras. The study of covering projections is often the starting point
for a course on algebraic topology. The following proofs about the matrix groups

SU(2), SO(3,R), SL(2,C), O(3,1),

the group O(3,1) beeing the Lorentz group, are special cases from general Lie group
theory.

Proposition 2.18 (Topology of SO(3,R), SU(2), SL(2,C)).

1. The matrix group SO(3,R) is connected, the matrix group O(3,R) has two con-
nected components.

2. The matrix group SU(2) - as a differentiable manifold - is diffeomorphic to
the 3-sphere:

SU(2)≃ S3 := {x ∈ R4 : ∥x∥= 1}.

In particular, SU(2) is simply connected.

3. The matrix group SL(2,C) - as a differentiable manifold - is diffeomorphic to the
product

(C2 \{0})×C,

and the latter is homeomorphic to

S3 ×R3.

In particular, SL(2,C) is simply connected.

Proof. 1. Matrix group SO(3,R): We show that the matrix group SO(3,R) is path-
connected: For a given rotation matrix A we choose an orthonormal basis of R3

with the rotation axis of A as third basis element. Then we may assume

A =

 cos δ sin δ 0
−sin δ cos δ 0

0 0 1

 ∈ SO(3,R),δ ∈ [0,2π[.

The path

γ : [0,1]→ SO(3,R), t 7→

 cos (t ·δ ) sin (t ·δ ) 0
−sin (t ·δ ) cos (t ·δ ) 0

0 0 1

 ∈ SO(3,R)
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is a continuous map and connects within SO(3,R) the start γ(0) = 1 the unit
matrix with γ(1) = A.

Each matrix
A ∈ O(3,R) := {A ∈ GL(3,R) : A ·A⊤ = 1}

has
det A =±1.

Hence O(3,R) has two connected components: SO(3,R), the connected compo-
nent of the identity, and the residue class

SO(3,R) ·

1 0 0
0 1 0
0 0 −1


As a consequence, both Lie groups SO(3,R) and O(3,R) have the same Lie al-
gebra

so(3,R) = Lie SO(3,R) = Lie O(3,R).

2. Matrix group SU(2): Consider a matrix

A =

(
a z
c w

)
∈ SU(2).

Then

A−1 =

(
w −z
−c a

)
and A∗ =

(
a c
z w

)
.

Hence
A−1 = A∗

implies
SU(2) := {A ∈ GL(2,C) : A ·A∗ = 1, det A = 1}={(

w z
−z w

)
: z, w ∈ C, |z|2 + |w|2 = 1

}
≃

≃ S3 ⊂ C2 ≃ R4

is diffeomorphic to the 3-dimensional unit sphere. The unit sphere S3 is compact,
connected and simply connected.

Simply connected means the vanishing of the fundamental group

π1(S3,∗) = 0

or equivalently: Any closed path in S3 is contractible in S3 to one point. Intu-
itively, simple connectedness means that S3 has no “holes”.
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The result π1(S3,∗) = 0 is a particular case of the Seifert-van Kampen theorem,
see [19, Theor. 1.20], [44, Kap. 5.3]: One decomposes S3 as the union of its north-
ern and southern hemispheres, which are homeomorphic to the 3-dimensional
closed solid ball B3 and intersect each other in a space homeomorphic to S2.
Then π1(S3,∗) is the quotient of a free product:

π1(S3,∗) = π1(B3,∗) ·π1(S2,∗) π1(B3,∗) = 0

because π1(B3,∗) = 0.

3. Matrix group SL(2,C): Set B := C2 \{0}.

i) First, projecting a matrix A ∈ SL(2,C) onto its last column defines the differ-
entiable map

p : SL(2,C)→ B, A =

(
a z
c w

)
7→
(

z
w

)
.

ii) Secondly, one expands p to a map

f : SL(2,C)→ B×C

To define f one considers the open covering U = (U1,U2) of the base B with

U1 := {(z,w) ∈ B : z ̸= 0}, U2 := {(z,w) ∈ B : w ̸= 0}

Then one defines
f : SL(2,C)→ B×C

by distinction of cases

A =

(
a z
c w

)
7→

{
(p(A),(a−w · r−2) · z−1) if p(A) ∈U1

(p(A),(c+ z · r−2) ·w−1) if p(A) ∈U2

with
r2 := |z|2 + |w|2.

If p(A) ∈U1 ∩U2 then

(a−w · r−2) · z−1 = (c+ z · r−2) ·w−1,

after multiplying by z ·w and expanding both sides, employing the determinant
formula

aw− zc = 1

as well as the definition of r2. Hence the map f is well-defined.

iii) The map f is a differentiable isomorphism satisfying pr1 ◦ f = p: The inverse

g : B×C−→ SL(2,C)
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is obtained as

g|(U1 ×C) : U1 ×C−→ SL(2,C),
((

z
w

)
,s
)
7→
(

a z
c w

)
with

a := s · z+
w
r2 and c :=

aw−1
z

One checks

A :=
(

a z
c w

)
∈ SL(2,C).

A similar calculation determines the restriction

g|(U2 ×C)

There results a diffeomorphism

SL(2,C)≃ B×C

iv) Concerning the homeomorphy type of the base B one has

B = C2 \{0} ≃ S3 × ]0,∞[≃ S3 ×R.

Because S3 is simply connected according to part 1), also B and eventually

SL(2,C)≃ B×C

are simply connected. ⊓⊔

The groups from Proposition 2.18 serve as an example to demonstrate the method
of investigation. For a systematic study see [23, Chap. 17] and [21, Chap. 10, §2].
For the classical groups of arbitrary dimensions one has the following topological
results:

Remark 2.19 (More topological results about the classical groups).

1. General linear group, m ≥ 1:

The complex group GL(m,C) is connected due to Theorem 1.29 about the
surjecitivity of the exponential map. Moreover,

π1(GL(n,C),∗) = Z.

The real group GL(m,R) has two connected components. The component of the
identity is not simply connected for m ≥ 2.
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2. Series Ar,r ≥ 1,m = r+1:

For K ∈ {R,C} the group SL(m,K) is connected: For the proof one considers
the homeomorphism

GL(m,K)
≃−→ SL(m,K)×K∗, X 7→ (X ′, det X),

with X ′ obtained by diving the first column of X by det X . The projection onto
the first factor

pr1 : GL(m,K)−→ SL(m,K)

maps the connected GL(m,K) onto SL(m,K), which therefore is connected too.

The groups SL(m,C) are simply connected. One has

π1(SL(m,R),∗) =

{
Z m = 2
Z/2 m ≥ 3

3. Series Br,r ≥ 2,m = 2r, and series Dr,r ≥ 4,m = 2r+1:

For K ∈ {R,C} the group SO(m,K) is connected. The groups SO(m,R) are
compact. One has

π1(SO(m,R),∗) =

{
Z m = 2
Z/2 m ≥ 3

For m = 2 the universal covering projection is

R−→ SO(2,R), t 7→
(

cos t sin t
−sin t cos t

)
,

with
SO(2,R)≃ R/Z.

For m ≥ 3 the universal covering of SO(m,R) is Spin(m,R),
see [16, Chap. IV, Sect. V.4]. One has

Spin(3,R) = SU(2),

cf. Example 2.24. Moreover one has the isomorphy of groups

Spin(4,R)≃ SU(2)×SU(2).

4. Series Cr : r ≥ 3,m = 2r:
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For K ∈ {R,C} the symplectic groups Sp(m,K) are connected. The groups
Sp(m,C)) are simply connected, the real symplectic groups satisfy

π1(Sp(m,R),∗) = Z.

5. Special unitary group, m ≥ 1:

The group SU(m) is compact, connected and simply connected.

No complex group from this list is compact, because each complex, connected and
compact Lie group is Abelian, see [23, Prop. 15.3.7].

Several relations exists between the classical groups. These relations can be made
explicit by differentiable group morphisms. Hence it is advantageous not to study
each group in isolation. Instead, one should focus on the relations between different
classical groups and study those properties, which the groups have in common. For
two examples in low dimension see Example 2.24 and Proposition 2.27.

We now make some remarks about the relation between real and complex Lie
algebras. Recall Notation 2.12 for restricting scalars from C to R.
Complexification is a method of scalar extension.

Definition 2.20 (Complexification of a real Lie algebra, real form of a complex
Lie algebra).

1. Consider a real Lie algebra M. The complexification of M is the complex Lie
algebra

M⊗RC

with Lie bracket

[m1 ⊗ z1,m2 ⊗ z2] := [m1,m2]⊗ (z1 · z2), m1,m2 ∈ M, z1,z2 ∈ C.

2. A real form of a complex Lie algebra L is a real subalgebra M ⊂ LR such that the
complex linear map from the complexification

M⊗RC→ L, m⊗1 7→ m, m⊗ i 7→ i ·m,

is an isomorphism of complex Lie algebras.
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Note that for a complex vector space V restricting and extending scalars are not
inverse operations: The complex vector space

(VR)⊗RC

has complex dimension 2 ·dimC V .

Remark 2.21 (Non-isomorphic real forms).

1. The complex Lie algebra sl(2,C) has the non-isomorphic real forms

sl(2,R) and su(2).

The proof goes along the following steps:

i) Real forms: Apparently, sl(2,R) is a real form of sl(2,C).

Concerning su(2), the C-linear map

su(2)⊗RC−→ sl(2,C), A⊗1 7→ A, A⊗ i 7→ iA,

has the inverse

sl(2,C)−→ su(2)⊗RC, Z = X + iY 7→ (−iX)⊗ i+ iY ⊗1,

with the Hermitian matrices

X :=
Z +Z∗

2
(“real” part of Z) and Y :=

Z −Z∗

2i
(“imaginary” part of Z),

and therefore
(−iX), iY ∈ su(2)

Hence both real Lie algebras sl(2,R) and su(2) are real forms of the complex
Lie algebra sl(2,C).

ii) Existence of a 2-dimensional subalgebra of sl(2,R): The real Lie
algebra sl(2,R) contains the 2-dimensional subspace

spanR < A :=
(

1 0
0 −1

)
, B :=

(
0 1
0 0

)
>,

which is a Lie subalgebra because

[A,B] = 2B.
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iii) Isomorphy su(2)≃ so(3,R): Cf. [18, Example 3.27]. Using the traceless
Hermitian Pauli matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
we introduce the basis of the real Lie algebra su(2) of skew-Hermitian traceless
matrices (

E1 :=
i
2
·σ3, E2 :=

i
2
·σ1, E3 :=

− i
2

·σ2

)
The basis elements have the commutators

[E1,E2] = E3,

and all further non-zero commutators result from cyclic permutation, i.e. using
the Levi-Civita symbol ε jkl

[E j,Ek] = ε jkl ·El

To investigate the Lie algebra so(3,R) we consider the infinitesimal generators
of the standard 1-parameter subgroups of rotations around the coordinate axes
of R3 by

X :=

0 0 0
0 0 −1
0 1 0

 , Y :=

 0 0 1
0 0 0
−1 0 0

 , Z :=

0 −1 0
1 0 0
0 0 0

 ∈ so(3,R).

One checks
[X ,Y ] = Z

with the standard behaviour for cyclic permutation. Then the R-linear map

f : su(2)−→ so(3,R),

defined by
f (E1) := X , f (E2) := Y, f (E3) := Z,

is an isomorphism of real Lie algebras.

iv) No 2-dimensional subalgebra of so(3,R): The Lie algebra so(3,R) is
isomorphic to the Lie algebra vector product

Vect := (R3,×).

For any two linear independent vectors x1,x2 ∈ R3 the product

x1 × x2 ∈ R3
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is orthogonal to the plane generated by x1 and x2. Hence

x1 × x2 /∈ spanR < x1,x2 >,

which shows that
Vect ≃ so(3,R)≃ su(2)

does not contain a 2-dimensional Lie subalgebra.

As a consequence, the two real Lie algebras sl(2,R) and su(2) are not
isomorphic.

2. Compactness versus non-compactness: The real Lie algebra su(2) is the Lie al-
gebra of the compact matrix group SU(2). The real Lie algebra sl(2,R) is the Lie
algebra of the matrix group SL(2,R) which is not compact.

3. Arbitrary dimensions: Also for general n ∈ N the real matrix group su(n) is a
real form of the complex Lie algebra sl(n,C). And the matrix group SU(n) is
compact.

4. Complex representations of real forms: Consider a complex vector space V and
a real Lie algebra M. Each R-linear representation

ρ : M −→ gl(V )

induces by complexification the C-linear representation

ρ ⊗RC : M⊗RC−→ gl(V ), m⊗ z 7→ z ·ρ(m),

which renders commmutative the following diagram

M gl(V )

M⊗RC

ρ

ρ ⊗RC

with the canonical map

M −→ M⊗RC, m 7→ m⊗ z,

in the vertical direction. In particular, the representations of su(n) and sl(n,C)
as Lie algebras of complex-linear endomorphisms of a complex vector space V
correspond bijectively to each other.

Note: Using the notation 2.12 the map
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ρ : M −→ gl(V )

can be considered a morphism of real Lie algebras

M −→ gl(V )R

But do not mix up gl(V )R and gl(VR).

We saw in Remark 2.21 that the complex Lie algebra sl(2,C) has the real
form su(2), which is the Lie algebra of the compact real matrix group SU(2). A
similar result holds for all complex Lie algebras from the A-D series,
see [31, Chap. VI.10].

Proposition 2.22 (Compact real form). Each complex Lie algebra from Proposition 2.15
has a compact real form, i.e. a real form which is the Lie algebra of a compact real
matrix group:

1. Series Ar, m = r + 1: The real Lie algebra su(m) is a compact real form
of sl(m,C) because the matrix group SU(m) is compact.

2. Series Br, m = 2r + 1: The real Lie algebra so(m,R) is a compact real form
of so(m,C) because the matrix group SO(m,R) is compact.

3. Series Cr, m = r: The real Lie algebra

sp(m) := {X ∈ gl(m,H) : X∗+X = 0},

with H the real division algebra of quaternions, is a compact real form of sp(m,C)
because the matrix group of unitary quaternions

SP(m) := {X ∈ GL(m,H) : g ·g∗ = 1}

is compact.

4. Series Dr, m = 2r: The real Lie algebra so(m,R) is a compact real form
of so(m,C) because the matrix group SO(m,R) is compact.

According to Example 1.30 the exponential map

exp : Lie G → G

is not surjective in the general case. Compact real matrix groups G have the nice
property that their exponential map

exp : Lie G −→ G



2.3 Topology of the classical groups 75

is surjective, see [21, Chap. II, Prop. 6.10]. A typical example is the surjectivity of

exp : su(n)−→ SU(n)

for the special unitary group, see Proposition 2.17.

A further application of Lie algebra theory for the investigation of topological
properties of matrix groups is the polar decomposition. It can be used to restrict
the investigation of topological properties of certain matrix groups to the study of a
maximal compact subgroup.

Remark 2.23 (Polar decomposition and examples).

1. Polar decomposition: Consider a matrix group G ⊂ GL(n,C) which is the zero
set of polynomials in the 2 ·n2 real parts and imaginary parts of the entries of its
matrices (algebraic matrix group), and which is invariant with respect to Hermi-
tian conjugation. Then G has a polar decomposition: Define the subgroup

K := G∩U(n)

and the vector space

P := {X ∈ Lie G : X∗ = X} (Hermitian matrices).

The polar decomposition theorem states, see [31, Prop. 1.143], [23, Prop. 4.3.3, Prop. 16.1.9]:

The product map
K ×P −→ G, (k,X) 7→ k · exp X ,

is a homeomorphism, hence

G = K · exp(P)

Moreover, K ⊂ G is a maximal compact subgroup with Lie algebra

Lie K = {X ∈ Lie G : X +X∗ = 0} (Skew-Hermitian matrices),

see [32, Lect. 2, Theor. on p. 25].

Using for the vector spaces of Hermitian matrices the notation

Herm(n,C) := {X ∈M(n×n,C) : X =X∗}, Herm0(n,C) := {X ∈Herm(n,C) : tr X = 0}

and for the symmetric matrices the notation

Symm(n,R) := {X ∈M(n×n,R) : X =X⊤}, Symm0(n,R) := {X ∈Herm(n,R) : tr X = 0}

the prototype of polar decompositions are the polar representations
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GL(n,C) =U(n) · exp(Herm(n,C)), SL(n,C) = SU(n) · exp(Herm0(n,C))

and

GL(n,R)=O(n,R)·exp(Symm(n,R)), SL(n,R)= SO(n,R)·exp(Symm0(n,R)),

see [18, Theor. 2.17, Prop. 2.19].

The vector spaces of matrices in these product decomposition are connected and
simply connected. Therefore the connected components of G with polar decom-
position

G = K · exp(P)

correspond bijectively to the connected components of the compact group K, and
the fundamental groups are isomorphic

π1(G,∗)≃ π1(K,∗).

2. The groups O(p,q): The matrix group

O(3,1) := {g ∈ GL(4,R) : g⊤ · I3,1 ·g = I3,1}

with the block matrix of type (3,1)

I3,1 :=
(
1 0
0 −1

)
is an algebraic matrix group. It is isomorphic to the Lorentz group which will
be introduced in Definition 2.25 and further investigated in Remark 2.26 and
Proposition 2.27.

The group O(3,1) belongs to the class of real matrix groups

O(p,q)⊂ GL(p+q,R), 1 ≤ p,q.

They are the isometry groups of Rp+q provided with the bilinear form of signa-
ture (p,q), defined by the block matrix of type (p,q)

Ip,q :=
(
1 0
0 −1

)
∈ GL(p+q,R),

namely
O(p,q) := {g ∈ GL(p+q,R) : g⊤ · Ip,q ·g = Ip,q}

with Lie algebra

Lie O(p,q) = {X ∈ sl(p+q,R) : X⊤ · Ip,q + Ip,q ·X = 0}

A maximal compact subgroup of O(p,q) is
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KO(p,q) = O(p,q)∩O(p+q,R)≃ O(p,R)×O(q,R)

The group has 4 connected components. Moreover

PO(p,q) = {X ∈ Lie O(p,q) : X = X⊤}

The polar decomposition is the homeomorphic product map

KO(p,q)×PO(p,q)
≃−→ O(p,q), (k,X) 7→ k · exp X .

Accordingly O(p,q) has 4 connected components.

3. The groups SO(p,q): By definition

SO(p,q) := {g ∈ O(p,q) : det g = 1}

A maximal compact subgroup is

KSO(p,q) :=KO(p,q)∩SO(p,q)≃{(g1,g2)∈O(p,R)×O(q,R) : det g1 ·det g2 = 1}

The group has 2 connected components corresponding to

(det g1,det g2) = (1,1) and (det g1,det g2) = (−1,−1),

because each of the two groups O(p,R) and O(q,R) has two connected compo-
nents, similar to O(3,R) from Proposition 2.18.

The rest of the section presents two examples from covering theory. Each example
deals with a matrix group and the corresponding simply connected matrix group
which is the universal covering.

According to Remark 2.21 the two real Lie algebras

su(2)≃ so(3,R)

are isomorphic. We now show that the corresponding connected matrix groups

SU(2) and SO(3,R)

are not isomorphic: Example 2.24 constructs a 2-fold covering projection

Φ : SU(2)−→ SO(3,R).

Due to Proposition 2.18 the group SU(2) is simply connected. The existence of
the 2-fold covering projection Φ implies that SO(3,R) is not simply connected, but
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π1(SO(3,R,∗) = Z2.

In order to obtain the morphism Φ we have to find out first: How does a unitary
matrix U ∈ SU(2) act on the 3-dimensional real space R3?

Example 2.24 (SU(2) as two-fold covering of SO(3,R)).

1. Vector space of Hermitian matrices: Consider the real vector space of complex
Hermitian traceless two-by-two matrices

Herm0(2) := {X ∈ M(2×2,C) : X = X∗, tr X = 0}.

The family of Pauli matrices (σ j) j=1,2,3, see Remark 2.21, is a basis of Herm0(2).
We define the map

α :R3 →Herm0(2),x = (x1,x2,x3) 7→ X :=
3

∑
j=1

x j ·σ j =

(
x3 x1 − i · x2

x1 + i · x2 −x3

)
.

On R3 we consider the Euclidean quadratic form

qE : R3 → R,x = (x1,x2,x3) 7→
3

∑
j=1

x2
j .

Correspondingly, on the real vector space Herm0(2) we consider the quadratic
form

qH : Herm0(2)→ R,X 7→ −det X ,

i.e.

qH(X) = a2 + |b |2 f or X =

(
a b
b −a

)
,a ∈ R,b ∈ C.

Then the map
α : (R3,qE)

∼−→ H := (Herm0(2),qH)

is an isometric isomorphism of Euclidean spaces , i.e. α is an isomorphism of
real vector spaces satisfying

qH(α(x)) = qE(x), x ∈ R3.

By means of the isometric isomorphism α we identify O(3,R), the group of
isometries of (R3,qE), with the group of isometries of H

O(H) := {g ∈ GL(Herm0(2)) : qH(g(X)) = qH(X) f or all X ∈ Herm0(2)}.

Moreover, we identify the subgroup SO(3,R)⊂ O(3,R) with the subgroup

SO(H) := {g ∈ O(H) : det g = 1} ⊂ O(H),
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the connected component of the neutral element e ∈ O(H).

In the following we do no longer deal with SO(3,R) but with SO(H).

2. Definition of Φ : We define the group morphism

Φ : SU(2)→ SO(H),B 7→ ΦB,

as the conjugation by B, setting

ΦB : Herm0(2)→ Herm0(2), X 7→ B ·X ·B−1.

Note B ·X ·B−1 ∈ Herm0(2), because B−1 = B∗ and X∗ = X imply

(B ·X ·B−1)∗ = (B ·X ·B∗)∗ = B ·X ·B∗ = B ·X ·B−1.

We have ΦB ∈ O(H) because

−det(B ·X ·B−1) =−det X .

Because SU(2) is connected due to Proposition 2.18, we even have

ΦB ∈ SO(H).

Apparently Φ is a group morphism.

3. Tangent map of Φ : We use from the theory of Lie groups without proof the
following general results:

• Lie groups, in particular matrix groups, are differentiable manifolds. The un-
derlying vector space of the Lie algebra of a matrix group G is the tangent
space Lie G = TeG at the neutral element e ∈ G.

• For each differentiable homomorphism of matrix groups

Ψ : G1 → G2

the induced tangent map at the neutral element e ∈ G1 is a morphism

ψ := Lie Ψ = TeΨ : Lie G1 → Lie G2

of Lie algebras. It linearizes Ψ at the unit element e ∈ G1.

Therefore we now determine the linearization of

Φ : SU(2)→ SO(H), B 7→ ΦB,

at the neutral element e ∈ SU(2) as a Lie algebra morphism
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φ : su(2)−→ so(H), A 7→ φA.

Recall
so(H) := Lie SO(H)⊂ gl(Herm0(2)).

For
A ∈ su(2) and X ∈ Herm0(2)

set
B = exp A ∈ SU(2)

Then
ΦB(X) = Φexp A(X) = exp(A) ·X · exp(−A) =

= (1+A+O(A2)) ·X · (1−A+O(A2)) =

= X +A ·X −X ·A+O(A2) = X +[A,X ]+O(A2).

As linearization with respect to A ∈ su(2) we obtain

φA : H −→ H, X 7→ φA(X) = [A,X ],

i.e.
φA = ad A,

the linearisation φ of Φ at the neutral element e ∈ SU(2) is the adjoint
representation of

H ≃ so(3,R)≃ su(2).

Note: To compute the linearisation φ one can also fix A ∈ su(2) and
expand Φexp tA(X) with respect to powers of t ∈ R.

To determine the value of
φ : su(2)−→ so(H)

on the basis elements (i ·σ j) j=1,2,3 of su(2) we compute:

φiσ1 : H → H

φiσ1(σ1) = 0,ϕiσ1(σ2) = i · [σ1,σ2] =−2 ·σ3

φiσ1(σ3) = i · [σ1,σ3] =−i · [σ3,σ1] = 2 ·σ2

With respect to the basis (σ j) j=1,2,3 of H we obtain

φiσ1 = 2 ·

 0 0 0
0 0 1
0 −1 0

 ∈ so(H).

A similar evaluation of φ on the other two basis elements i ·σ2 and i ·σ3 gives
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φiσ2 = 2 ·

 0 0 −1
0 0 0
1 0 0

 ,φiσ3 = 2 ·

 0 1 0
−1 0 0
0 0 0

 ∈ so(H).

Hence the family (φi·σ j) j=1,2,3 is linearly independent in so(H). As a
consequence,

φ : su(2) ∼−→ so(H)

is an isomorphism because domain and range of φ are 3-dimensional Lie
algebras.

4. Surjectivity of Φ : The morphism

Φ : SU(2)→ SO(3,R)

is a local isomorphism at 1 ∈ SU(2) because its tangent map is bijective due to
part 3. In particular, Φ is an open map. The image

Φ(SU(2))⊂ SO(3,R)

is compact because SU(2) is compact due to Proposition 2.18. As a consequence,
the open and closed subset

Φ(SU(2))⊂ SO(3,R)

equals the connected set SO(3,R), i.e. the map Φ is surjective.

5. Discrete kernel: We are left with calculating the kernel of Φ . We claim:

ker Φ = {±1} ⊂ SU(2).

For the proof consider an arbitrary but fixed matrix

B =

(
z w

−w z

)
∈ SU(2)

with
ΦB = idHerm0(2),

i.e. for all X ∈ Herm0(2)
B ·X ·B−1 = X

We have

B−1 = B∗ =

(
z −w
w z

)
.

Choosing for X successively the basis elements σ1,σ2 ∈ Herm0(2) we obtain

B ·σ1 ·B−1 = σ1 and B ·σ2 ·B−1 = σ2.
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Equating for both equations respectively on both sides the components shows
after some calculation

z2 ±w2 = 1

Hence
w = 0 and z =±1

i.e
B =±1

6. Universal covering space: We use from Lie group theory without proof that a
surjective morphism between Lie groups with discrete kernel is a covering pro-
jection. The group SU(2) is simply connected according to Proposition 2.18.
Hence the map

Φ : SU(2)→ SO(3,R)

is the univeral covering projection of SO(3,R), and SU(2) is a double cover
of SO(3,R).

7. Fundamental group of SO(3,R): As a consequence of part 6 we have

π1(SO(3,R),∗) = Z2.

Nearly the same method as used in Example 2.24 allows to compute the universal
covering space of the connected component of the neutral element of the Lorentz
group. More specific, the covering projection Φ of SO(3,R) from Example 2.24
extends to a covering projection Ψ of the orthochronous Lorentz group, see Propo-
sition 2.27.

Figure 2.1 shows Minkowski space with the embedded light cone. Points of
Minkowski space are named events. Referring to the event e, the origin, the closure
of the interior of the light cone, the set with qM(x)≤ 0, splits into the disjoint union
of e as well as the future and the past cone of e. This splitting refers to the causal
structure of the world: Events from the past may have influenced e, while e may
influence events in its future. All other events, qM(x)> 0, have no causal relation
to e. They form the presence of the event e.
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Fig. 2.1 The world model of flat Minkowski space

Definition 2.25 (Minkowski space and Lorentz group).

1. Minkowski space or spacetime is the pair

M := (R4,qM)

with the quadratic form of signature (3,1)

qM : R4 → R,qM(x) :=−x0
2 + x1

2 + x2
2 + x3

2, x = (x0, ...,x3)
⊤.

We use the convention from Special Relativity concerning four-vectors x ∈ M
with coordinates x = (x0,x1,x2,x3). The coordinate x0 is interpreted as time,
while x1,x2,x3 are the usual space coordinates.
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The Minkowski metric has the signature (3,1) with three positive eigenvalues +1
referring to the space coordinates and one negative eigenvalue −1 referring
to the time coordinate. Using these conventions Euclidean space embeds into
Minkowski space in a natural way:

R3 ↪−→ M, (x1,x2,x3) 7→ (0,x1,x2,x3)

2. Lorentz group: The Lorentz group L is the real matrix group of isometries of
Minkowski space

L := { f ∈ GL(4,R) : qM( f (x)) = qM(x) f or all x ∈ R4}.

Elements from L leave invariant the metric defined by the symmetric bilinear
form

η :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The Lorentz group L is isomorphic to the group O(3,1) from Remark 2.23:
While L employs the bilinear form η , the group O(3,1) refers to the bilinear
form

I3,1 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


with the same signature (3,1).

Remark 2.26 (Lie algebra and orthochronous Lorentz group).

1. Lie algebra: The fact that all elements from the Lorentz group L have determinant ±1,
see Definition 2.25, implies for the Lie algebra of the Lorentz group

Lie L ≃ Lie O(3,1) = o(3,1) = so(3,1) = {X ∈ sl(4,R) : B⊤ ·η +η ·B = 0}=

=

{(
0 b

b⊤ D

)
: b⊤ ∈ R3, D ∈ o(3,R)

}
A block matrix of type (

0 0
0 D

)
∈ Lie L

is the infinitesimal generator of a 1-parameter group of rotations, while a block
matrix of type (

0 b
b⊤ 0

)
∈ Lie L
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is the infinitesimal generator of a 1-parameter group of Lorentz boosts. The di-
mension is

dimR (Lie L) = dimR o(3,1) = 3+dimR o(3,R) = 6.

2. The entry b00: By definition

B ∈ L ⇐⇒ η = B⊤ ·η ·B.

Hence for B ∈ L:

−1 = det η = det(B⊤ ·η ·B) = det B⊤ ·det η ·det B =−(det B)2

which implies
det B =±1.

Consider the timelike vector

e0 := (1,0,0,0)⊤

Because each matrix
B = (b jk)0≤ j,k≤3 ∈ L

acts as isometry on Minkowski space we obtain

−1 = qM(e0) = qM(B · e0) =−b2
00 +b2

10 +b2
20 +b2

30.

Hence
b2

00 = 1+b2
10 +b2

20 +b2
30 ≥ 1.

3. The orthochronous Lorentz group L↑
+:

• According to the calculation in Definition 2.25, part 3 the group SO(3,1) is
the disjoint union of the two subsets{
(b jk)0≤ j,k≤3 ∈ SO(3,1) : b00 ≥ 1

}
∪̇
{
(b jk)0≤ j,k≤3 ∈ SO(3,1) : b00 ≤−1

}
• and according to Remark 2.23, part 3 the group SO(3,1) has two connected

components.

Each of the two connected components is contained in only one of the two sub-
sets. Hence the two subsets are the two connected components of SO(3,1). As a
consequence, the orthochronous Lorentz group

L↑
+ := {B = (b jk)0≤ j,k≤3 ∈ L : det B = 1, b00 ≥ 1} ⊂ L

is the connected component of SO(3,1) which contains the unit element of SO(3,1).
In particular, L↑

+ is a subgroup of L. The elements from L↑
+ keep the orientation

of tetrads (German: 4-bein). They also keep the sign of the time component.
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4. The four connected components: Besides L↑
+ ⊂ L the other three connected com-

ponents of L are the neben-classes

L↑
− := {B = (b jk)0≤ j,k≤3 ∈ L : det B =−1, b00 ≥ 1}

L↓
+ := {B = (b jk)0≤ j,k≤3 ∈ L : det B = 1, b00 ≤−1}

L↓
− := {B = (b jk)0≤ j,k≤3 ∈ L : det B =−1, b00 ≤−1}

The two connected components of SO(3,1) correspond to the following two of
the four connected components of L

L↑
+ and L↓

+ (time reversal).

Proposition 2.27 (Universal covering projection of the Lorentz group). The
proper orthochronous Lorentz group has the universal covering projection

Ψ : SL(2,C)→ L↑
+

with the group homomorphism Ψ a two-fold covering projection. The following di-
agram commutes

SU(2) SO(3,R)

SL(2,C) L↑
+

Φ

Ψ

with the canonical inclusions in the vertical direction and the map Φ from Example 2.24.

Proof. See also [42, Anhang L.8].

1. Minkowski space as a vector space of matrices: Let

H := (Herm(2),qH)

denote the real vector space of Hermitian matrices

Herm(2) := {X ∈ M(2×2,C) : X = X∗}

equipped with the real quadratic form

qH : Herm(2)→ R,X 7→ −det X ,

i.e.
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qH(X) =−(a ·d)+ |b|2

for

X =

(
a b
b d

)
,a,d ∈ R,b ∈ C.

Set σ0 := 1 ∈ Herm(2). Then the family (σ j) j=0,...,3 is a basis of the vector
space Herm(2). The map

β : M → H,x = (x0, ...,x3) 7→ X :=
3

∑
j=0

x j ·σ j =

(
x0 + x3 x1 − i · x2

x1 + i · x2 x0 − x3

)
is an isometric isomorphism, i.e. an isomorphism of vector spaces satisfying

qH(β (x)) = qM(x), x ∈ R4.

The isometry property is due to

qH(β (x)) =−det β (x) =−x2
0 + x2

1 + x2
2 + x2

3 = qM(x).

By means of the isometric isomorphism β we identify the group of isometries
of H

O(H) := {g ∈ GL(Herm(2)) : qH(g(X)) = qH(X) f or all X ∈ Herm(2)}

with O(3,1) and denote by
L↑
+(H)⊂ O(H)

the connected component of the neutral element idH ∈ O(H).

2. Definition of Ψ : The map

Ψ : SL(2,C)→ O(H),B 7→ΨB,

defined by the conjugation

ΨB : H → H,X 7→ B ·X ·B∗,

is a well-defined morphism of real matrix groups. We have

Ψ(SL(2,C))⊂ L↑
+(H)

because SL(2,C) is connected due to Proposition 2.18.

3. Tangent map of Ψ : The family (A j) j=1,...,6 with

A j :=

{
σ j if j = 1,2,3

i ·σ j−3 if j = 4,5,6
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is a basis of the real vector space sl(2,C)R. Note that

su(2) = spanR < i ·σ j : j = 1,2,3 >

is a real subalgebra of sl(2,C)R, but

spanR < σ j : j = 1,2,3 >

is not a subalgebra of sl(2,C)R. Denote by

o(H) := Lie O(H)⊂ gl(Herm(2))

the Lie algebra of the matrix group O(H) and by

ψ := Lie Ψ : sl(2,C)R → o(H), A 7→ ψA,

the tangent map of Ψ at 1 ∈ SL(2,C). One checks that ψ as the linearization
of Ψ takes the values

ψA(X) = A ·X +X ·A∗, A ∈ sl(2,C)R, X ∈ Herm(2).

One may also check that indeed ψ is a morphism of Lie algebras:

ψ[B1, B2] = [ψB1 ,ψB2 ]

by using the commutator relation of the Pauli matrices and the Hermitian resp.
skew-Hermitian properties

σ
∗
j = σ j, (i ·σ j)

∗ =−i ·σ j for j = 1,2,3.

Explicit computation of the matrices representing

ψA j , j = 1, ...,6,

shows: The family (ψA j) j=1,...,6
is linearly independent in the 6-dimensional vec-

tor space o(H)⊂ End(Herm(2)).

4. Surjectivity of Ψ : The map

Ψ : SL(2,C)−→ L↑
+(H)

is open because its tangent map at 1 ∈ SL(2,C) is an isomorphism. The image

Ψ(SL(2,C))⊂ L↑
+(H)

is also closed because
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L↑
+(H) =

⋃
g∈L↑+(H)

g ·Ψ(SL(2,C))

represents the complement

L↑
+(H)\Ψ(SL(2,C))

as a union of open subsets. Hence

Ψ(SL(2,C))⊂ L↑
+(H)

is also closed, and
Ψ : SL(2,C)→ L↑

+(H)

is surjective, because SL(2,C) is connected and L↑
+(H) is the connected compo-

nent of the unit element according to Remark 2.26.

5. Discrete kernel: The kernel is

ker Ψ = {±1} ⊂ SL(2,C) :

For the proof one evaluates for B ∈ SL(2,C) the condition:

ΨB(X) = X

for all elements X ∈ Herm(2) from the basis (σ j) j=0,...,3 of Herm(2).

6. Universal covering space: Due to the previous parts the map

Ψ(SL(2,C))−→ L↑
+(H)

is a 2-fold covering projection. It is the universal covering projection because SL(2,C)
is simply connected according to Proposition 2.18.

7. Fundamental group: Hence the orthochronous Lorentz group has the fundamen-
tal group

π1(L
↑
+,∗) = Z2,

the group of deck-tranformations of the universal covering projection.
⊓⊔

Remark 2.28 (Lie algebras and simply connected matrix group).

1. There is a close relation between Lie algebras and simply connected matrix
groups: Consider two matrix groups G and H. If G is connected and simply
connected, then each morphism
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φ : Lie G −→ Lie H

of Lie algebras lifts to a unique morphism

Φ : G −→ H

of matrix groups such that the following diagram commutes

G H

Lie G Lie H

Φ

exp
φ

exp

The result is not restricted to matrix groups, it holds for Lie groups in gen-
eral: The categories of connected, simply-connected Lie groups over R re-
spectively C and the category of Lie algebra over these fields are equivalent,
see [41, Part II, Chap. V, §8 Theor. 2].

2. For a general, not necessarily simply connected matrix group G one applies the
previous result to the universal covering projection

π : G̃ −→ G,

taking into account that G̃ and G have the same Lie algebra. Then one has to study
the covering projection π in order to determine whether the morphism from the
universal covering

Φ̃ : G̃ −→ H

projects down to a morphism
Φ : G −→ H

such that the diagram

G̃ H

G

Φ̃

π
Φ

commutes.

Note: The universal covering of a matrix group is a Lie group, but not neces-
sarily a matrix group. A counter example is the universal covering of the matrix
group SL(2,R), see [18, Prop. 5.16].



Chapter 3
Nilpotent Lie algebras and solvable Lie algebras

If not stated otherwise, all Lie algebras and vector spaces in this chapter will be
assumed finite dimensional over the base field K= C or K= R.

3.1 Engel’s theorem for nilpotent Lie algebras

Recall Definition 1.11: An endomorphism f ∈ End(V ) with V a vector space is
nilpotent iff an index n ∈ N exists with f n = 0. Note that complex eigenvalues of a
nilpotent endomorphism are zero.

Definition 3.1 (Ad-nilpotency). Consider a Lie algebra L. An element x ∈ L is ad-
nilpotent iff the induced endomorphism of L

ad x : L → L, y 7→ [x,y],

is nilpotent.

Nilpotency and ad-nilpotency refer to two different structures: Nilpotency iter-
ates the associative product, while ad-nilpotency iterates the Lie product. If the Lie
algebra results from a matrix algebra both concepts are related: A Lie algebra of
nilpotent endomorphisms of a vector space acts “nilpotent” on itself by the adjoint
representation.

Lemma 3.2 (Nilpotency implies ad-nilpotency). Consider a vector space V , an
embedded Lie algebra L ⊂ gl(V ) and an element x ∈ L. If the endomorphism

x : V →V

91
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is nilpotent, then also the induced endomorphism

ad x : L → L

is nilpotent.

The content of Lemma 3.2 can be paraphrased as: Nilpotency implies ad-nilpotency.

Proof. The endomorphism x ∈ End(V ) acts on End(V ) by left composition and
right composition

l : End(V )→ End(V ), y 7→ x ◦ y,

r : End(V )→ End(V ), y 7→ y ◦ x.

Then
ad x = l − r

because for all y ∈ End(V )

(ad x)(y) = [x,y] = (l − r)(y).

Nilpotency of x implies that both actions are nilpotent. Both actions commute: For
all y ∈ End(V )

[l,r](y) = (l ◦ r− r ◦ l)(y) = x◦ (y◦ x)− (x◦ y)◦ x = 0.

Proposition 1.12 implies the nilpotency of the difference

ad x = l − r

⊓⊔

The adjoint representation respects the Jordan decomposition from Theorem 1.19.

Proposition 3.3 (Jordan decomposition of the adjoint representation). Consider
an n-dimensional complex vector space V , an endomorphism f ∈ End(V ) and its
Jordan decomposition

f = fs + fn.

Then the Jordan decomposition of

ad f ∈ L := gl(End V ),

defined as
ad f : End(V )−→ End(V ), g 7→ [ f ,g],

is
ad f = ad fs +ad fn ∈ L.

In particular, ad fs is semisimple, ad fn is nilpotent and
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[ad fs,ad fn] = 0.

Proof. i) Nilpotency of ad fn: According to Lemma 3.2 the endomorphism ad fn is
nilpotent.

ii) Semisimplicity of ad fs: In order to show that ad fs is semisimple we choose a
base (v1, ...,vn) of V consisting of eigenvectors of fs with corresponding
eigenvalues λ1, ...,λn.

Let (Ei j)1≤i, j≤n denote the standard base of End(V ) relatively to (v1, ...,vn), i.e.

Ei j(vk) = δ jkvi

mapping v j to vi and annihilating vk for all k ̸= j.

For 1 ≤ i, j,k ≤ n:

((ad fs)Ei j)(vk) = [ fs,Ei j](vk) = fs(Ei j(vk))−Ei j( fs(vk)) = ( fs −λk)(Ei j(vk)) =

= ( fs −λk)(δ jkvi) = (λi −λ j)(δ jkvi) = (λi −λ j) ·Ei j(vk)

Hence
(ad fs)(Ei j) = (λi −λ j) ·Ei j

and ad fs acts with respect to the standard basis (Ei j) diagonally on the vector
space End(V ) with eigenvalues

λi −λ j, 1 ≤ i, j ≤ n.

Hence ad fs is semisimple.

iii) Commutator [ad fs,ad fn]: Because

ad : gl(V )→ L

is a morphism of Lie algebras:

[ad fs,ad fn] = ad([ fs, fn]) = 0.

⊓⊔

Using the adjoint representation we carry over the concept of semisimpleness to
elements of arbitrary complex Lie algebra. Definition 3.4 is analogous to Definition 3.1.

Definition 3.4 (Ad-semisimple element of a complex Lie algebra). Consider a
complex Lie algebra L. An element x ∈ L is ad-semisimple iff the induced endomor-
phism

ad x : L −→ L, y 7→ [x,y]

is semisimple.
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It is a trivial observation that a nilpotent endomorphism of a non-zero vector
space V has an eigenvector with eigenvalue zero. Theorem 3.5 strongly generalizes
this fact: It proves the existence of a common eigenvector for a whole Lie algebra
of nilpotent endomorphisms.

Theorem 3.5 (Annihilation of a common eigenvector).

Consider a vector space V ̸= {0} and an embedded Lie algebra L ⊂ gl(V ). If each
endomorphism x ∈ L is nilpotent, then all elements x ∈ L annihilate a common
eigenvector, i.e., a nonzero vector v ∈V exists with

x(v) = 0 f or all x ∈ L.

The proof of Theorem 3.5 is standard, cf. [24, Chap.3.3], [13, Theor. 9.9]. The idea
of the induction step is to find an ideal I ⊂ L of codimension 1 and then to split

L = I ⊕K · x0 with x0 ∈ L\ I,

as the direct sum of two subalgebras.

Proof. The proof goes by induction on dim L ∈ N, while the dimension of the
finite-dimensional vector space V is left arbitrary.

Apparently the theorem is true for dim L = 0.

For the induction step assume dim L > 1 and assume that the theorem is true for all
Lie algebras of less dimension.
i) Existence of an ideal of codimension 1: By assumption all x ∈ L are nilpotent
endomorphisms of V . Hence by Lemma 3.2 each endomorphism

ad x : L → L, x ∈ L,

is nilpotent.

Define the set
A := {K ⊊ L : K Lie subalgebra}

of all proper Lie subalgebras of L. We have A ̸= /0, because the zero-dimensional
vector subspace K = {0} ⊂ L is a subalgebra of L.

Choose
I ∈ A

as a subalgebra of L having maximal dimension with respect to all Lie algebras
from A . By definition

dim I < dim L

Because I is a Lie algebra, for all x ∈ I



3.1 Engel’s theorem for nilpotent Lie algebras 95

(ad x)(I)⊂ I

Hence the adjoint representation of L induces a representation of I on the
vector space L/I: For x ∈ I the endomorphism

ad x : L/I → L/I, y+ I 7→ [x,y]+ I

is well-defined. For each x ∈ I the nilpotency of ad x ∈ L implies the nilpotency
of ad x. The induction hypothesis applies to the Lie algebra I and the vector space

V := L/I,

and provides a common eigenvector with eigenvalue zero

y = y+ I ∈ L/I

for all endomorphisms
ad x : L/I → L/I

Eigenvectors are non-zero vectors, hence

y ∈ L\ I with [x,y] ∈ I for all x ∈ I.

As a consequence
y ∈ NL(I)\ I

i.e. the Lie subalgebra I ⊂ L is properly contained in its normalizer. Due to the
maximality of the dimension of I we have NL(I) /∈ A , hence

NL(I) = L,

i.e. I ⊂ L is a proper ideal.

The ideal I ⊂ L induces a canonical projection of Lie algebras

π : L → L/I.

In case
dim (L/I)≥ 2

one chooses a 1-dimensional Lie subalgebra K ⊂ L/I. The inverse image

π
−1(K)⊂ L

is a proper Lie subalgebra of L, properly containing I, a contradiction to the
maximality of I. Hence

dim (L/I) = 1

ii) Constructing a common eigenvector: The construction from part i) implies the
vector space decomposition



96 3 Nilpotent Lie algebras and solvable Lie algebras

L = I +K · x0

with an arbitrary element x0 ∈ L\ I. By induction assumption the elements of the
Lie algebra I annihilate a common non-zero eigenvector, i.e.

W := {w ∈V : x(w) = 0 f or all x ∈ I} ̸= {0}.

In addition, the subspace W ⊂V is stable with respect to the
endomorphism x0 ∈ End(V ), i.e. for all w ∈W holds

x0(w) ∈W :

For all x ∈ I
x(x0(w)) = x0(x(w))− [x0,x](w) = 0.

Here the first summand vanishes because w ∈W and x ∈ I. The second summand
vanishes because I ⊂ L is an ideal, which implies

[x0,x] ∈ I and [x0,x](w) = 0

The restriction
x0|W : W →W

is a nilpotent endomorphism, and therefore has an eigenvector v0 ∈W ⊂V with
eigenvalue 0. From the decomposition

L = I +K · x0

follows for all x ∈ L
x(v0) = 0.

This finishes the induction step. ⊓⊔

The fact, that any embedded Lie algebra L ⊂ gl(V ) of nilpotent endomorphisms
annihilates a common eigenvector, allows the simultaneous triagonalization to strict
upper triangular matrices for all endomorphisms of L. We state the result by using
the concept of a flag from Definition 1.11.

Corollary 3.6 (Simultaneous strict triagonalization of nilpotent endomorphisms).
Consider an n-dimensional K-vector space V and an embedded Lie algebra L ⊂ gl(V ).
Then the following properties are equivalent:

1. Each endomorphism x ∈ L is nilpotent.

2. A flag (Vi)i=0,...,n of subspaces of V exists such that all x∈L satisfy for all i = 1, ...,n

x(Vi)⊂Vi−1

3. The Lie algebra L is isomorphic to a Lie subalgebra of the Lie algebra of strictly
upper triangular matrices
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n(n,K) =


0 ∗

. . .
0 0

 ∈ gl(n,K)

 .

Proof. 1) =⇒ 2): The proof goes by induction on n = dim V . The implication is
valid for n = 0.

Assume n > 0 and assume part 2) valid for all vector spaces of less dimension. Set

V0 := {0}.

According to Theorem 3.5 all elements from L annihilate a common
eigenvector v1 ∈V . Consider the quotient vector space

W :=V/(K · v1)

with the canonical projection of vector spaces

π : V →W.

Each endomorphism x ∈ L ⊂ gl(V ) annihilates v1, and therefore induces an
endomorphism x : W →W such that the following diagram commutes

V V

W W

x

π

x
π

The endomorphism x ∈ End(W ) is nilpotent. The induction assumption applied
to W with

dim W < dim V

provides a flag (Wi)i=0,...,n−1 of subspaces of W with

x(Wi)⊂Wi−1 f or all i = 1, ...,n−1.

Now define
Vi := π

−1(Wi−1), i = 1, ...,n.

Then
x(Wi)⊂Wi−1

implies
x(Vi)⊂Vi−1, i = 1, ...,n.

2) =⇒ 3) For the proof one constructs step by step a basis of V

(v1, ...,vn)
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which satisfies for all i = 1, ...,n

Vi = spanK < v1, ...,vi >

3) =⇒ 1) The proof is obvious. ⊓⊔

Due to Lemma 3.2 the non-trivial implication of Corollary 3.6 states: Consider a
vector space V . Then each embedded Lie algebra L ⊂ gl(V ) of ad-nilpotent
endomorphisms is nilpotent.

A Lie algebra is Abelian when the commutator of any two elements vanishes.
Nilpotent Lie algebras are a first step to generalize this property: A Lie algebra L
is named nilpotent when a number N ∈ N exists such that all N-fold commutators
of elements from L vanish. The concept of the descending central series of a Lie
algebra formalizes this property.

Definition 3.7 (Descending central series and nilpotent Lie algebra). Consider a
Lie algebra L.

1. The descending central series or lower central series of L is the sequence (CiL)i∈N
of subsets CiL ⊂ L, inductively defined as

C0L := L and Ci+1L := [L,CiL], i ∈ N.

2. The Lie algebra L is nilpotent iff an index i0 ∈ N exists with

Ci0L = 0.

The smallest index with this property is named the length of the descending cen-
tral series.

3. An ideal I ⊂ L is nilpotent if I is nilpotent when considered as a Lie algebra with
Lie bracket the restricted Lie bracket of L.

By induction on i ∈ N one easily verifies

Ci+1L ⊂CiL.

As a consequence, all elements of the descending central series are ideals

CiL ⊂ L, i ∈ N.

Apparently, any Lie subalgebra and any quotient algebra of a nilpotent Lie
algebra L is nilpotent too: The descending central series of a subalgebra
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respectively of a quotient of L arise from the descending central series of L by
restriction respectively taking quotients. Concerning the reverse implication
consider Lemma 3.8.

The Lie algebra n(n,K) of strictly upper triangular matrices - and hence also all
Lie subalgebras of n(n,K) - are nilpotent. Due to Corollary 3.6 an embedded Lie
algebra L ⊂ gl(V ) is nilpotent if each element x ∈ L is a nilpotent endomorphism
of V .

Lemma 3.8 (Central extension of a nilpotent Lie algebra). Consider a Lie alge-
bra L and an ideal I ⊂ L which is contained in the center, i.e.

I ⊂ Z(L).

If the quotient L/I is nilpotent then L, named an extension of L/I by I, is nilpotent
too.

In Lemma 3.8 the extension is named central extension because I ⊂ Z(L). In
particular, I is a nilpotent Lie algebra.

Proof. The canonical morphism

π : L −→ L′ := L/I

of Lie algebras relates the descending central series of L and L′ as

CiL′ = π(CiL), i ∈ N.

If Ci0L′ = 0 then π(Ci0L) = 0, i.e.

Ci0L ⊂ I ⊂ Z(L).

The center satisfies [L,Z(L)] = 0, hence

Ci0+1L := [L,Ci0L] = 0.

⊓⊔

In Lemma 3.8 one must not drop the assumption I ⊂ Z(L), i.e. that the ideal I ⊂ L
belongs to the center of L. It is not enough to assume that I is nilpotent:

Example 3.9 (Counter example against nilpotency of extensions). The descending
central series of the Lie algebra of upper triangular matrices

L := t(2,K) =

{(
∗ ∗
0 ∗

)
∈ gl(2,K)

}
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starts with

C0L := L, and C1L = [L,L] = n(2,K) =K ·
(

0 1
0 0

)
,

the Lie algebra of strictly upper triangular matrices. The elements of the derived
series of L are

C2L = [L,C1L] = [L,n(2,K)] = n(2,K) =C1L ̸= 0.

As a consequence for all i ∈ N∗

CiL =C1L ̸= {0}.

Hence L is not nilpotent. But

I := n(2,K)⊂ L

is a nilpotent ideal, and the quotient

L/I ≃ d(2,K),

the Lie algebra of diagonal matrices, is also nilpotent. We have

I ̸⊂ Z(L) =K ·1

We now state Engel’s theorem. It is the main result about nilpotent Lie algebras. It
characterizes the nilpotency of a Lie algebra by the ad-nilpotency of all its elements.
Engel’s theorem follows as a corollary from Theorem 3.5.

Theorem 3.10 (Engel’s theorem for nilpotent Lie algebras). A Lie algebra L is
nilpotent if and only if every element x ∈ L is ad-nilpotent.

Proof. i) Assume that every endomorphism

ad x : L → L, x ∈ L,

is nilpotent. According to Corollary 3.6 the embedded Lie algebra

ad L ⊂ gl(L)

is isomorphic to a subalgebra of

n(n,K), n = dim L,

of strictly upper triangular matrices, hence ad L is nilpotent. Due to Lemma 3.8 the
isomorphy

L/Z(L)≃ ad L
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implies the nilpotency of L.

ii) Suppose that L is nilpotent. An index i0 ∈ N exists with Ci0L = 0. Hence in
particular for all x ∈ L

adi0(x) = 0,

i.e. ad x is nilpotent.
⊓⊔

From the categorical point of view the concept of a short exact sequence is a use-
ful tool to handle injective or surjective morphisms and their cokernels respectively
kernels.

Definition 3.11 (Exact sequence of Lie algebra morphisms).

1. A chain complex of Lie algebra morphisms is a sequence of Lie algebra mor-
phisms

(Li
fi−→ Li+1)i∈Z

such that for all i ∈ Z the composition fi+1 ◦ fi = 0, i.e.

im[Li−1
fi−1−−→ Li]⊂ ker[Li

fi−→ Li+1].

2. A chain complex of Lie algebra morphisms (Li
fi−→ Li+1)i∈Z is exact or an exact

sequence of Lie algebra morphisms if for all i ∈ Z

im[Li−1
fi−1−−→ Li] = ker[Li

fi−→ Li+1].

3. A short exact sequence of Lie algebra morphisms is an exact sequence of the
form

0 → L0
f0−→ L1

f1−→ L2 → 0.

A short exact sequence

0 → L0
f0−→ L1

f1−→ L2 → 0

expresses the following facts about the two morphisms:

• f0 : L0 → L1 is injective,

• f1 : L1 → L2 is surjective and

• im f0 = ker f1, in particular L2 ≃ L1/L0.

Using the concept of exact sequences we restate from Lemma 3.8 and its pro-
logue the relation between the nilpotency of a Lie algebra L, an ideal of L and a
quotient of L as follows:
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Proposition 3.12 (Nilpotency and short exact sequences). Consider a short exact
sequence of Lie algebra morphisms

0 −→ L0
j−→ L1

π−→ L2 −→ 0.

1. If the Lie algebra L1 is nilpotent, then also L0 and L2 are nilpotent.

2. If L2 is nilpotent and j(L0)⊂ Z(L1), then also L1 is nilpotent.

For a Lie algebra L one obtains for any i ∈ N a short exact sequence

0 →CiL/Ci+1L → L/Ci+1L → L/CiL → 0

By definition of the descending central series, the Lie algebra on the left-hand side
is contained in the center of the Lie algebra in the middle, i.e.

CiL/Ci+1L ⊂ Z(L/Ci+1L).

For a nilpotent Lie algebra L, with i0 ∈ N the length of the descending central
series, the exact sequence

0 →Ci0−1L → L → L/Ci0−1L −→ 0

presents L as a central extension of the nilpotent Lie algebra L/Ci0−1L.
Successively one obtains L as a finite sequence of central extensions of nilpotent
Lie algebras: One starts with the nilpotent Lie algebra L/Ci0−1L on the right-hand
side and

Ci0−1 ⊂ Z(L)

on the left-hand side. The next step presents L/Ci0−1L as a central extension of the
nilpotent Lie algebra L/Ci0−2 ...
This sequence of central extensions of nilpotent Lie algebras explains the attribute
central in the name of the descending central series (CiL)i∈N.

For later use we prove two results about the centralizer of a nilpotent Lie algebra L
and about the normalizer of a proper subalgebra of a nilpotent Lie algebra. Due to
Corollary 3.13 each ideal of a nilpotent Lie algebra L contains non-zero elements
from the center of L.

Corollary 3.13 (Center of nilpotent Lie algebras). Consider a nilpotent Lie alge-
bra L ̸= {0}. For each non-zero ideal I ⊂ L holds

Z(L)∩ I ̸= {0}.

In particular,
{0} ̸= Z(L)⊂CL(I).
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Proof. According to Theorem 3.10 all endomorphisms

ad x : L → L, x ∈ L,

are nilpotent. Because I ⊂ L is an ideal each restriction

(ad x)|I : I → I, x ∈ L,

is well-defined and also nilpotent. Theorem 3.5, applied to the embedded Lie algebra

ad L ⊂ gl(I),

provides a non-zero element x0 ∈ I with

[L,x0] = 0,

i.e. 0 ̸= x0 ∈ Z(L)∩ I. ⊓⊔

In a nilpotent Lie algebra L each proper subalgebra M ⊊ L embeds properly into its
normalizer. The result explains a posteriori the construction made in the proof of
Theorem 3.5.

Proposition 3.14 (Normalizer in nilpotent Lie algebras). Any proper subalgebra M ⊊ L
of a nilpotent Lie algebra L is properly contained in its normalizer, i.e.

M ⊊ NL(M).

Proof. We consider the descending central series of L. Because M ⊊ L = C0L we
start with

M ⊊ M+C0L.

Due to Ci0L = 0 for a suitable index i0 ∈ N we end with

M = M+Ci0L.

Let i < i0 be the largest index with

M ⊊ M+CiL.

Then
M = M+Ci+1L.

Therefore

[M+CiL,M]⊂ [M,M]+ [CiL,M]⊂ M+[CiL,L] = M+Ci+1L = M,

which implies
M+CiL ⊂ NL(M).



104 3 Nilpotent Lie algebras and solvable Lie algebras

We obtain
M ⊊ M+CiL ⊂ NL(M).

⊓⊔

The logical dependencies between the results of this section is clarified by the
diagram from Figure 3.1. It shows the fundamental role of Theorem 3.5 about the
existence of a common eigenvector annihilated by all elements of an embedded Lie
algebra of nilpotent endomorphisms:

T heorem 3.5

Corollary 3.6

T heorem 3.10 Lemma 3.8

Corollary 3.13

Fig. 3.1 Logical relations of the results in Section 3.1

3.2 Lie’s theorem for solvable Lie algebras

Solvability generalizes nilpotency. Solvable Lie algebras relate to nilpotent Lie al-
gebras like upper triangular matrices relate to strictly upper triangular matrices.

Definition 3.15 (Derived series and solvable Lie algebra). Consider a Lie algebra L.

1. The derived series of L is the sequence (DiL)i∈N inductively defined as

D0L := L and Di+1L := [DiL,DiL], i ∈ N.

2. The Lie algebra L is solvable(Deutsch: aufloesbar) iff an index i0 ∈N exists with
Di0L= 0. The smallest index with this property is named the length of the derived
series.

3. An ideal I ⊂ L is solvable iff I is solvable when considered as Lie algebra.
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By induction on i ∈N one easily shows that each DiL, i ∈N, is an ideal in L, and
that the series (DiL)i∈N is descending. Note that

D1L = [L,L]

is the derived or commutator algebra. Comparing the derived series with the lower
central series one has DiL ⊂CiL for all i ∈ N. Hence for Lie algebras:

Abelian =⇒ nil potent =⇒ solvable.

Solvability behaves well with respect to short exact sequences.

Lemma 3.16 (Solvability and short exact sequences). Consider an exact sequence
of Lie algebra morphisms

0 → L0 → L1
π−→ L2 → 0.

Then solvability of L1 is equivalent to solvability of L0 and L2.

Proof. i) L0 and L2 solvable =⇒ L1 solvable: Assume

Di0L2 = 0 and Di0L0 = 0.

Note that one may find a common index i0 for both Lie algebras. For all i ∈ N

DiL2 = Di
π(L1) = π(DiL1).

Hence Di0L2 = 0 implies Di0L1 ⊂ L0. Then

D2·i0L1 ⊂ Di0L0 = 0.

ii) L1 solvable =⇒ L0 and L2 solvable: The proof uses the following relations
between the derived series:

DiL0 ⊂ DiL1, π(DiL1) = DiL2.

⊓⊔

Example 3.9 demonstrates that an analogous statement concerning the nilpotency
of the Lie algebra in the middle is not valid.

Corollary 3.17 (Solvable ideals). Consider a Lie algebra L. The sum I + J of two
solvable ideals I, J ⊂ L is solvable.

Proof. Lemma 3.16 applied to the exact sequence

0 −→ I ∩ J −→ I −→ I/(I ∩ J)−→ 0
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shows the solvability of the quotient

I/(I ∩ J)

The canonical isomorphy
I/(I ∩ J)≃ (I + J)/J

and Lemma 3.16 applied to the exact sequence

0 → J → I + J → (I + J)/J → 0

shows the solvability of
I + J.

⊓⊔

Definition 3.18 (Radical of a Lie algebra). The unique solvable ideal of a Lie al-
gebra L which is maximal with respect to all solvable ideals of L, is the radical of L,
denoted rad L.

To verify that the concept is well-defined consider a maximal solvable ideal

Imax ⊂ L.

For an arbitrary solvable ideal I ⊂ L also

I + Imax

is solvable by Corollary 3.17. The inclusion

Imax ⊂ I + Imax

implies by the maximality of Imax that

Imax = I + Imax.

Hence I ⊂ Imax. Therefore Imax is the uniquely determined, maximal solvable ideal
of L.

For a nilpotent embedded Lie algebra Theorem 3.5 always deals with the same
eigenvalue zero. In the more general context of a solvable embedded Lie algebra L
the eigenvalues of the common eigenvector depend linearly on the elements of L.

The following Lemma 3.19 prepares the proof of Theorem 3.20 and therefore also
of Lie’s theorem about the existence of a common eigenvector for embedded
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solvable Lie algebras. The lemma makes the assumption that a common
eigenvector exists. It investigates: How do the corresponding eigenvalues for the
different endomorphism from an ideal depend on the endomorphisms, in particular
which endomorphism annihilate the eigenvector?

Lemma 3.19 (Dynkin lemma). Consider a K-vector space V , an embedded Lie al-
gebra L⊂ gl(V ), and an ideal I ⊂ L. Assume the existence of a common eigenvector v ∈V
for all endomorphisms

x : V →V, x ∈ I,

and consider the corresponding linear functional

λ : I −→K

satisfiying for all x ∈ I
x.v = λ (x) · v

Then λ vanishes on commutators, i.e.

λ |[I, I] = 0,

and
U := {v ∈V : x.v = λ (x) · v for all x ∈ I}

is an L-module.

Proof. Apparently the eigenvector equation defines a linear functional λ . Let y ∈ L
be an arbitrary but fixed element. We have to show: For all x ∈ I holds

λ ([y,x]) = 0.

i) Simultaneous triangularization on a stable subspace W =W (y)⊂V : Let n ∈ N∗

be a maximal exponent such that the family of iterates

B = (v,y(v),y2(v), ...,yn−1(v))

is linearly independent. Denote by

W := spanK < yi(v) : i = 0, ...,n−1 >

the n-dimensional subspace of V spanned by B. By definition W is stable with
respect to y, i.e. y(W )⊂W .

Claim: The family

(Wi := span < v,y(v), ...,yi−1(v)>)i=0,...,n, with W0 = {0},

is a flag of W , stable with respect to all endomorphisms

x : V →V, x ∈ I
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We prove x(Wi)⊂Wi by induction on i = 0, ...,n: The induction claim holds for
i = 0 and i = 1. For the induction step i 7→ i+1 we consider x ∈ I and decompose

x(yi(v)) = (x◦ y)(yi−1(v)) = [x,y](yi−1(v))+(y◦ x)(yi−1(v)).

The induction assumption applied to yi−1(v) ∈Wi proves: For the first summand

[x,y](yi−1(v)) ∈ {z(Wi) : z ∈ I} ⊂Wi ⊂Wi+1

because yi−1(v) ∈Wi and [x,y] ∈ I, and for the second summand

(y◦ x)(yi−1(v)) = y(x(yi−1(v))) ∈ y(Wi)⊂Wi+1.

Hence x(yi(v)) ∈Wi+1.

Therefore each restricted endomorphism

x|W : W →W, x ∈ I,

is represented with respect to the basis B of W by an upper triangular matrix

Ax =

∗ ∗
. . .

0 ∗

 ∈ t(n,K).

ii) Diagonal elements of the triangularization: We claim that for each x ∈ I all
eigenvalues of x|W are equal to λ (x), i.e.

Ax =

λ (x) ∗
. . .

0 λ (x)


To prove the claim we have to shows for each i = 0, ...,n−1: The
vector yi(v) ∈Wi+1 satisfies

x(yi(v))−λ (x) · yi(v) ∈Wi

The proof is by induction on i = 0, ...,n−1. The induction start for i = 0 is the
eigenvalue equation

x(v) = λ (x) ·v.

For the induction step i−1 7→ i consider the decomposition from part i)

x(yi(v)) = [x,y](yi−1(v))+(y◦ x)(yi−1(v)).

• For the first summand we showed in part i)

wi := [x,y](yi−1(v)) ∈Wi



3.2 Lie’s theorem for solvable Lie algebras 109

• Concerning the second summand we apply to the induction assumption

x(yi−1(v))−λ (x) · yi−1(v) ∈Wi−1

the endomorphism y ∈ L, and obtain

(y◦ x)(yi−1(v)−λ (x) · yi(v) ∈ y(Wi−1)⊂Wi

Taken together, both steps imply the induction claim for the exponent i:

x(yi(v))−λ (x) · yi(v) = wi +(y◦ x)(yi−1(v))−λ (x) · yi(v) ∈Wi

iii) Vanishing of the trace of a commutator: Part ii) shows: All elements x ∈ I act
on the subspace W ⊂V as endomorphisms with

trace(x|W ) = n ·λ (x).

For all x ∈ I also [y,x] ∈ I because I ⊂ L is an ideal. The trace of a commutator of
two endomorphisms vanishes. Hence for all x ∈ I

0 = tr([y|W,x|W ]) = n ·λ ([y,x])

which proves λ ([y,x]) = 0. Because y ∈ L is arbitrary the proof shows

λ |[I, I] = 0.

iv) Eigenspace is L-module: For arbitrary u ∈U , x ∈ I and y ∈ L we have to show

x.(y.u) = λ (x) · (y.u)

One has due to part iii)

x.(y.u) = [x,y].u+ y.(x.u) = λ ([x,y]) ·u+ y.(λ (x) ·u) = λ (x) · (y.u)
⊓⊔

The present section deals with eigenvalues of certain endomorphisms. We need
the fact that a polynomial with coefficients from K splits completely over K into a
product of linear factors. Therefore we assume that the underlying field K is alge-
braically closed, i.e. we now consider complex Lie algebras.

Theorem 3.20 proves the existence of a common eigenvector for the endo-
morphisms of an embedded, complex solvable Lie algebra. It is an analogue of
Theorem 3.5 for the nilpotent case.

Theorem 3.20 (Common eigenvector of a solvable embedded complexLie alge-
bra).
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Consider a complex vector space V ̸= {0}. Each solvable embedded Lie
algebra L ⊂ gl(V ) has a common eigenvector: A non-zero vector v ∈V and a
linear functional

λ : L → C

exist such that
x(v) = λ (x) · v f or all x ∈ L.

The proof of Theorem 3.20 is standard. It imitates the proof of Theorem 3.5,
see [24, Chap.4.1], [13, Theor. 9.11].

Proof. The proof goes by induction on dim L. The claim trivially holds
for dim L = 0. For the induction step we assume dim L > 0, hence L ̸= {0}. We
suppose that the claim is true for all solvable Lie algebras of smaller dimension.

i) Construction of an ideal I ⊂ L of codimension codimL(I) = 1: The derived series
of L ends with Di0L = 0, hence it starts with

D1L ⊊ D0L, i.e. L/[L,L] ̸= 0.

Let
π : L → L/[L,L]

be the canonical projection of Lie algebras. The Lie algebra L/[L,L] is Abelian.
Therefore any arbitrary choosen vector subspace

D ⊂ L/[L,L]

of codimension 1 is even an ideal. Then

I := π
−1(D)

is an ideal of L with
codimL(I) := dim L−dim I = 1.

The last formula about the codimension is a general statement from the theory of
vector spaces:

dim I = dim π
−1(D) = dim D+dim [L,L]

implies

codimL I = dim L−dim I = dim L−dim [L,L]−dim D =

= dim L/[L,L]−dim D = codimL/[L,L]D = 1.

ii) Subspace of eigenvector candidates: The action of L on V restricts to an action
of I on V . The induction assumption applied to I provides an element 0 ̸= v ∈V
and a linear functional λ : I → C with
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x(v) = λ (x) ·v f or all x ∈ I.

We consider the non-zero subspace of V of common eigenvectors for all
endomorphisms of I

W := {v ∈V : x(v) = λ (x) ·v f or all x ∈ I}.

The subspace W ⊂V is stable under the action of L, i.e. for v ∈W and y ∈ L
holds y(v) ∈W : For arbitrary x ∈ I,v ∈W,y ∈ L we have [x,y] ∈ I and

x(y(v)) = [x,y](v)+ y(x(v)) = λ ([x,y]) ·v+λ (x) · y(v).

Here
[x,y](v) = λ ([x,y]) ·v

because [x,y]⊂ I.

Lemma 3.19, applied to I ⊂ gl(W ), gives λ ([x,y]) = 0. Hence

x(y(v)) = λ (x) · y(v)

and y(v) ∈W .

iii) 1-dimensional complement: According to the choice of the ideal I ⊂ L in part i)
each element x0 ∈ L\ I provides the vector space decomposition

L = I ⊕C · x0.

By part ii) the subspace W is stable under the action of the restricted
endomorphism x0|W . Because the field C is algebraic closed, the restricted
endomorphism x0|W ∈ End(W ) has an eigenvector v0 ∈W of x0 with
eigenvalue λ ′:

x0(v0) = λ
′ ·v0.

Due to the definition of W in part ii) the vector v0 ∈W is also an eigenvector of all
endomorphisms from

L = I ⊕C · x0.

The linear functional λ : I → C extends to a linear functional λ̃ : L → C by
defining λ̃ (x0) := λ ′. Then

x(v0) = λ̃ (x) ·v0 f or all x ∈ L,

which ends the induction step and completes the whole proof.
⊓⊔

A corollary of Theorem 3.20 is Lie’s theorem about the simultaneous triangularization
of a complex solvable matrix algebra.
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Theorem 3.21 (Lie’s theorem on complex solvable embedded Lie algebras).

Consider a n-dimensional complex vector space V . Each solvable embedded Lie
algebra L ⊂ gl(V ) is isomorphic to a Lie subalgebra of the Lie algebra of upper
triangular matrices

t(n,C) =


∗ ∗

. . .
0 ∗

 ∈ gl(n,C)

 ,

more precisely: There exists an invertible matrix

S ∈ GL(V )≃ GL(n,C)

such that the conjugation satisfies

L′ := S ·L ·S−1 ⊂ t(n,C).

Proof. Similar to the proof of Corollary 3.6 we construct by induction on dim V a
flag (Vi)i=0,...,n of V , each Vi stable with respect to all endomorphisms

x : V →V, x ∈ L.

To start we set V0 := {0}. Theorem 3.20 provides a common eigenvector v1 ∈ V ,
satisfying

x(v1) = λ (x) ·v1

for all endomorphisms x ∈ L. Set

V1 := C ·v1 and V :=V/V1

We consider for all x ∈ L the induced endomorphisms

x : V −→V

and apply the induction assumption to the vector space V with

dimC V < dimC V :

There exists a basis (v j) j=2,...,n of V with triagonalizes all endomorphims

x : V −→V

For j = 2, ...,n we choose elements v j ∈V with

v j = v j +V1

The family (v j) j=1,...,n is a basis of V : A given vector v ∈V has the residue class
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π(v) =
n

∑
j=2

(α j · (v j +V1)) =
n

∑
j=2

(α j ·v j +V1) =

(
n

∑
j=2

α j ·v j

)
+V1

Hence

v−
n

∑
j=2

α j ·v j ∈V1

i.e.

v =

(
n

∑
j=2

α j ·v j

)
+α1 ·v1

with complex coefficients
α j, j = 1, ...,n.

Hence
dimC < v1, ...,vn >= dimC V

We set for each j = 2, ...,n

Vj := spanC < v1, ...,v j >

Then the family (Vj) j=1,...,n is a flag of V , and each Vj is stable with respect to all
endomorphisms of L. ⊓⊔

Corollary 3.22 (Solvability and nilpotency). Consider a complex Lie algebra L.
Then L is solvable iff its commutator algebra

DL := [L,L] = D1L

is nilpotent.

Proof. The derived series of L relates to the lower central series of the Lie algebra DL
as

DiL ⊂Ci−1(DL)

for all i ≥ 1. The proof goes by induction on i ∈ N∗. The inclusion holds for i = 1.
Induction step i 7→ i+1:

Di+1L := [DiL,DiL]⊂ [Ci−1(DL),Ci−1(DL)]⊂ [DL,Ci−1(DL)] =Ci(DL).

i) Assume that DL is nilpotent. The vanishing of Ci0(DL) for an index i0 ∈ N
implies the vanishing of Di0+1L. Hence L is solvable.

ii) Assume that L is solvable and dim L = n. Applying Lemma 3.16 to the exact
sequence of Lie algebras

0 −→ Z(L)−→ L ad−→ ad L −→ 0
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proves that ad L is solvable. Lie’s theorem, see Theorem 3.21, implies for the em-
bedded Lie algebra ad L

ad L ⊂ t(n,C).

If x ∈ DL = [L,L] then

ad x ∈ [t(n,C), t(n,C)]⊂ n(n,C).

By Engel’s theorem, see Theorem 3.10, the Lie algebra DL is nilpotent. ⊓⊔

Note that Corollary 3.22 is also valid for an R-Lie algebra L, because the com-
plexification satisfies

DiL⊗RC= Di(L⊗RC),

and similarly for the descending central series.

3.3 Semidirect product of Lie algebras

The semidirect product of two Lie algebras is a Lie algebra structure on the Carte-
sian product of the vector spaces of the two Lie algebras. The most simple case of
a semidirect product is the direct product. It is obtained by taking the Lie bracket
in each component separately. But using certain derivations one can define a Lie
bracket which mixes the Lie brackets of the components, see [4, §1.8]. The semidi-
rect product is an important tool to construct new Lie algebras from given ones, and
also for splitting Lie algebras into factors of smaller Lie algebras.

Definition 3.23 (Semidirect product). Consider two Lie algebras I and M with Lie
brackets respectively [−,−]I and [−,−]M , together with a morphism of Lie algebras
to the Lie algebra of derivations

θ : M → Der(I).

The semidirect product of I and M with respect to θ is defined as

I ⋊θ M := (L, [−,−])

with vector space L := I ×M and bracket

[−,−] : L×L → L

[(i1,m1),(i2,m2)] := ([i1, i2]I +θ(m1)(i2)−θ(m2)(i1), [m1,m2]M)

for i1, i2 ∈ I,m1,m2 ∈ M.
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According to Definition 3.23 the semidirect product I ⋊θ M differs from the direct
product

I ×M,

which has the Lie bracket
[[i1, i2]I , [m1,m2]M],

by the additional summand of the first component

θ(m1)(i2)−θ(m2)(i1) ∈ I

The semidirect product captures how M acts on I via θ , and the direct product is
the particular case θ = 0.

Proposition 3.24 (Semidirect product). Consider two Lie algebras I and M, and a
morphism of Lie algebras

θ : M −→ Der(I).

1. The semidirect product
I ⋊θ M

is a Lie algebra.

2. The semidirect product fits into the exact sequence of Lie algebra morphisms

0 −→ I
j−→ I ⋊θ M π−→ M −→ 0

with j(i) := (i,0), π(i,m) := m.

3. The Lie algebra morphism π from part 2 has a section s, i.e. a morphism of Lie
algebras exists

M s−→ I ⋊θ M

satisfying
π ◦ s = idM.

4. We have
I ≃ j(I)⊂ I ⋊θ M

an ideal, and
M ≃ s(M)⊂ I ⋊θ M

a subalgebra of I ⋊θ M.

Proof. 1. Lie bracket: The Lie bracket is K-bilinear and alternating. In order to
verify for

x = (x1,x2),y = (y1,y2),z = (z1,z2) ∈ I ×M

the Jacobi identity in the form
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[[x,y],z]+ [[y,z],x]+ [[z,x],y] = 0

we distinguish four cases:

• If x,y,z ∈ I then the claim follows from the Jacobi identity of I.

• If x,y ∈ I and z ∈ M then in I ⋊θ M

[x,y] = ([x1,y1],0) =⇒

[[x,y],z] = ([[x1,y1],0]−θ(z2)([x1,y1]),0) = (−θ(z2)([x1,y1]),0),

[y,z] = [(y1,0),(0,z2)] = (−θ(z2)(y1),0) =⇒

[[y,z],x] = [−(θ(z2)(y1),0),(x1,0)] = ([−θ(z2)(y1),x1],0),

[z,x] = [(0,z2),(x1,0)] = (θ(z2)(x1),0) =⇒

[[z,x],y] = [(θ(z2)(x1),0),(y1,0)] = ([θ(z2)(x1),y1],0)

The claim reduces to the claim that in I

−θ(z2)([x1,y1])+ [−θ(z2)(y1),x1]+ [θ(z2)(x1),y1] = 0,

i.e.
θ(z2)([x1,y1]) = [θ(z2)(x1),y1]+ [x1,θ(z2)(y1)]

The latter equation holds because θ(z2) is a derivation of I.

• If x ∈ I and y,z ∈ M then in I ⋊θ M

[x,y] = (−θ(y2)(x1),0); [[x,y],z] = (θ(z2)(θ(y2)(x1)),0)

[y,z] = (0, [y2,z2]); [[y,z],x] = (θ([y2,z2])(x1),0)

[z,x] = (θ(z2)(x1),0); [[z,x],y] = (−θ(y2)(θ(z2)(x1)),0)

The claim reduces to the claim in I

θ(z2)(θ(y2)(x1))+θ([y2,z2])(x1)−θ(y2)(θ(z2)(x1)) = 0,

i.e.
θ([y2,z2])(x1) = θ(y2)(θ(z2)(x1))−θ(z2)(θ(y2)(x1))

The latter equation holds because θ is a morphism of Lie algebras.

• If x,y,z ∈ M then the claim follows from the Jacobi identity of M.

2. Exact sequence: The definition of I ⋊θ M shows that j and π are morphisms
of Lie algebras. The exactness of the sequence is obvious: j is injective, π is
surjective, and

im j = j(I) = ker π.
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3. Existence of a section: The map

s : M −→ I ⋊θ M, m 7→ (0,m),

is a morphism of Lie algebras, satisfying

π(s(m)) = π((m,0)) = m.

4. Embedding I and M: The kernel of a morphism of Lie algebras is an ideal:

ker π = im j = j(I)≃ I.

The image of a morphism of Lie algebras is a subalgebra. Hence the injectivity
of s implies that

s(M)≃ M

is a subalgebra of I ⋊θ M.

⊓⊔

Note. The semidirect product I ⋊θ M reduces to the direct product of Lie algebras

id : I ⋊θ M ≃ I ×M

if and only if θ = 0.

Remark 3.25 (Product versus coproduct). See also [35].

1. The direct product L1×L2 of two K-Lie algebras together with the two canonical
projections

pi : L1 ×L2 −→ Li, i = 1,2,

is the product in the category LieK of K-Lie algebras. The two embeddings

j1 : L1 ↪−→ L1 ×L2, x 7→ (x,0) and j2 : L2 ↪−→ L1 ×L2, x 7→ (0,x)

satisfy
pi ◦ ji = idLi , i = 1,2.

2. The direct sum
(L1 ⊕L2, [−,−])

of two K-Lie algebras L1 and L2 is the K-vector space L1 ⊕L2 equipped with the
Lie bracket

[X ,Y ] :=


[X ,Y ]L1 if X ,Y ∈ L1

[X ,Y ]L2 if X ,Y ∈ L2

0 if X1 ∈ L1,X2 ∈ L2
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The direct sum L1⊕L2 together with the two injective morphisms of Lie algebras

ji : Li ↪−→ L1 ⊕L2, i = 1,2,

is not the coproduct of Lie algebras: Consider a non-Abelian Lie algebra L. As-
sume there exists a morphism

f : L⊕L −→ L

which renders commutative the following diagram

L

L⊕L L

L

idj1
f

j2
id

Then for all (z1,z2) ∈ L⊕L

f (z1,z2) = z1 + z2 ∈ L

which implies for
x = (x1,x2), y = (y1,y2) ∈ L⊕L

on one hand,

f ([x,y]) = f (([x1,x2], [y1,y2])) = [x1,y1]+ [x2,y2].

On the other hand, f being a morphism satisfies

f ([x,y])= [ f (x), f (y)] i.e. f ([x,y])= [x1+x2,y1+y2] = [x1,y1]+[x2,y2]+[x1,y2]+[x2,y1],

a contradiction in the non-Abelian case.

3. Note that LieK is not an Abelian category: For non-Abelian L the set of Lie
algebra endomorphisms

HomLieK(L,L)

is not even additively closed, because

idL + idL = 2 · idL /∈ HomLieK(L,L)

due to

(2 · idL)([x,y]) = 2 · [x,y] while [(2 · idL)(x),(2 · idL)(y)] = 4 · [x,y]
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A corner stone of quantum mechanics is the canonical commutation relation

[Q,P] = ℏ ·1

with Q the position operator, P the momentum operator, 1 the identity operator,
and Planck’s constant

ℏ=
h

2π
= 1.054×10−27erg · sec.

Fig. 3.2 The birth of the strict quantum condition in [3]

This relation has been introduced by Born and Jordan and termed strict quantum
condition (German: verschärfte Quantenbedingung), see Figure 3.2.

Proposition 3.26 (Heisenberg algebra of n-dimensional quantum mechanics).
The matrices from
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heis(n) :=


0 p c

0 0n q
0 0 0

 ∈ n(n+2,R) : p = (p1, ..., pn) ∈ Rn,q = (q1, ...,qn)
⊤ ∈ Rn,c ∈ R


form a real 2n+1-dimensional Lie subalgebra of n(n+2,R), named the Heisenberg
algebra of n-dimensional quantum mechanics. In particular:

heis(1) = n(3,R).

A basis of heis(n) is the family

(P1, ...,Pn,Q1, ...,Qn, I)

with elements

• Pj = E1,1+ j, the matrix with the only non-zero entry p j = 1,

• Q j = E1+ j,n+2, the matrix with the only non-zero entry q j = 1, and

• I = E1,n+2, the matrix with the only non-zero entry c = 1

and the commutators

[Pj,Qk] = δ jk · I and [Pj, I] = [Q j, I] = [Pj,Pk] = [Q j,Qk] = 0.

A typical element of heis(n) looks like

0 p1 ... p j ... pn c
0 0 ... 0 ... 0 q1

0 0 ... 0 ... 0 q j

0 0 ... 0 ... 0 qn
0 0 ... 0 ... 0 0


∈ n(n+2,R)

with
p = (p1, ..., pn), q = (q1, ...,qn)

⊤,

see also [49, Chap. 13.1]. For further information on a graduate level about heis(n)
see [29, Chap. 2].

Proof. The commutator relations follow from the commutator formula

[Ei, j,Es,t ] = δ js ·Ei,t −δti ·Es, j,

for example

[Pj,Qk] = [E1,1+ j,E1+k,n+2] = E1,1+ j ·E1+k,n+2 −E1+k,n+2 ·E1,1+ j = δ jk ·E1,n+2
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because n+2 ̸= 1. Hence heis(n)⊂ n(n+2,R) is closed with respect to the Lie
bracket. ⊓⊔

The Heisenberg algebra is nilpotent, being a subalgebra of the nilpotent Lie al-
gebra n(n+2,R) of strictly upper triangular matrices.

The Heisenberg algebra captures the kinematics of an n-dimensional quantum
mechanical problem. For a complete description which also covers the dynamics of
the problem one needs a further operator: The Hamiltonian H of the problem and
its relation to the kinematical operators.

How to extend the Heisenberg algebra to include also the Hamiltonian H?

The solution is to construct the dynamical Lie algebra of quantum mechanics as the
semidirect product of the Heisenberg algebra and the 1-dimensional Lie algebra
generated by the Hamiltonian. For the case of 1-dimensional quantum mechanics
see also [23, Example 5.1.19].

Definition 3.27 (Dynamical Lie algebra of quantum mechanics). For n ∈ N con-
sider the Heisenberg algebra heis(n) of n-dimensional quantum mechanics with ba-
sis

(P1, ...,Pn,Q1, ...,Qn, I),

the 1-dimensional Abelian Lie algebra R with basis (H), and the morphism of Lie
algebras

θ : R−→ Der(heis(n))

to the Lie algebra of derivations, defined as

θ(H)(Pj) := Q j, θ(H)(Q j) :=−Pj, j = 1, ...,n, and θ(H)(I) := 0.

The semidirect product
quant(n) := heis(n)⋊θ R

is the dynamical Lie algebra of n-dimensional quantum mechanics. It fits into the
short exact sequence

0 −→ heis(n)
j−→ quant(n) π−→ R−→ 0.

Lemma 3.28 (Dynamical Lie algebra of quantum mechanics). The dynamical
Lie algebra of n-dimensional quantum mechanics quant(n) is a well-defined real
Lie algebra. Identifying heis(n) with the ideal
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j(heis(n))⊂ heis(n)⋊θ R

and R with the subalgebra

s(R)⊂ heis(n)⋊θ R

the distinguished commutators of quant(n) are

[H,Pj] = Q j, [H,Q j] =−Pj, j = 1, ...,n, [H, I] = 0.

Proof. i) The endomorphism θ(H) is a derivation: Using the shorthand D := θ(H):

• Left-hand side:
D([Pj,Pk)]) = D(0) = 0

Right-hand side:

[D(Pj),Pk]+ [Pj,D(Pk)] = [Q j,Pk]+ [Pj,Qk] =−δ jk · I +δ jk · I = 0.

• Left-hand side:
D([Q j,Qk)]) = D(0) = 0

Right-hand side:

[D(Q j),Qk]+ [Q j,D(Qk)] = [−Pj,Qk]+ [Q j,−Pk] =−δ jk · I +δ jk · I = 0.

• Left-hand side:
D([Pj,Qk)]) = D(δ jk · I) = 0

Right-hand side:

[D(Pj),Qk]+ [Pj,D(Qk)] = [Q j,Qk]+ [Pj,−Pk] = 0.

• Left-hand side:
D([I,Pj]) = D(0) = 0

Right-hand side:

[D(I),Pj]+ [I,D(Pj)] = 0+[I,Q j] = 0

• Left-hand side:
D([I,Q j]) = D(0) = 0

Right-hand side:

[D(I),Q j]+ [I,D(Q j)] = 0− [I,Pj] = 0.

ii) The map θ is a morphism of Lie algebras: Because R is 1-dimensional and
Abelian, the claim follows from [D,D] = 0.
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iii) Computing the distinguished commutators: For j = 1, ...,n the distinguished
commutators follow from the definition of the Lie bracket of a semidirect product.
In

quant(n) := heis(n)⋊θ R

holds
[(0,H),(Pj,0)] = ([0,Pj]+D(Pj), [H,0]) = (Q j,0)

[(0,H),(Q j,0)] = ([0,Q j]+D(Q j), [H,0]) = (−Pj,0)

[(0,H),(I,0)] = (D(I),0) = (0,0),

i.e. under the identification of

heis(n) with j(heis(n))⊂ quant(n) and of R with s(R)⊂ quant(n)

holds
[H,Pj] = Q j, [H,Q j] =−Pj, [H, I] = 0.

⊓⊔

Proposition 3.29 (Solvability of quant(n)). The dynamical Lie algebra of quantum
mechanics

quant(n) := heis(n)⋊θ R

is solvable, but not nilpotent. Its derived algebra is

D1quant(n) = heis(n).

Proof. The descending central series of

L := quant(n) = spanR < Pj,Q j, I,H : j = 1, ..,n >

is
C1L := spanR < Pj,Q j, I : j = 1, ..,n)

and
C2L = [L,C1L] = spanR < Pj,Q j, I : j = 1, ..,n) =C1L

Hence for all i ∈ N
CiL ̸= {0},

which shows that quant(n) is not nilpotent. Corollary 3.22 and the subsequent note
for the base field R imply that quant(n) is solvable. ⊓⊔

Remark 3.30 (Heisenberg picture and Schroedinger picture).

1. Proposition 3.26 and Definition 3.27 introduce the Heisenberg Lie algebra heis(n)
respectively the Lie algebra quant(n) of n-dimensional quantum mechanics as
abstract mathematical objects.
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The role of these Lie algebras for quantum mechanics results from representing
their elements as selfadjoint operators on complex Hilbert spaces, which are
adapted to the particular physical system. Only after applying a representation
the Lie algebra gets a meaning for physics. In the most simple case
of 1-dimensional quantum mechanics the representation ρ maps the elements of

heis(1) = spanR < Q, P, I >

to selfadjoint operators, defined on functions f from a dense subspace of L2(R),
see [27, Chap. 3.6]:

ρ(P)( f (x)) := x · f (x) (multiplication)

ρ(Q)( f ) :=−i ·
d f
dx

(derivation)

ρ(I) :=−i · id (scalar)

Here the definition of ρ(I) follows from the canonical commutator relation

[P,Q] = I

because it forces

ρ(I) = ρ([P,Q]) = [ρ(P),ρ(Q)] =−i · id.

The canonical commutator relations have no non-zero representation on a
finite-dimensional vector space V : Taking the trace of a matrix equation

ρ(I) = ρ([P,Q]) = [ρ(P),ρ(Q)] =−i · id

shows
0 = trace[ρ(P),ρ(Q)] = trace(−i · id) =−i · trace idV

and implies V = {0}.

2. Like classical mechanics also quantum mechanics distinguishes between states
and observables to describe a physical system, cf. [37]. Pure states, the most sim-
ple states, are represented by the 1-dimensional subspaces of a complex Hilbert
space Hilb with a Hermitian product < −,− >, and the observables are self-
adjoint operators on Hilb. The expectation value of measuring the observable Ω

when the system has been prepared in state φ is

< φ |Ω |φ >:=< φ ,Ω(φ)>=< Ωφ ,φ > ∈ R.

3. A pure state φ is given by a function ψ = ψ(t), and the temporal development
of the system, i.e. its dynamics, is governed by the Hamiltonian H of the system
according to the Schrödinger equation, the ordinary differential equation
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H(ψ(t)) = i ·
...

ψ(t), normalization: ℏ= 1.

The Hamiltonian H is the observable of the total energy of the system. The
Schrödinger picture considers the temporal development of the states and fixes
the observables. For conservative systems the Hamiltonian has no explicit time
dependency.

4. The Heisenberg picture takes the opposite approach: It fixes the states and con-
siders the temporal development of the observables. This approach resembles the
Hamiltonian approach of classical mechanics using canonical coordinates. In the
Heisenberg picture, the temporal development of an observable Ω is governed
by the commutator equation

1
i

...
Ω(t) = [H,Ω(t)]+

∂

∂ t
Ω(t).

Here the partial derivation
∂

∂ t
Ω vanishes in case Ω does not explicitly depend

on the time t. In particular, for a set of canonical observables P j, Q j, j = 1, ...,n:

1
i

...
Q j(t) = [H,Q j(t)] =−P j(t)

1
i

...
P j(t) = [H,P j(t)] = Q j(t).

A simple example of a 1-dimensional quantum system is the 1-dimensional os-
cillator. It has the Hamiltonian

H =
1

2m
P2 +

mω2

2
Q2

with respect to the momentum observable P and the position observable Q. The
real number ω denotes the oscillator frequency, the real number m denotes the
oscillator mass.

The mathematical formalism of quantum mechanics is well understood: The theory
of self-adjoint operators in a Hilbert space forms part of the domain of functional
analysis. One needs the existence of the spectral representation.
But the interpretation of the physical content, even more the implications
considered from the viewpoint of philosophy of nature are still debated.
Historically, the first elaborated interpretation of quantum mechanics was the
Copenhagen interpretation, see [20]. Its main thesis: Observables of quantum
mechanical systems get a specific value not until the moment of observation.

The Copenhagen interpretation is sharpened further in Rovelli’s Relational
Quantum Mechanics, see [39]: Observables get a specific value in the act of
interaction of two physical systems, and this value has a relative meaning:
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“Quantum mechanics is a theory about the physical description of physical system
relative [emphasis JW] to other systems, and this is a complete description of the
world.”

Rovelli’s formulation does not refer to any observation, in particular it does not
refer to an observer. Concerning the Copenhagen interpretation Rovelli finishes his
paper:

“Heisenberg’s insistence on the fact that the lesson to be taken from the atomic
experiments is that we should stop thinking of the state of the system has been
obscured by the subsequent terse definition of the theory in terms of states given by
Dirac. Here, I have taken Heisenberg’s lesson to some extreme consequences.”



Chapter 4
Killing form and semisimple Lie algebras

All vector spaces and Lie algebras are assumed finite-dimensional if not stated oth-
erwise. The composition f2 ◦ f1 of two endomorphisms will be denoted as product
f2 · f1 or also f2 f1.

4.1 The trace of endomorphisms

The present section introduces a powerful tool for the study of Lie algebras: Impor-
tant properties of a Lie algebra L are encoded in a bilinear form, which derives from
the trace of the endomorphisms of the adjoint representation of L.

Lemma 4.1 (Basic properties of the trace). Consider a vector space V and endo-
morphisms x,y,z ∈ End(V ).

1. For nilpotent x holds
tr x = 0.

2. With respect to two endomorphisms the trace is symmetric, i.e.

tr (xy) = tr (yx) or tr [x,y] = 0.

3. With respect to cyclic permutation the trace is invariant, i.e.

tr (xyz) = tr (yzx)

4. With respect to the commutator the trace is “associative”

tr ([x,y]z) = tr (x[y,z]).

Proof. 1) All complex eigenvalues of a nilpotent endomorphism are zero.

127
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2) With respect to matrix representations of the endomorphisms note

tr (xy) = ∑
i, j

xi jy ji = ∑
i, j

y jixi j = tr (yx)

3) According to part 2) we have

tr(xyz) = tr(x(yz)) = tr((yz)x) = tr(yzx).

4) We have
[x,y]z = xyz− yxz and x[y,z] = xyz− xzy.

The ordering yxz results from the ordering xzy by cyclic permutation. Hence part 3)
implies

tr(yxz) = tr(xzy)

which proves the claim.

Definition 4.2 (Killing form). Let L be a K-Lie algebra.

1. The trace form of a representation

ρ : L → gl(V )

on a K-vector space V is the symmetric bilinear map

β : L×L →K, β (x,y) := tr (ρ(x)◦ρ(y)).

2. The Killing form of L

κ : L×L →K, κ(x,y) := tr (ad(x)◦ad(y))

is the trace form of the adjoint representation ad : L → gl(L),

Theorem 4.3 (Cartan condition for the solvability of embedded Lie algebras).
For a K-vector space V each Lie subalgebra L ⊂ gl(V ) of matrices with vanishing
trace form, i.e. satisfying for all x, y ∈ L

tr(x◦ y) = 0,

is solvable.

For the proof cf. [13, Theor. C.5].

Proof. A real Lie algebra is solvable if and only if its complexification is solvable.
Therefore we may assume K= C for the base field.
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i) According to Corollary 3.22 it suffices to prove the nilpotency of the commutator
algebra

DL = [L,L].

Therefore it is sufficient according to Corollary 3.6 to show, that each element

x ∈ DL ⊂ gl(V )

is a nilpotent endomorphism of V .

ii) Consider an arbitrary but fixed endomorphism x ∈ [L,L]. It’s Jordan
decomposition according to Theorem 1.19

x = xs + xn ∈ End V

provides a basis of V consisting of generalized eigenvectors of x. With respect to
this basis x is an upper triangular matrix and its semisimple summand xs is a
diagonal matrix

xs = diag(λ1, ...,λn)

with each eigenvalue λ j of x counted with its algebraic multiplicity. Define the
complex conjugate diagonal matrix

xs = diag(λ 1, ...,λ n)

Then the product
xs ◦ x

is an upper triangular matrix with the values

|λ j|2, j = 1, ...,n,

on the main diagonal. Hence

tr(xs ◦ x) =
n

∑
j=1

|λ j|2 ≥ 0

We have to show
tr(xs ◦ x) = 0

By assumption x ∈ [L,L] is a sum of commutators of the form [y,z] with y, z ∈ L.
Hence

tr(xs ◦ x)

is a sum of terms of the form

tr(xs ◦ [y,z]) = tr([xs,y]◦ z),

with the last equality due to Lemma 4.1.
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iii) Relating diagonal matrices A and A: According to the proof of Proposition 3.3
the matrices of ad xs and of ad xs are diagonal with respect to the canonical
basis (Ei j)1≤i, j≤n of End(V ):

ad xs = diag
(
(λi −λ j)i j

)
and ad xs = diag

(
(λ i −λ j)i j

)
We choose a polynomial q ∈ C[T ] satisfying for all 1 ≤ i, j ≤ n

q(λi −λ j) = λ i −λ j

Applying the polynomial in the context of the two diagonal matrices shows

q(ad xs) = ad xs

Because the Jordan decomposition of ad x is obtained by applying ad to the Jordan
decomposition of x, there exists a polynomial s ∈ C[T ] with

ad xs = s(ad x).

Hence
(ad x)(L)⊂ L =⇒ (ad xs)(L)⊂ L =⇒ (ad xs)(L)⊂ L

We obtain for each of the summands from part ii)

tr((ad xs)(y)◦ z) = 0

because by assumption

u := (ad xs)(y) ∈ L =⇒ tr(u◦ z) = 0

Collecting all summands gives

tr(xs ◦ x) = 0

⊓⊔

In Theorem 4.3 the converse implication does not hold: The Lie algebra t(n,K) is
solvable but does not fulfill the Cartan condition.

Corollary 4.4 (Cartan’s characterization of solvability). For a complex Lie alge-
bra L are equivalent:

• The Lie algebra L is solvable.

• The Killing form κ of L satisfies

κ(L, [L,L]) = 0.
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Proof. • Assume L solvable. Applying Lemma 3.16 to the exact sequence

0 −→ Z(L)−→ L ad−→ ad(L)−→ 0

shows that
ad(L)⊂ gl(End L)

is solvable. Lie’s theorem, Theorem 3.21, implies that the Lie algebra ad(L) can
be considered a matrix algebra of upper triangular matrices, and elements of

ad([L,L]) = [ad L,ad L]

as strictly upper triangular matrices.

Set
DL := D0L = [L,L]

as a shorthand for the commutator algebra of L.

κ(L,DL) = {tr(ad x◦ad y) : x ∈ L, y ∈ DL}

For x ∈ L and y ∈ DL the matrix product

ad x◦ad y

is a strictly upper triangular matrix and therefore nilpotent. Then the Killing
form annihilates the pair:

κ(x,y) := tr(ad x◦ad y) = 0

Because x ∈ L and y ∈ [L,L] are arbitrary we obtain

κ(L, [L,L]) = 0

• Assume κ(L, [L,L]) = 0. Then in particular

κ([L,L], [L,L]) = κ(DL,DL) = 0.

Theorem 4.3 implies that the embedded Lie algebra ad DL is solvable. The kernel

ker[ad : DL −→ gl(DL)] = Z(DL)

is Abelian, hence solvable. Lemma 3.16 implies the solvability of DL. Eventually

DL = [L,L] solvable =⇒ L solvable

according to the definition of solvability via the derived series of L.
⊓⊔
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Note. Corollary 4.4 is valid also for a real Lie algebra L: For the necessary
calculation with the Killing forms of L and L⊗RC see [31, Proof of Prop. 1.46].

4.2 Fundamentals of semisimple Lie algebras

Definition 4.5 (Simple, semisimple and reductive Lie algebras). Consider a Lie
algebra L.

1. L is simple iff [L,L] ̸= {0} and L has no ideal different than {0} and L.

2. L is semisimple iff L has no Abelian ideal I ̸= {0}.

3. L is reductive iff it splits as the direct sum

L = Z ⊕S

with an Abelian ideal Z ⊂ L and a semisimple ideal S ⊂ L.

These concepts apply also to an ideal I ⊂ L when the ideal is considered a Lie
algebra.

Note: For each Lie algebra L the derived algebra [L,L]⊂ L is an ideal. Hence

[L,L] = L

for simple L. By definition the trivial Lie algebra L = {0} is semisimple, but not
simple. A semisimple Lie algebra L ̸= {0} is not Abelian. One has

simple =⇒ semisimple =⇒ reductive.

Remark 4.6 (Solvable Lie algebra, semisimple Lie algebra).

1. If a Lie algebra L has a solvable Ideal I ̸= {0} then L has also an Abelian
ideal ̸= {0}:

Let i ∈ N be the largest index with DiI ̸= {0} for the derived series of I.
Then DiI ⊂ L is an Abelian ideal because

Di+1I = [DiI,DiI] = {0}.

The reverse implication is obvious: Each Abelian ideal of L is in particular a
solvable ideal.
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2. As a consequence for a Lie algebra L:

L semisimple ⇐⇒ rad(L) = {0}.

The equivalence indicates a complementarity between semisimplicity and solv-
ability. The only Lie algebra which is both semisimple and also solvable is the
zero Lie algebra L = {0}.

A simple application of the characterization of semisimpleness is Proposition 4.7.

Proposition 4.7 (Semisimple Lie algebras are embedded Lie algebras).

The adjoint representation
ad : L −→ gl(L)

of a semisimple Lie algebra L is a faithful representation of L. In particular,

L ≃ ad(L)⊂ Der(L)⊂ gl(L)

represents L as a matrix algebra.

Proof. The kernel of the adjoint representation of L is the center of L, an Abelian
ideal of L. Because L is semisimple, one concludes

Z(L) = {0}.

Remember that Proposition 2.8 demonstrates: The adjoint representation already
maps to the Lie algebra of derivations of L. ⊓⊔

Each Lie algebra becomes semisimple after dividing out its radical.

Proposition 4.8 (Semisimpleness after dividing out the radical). For any Lie
algebra L the quotient L/rad(L) is semisimple.

Proof. Consider the canonical projection of Lie algebras

π : L −→ L/rad(L).

Each ideal
I ⊂ L/rad(L)

has the form
I = J/rad(L)

with the ideal
J := π

−1(I)⊂ L

If I is an Abelian ideal, then [I, I] = 0, hence
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[J,J]⊂ rad(L)

Therefore the derived algebra
D1J = [J,J]

is solvable. The quotient J/D1J is Abelian, hence solvable. Lemma 3.16 applies to
the canonical exact sequence

0 −→ D1J −→ J −→ J/D1J −→ 0

and shows that J is a solvable ideal. Hence

J ⊂ rad(L)

and
I = π(J) = 0

⊓⊔

According to Proposition 4.8 each Lie algebra L fits into an exact sequence of Lie
algebras

0 −→ I
j−→ L π−→ M −→ 0

with I = rad(L), a solvable subalgebra, and M = L/I a semisimple quotient. Levi’s
theorem provides a Lie algebra morphism

s : M −→ L

which is a section against π . When identifying I with j(I) the section s induces the
Lie algebra morphism

θ : M −→ Der(I), θ(m) := (ad s(m))|I,

to the derivations of I. One obtains L as the semidirect product

L ≃ I ⋊θ M

For a proof of Levi’s theorem see [4, Chap. I: §6.8 Theor. 5 and §1.8].

Lemma 4.9 (Radical). Consider a Lie algebra L. Then for each ideal L′ ⊂ L the
radical rad L′ ⊂ L is also an ideal.

Proof. The quotient L/rad L is semisimple due to Proposition 4.8. The inclusion

L′ ⊂ L

implies the inclusion of Lie algebras
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L′/(L′∩ rad L)⊂ (L/rad L)

Due to Corollary 4.20 also
L′/(L′∩ rad L)

is semisimple. The vanishing of its radical implies

rad L′ ⊂ (L′∩ rad L).

The right-hand side
L′∩ rad L

is a solvable ideal of L′, hence contained in rad L′. We obtain:

rad L′ = L′∩ rad L

is the intersections of two ideals in L, and therefore itself an ideal in L. ⊓⊔

Definition 4.10 (Orthogonal space of a symmetric bilinear form).

Consider a K-vector space V and a symmetric bilinear form

β : V ×V →K.

i) The orthogonal space with respect to β of a subspace M ⊂V is

M⊥ := {x ∈V : β (x,M) = 0}.

The orthogonal space V⊥ is named the nullspace of β or the radical of β .

ii) The form β is non-degenerate if its nullspace is trivial, i.e. V⊥ = {0}.

Remark 4.11 (Orthogonal space). Consider a K-vector space V with a symmetric,
non-degenerate bilinear form

β : V ×V −→K.

Then β induces an isomorphism to the dual space

j : V −→V ∗, j(v) := β (v,−).

For a subspace M ⊂V one obtains

M⊥ ≃ j(M⊥) = {λ ∈V ∗ : λ |M = 0} ≃ (V/M)∗
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Lemma 4.12 (Orthogonal space of ideals). Consider a vector space V , a Lie alge-
bra L ⊂ gl(V ) and the trace form

β : L×L →K, β (x,y) := tr(xy).

For an ideal I ⊂ L the orthogonal space I⊥ ⊂ L of β is also an ideal.

Proof. Consider x ∈ I⊥. We have to show: For arbitrary y ∈ L and all u ∈ I holds

[y,x] ∈ I⊥, i.e. β ([y,x],u) = 0

We have
−β ([y,x],u) = β ([x,y],u) = β (x, [y,u])

according to Lemma 4.1. Because [y,u] ∈ I and x ∈ I⊥

β (x, [y,u]) = 0.

Hence [x,y] ∈ I⊥. ⊓⊔

The main step in characterizing semisimplicity of a Lie algebra by its Killing
form is Proposition 4.13.

Proposition 4.13 (Non-degenerateness of the trace form of an embedded semisim-
ple Lie algebra). Consider a vector space V and a semisimple Lie algebra L ⊂ gl(V ).
Then the trace form

β : L×L →K, β (x,y) := tr(xy),

is non-degenerate.

Proof. The nullspace

S := L⊥ = {x ∈ L : tr(xy) = 0 f or all y ∈ L}

is an ideal according to Lemma 4.12. We consider the Lie algebra S: By definition
for all x,y ∈ S holds

tr(x◦ y) = 0

Hence Cartan’s trace condition, Theorem 4.3, shows that S is solvable. Hence

S ⊂ L

is a solvable ideal. Semisimpleness of L implies S = {0}. ⊓⊔

The main theorem of the present section is the following Cartan criterion for
semisimplicity. It derives from Proposition 4.13. It is therefore a consequence of
Cartan’s trace criterion for solvability.
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Theorem 4.14 (Cartan’s characterization of semisimplicity). For a Lie algebra L
the following properties are equivalent:

• L is semisimple

• The Killing form κ of L is non-degenerate.

Proof. i) Assume L semisimple. According to Proposition 4.7 the adjoint
representations identifies L with the subalgebra

ad L ⊂ gl(L).

Therefore κ is non-degenerate according to Proposition 4.13.

ii) Assume κ non-degenerate, i.e. L⊥ = 0. Consider an Abelian ideal

I ⊂ L.

We claim I ⊂ L⊥: For arbitrary, but fixed x ∈ I and for all y ∈ L the composition

ad(x)◦ad(y) : L → I ⊂ L

is a nilpotent endomorphism of L, because

L
ad y−−→ L ad x−−→ I

ad y−−→ I ad x−−→ [I, I] = {0}.

Because the trace of nilpotent endomorphisms vanishes we obtain

κ(x,y) = tr(ad(x)◦ad(y)) = 0.

As a consequence x ∈ L⊥. Because x ∈ I was arbitrary, we obtain

I ⊂ L⊥.

The inclusion implies I = 0 because κ is non-degenerate by assumption.
Therefore {0} is the only Abelian ideal of L, and L is semisimple.

⊓⊔

Lemma 4.15 (Killing form of an ideal). Consider a K-Lie algebra L. For any
ideal I ⊂ L the Killing form κI of I is the restriction of the Killing form κ of L
to I × I

κI = κ|(I × I) : I × I −→K.

Proof. Any base of the vector subspace I ⊂ L extends to a base of L. Then
for x, y ∈ I the map

(ad x)◦ (ad y) : L → I ⊂ L
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has the matrix representation (
A B
0 0

)
.

And the matrix A represents the restriction

(ad x)|I ◦ (ad y)|I : I → I.

Hence
tr((ad x)◦ (ad y)) = tr A = tr((ad x)|I ◦ (ad y)|I),

i.e.
κI(x,y) = tr((ad(x)◦ad(y))|I) = tr(ad(x)◦ad(y)) = κ(x,y).

⊓⊔

Proposition 4.16 (Semisimple ideal as a direct summand). If a Lie algebra L con-
tains a semisimple ideal I ⊂ L, then L splits as

L = I ⊕ J

with an ideal J ⊂ L.

Proof. i) Directness: With respect to the Killing form κ of L consider the
orthogonal space of I in L

I⊥ = {y ∈ L : κ(I,y) = 0}

Lemma 4.1 shows that J := I⊥ is also an ideal in L. The intersection

A := (I ∩ J)⊂ L

is an ideal in L. Due to Lemma 4.15 the Killing form κI of I is the restriction of the
Killing form κ to arguments from L. Hence

0 = κ(I,A) = κI(I,A),

and the semisimpleness of I implies A = {0}.

ii) Dimension formula: One has

dim I⊥ ≥ dim L−dim I

because the number of linear equations, which define the reduction from L to I⊥, is
equal to dim I. Hence

dim I +dim I⊥ ≥ dim L,

which implies
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dim I +dim I⊥ = dim L and L = L⊕ J.

⊓⊔

Theorem 4.17 (Criterion for reductiveness). Consider a complex vector space V
and an embedded subalgebra L ⊂ gl(V ). If V is an irreducible L-module, then L
splits as

L = L0 ⊕ J

• with the semisimple subalgebra

L0 := {x ∈ L : tr x = 0}

• and a central, scalar ideal

J ⊂ C ·1V ⊂ Z(L).

Proof. i) Semisimpleness of L0: The kernel of the trace map

L0 = ker [tr : End(V )−→ C]

is an ideal in L of codimension

codimL L0 ≤ 1.

Lemma 4.9 implies
rad L0 ⊂ L

is an ideal. The Lie algebra
M := rad L0

is solvable. Due to Theorem 3.20 there exists a common eigenvector v ∈V of all
endomorphism of M. The eigenvector v defines a linear functional

λ : M −→ C

satisfying for all X ∈ M
X .v = λ (X) ·v

The vector space

W := {w ∈V : X .w = λ (w) ·w for all w ∈ M}

is not zero. Due to Dynkin’s Lemma, Proposition 3.19, the vector space W ⊂V is
even an L-module. The irreducibility of the L-module V implies

W =V.

Hence for each x ∈ M the endomorphism
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x : V −→V

is the scalar
x = λ (x) ·1V

with
tr x = (dim V ) ·λ (X)

The inclusion
x ∈ rad L0 = ker(tr X)

implies λ (x) = 0, and a posteriori x = 0. We obtain

M = rad L0 = {0},

which shows the semisimplicity of L0.

ii) The central ideal J: Proposition 4.16 implies the existence of an ideal J ⊂ L
such that

L = L0 ⊕ J

The estimates
codimL1 L ≤ 1 and dim L+dim J ≤ dim L1

imply
dim J ≤ 1.

Hence J is an Abelian ideal in L, and

L = L0 ⊕ J

The argument, which was applied above to the solvable Lie algebra M, also applies
to the Abelian Lie algebra J. It shows that J is generated by a scalar, in particular J
is a central ideal.

⊓⊔

Corollary 4.18 (Semisimpleness of the classical Lie algebras from the ABCD-series).
Each classical K-Lie algebra L from the ABCD-series within the parameter domain (r,m)
from Proposition 2.15 is semisimple.

Proof. 1. Complex base field: Denote by L a complex Lie algebra within the range
of the corollary. Let V the complex vector space where the defining matrices
of L act as endomorphisms. Then

L ⊂ gl(V )

is a Lie subalgebra. In order to apply Theorem 4.17 we show that
the L-module V is irreducible.
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• A-series L = sl(r,C): Consider the canonical basis (e j)1≤ j≤m of Cm ≃V . For
each j = 1, ...,m, exists a matrix A ∈ L satisfying

A · e1 = e j

Hence the L-module V is irreducible.

For the Lie algebras L from the remaining B,C,D-series we denote
by (Ers)1≤r,s≤m the canonical basis of the vector space End V . Due to their
definition all matrices from L ⊂ gl(B) are symmetric. For a
given L-submodule W ⊂V we introduce the associative matrix algebra

T := { f ∈ End V : f (W )⊂W}.

It satisfies L ⊂ T , because W is an L-module.

• B-series and D-series L = so(r,C): For pairwise distinct
indices 1 ≤ i, j,k ≤ m the elements

Ei j −E ji and E jk −Ek j

belong to L, hence also to T . Because T is an associative matrix algebra, also
for the product

Eik := (Ei j −E ji) · (E jk −Ek j) ∈ T.

And for all indices 1 ≤ i ≤ m

Eii = Eik ·Eki, k ̸= i,

implies
Eii ∈ T.

Hence
T = End V and W =V.

Therefore V is an irreducible L-module.

• C-series L = sp(r,C): For arbitrary indices 1 ≤ i, j ≤ r one starts with the
block matrices (

0 Eii
0 0

)
,

(
0 0

Ei j +E ji

)
∈ L.

Hence their product(
0 Eii
0 0

)
·
(

0 0
Ei j +E ji

)
=

(
Eii · (Ei j +E ji) 0

0 0

)
=

(
Ei j 0
0 0

)
belongs to T . Analogously, one shows
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0 0
0 Ei j

)
∈ T.

Then for arbitrary α ∈ M(r× r,C) the product in block form satisfies(
α 0
0 0

)
·
(

0 1
0 0

)
=

(
0 α

0 0

)
∈ T

and also (
0 0
0 α

)
·
(

0 0
1 0

)
=

(
0 0
α 0

)
∈ T

Hence
T = End V and W =V.

Therefore V is an irreducible L-module.

As a consequence of Theorem 4.17, each complex Lie algebra L of
the A,B,C,D-series within the given range is reductive. Because all matrices
of L are traceless, the scalar ideal J ⊂ Z(L) vanishes, and L is semisimple.

2. Real base field: A real Lie algebra M is semisimple iff its complexification

M⊗RC

is semisimple. According to this general result part i) implies the
semisimpleness of L.
⊓⊔

Note: Theorem 7.10 will show that all complex Lie algebras from Corollary 4.18
are even simple. The proof of Corollary 4.18 does not generalize to type D1.
Indeed, the Lie algebra L of type D1 is Abelian and not semisimple.

The first step on the way to split a semisimple Lie algebra as a direct sum of simple
Lie algebras is Proposition 4.19.

The direct sum
L := L1 ⊕L2

of two Lie algebras L1 and L2 has as underlying vector space the direct sum of the
vector spaces underlying L1 and L2, and the Lie bracket of L is by definition

[L1,L2] := {0}.

Hence both Lie algebras L1 and L2 become ideals in L.

Conversely, taking the direct sum
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I ⊕ J

of two ideals of a Lie algebra presupposes that the sum of the underlying vector
spaces is direct. Then I ∩ J = {0}, which implies for the Lie bracket

[I,J]⊂ (I ∩ J) = {0}.

As a consequence: If a Lie algebra L splits in the category of vector spaces as the
direct sum

L = I ⊕ J

with two ideals I, J ⊂ L, then L also splits in the category of Lie algebras as the
direct sum of the Lie algebras I and J.

All of these considerations also apply to the direct sum of arbitrary many Lie
algebras.

Proposition 4.19 (Splitting a semisimple Lie algebra with respect to an ideal).
Consider a semisimple Lie algebra L and an ideal I ⊂ L. Then:

1. The Lie algebra L splits as the direct sum of ideals

L = I ⊕ I⊥

with I⊥ the orthogonal space with respect to the Killing form of L.

2. Both ideals I, I⊥ ⊂ L are semisimple.

Proof. 1) Direct sum: First we prove a dimension formula. According to Car-
tan’s criterion for semisimplicity, Theorem 4.14, the Killing form κ of L is non-
degenerate. Hence the induced map

j : L −→ L∗, j(x) := κ(x,−))

is an isomorphism. Remark 4.11 implies

j(I⊥) = (L/I)∗

Hence
dim I⊥ = dim(L/I)∗ = dim(L/I) = dim L−dim I

or
dim I +dim I⊥ = dim L

Secondly, we show
I ∩ I⊥ = {0} :

According to Lemma 4.12 also the orthogonal space I⊥ ⊂ L is an ideal. Due to
Proposition 4.7 we may identify L with ad L. Then Cartan’s trace condition for
solvability applies to the ideal
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J := I ∩ I⊥

considered as a Lie algebra: The Killing form κJ of J is the restriction to J of the
Killing form κ of L, according to Lemma 4.15. We have

κJ([J,J], J) = κ([J,J], J) = 0

because
[J,J]⊂ J ⊂ I and J ⊂ I⊥.

The Cartan criterion for solvability, Corollary 4.4, implies that J ⊂ L is solvable,
and semisimpleness of L implies

J = {0}.

As a consequence, the dimension formula for the sum of vector spaces

dim (I + I⊥) = dim I +dim I⊥−dim(I ∩ I⊥) = dim I +dim I⊥ = dim L

implies the direct sum decomposition

L = I ⊕ I⊥.

2) Semisimpleness: Due to part 1) any Abelian ideal J ⊂ I is also an Abelian ideal
of L, because

[J, I⊥]⊂ [I, I⊥] = {0}.

The semisimple Lie algebra L has no non-zero Abelian ideal, hence J = 0. Analo-
gously for an Abelian ideal of I⊥. ⊓⊔

Corollary 4.20 (Semisimplenes in exact sequences). Consider a short exact se-
quence of Lie algebra morphisms

0 −→ L0
j−→ L1

π−→ L2 −→ 0

Then are equivalent:

• The Lie algebra L1 is semisimple.

• Both Lie algebras L0 and L2 are semisimple.

Proof. We identify L0 with the ideal j(L0)⊂ L1.

• Assume L1 semisimple. Due to Proposition 4.19 the Lie algebra L1 splits as

L1 = L0 ⊕L⊥
0 ,

and the ideals
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L0 ⊂ L1 and L⊥
0 ⊂ L1

are semisimple. Hence
L2 ≃ L1/L0 ≃ L⊥

0

is semisimple.

• Assume L0 and L2 semisimple. Consider an Abelian ideal J ⊂ L1. Then

π(J)⊂ π(L1) = L2

is an ideal because π : L1 −→ L2 is surjective. In addition, π(J) is Abelian. The
semisimpleness of L2 implies π(J) = 0, i.e.

J ⊂ L0

is an Abelian ideal. Semisimpleness of L0 implies J = 0.
⊓⊔

Theorem 4.21 (Splitting a semisimple Lie algebra into simple summands). Con-
sider a Lie algebra L.

1. The following properties are equivalent:

• L is semisimple

• L splits as a direct sum

L =
⊕
α∈A

Iα , card A < ∞,

of simple ideals Iα ⊂ L.

2. Assume L semisimple with a splitting according to part 1

L =
⊕
α∈A

Iα , card A < ∞.

Each ideal I ⊂ L splits as
I =

⊕
α∈A

πα (I)̸={0}

Iα

If I is simple then for exactly one α ∈ A

I = Iα .

Hence the splitting of L is uniquely determined up to the order of the summands.
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3. A semisimple Lie algebra L equals its derived algebra, i.e.

L = D1L = [L,L].

Proof. Each simple Lie algebra L equals its derived algebra

L = [L,L]

because [L,L]⊂ L is an ideal, but L is not Abelian and has no other ideals than {0}
and L itself.

1. i) Assume L semisimple. In case L = {0} take the empty sum with index
set A = /0. Otherwise L ̸= {0} and L is not Abelian.

If L has no ideal different from L and different from {0}, then L is simple.
Otherwise we choose an ideal I1 of minimal dimension

{0}⊊ I1 ⊊ L.

Proposition 4.19 provides a direct sum representation

L = I1 ⊕ I⊥1 .

The two ideals I1 and I⊥1 have the following properties:

• Any ideal of I1 respectively of I⊥1 is also an ideal of L because of the direct
sum representation.

• The ideals I1 and I⊥1 are semisimple due to Proposition 4.19.
• The ideal I1 is even simple: Due to the semisimpleness of L the ideal I1 is not

Abelian, and therefore
[I1, I1] ̸= {0}.

And due to its minimality I1 has no ideal different than {0} and I1.

Continuing with I⊥1 the decomposition can be iterated until no summand in the
direct sum representation

L = I1 ⊕ I2 ⊕ ...⊕ In

contains a proper ideal. The decomposition stops after finitely many steps be-
cause each step decreases the dimension of the ideals in question.

ii) Assume a direct sum decomposition

L =
⊕
α∈A

Iα , card A < ∞.

For the semisimpleness of L we have to show: The only Abelian ideal I ⊂ L
is L = {0}.
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For each α ∈ A the canonical projection

πα : L −→ Iα

is a surjective morphism of Lie algebras. Hence it maps ideals to ideals. Therefore
the image

πα(I)⊂ Iα

is an Abelian ideal of the simple Lie algebra Iα . Hence either

πα(I) = {0} or πα(I) = Iα .

The latter case is excluded because the simple Lie algebra Iα is not Abelian. As
a consequence for each α ∈ A holds

πα(I) = {0},

which implies
I = {0}.

Hence L has no Abelian ideals different from {0}.

2. Claim: For each α ∈ A with πα(I) ̸= {0} holds

πα(I) = Iα ⊂ I

For the proof consider the chain of equalities respectively inclusions

πα(I) = Iα = [Iα , Iα ] = [Iα ,πα(I)] = [Iα , I]⊂ I

Simpleness of Iα implies the first and the second equality. The third equality is
implied by the first equality. Concerning the fourth equality note: The splitting

L =
⊕
β∈A

Iβ

implies for each element x ∈ I the decomposition

x = ∑
β∈A

xβ with xβ := πβ (x) ∈ Iβ , β ∈ A.

Because for β ̸= α holds
[Iα , Iβ ] = 0,

we have
[Iα ,xα ] = [Iα ,x].

As a consequence
[Iα ,πα(I)] = [Iα , I].
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The final inclusion follows from the fact that I ⊂ L is an ideal.

3. The splitting of L implies the direct sum decomposition

[L,L] = [
⊕
α∈A

Iα ,
⊕
β∈A

Iβ ] = ∑
α,β∈A

[Iα , Iβ ] = ∑
α∈A

[Iα , Iα ] =

= ∑
α∈A

Iα =
⊕
α∈A

Iα = L

⊓⊔

The logical dependencies between the results of the last two sections is clarified
by the diagram from Figure 4.1. It shows the fundamental role of the Killing form
as part of the Cartan criteria for solvability and semisimplicity.

T heorem 4.3 Lemma 4.1

Proposition 4.13

Corollary 4.4 T heorem 4.14

T heorem 4.21

Fig. 4.1 Logical relations of the results in Section 4.1 and 4.2

4.3 Weyl’s theorem on complete reducibility

Alike to splitting a semisimple Lie algebra as a direct sum of simple Lie alge-
bras Weyl’s Theorem 4.30 splits an arbitrary finite-dimensional representation of
a semisimple Lie algebra L as a direct sum of irreducible representations of L.

Consider a K-Lie algebra L, a vector space V , and a representation of L

ρ : L → gl(V ).
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Recall from Definition 2.4 that V is named an L-module with respect to ρ . As a
shorthand one often uses for the module operation the notation from commutative
algebra

L×V →V,(x,v) 7→ x.v := ρ(x)(v).

Definition 4.22 (Reducible and irreducible modules). Consider a Lie algebra L
and an L-module V .

1. A submodule W of V is a subspace W ⊂V stable under the action of L, i.e.

L.W ⊂W.

2. An L-module V is irreducible iff V has exactly two different L-submodules,
namely V and {0}. Otherwise V is reducible. Notably, the zero-module is re-
ducible.

3. A submodule W of V has a complement iff a submodule W ′ ⊂V exists with

V =W ⊕W ′

as a direct sum of vector spaces.

4. An L-module V is completely reducible iff a decomposition exists

V =
k⊕

j=1

Wj

with irreducible L-modules Wj, j = 1, ...,k.

Applying the standard constructions from linear algebra to L-modules creates a
series of new L-modules based on existing L-modules, cf. [24, Chap. 6.1].

Definition 4.23 (Induced representations). Consider a Lie algebra L. Two repre-
sentations of L

ρ : L → gl(V ) and σ : L → gl(W )

with corresponding L-modules V and W induce further representations of L in a
canonical manner:

1. Direct sum ρ ⊕σ : L −→ gl(V ⊕W ) with

(ρ ⊕σ)(x)(v+w) := ρ(x)(v)+σ(x)(w), (x ∈ L, v ∈V, w ∈W ).

Corresponding module: Direct sum V ⊕W with

x.(v+w) := x.v+ x.w
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2. Dual representation ρ∗ : L → gl(V ∗) with - note the minus sign -

(ρ∗(x)λ )(v) :=−λ (ρ(x)v), (x ∈ L,λ ∈V ∗,v ∈V ).

Corresponding module: Dual module V ∗ with

(x.λ )(v) =−λ (x.v).

3. Tensor product ρ ⊗σ : L → gl(V ⊗W ) with

(ρ ⊗σ)(x)(v⊗w) := (ρ(x)⊗ idW + idV ⊗σ(x))(v⊗w) =

= ρ(x)v⊗w+ v⊗σ(x)w, (x ∈ L,v ∈V,w ∈W ).

Corresponding module: Tensor product V ⊗W with

x.(v⊗w) = x.v⊗w+v⊗ x.w

4. Exterior product ρ ∧ρ : L → gl(
∧2 V ) with

(ρ ∧ρ)(x)(v1 ∧v2) := ρ(x)v1 ∧v2 +v1 ∧ρ(x)v2, (x ∈ L,v1,v2 ∈V ).

Corresponding module: Exterior product
∧2 V with

x.(u∧v) = x.u∧v+u∧ x.v.

5. Symmetric product Sym2(ρ) : L → gl(Sym2V ) with

(Sym2(ρ)(x))(v1 ·v2) := (ρ(x)v1) ·v2 +v1 · (ρ(x)v2), (x ∈ L,v1,v2 ∈V ).

Corresponding module: Symmetric product Sym2V with

x.(u ·v) = (x.u) ·v+u · (x.v).

6. Hom-representation HomK(ρ,σ) := τ : L → gl(HomK(V,W )) with

(τ(x) f )(v) := σ(x)( f (v))− f (ρ(x)(v)), (x ∈ L, f ∈ HomK(V,W ),v ∈V ).

Corresponding module: Vector space HomK(V,W ) of K-linear maps with

(x. f )(v) = x. f (v)− f (x.v).

The constructions from part 1) and from part 3) - 5) generalize to sums respec-
tively products of more than two components. The notations emphasize the close
relationship to similar constructions from commutative algebra for modules over a
ring.

Remark 4.24 (Induced representations).
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1. It remains to check that the constructions in Definition 4.23 actually yield L-modules,
in particular that they are compatible with the Lie bracket. As an example we
consider the case of the dual module V ∗ and verify that the induced map

ρ
∗ : L −→ gl(V ∗),

defined as
(ρ∗(x)λ )(v) :=−λ (ρ(x)v)

or
(x.λ )(v) =−λ (x.v),

preserves the Lie bracket. Claim: For all x,y ∈ L,λ ∈V ∗ holds

[x,y].λ = x.(y.λ )− y.(x.λ )

Evaluating both sides on an arbitrary vector v ∈V shows:

• Left-hand side:

([x,y].λ )(v) =−λ ([x.y].v) =−λ (x.(y.v))+λ (y.(x.v))

• Right-hand side:

(x.(y.λ )− y.(x.λ ))(v) = λ (y.(x.v))−λ (x.(y.v))

Note in the last equation: The functional x.(y.λ ) means to apply x to the func-
tional y.λ , hence

(x.(y.λ ))(v) =−(y.λ )(x.v) = λ (y.(x.v)),

switching the order of x and y.

2. One checks that the canonical isomorphism in the category of K- vector spaces

V ∗⊗W ≃−→ HomK(V,W ),λ ⊗w 7→ λ (−) ·w,

extends to an isomorphism in the category of L-modules.

3. For a K-linear map f ∈ HomK(V,W ):

L. f = 0 ⇐⇒ f : V →W is L-linear.

The vector space of L-linear morphisms V −→W is denoted

HomL(V,W )

Elements from HomL(V,W ) are sometimes named intertwiner, because they re-
late the L-modules V and W by an L-module morphism.



152 4 Killing form and semisimple Lie algebras

Theorem 4.25 (Lemma of Schur for irreducible representations). Consider a K-Lie algebra L.

1. Then each L-module morphism

f : V −→W

between two irreducible L-modules is either zero or an isomorphism.

2. Consider an irreducible representation with a complex vector space V

ρ : L → gl(V ).

Then each endomorphism f ∈ End(V ), which commutes with all endomorphisms
from ρ(L), is a scalar multiple of the identity, i.e. if for all x ∈ L holds

[ f ,ρ(x)] = 0,

then a complex number µ ∈ C exists with

f = µ · idV .

3. Consider two morphisms
f1, f2 : V →W

between irreducible complex L-modules. If f2 ̸= 0 then

f1 = µ · f2

for a suitable µ ∈ C, i.e.

HomL(V,W ) =

{
C V ≃W
{0} V ̸≃W

Proof. 1. Because f is a morphism, its kernel

ker f ⊂V

is a submodule. Irreducibility of V implies

ker f = {0} or ker f =V.

If ker f = {0} then f is injective and f (V )⊂W is a submodule with f (V ) ̸= {0}.
Irreducibility of W implies f (V ) = W . Therefore f is injective and surjective,
hence an isomorphism. If ker f ̸= {0}, then ker f =V , hence f is zero.

2. The endomorphism f has a complex eigenvalue µ . Its eigenspace W ⊂ V is
an L-submodule: Each eigenvector w ∈W satisfies

( f ◦ρ(x))(w) = (ρ(x)◦ f )(w) = ρ(x)(µ ·w) = µ ·ρ(x)(w).
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Now W ̸= {0} and V irreducible imply W =V .

3. Because f2 ̸= 0 the morphism f2 is an isomorphism according to part 1. Consider
the L-module morphism

f := f1 ◦ f−1
2 : W −→W.

Then
f ∈ HomL(W,W ),

i.e. f commutes with the action of L on W . Part 2 implies the existence of a
suitable µ ∈ C with

f = µ · idW

which proves
f1 = µ · f2.

⊓⊔

Definition 4.26 (Quadratic Casimir element of a representation). Consider a
semisimple Lie algebra L and a faithful representation ρ : L → gl(V ) on a vector
space V . The trace form of ρ

β : L×L →K, β (x,y) := tr(ρ(x)ρ(y)),

is non-degenerate according to Proposition 4.13. For a base (xi)i=1,...,n of L denote
by (y j) j=1,...,n the dual base with respect to the trace form β , i.e.

β (xi,y j) = δi j.

The quadratic Casimir element of ρ is defined as the K-linear endomorphism

cρ :=
n

∑
i=1

ρ(xi)ρ(yi) ∈ End(V ).

Note: One checks that the quadratic Casimir element does not depend on the
choice of the basis (xi)i=1,...,n. The Casimir element is an element of the associative
algebra End(V ). It depends in a quadratic way on the elements of L.

Remark 4.27 (Reduction to faithful representations). If the representation ρ is not
faithful then one considers the direct decomposition

L = ker ρ ⊕L′
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with
L′ := (ker ρ)⊥ ⊂ L.

The Lie algebra L′ is semisimple according to Proposition 4.19. The restricted rep-
resentation

ρ|L′ : L′ → gl(V )

is faithful. The Casimir element of ρ is by definition the Casimir element of the
restriction ρ|L′.

Theorem 4.28 (Properties of the Casimir element). For a semisimple Lie algebra L
the quadratic Casimir element of a faithful representation ρ of L on a vector space V

cρ ∈ End(V )

has the following properties:

• Commutation: The Casimir element commutes with all elements of the represen-
tation

[cρ ,ρ(L)] = 0,

and the K-linear endomorphism

cρ : V −→V

is even an L-module morphism.

• Trace: tr(cρ) = dim L

• Scalar: For an irreducible representation ρ of L on a complex vector space V
holds

cρ =
dim L
dim V

· idV .

Proof. The faithful representation ρ is an embedding

ρ : L −→ gl(V )

Due to Proposition 4.13 the trace form β of ρ is non-degenerate. Set n = dim L. By
definition

cρ =
n

∑
i=1

ρ(xi)ρ(yi) ∈ End(V )

with a pair of bases (xi)i=1,...,n and (y j) j=1,...,n of L, which are dual with respect
to β .
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• Commutation: For x ∈ L we show [ρ(x),cρ ] = 0: Define the coefficients (ai j)
and (b jk) according to

[x,xi] =
n

∑
k=1

aik · xk, [x,y j] =
n

∑
k=1

b jk · yk.

Because the families (x j)1≤ j≤n and (yk)1≤k≤n are dual bases with respect to β

ai j = β (
n

∑
k=1

aik · xk,y j) = β ([x,xi],y j) =−β ([xi,x],y j) =−β (xi, [x,y j]) =

=−β (xi,
n

∑
k=1

b jk · yk) =−b ji.

Here we made use of the associativity of the trace form according to Lemma 4.1.
To compute

[ρ(x),cρ ] =
n

∑
i=1

[ρ(x),ρ(xi)ρ(yi)]

we use the formula
[A,BC] = [A,B]C+B[A,C]

for endomorphisms A,B,C ∈ End(V ). The formula follows easily by expanding
both sides.

Therefore each summand of the last sum decomposes as

[ρ(x),ρ(xi)ρ(yi)] = [ρ(x),ρ(xi)]ρ(yi)+ρ(xi)[ρ(x),ρ(yi)]

and therefore

[ρ(x),cρ ] =
n

∑
i=1

([ρ(x),ρ(xi)]ρ(yi)+ρ(xi)[ρ(x),ρ(yi)]) =

=
n

∑
i=1

(ρ([x,xi])ρ(yi)+ρ(xi)ρ([x,yi])=
n

∑
i, j=1

ai j ·ρ(x j)ρ(yi)+
n

∑
i,k=1

bik ·ρ(xi)ρ(yk)=

=
n

∑
i, j=1

ai j ·ρ(x j)ρ(yi)+
n

∑
i, j=1

b ji ·ρ(x j)ρ(yi) =

=
n

∑
i, j=1

(ai j +b ji) · (ρ(x j)ρ(yi)) = 0.

Here we have changed in the second sum the summation indices (i,k) 7→ ( j, i).

The commutation
[cρ ,ρ(L)] = 0
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is equivalent to the fact that
cρ : V −→V

is L-linear.

• Trace: We have

tr(cρ) =
n

∑
i=1

tr(ρ(xi)ρ(yi)) =
n

∑
i=1

β (xi,yi) = n = dim L.

• Scalar: For an irreducible representation ρ we get with the first part of the proof
and with the Lemma of Schur, Theorem 4.25, part 2

cρ = µ · idV ,

and with the second part of the present proof

tr(cρ) = µ ·dim V = dim L.

Hence

µ =
dim L
dim V⊓⊔

In Theorem 4.28 the properties of the Casimir element of a representation are not a
happy incidence. They follow from the fact that the Casimir operators have their
origin in the center of the universal enveloping algebra of L, see [24, Chap. 22.1].

Lemma 4.29 will be used in the proof of Theorem 4.30.

Lemma 4.29 (Representations of semisimple Lie algebras are traceless). Con-
sider a semisimple Lie algebra L and a representation ρ : L → gl(V ).

• Then ρ(L)⊂ sl(V ), i.e. for all x ∈ L

tr(ρ(x)) = 0.

• In particular, each 1-dimensional representations of L is trivial, i.e. if dim V = 1
then ρ = 0.

Proof. Because L is semisimple Theorem 4.21 implies

L = [L,L].

If x = [u,v] ∈ L then

tr(ρ(x)) = tr(ρ([u,v])) = tr([ρ(u),ρ(v)]) = 0
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according to Lemma 4.1. For 1-dimensional V , i.e. V =K, holds for all x ∈ L

0 = tr(ρ(x)) = ρ(x).

⊓⊔

Theorem 4.30 (Weyl’s theorem on complete reducibility). For a semisimple Lie
algebra L each non-zero L-module is completely reducible. The isomorphism class
of each irreducible direct summand as well as the multiplicity of each isomorphism
class is uniquely determined.

Proof. For the existence of the splitting we have to show: Each submodule of
an L-module has a complement. For the proof we may assume L ̸= {0}. We will
consider all pairs (V,W ) with an L-module V and a submodule W ⊂V , and proceed
along the following steps:

1. Particular case codimVW = 1: Proof by induction on n = dim W .

- Subcase 1a): W reducible. The proof is elementary and relies on a separate
induction.

- Subcase 1b): W irreducible. The proof relies on the Casimir element and
Schur’s Lemma.

2. General case codimVW arbitrary: The proof constructs a complement of W as
the kernel of a certain section against the injection W ↪−→ V . The section is ob-
tained by considering the L-module

HomK(V,W )

and constructing a pair (V ,W ) to which the particular case of codimension = 1
applies.

All exact sequences in the following refer to the category of L-modules.

1. Particular case codimVW = 1: Consider all pairs (V,W ) with an L-module V and
a submodule

W ⊂V satisfying codimV W = 1.

Due to Lemma 4.29 the 1-dimensional quotient V/W fits into an exact sequence
of L-modules

0 →W →V →V/W → 0

We construct a complement of W by induction on dim W with the induction
assumption: For all pairs of L-modules

(V1,V2) with codimV1V2 = 1 and dim V2 < dim W
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exists a complement of V2 in V1.

The induction step employs one of two alternative subcases. Subcase 1a) uses the
induction assumption twice, while subcase 1b) uses the Casimir element.

Subcase 1a), W reducible: Then a proper submodule

{0}⊊W ′ ⊊W,

exists, in particular
dim W ′ < dim W.

Dividing out the proper submodule W ′ ⊂W induces the exact sequence

0 →W/W ′ →V/W ′ →
V/W ′

W/W ′ → 0

The submodule
W/W ′ ⊂V/W ′

has
codimV/W ′ W/W ′ = codimV W = 1

and satisfies
dim (W/W ′)< dim W.

• Hence the pair (V/W ′,W/W ′) satisfies the induction assumption. We obtain
a complement in the form

W̃/W ′, W ′ ⊊ W̃ ⊊V,

and a first splitting
V/W ′ =W/W ′⊕W̃/W ′.

It induces the exact sequence

0 →W ′ → W̃ → W̃/W ′ → 0

with the isomorphy of vector spaces

W̃/W ′ ≃
V/W ′

W/W ′ ≃K

because the complement of W/W ′ in V/W ′ has codimension = 1.

We recall also dim W ′ < dim W .

• Hence also the pair (W̃ ,W ′) satisfies the induction assumption. We obtain a
complement X ⊂ W̃ and a second splitting
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W̃ =W ′⊕X .

Claim: Combining the two splittings provides the final splitting

V =W ⊕X .

For the proof, on one hand

dim V = dim W +dim W̃ −dim W ′ and dim W̃ = dim W ′+dim X .

Hence
dim V = dim W +dim X .

On the other hand,

X ⊂ W̃ =⇒ (W ∩X)⊂ (W ∩W̃ ).

Due to the first splitting

{0}= (W/W ′)∩ (W̃/W ′) =⇒ (W ∩W̃ )⊂W ′,

and therefore
(W ∩X)⊂ (W ∩W̃ )⊂W ′.

As a consequence

W ∩X = (W ∩X)∩W ′ =W ∩ (X ∩W ′).

The second splitting implies

X ∩W ′ = {0}.

Hence
W ∩X = {0}.

Therefore
V =W ⊕X

which finishes the induction step for reducible W .

Subcase 1b), W irreducible: Assume that the representation

ρ : L → gl(V )

defines the L-module structure of V . Due to Remark 4.27 we may assume ρ

faithful. We consider the Casimir element of ρ

cρ :=
dim L

∑
j=1

ρ(x j)ρ(y j) ∈ End(V ).
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• Refering to V : The Casimir element

cρ : V →V

is an L-module morphism due to Theorem 4.28, part 1. Therefore

X := ker cρ ⊂V

is an L-submodule.

• Refering to W : Because the 1-dimensional L-module V/W is trivial, we have

ρ(L)(V )⊂W.

The definition of cρ implies that also

cρ(L)(V )⊂W.

One can find a basis of the vector space V such that the matrix of cρ has block
form

cρ =

(
A ∗
0 0

)
and the matrix A represents the restriction

cρ |W : W −→W.

Hence
tr (cρ |W ) = tr cρ

Due to Theorem 4.28, part 2

tr cρ = dim L ̸= 0,

which implies
tr(cρ |W ) ̸= 0.

Due to Theorem 4.25, part 1 the irreducibility of W implies that

cρ |W : W −→W

is an isomorphism. Then

dim V = dim(im cρ)+dim(ker cρ) = dim W +dim X

implies the splitting of L-modules

V =W ⊕X

and finishes the induction step for irreducible W .



4.3 Weyl’s theorem on complete reducibility 161

2. General case codimVW arbitrary:

Consider an arbitrary proper submodule

{0}⊊W ⊊V.

We want to construct a complement of W as the kernel of an L-module
morphism. Therefore we claim the existence of a section against the canonical
injection

j : W ↪−→V,

i.e. we claim the existence of an L-linear map

f̃ : V →W

such that
f̃ ◦ j = idW i.e. f̃ |W = idW

Then f̃ is surjective, and
X := ker f̃

is a complement of W because V/X ≃W .

The idea is to translate the question on the existence of the section f̃ to a
problem about L-modules in a context where case 1 applies. We consider the
induced L-module

HomK(V,W )

to reduce the question on sections to a problem concerning pairs of L-modules
of K-linear homomorphism

(V ,W )

with codimV W = 1. The latter problem can be solved by case 1.

Note that elements of HomK(V,W ) are morphisms in the category of vector
spaces, not necessarily morphisms of L-modules.

Consider the following submodules of the L-module HomK(V,W )

V := { f ∈ HomK(V,W ) : f |W = λ · idW , λ ∈K}

W := { f ∈ V : f |W = 0}.

In order to prove that V is a L-module, consider f ∈ HomK(V,W )
with f |W = λ · idW and x ∈ L,w ∈W :

(x. f )(w) = x.( f (w))− f (x.w) = x.(λ ·w)−λ · (x.w) =

= λ · (x.w)−λ · (x.w) = 0.

Therefore even
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L.V ⊂ W ⊂ V

and both V and W are L-modules. By definition

codimV W = 1

because W as a subspace of V is defined by the single linear equation λ = 0.

We now apply the result of case 1 to the pair (V ,W ): The submodule W ⊂ V
has a complement, i.e. there exists a K-linear map

f̃ ∈ V with f̃ |W ̸= 0,

which splits
V = W ⊕K · f̃ .

By definition of V the restriction has the form

f̃ |W = µ · idW

with a non-zero scalar µ ∈K because

f̃ /∈ W ,

and we may assume µ = 1.

The L-module
K · f̃

is 1-dimensional, hence trivial according to Lemma 4.29. According to
Remark 4.24 the equality L. f̃ = 0 implies the L-linearity of f̃ . Therefore

X := ker f̃ ⊂V

is an L-submodule. Due to our considerations at the beginning of case 2

V =W ⊕X .

3. Uniqueness of the isomorphism classes: Consider an irreducible submodule
of W ⊂V , and a splitting

V =
⊕
j∈J

Vj

with irreducible L-modules Vj, j ∈ J. For each j ∈ J the canonical projection

p j : V −→Vj

is an L-module morphism. There exists at least one index j ∈ J with

{0} ̸= p j(W )⊂Vj
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Because both L-modules Vj as well as W are irreducible we have

p j(W ) =Vj and ker (p j|W ) = {0}.

Hence
p j|W : W ≃−→Vj

is an isomorphism of L-modules. Iterating the argument proves the claim.
⊓⊔

Note. Theorem 4.30 is due to Weyl, who gave an analytic proof using the theory of
maximal compact subgroups of a semisimple Lie group (“Unitarian trick”),
see [48, Kap. I, §5, Satz 5] and also Serre’s explanation in [40, Chap. VIII, no. 7 ].
The proof given above stays completely in the algebraic domain,
see [41, Part 1, Chap. 6.3].

The following Proposition 4.31 is a consequence of Theorem 4.30. It refers to the
Jordan decomposition for embedded semisimple Lie algebras.

Proposition 4.31 (Jordan decomposition for an embedded semisimple Lie al-
gebra). Consider a complex vector space V and an embedded semisimple Lie
algebra L ⊂ gl(V ). If an element x ∈ L, considered as endomorphism of V

x : V →V,

has the Jordan decomposition

x = xs + xn ∈ EndC(V ),

then both summands belong to L, i.e. xs,xn ∈ L. In addition,

ad x = ad xs +ad xn

is the Jordan decomposition of

adx : L −→ L.

Proof. The proof has two separate parts. The first part considers L as an embedded
Lie algebra L ⊂ gl(V ). The second part considers the
induced L-module EndC(V,V ).

Part 1. The embedded Lie algebra L ⊂ gl(V ): We introduce the shorthand

E := EndC(V ).
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Proposition 3.3 implies for the endomorphism

adE x : E −→ E, f 7→ [x, f ] := x◦ f − f ◦ x,

the Jordan decomposition

adE x = adE xs +adE xn

with endomorphisms
xs, xn ∈ E.

There exist polynomials ps(T ), pn(T ) ∈ C[T ] without constant term such that

adE xs = ps(adE x), adE xn = pn(adE x).

Let
N := Ngl(V )L ⊂ gl(V )

be the normalizer of L. Then x ∈ L ⊂ N. Hence also

xs, xn ∈ N.

Part 2. Semisimpleness of L: In order to show xs, xn ∈ L the result xs, xn ∈ N is not
sufficient, because in general

L ⊊ N.

Therefore we will now employ the semisimpleness of L to construct a
specific L-submodule

L̃ ⊂ EndC(V )

satisfying
L ⊂ L̃ ⊂ N and xs, xn ∈ L̃,

and eventually show L̃ = L.

i) Construction of L̃: For any L-submodule W ⊂V we consider the vector subspace
of endomorphisms

LW := {y ∈ EndC(V ) : y(W )⊂W and tr(y|W ) = 0} ⊂ EndC(V ).

E.g.
LW = sl(V ) if W :=V

and
LW = gl(V ) if W := {0}

Because W is an L-module, also LW is an L-submodule with respect to the
induced L-module structure on HomC(V,V ): For each endomorphism

(z : V −→V ) ∈ L ⊂ EndC(V )
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and y ∈ LW , w ∈W holds

(z.y)(w) = z(y(w))− y(z(w)) ∈W

and
tr((z.y)|W ) = tr([z,y]|W ) = 0.

We define
L̃ := N ∩

⋂
W⊂V

LW =
⋂

W⊂V

(N ∩LW )

with the intersection taken for all L-submodules W ⊂V . Because N and each LW
are L-modules of the L-module EndC(L), also L̃ is an L-module. It satisfies:

• L ⊂ L̃: Because L is semisimple, Lemma 4.29 implies tr(y|W ) = 0 for all y ∈ L.
As a consequence

L ⊂
⋂

W⊂V

LW and L ⊂ L̃.

• xs,xn ∈ L̃: Because the vector subspace W is stable with respect to the
endomorphism x : V →V , the same is true for its Jordan components which
depend on x in a polynomial way, i.e.

xs(W )⊂W and xn(W )⊂W.

Again according to Lemma 4.29, the semisimpleness of L implies tr(x|W ) = 0.
Hence x ∈ LW . With xn also the restriction xn|W is nilpotent, and therefore

tr (xn|W ) = 0 and xn ∈ LW .

As a consequence also
xs = x− xn ∈ LW .

We obtain
xs,xn ∈ L̃

because xs,xn ∈ N and xs,xn ∈ LW for all L-submodules W ⊂V .

ii): The equality L = L̃: It remains to show L = L̃. Weyl’s theorem on complete
reducibility, Theorem 4.30, applies to the L-module L̃. Hence there exists a
L-submodule M ⊂ L̃ with

L̃ = L⊕M.

We claim: M = 0. Because L̃ ⊂ N, the normalizer of L, we have

[L, L̃] = [L̃,L]⊂ [N,L]⊂ L

which implies
[L,M]⊂ (L∩M)
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because M is an L-module. Due to

L∩M = {0}

the action of L on M is trivial.

In order to conclude M = {0} we consider an arbitrary, but fixed
endomorphism y ∈ M. The annihilation

[L,y] = 0

means that the endomorphism
y : V −→V

commutes with all endomorphism of L. Because V is a complex vector space,
Schur’s Lemma, Theorem 4.25, part 2 implies for each irreducible
submodule W ⊂V the existence of a scalar µ ∈ C with

y|W = µ · idW .

On the other hand, y ∈ LW implies tr(y|W ) = 0, hence

y|W = 0

for each irreducible L-sumbdule of V . And the splitting of V as a direct sum of
irreducible L-modules shows y = 0. Because y ∈ M can be choosen arbitrarily, we
obtain M = {0} and

L = L̃.

By construction xs, xn ∈ L̃ = L.

Part 3. Jordan decomposition: The final claim about the Jordan decomposition
of ad x follows from the result

ad x = (adE xs)|L+(adE xn)|L

from part 1, and the result xs, xn ∈ L from part 2. ⊓⊔

We proved Theorem 4.31 for a complex embedded semisimple Lie algebra because
our proof employs the strong form of Schur’s Lemma for complex-linear module
endomorphism. For a real Lie algebra L the complexification

L⊗RC

remains semisimple, because its Killing form is the complexification of the Killing
form of L, see [4, Chap.I, §6, no. 3 Prop. 3]. Theorem 4.31 applies to the complex
Lie algebra L⊗RC and endomorphisms
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x ∈ L⊗RC⊂ gl(V ⊗RC).

The previous Proposition 4.31 assures: For an embedded semisimple Lie algebra L
of endomorphisms of a complex vector space V the Jordan decomposition of the en-
domorphisms of V resulting from ad L induces a decomposition of elements from L.
We know from Proposition 4.7 that each semisimple Lie algebra L embeds via
its adjoint representation as a semisimple Lie algebra of endomorphisms. Hence
a complex semisimple Lie algebra satisfies the assumption of Proposition 4.31.
Definition 4.32 defines the abstract Jordan decomposition of L. Then Corollary 4.33
shows why the abstract Jordan decomposition is a useful concept.

Definition 4.32 (Abstract Jordan decomposition). Consider a complex semisim-
ple Lie algebra L. Its adjoint representation

ad : L −→ ad L ⊂ gl(L)

is an isomorphism and represents L as an embedded Lie algebra of endomorphisms.
For each x ∈ L the adjoint endomorphism

ad x : L → L, y 7→ [x,y]

has the Jordan decomposition

ad x = fs + fn ∈ End(L),

and Proposition 4.31 ensures

fs ∈ ad(L) and fn ∈ ad(L).

One defines
s := ad−1( fs) ∈ L and n := ad−1( fn) ∈ L.

Then the decomposition
x = s+n

with s ∈ L ad-semisimple, n ∈ L ad-nilpotent and [s,n] = 0 is named the abstract
Jordan decomposition of x ∈ L.

Note. The abstract Jordan decomposition

x = s+n

is uniquely determined by the property, that the components s, n∈ L are respectively
ad-semisimple and ad-nilpotent and satisfy [s,n] = 0. The uniqueness follows from
the uniqueness of the Jordan decomposition of the endomorphism

ad x : L −→ L
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and from the isomorphism
ad : L ≃−→ ad(L).

In the abstract case, neither x ∈ L nor its components s, n ∈ L from the abstract
Jordan decomposition are endomorphisms of a vector space. But Corollary 4.33 will
show: For any representation

ρ : L → gl(V )

the abstract Jordan decomposition of x ∈ L induces the Jordan decomposition of the
endomorphism ρ(x) ∈ End(V ).

Corollary 4.33 (Jordan decomposition for representations of semisimple Lie al-
gebras). Consider a complex vector space V and a representation

ρ : L → gl(V )

of a complex semisimple Lie algebra L. If x ∈ L has the abstract Jordan decomposi-
tion

x = s+n

then ρ(x) ∈ EndC(V ) has the Jordan decomposition

ρ(x) = ρ(s)+ρ(n).

Proof. Due to Corollary 4.20 the Lie algebra

F := ρ(L)

is semisimple.

i) Abstract Jordan decomposition of ρ(x) ∈ F : We choose a basis B = (v j) j=1,...,n
of L of eigenvectors of the semisimple endomorphism

adL(s) : L −→ L.

Then the non-zero elements from

ρ(B) := (ρ(v j)) j=1,...,n

form a family of eigenvectors of adF ρ(s), and spans F . Hence the endomorphism

adF ρ(s) ∈ EndC(F)

is semisimple.

The nilpotency of adLn ∈ EndC(L) implies the nilpotency of the endomorphism
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adF(ρ(n)) ∈ EndC(F)

Both endomorphisms commute

[adF(ρ(s)), adF(ρ(n))] = adF(ρ([s,n])) = 0

Hence
adF(ρ(x)) = adF(ρ(s))+adF(ρ(n))

is the Jordan decomposition of the endomorphism

adF(ρ(x)) ∈ EndC(F)

As a consequence,
ρ(x) = ρ(s)+ρ(n)

is by definition the uniquely determined abstract Jordan decomposition of ρ(x) ∈ F
from Definition 4.32.

ii) Jordan decomposition of ρ(x) ∈ EndC(V ): Now we consider the element
ρ(x) ∈ F as an endomorphism

ρ(x) : V −→V

of the vector space V . Due to Theorem 1.19 the endomorphism ρ(x) has the Jordan
decomposition

ρ(x) = fs + fn

with semisimple fs ∈ EndC(V ) and nilpotent fn ∈ EndC(V ). Proposition 4.31
applies to the semisimple embedded Lie algebra F ⊂ gl(V ) and shows

fs, fn ∈ F.

The proof of Proposition 4.31, part 1 shows: Semisimpleness of fs ∈ EndC(V )
implies that fs is adF -semisimple, i.e.

adF( fs) ∈ EndC(F)

is semisimple. And nilpotency of fn implies adF -nilpotency, see Lemma 3.2.
Hence by Definition 4.32

ρ(x) = fs + fn

is also the abstract Jordan decomposition of ρ(x) ∈ F . From the uniqueness of the
abstract Jordan decomposition in F derives

fs = ρ(s) and fn = ρ(n).
⊓⊔
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Complex semisimple Lie algebras





Chapter 5
Root space decomposition

The base field in this chapter is K= C, the field of complex numbers. All Lie alge-
bras are complex Lie algebras unless stated otherwise.

The present chapter starts to investigate the structure of complex semisimple Lie
algebras. The subject is a classical topic of mathematics from the 20th century. An
excellent overview of Chapter 5 and 6 and the outlook in Chapter 7 is given by
Knapp as a survey to Chapter II of his book [31]. At this point we will only name the
keywords: Maximal toral subalgebra, Cartan subalgebra, root space decomposition,
root system, Cartan matrix, Weyl group, Coxeter graph, Dynkin diagram.

According to Theorem 4.21 each semisimple Lie algebras splits as the direct sum
of simple Lie algebras. The simple complex Lie algebras are completely classified.
They are the members of the ABCD-series from Proposition 2.15 together with five
exceptional Lie algebras.

The most elementary member, and at the same time the prototype of the ABCD-
series is the complex simple Lie algebra sl(2,C) of type A1. The canonical basis
elements of sl(2,C)

h :=
(

1 0
0 −1

)
, x :=

(
0 1
0 0

)
, y :=

(
0 0
1 0

)
∈ sl(2,C)

make up two classes: The elements h is ad-semisimple and gerates a maximal
Abelian subalgebra. While the second class contains the two elements x and y. They
are eigenvectors of h under the adjoint representation

(ad h)(x) = [h,x] = 2x, (ad h)(y) = [h,y] =−2y,

and their commutator is
[x,y] = h.

173
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These two classes generalize for a semisimple Lie algebra L to the concept of a
maximal toral subalgebra T of L, and the generators of the root spaces of L with
respect to T .

5.1 Toral subalgebra

Consider a Lie algebra L. We recall from Definition 3.4: An element x ∈ L is ad-
semisimple iff the endomorphism

ad x : L −→ L, y 7→ [x,y],

is semisimple.

It is well-known from Linear Algebra that a set of commuting semisimple en-
domorphisms can be simultaneously diagonalized. Therefore, starting from one ad-
semisimple element of L one tries to find all pairwise commuting ad-semisimple
elements of L, which also commute with the given one.

• The first result about a semisimple Lie algebra L states: Any subalgebra T ⊂ L
with only ad-semisimple elements, named a toral subalgebra, is Abelian, see
Proposition 5.2.

• The second result, Theorem 5.17, shows that no further element of L commutes
with a maximal toral subalgebra T ⊂ L, i.e. the centralizer of T satisfies

CL(T ) = T.

Definition 5.1 (Toral subalgebra). Consider a Lie algebra L.

• A toral subalgebra of L is a subalgebra T ⊂ L with all elements x ∈ T ad-
semisimple.

• A toral subalgebra T ⊂ L is a maximal toral subalgebra iff T is not properly
contained in any other toral subalgebra of L.

We show: The existence of non-zero toral subalgebras of a non-zero semisimple
Lie algebra follows from Engel’s theorem and the abstract Jordan decomposition.
The result, together with Theorem 5.17, is fundamental for the root space
decomposition from Definition 5.18.

Proposition 5.2 (Existence of non-zero toral subalgebras). Consider a semisim-
ple Lie algebra L.
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1. If L ̸= {0} then exists a non-zero toral subalgebra in L, hence also a non-zero
maximal toral subalgebra.

2. Each toral subalgebra of L is Abelian.

Proof. 1. Existence of a non-zero toral subalgebra: If each element x ∈ L were
ad-nilpotent, then Engel’s Theorem 3.10 would imply that L is nilpotent, a con-
tradiction to the semisimpleness of L. Hence we can choose an element x ∈ L
with abstract Jordan decomposition

x = s+n and ad s ̸= 0.

The 1-dimensional subalgebra
C · s ⊂ L

is a toral subalgebra. Because L is finite-dimensional, there also exists a maximal
toral subalgebra.

2. Toral subalgebras are Abelian: Consider a toral subalgebra T ⊂ L. For a pair of
non-zero vectors x,y ∈ T we have to show

[x,y] = 0

Because T ⊂ L is a subalgebra, the toral subalgebra T is stable with respect to
ad x and with respect to ad y. Both are semisimple. According to Lemma 1.18
also their restrictions

adx := (ad x)|T and ady := (ad y)|T

are semisimple.

Because T is spanned by eigenvectors of adx, we may assume y ∈ T as an eigen-
vector of adx, i.e. for a suitable λ ∈ C

adx(y) = [x,y] = λ · y.

We develop x ∈ T with respect to a basis (y j) j∈J of T of eigenvectors of ady with
eigenvalues (λ j) j∈J

x = ∑
j∈J

α j · y j.

Then
−λ · y =−[x,y] = [y,x] = ady(x) = ∑

j∈J
(λ j ·α j) · y j.

Assume λ ̸= 0. Because y ̸= 0, for at least one j ∈ J

λ j ·α j ̸= 0, notably λ j ̸= 0.
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Apparently, the vector y ∈ T is an eigenvector of ady with eigenvalue 0. The
representation

−λ · y = ∑
j∈J

(λ j ·α j) · y j

shows, that y is a linear combination of eigenvectors belonging to eigenvalues λ j ̸= 0,
a contradiction. Therefore λ = 0, which implies

[x,y] = 0.

⊓⊔

Lemma 5.3 will be used later.

Lemma 5.3 (Centralizer of a maximal toral subalgebra).

Consider a pair (L,T ) with L a semisimple Lie algebra and T ⊂ L a maximal toral
subalgebra.

i) The centralizer CL(T ) contains with each element x ∈CL(T ) also the
ad-semisimple and the ad-nilpotent part

s, n ∈CL(T )

from the abstract Jordan decomposition x = s+n.

ii) Each ad-semisimple element x ∈CL(T ) belongs to T .

Proof. Set C :=CL(T ).

i) Abstract Jordan decomposition: Consider x ∈C with abstract Jordan
decomposition

x = s+n.

Then
ad x = ad s+ad n ∈ End(L)

is the Jordan decomposition of the endomorphism ad x ∈ End(L). In particular

ad s = ps(ad x) and ad n = pn(ad x)

with polynomials ps(Z), pn(Z) ∈ C[Z] satisfying ps(0) = pn(0) = 0.

As a consequence: For each h ∈ T with (ad x)(h) = 0 also

(ad s)(h) = 0 and (ad n)(h) = 0.

Hence s, n ∈C.
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ii) Each ad-semisimple element x ∈C belongs to T : Any ad-semisimple
element x ∈C commutes with all elements from T . Therefore all elements from

spanC < x,T >

are pairwise commuting and therefore ad-semisimple. The maximality of T implies

spanC < x,T > = T

i.e. x ∈ T . ⊓⊔

5.2 Structure and representations of sl(2,C)

The 3-dimensional complex Lie algebra sl(2,C) is the prototype of complex semisim-
ple Lie algebras. Its representation theory is of fundamental importance:

• The representation theory of sl(2,C) is the means to clarify the structure of
general complex semisimple Lie algebras. Proposition 5.4 presents the structure
of sl(2,C) in a form which generalizes to arbitrary complex semisimple Lie al-
gebras, cf. Proposition 7.3 about the root space decomposition.

• The representation theory of sl(2,C) is also paradigmatic for the representation
theory of general semisimple Lie algebras. Proposition 5.7, Corollary 5.8 and
Theorem 5.10 present the representation theory of sl(2,C)-modules in a form
which generalizes to representations of arbitrary complex semisimple Lie alge-
bras.

Proposition 5.4 (Structure of sl(2,C)). The Lie algebra

L := sl(2,C)

has the standard basis B := (h,x,y) with matrices

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
∈ sl(2,C).

• The non-zero commutators of the elements from B are

[h,x] = 2x, [h,y] =−2y, [x,y] = h.

• With respect to B the matrices of the adjoint representation

ad : L → gl(L)
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are

ad h =

0 0 0
0 2 0
0 0 −2

 , ad x =

 0 0 1
−2 0 0

0 0 0

 , ad y =

0 −1 0
0 0 0
2 0 0


• The element h ∈ L is ad-semisimple. The endomorphism

ad h : L −→ L

has the eigenvalues
0, α := 2, −α

with corresponding eigenspaces

H := L0 = C ·h, Lα = C · x, L−α = C · y.

In particular
L = H ⊕ (Lα ⊕L−α)

as a direct sum of complex vector spaces.

• The Lie algebra L is simple.

• The Abelian subalgebra H ⊂ L is a maximal toral subalgebra of L.

• With respect to the basis B the Killing form κ of L, see Definition 4.2, has the
symmetric matrix with integer coefficients

4 ·

2 0 0
0 0 1
0 1 0

 ∈ M(3×3,Z).

The Killing form is non-degenerate.

• The restriction
κH := κ|(H ×H)

of the Killing form is positive definite

κH(h,h) = 8.

The scalar product κH induces the isomorphism of the maximal toral subalgebra H
and its dual space

jκH : H ∼−→ H∗, h 7→ κH(h,−) = 8 ·h∗.

The element tα ∈ H, which is defined as

jκH (tα) = α ·h∗,
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is
tα =

h
4

satisfying h =
2 · tα

κH(tα , tα)
.

Proof. Only the following claims need a separate proof:

i) Simpleness: Assume the existence of a proper ideal

I ⊊ L.

The ideal I satisfies [I,L]⊂ I.

• First, h /∈ I: Otherwise 2x = [h,x] ∈ I and −2y = [h,y] ∈ I, which implies I = L,
a contradiction.

• Secondly, x /∈ I: Otherwise h = [x,y] ∈ I, contradicting the first part.

• Thirdly, y /∈ I: Otherwise −h = [y,x] ∈ I, contradicting the first part.

Consider an element

z = α · x+β · y+ γ ·h ∈ I with α,β ,γ ∈ C.

The commutator relations imply

(ad x)(z) = β · [x,y]+ γ · [x,h] = β ·h−2 · γ · x

and
(ad x)2(z) =−2 ·β · x ∈ I

Similarly
(ad y)2(z) =−2 ·α · y ∈ I

If α ̸= 0 or β ̸= 0 then x ∈ I or y ∈ I, a contradiction. Hence

α = β = 0.

If γ ̸= 0 then h ∈ I, a contradiction. Hence z = 0. As a consequence

I = {0} and L is simple.

ii) Maximal toral subalgebra: To prove that the toral subalgebra H ⊂ L is a
maximal toral subalgebra, we show

CL(H) = H.

Assume
z = α ·h+β · x+ γ · y ∈CL(H); α,β ,γ ∈ C.

Then
[α ·h+β · x+ γ · y,h] =−2β · x+2γ · y = 0 ⇐⇒ β = γ = 0,
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hence z ∈ H. Proposition 5.2 ensures that toral subalgebras are Abelian, which
proves that H is a maximal toral subalgebra. ⊓⊔

The simpleness of L := sl(2,C) also follows from the general theory: According to
Corollary 4.18 the Lie algebra L is semisimple. Hence L splits due to Theorem 4.21
as a direct sum of simple Lie algebras. If the splitting of the 3-dimensional Lie
algebra L comprises at least two simple summands, then at least one of them is
1-dimensional and therefore Abelian, which contradicts its simpleness.

Remark 5.5 (Basis of Pauli matrices). A different basis of sl(2,C) is the family (σ j) j = 1,2,3
of the Pauli matrices, see Remark 2.21: We have

h = σ3, x =
σ1 + iσ2

2
, y =

σ1 − iσ2

2

We now investigate the theory of finite-dimensional representations of

L := sl(2,C).

The element h ∈ L is ad-semisimple because ad h ∈ End(L) is semisimple.
Therefore h ∈ L coincides with its semisimple component in the abstract Jordan
decomposition of L. Corollary 4.33 shows the far reaching consequences: The
element h acts as semisimple endomorphism on each L-module V . Hence each
L-module decomposes as a direct sum of eigenspaces with respect to the action
of h.

Definition 5.6 introduces some basic concepts from the representation theory of
semisimple Lie algebras.

Definition 5.6 (Weight, weight space and primitive element). Consider an sl(2,C)-module V ,
not necessarily finite-dimensional, with respect to a representation

ρ : L −→ gl(V ).

1. For λ ∈ C set
V λ = {v ∈V : ρ(h)(v) = λ ·v}.

If V λ ̸= 0 then λ ∈ C is a weight of V , the eigenspace V λ of ρ(h) ∈ End(L) is a
weight space of V , and the non-zero elements of V λ are named weight vectors.

2. A weight vector e ∈V λ is named a primitive element of V with weight λ if

ρ(x)(e) = 0

with respect to the action of the element x from the standard basis B of sl(2,C).
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Note: Different than in Chapter 1 we denote here and in the following the eigenspace
with eigenvalue λ by an upper index λ .

For any sl(2,C)-module V not only the action of h ∈ sl(2,C), but also the action of
the two other elements of the standard basis

B = (h,x,y)

can be easily described. Hereby the role of a primitive element can be parafrased as
“germ” of an sl(2,C)-module.

Proposition 5.7 (Action of the standard basis). Consider an sl(2,C)-module V ,
not necessarily finite-dimensional. Assume the existence of a primitive element e∈V
with weight λ ∈ C. Then the elements

ei :=
1
i!
· (yi.e) ∈V, i ≥ 0,

satisfy for all i ≥ 0:

1. Weight vector: h.ei = (λ −2i) · ei.

2. Lowering the weight: y.ei = (i+1) · ei+1.

3. Raising the weight: x.ei = (λ − i+1) · ei−1, e−1 := 0.

4. Linear dependency respectively independency:

• Either the family (ei)i≥0 is linearly independent

• or the highest weight λ is a non-negative integer, the family

(ei)i=0,...,λ

is linearly independent, and ei = 0 for all i > λ .

Figure 5.1 illustrates the content of Proposition 5.7.
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Fig. 5.1 Lowering/raising weights in irreducible sl(2,C)-modules

Proof. ad 2) By definition

y.ei =
1
i!
· ( y.(yi.e)) =

1
i!
· (yi+1.e) =

(i+1)!
i!

· ei+1 = (i+1) · ei+1.

ad 1) By induction on i ∈ N: i = 0 by definition.
Induction step i 7→ i+1: Due to part 2)

(i+1) · (h.ei+1) = h.(y.ei) = [h,y].ei + y.(h.ei) =−2y.ei + y.((λ −2i)ei) =

= (λ −2i−2) (y.ei) = (λ −2i−2) · (i+1) · ei+1,

hence
h.ei+1 = (λ −2(i+1)) · ei+1.

ad 3) With the definition e−1 := 0 the formula

x.ei = (λ − i+1) · ei−1

follows by induction on i ∈ N by using the commutator formula
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[x,y] = h ∈ sl(2,C)

together with the result from part 1) and part 2). The formula holds for i = 0
because e is a primitive element.
Induction step i 7→ i+1:

(i+1) · (x.ei+1) = x.(y.ei) = [x,y].ei + y.(x.ei) = h.ei + y.((λ − i+1) · ei−1) =

= (λ −2i) · ei + i · (λ − i+1) · ei = (i+1) · (λ − i) · ei

and after dividing by (i+1)

x.ei+1 = (λ − i) · ei

ad 4) The non-zero elements ei are weight vectors with pairwise distinct weights,
i.e. different eigenvalues. Hence they are linearly independent. The family (ei)i≥0
is linearly independent if ei ̸= 0 for all i ∈ N.

Otherwise there exists a largest index m ∈ Z+ = {0,1, ...} with all
elements e0, ...,em non-zero. Then ei = 0 for all i > m. We apply the formula from
part 3) and obtain

0 = x.em+1 = (λ −m) · em

which implies
λ −m = 0 or λ = m ∈ Z+.

⊓⊔

Corollary 5.8 (Primitive element). Consider a finite-dimensional sl(2,C)-module V .

1. If V is irreducible, then V has a primitive element.

2. Each primitive element e∈V has a weight λ ∈Z+. It generates an irreducible sl(2,C)-submodule

V (λ ) := span < ei : i = 0, ....,λ > ⊂V

using the notation from Proposition 5.7.

3. A primitive element of an irreducible sl(2,C)-module is uniquely determined up
to a scalar from C∗.

Proof. 1. Existence of a primitive element: Set

L := sl(2,C).

We have V ̸= {0} because V is irreducible. Denote by

ρ : L −→ gl(V )
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the representation which defines the L-module structure on V . The kernel

ker ρ ⊂ L

is an ideal in the simple Lie algebra L. Depending on ker ρ we distinguish two
cases:

• If
ker ρ = L

then each non-zero element e∈V is a primitive element and has weight λ = 0 ∈ Z+.

• Otherwise
ker ρ = 0

and
ρ : L → gl(V )

is injective. The subalgebra

B := spanC < h,x > ⊂ L

is solvable because

[h,x] = 2x and therefore D2B = 0

The restriction
ρ|B : B −→ gl(V )

is injective. According to Theorem 3.20, the forerunner of Lie’s theorem, the
subalgebra

B ≃ ρ(B)⊂ gl(V )

has a common eigenvector e ∈V . Consider the eigenvalues λh, λx defined by

h.e = λh · e and x.e = λx · e.

The commutator [h,x] = 2x implies

2λx · e = 2x.e = [h,x].e = h.(x.e)− x.(h.e) = λhλx · e−λxλh · e = 0,

hence λx = 0. Therefore e ∈V is a primitive element.

2. The primitive element as “germ”: Let e∈V be a primitive element with weight λ ∈ C.
Because V is finite-dimensional, Proposition 5.7 implies:

λ ∈ Z+

and successive application of y ∈ L lowers the weight down to the value −λ .
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The vector space

V (λ ) = spanC < ei : i = 0, ...,λ > ⊂V

is a submodule of V . In V (λ ) each weight space with weight µ is 1-dimensional,
generated by the element ei with weight µ = λ −2i.

Any non-zero submodule
W ′ ⊂V (λ )

contains at least one weight vector, because

ρ(h)|W ′ : W ′ −→W ′

has an eigenvector, i.e. a weight vector of V (λ ) is contained in W ′. Hence for at
least one index i = 0, ...,λ holds

ei ∈W ′.

The formulas from Proposition 5.7 for raising and lowering the weight imply
that W ′ contains also e and a posteriori the whole L-module V (λ ), cf. Figure 5.1.
Therefore

W ′ =V (λ ),

which proves the irreducibility of V (λ ).

3. Primitive element: Due to part 2) each weight space of an irreducible sl(2,C-
module is 1-dimensional.
⊓⊔

Remark 5.9 (Eigenspaces of the angular momentum vector).

1. The real Lie algebra so(3,R) of infinitesimal rotations: The Lie algebra so(3,R)
is the Lie algebra of the rotation group SO(3,R). The infinitesimal generators of
the 1-parameter subgroups of rotations around the coordinate axes are the ele-
ments

Jx =

0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 , Jz =

0 −1 0
1 0 0
0 0 0

 ∈ so(3,R).

Their commutator relations are

[Jx,Jy] = Jz

and cyclic permutation, see Remark 2.21.



186 5 Root space decomposition

2. The complex Lie algebra so(3,C) of the angular momentum: The 3 generators

J1 := iJx, J2 := iJy, J3 := iJz ∈ so(3,C),

of the complexification

so(3,C)≃ so(3,R)⊗RC

satisfy the commutator relation

[J1,J2] = i · J3

and cyclic permutation. The complexification provides the map

sl(2,C) ≃−→ so(3,C), h/2 7→ J3, x 7→ J+, y 7→ J−,

with
J+ := J1 + i · J2 and J− := J1 − i · J2,

which is an isomorphism of Lie algebras due to the commutator relations

[J3,J+] = J+, [J3,J−] =−J−, [J+,J−] = 2 · J3,

note the factor
1
2
·h within the definition of the isomorphism.

The generators
J1,J2,J3 ∈ so(3,C)

are Hermitian matrices. Therefore they have real eigenvalues, and represent three
quantum mechanical observables in the Hilbert space C3. The complex Lie al-
gebra so(3,C) is named the Lie algebra of the angular momentum vector, the
vector of three observables

J⃗ := (J1,J2,J3).

3. The square of the angular momentum vector: Leaving the Lie algebra so(3,C)
we consider in the associative algebra M(3×3,C) the scalar product

J2 := J⃗ 2 = J2
1 + J2

2 + J2
3 ∈ M(3×3,C).

The matrix J2 is also Hermitian, hence also J2 represents a quantum mechanical
observable in the Hilbert space C3. In addition, the matrix J2 is positive semi-
definite.

One checks the equations

[J2
1 ,J3] = J1J1J3 − J3J1J1 = J1[J1,J3]+ J1J3J1 − J3J1J1 =

= J1[J1,J3]+ [J1,J3]J1 =−i · J1J2 − i · J2J1
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and similarly
[J2

2 ,J3] = i · J2J1 + i · J1J2

Hence
[J2

1 + J2
2 ,J3] = 0 and [J2,J3] = [J2

3 ,J3] = 0.

Hence
[J2,J3] = 0,

and the matrices J2 and J3 can be diagonalized simultaneously with real eigen-
values. By symmetry also

[J2,J1] = [J2,J2] = 0.

4. Complex representations: The Lie algebras

su(2)≃ so(3,R) and sl(2,R)

have the same complexification

sl(2,C)≃ su(2)⊗RC= so(3,R)⊗RC= so(3,C)

of type A1 = B1. Hence the Lie algebras

su(2), so(3,R), sl(2,R), sl(2,C), so(3,C)

have the same complex represesentations. These representations correspond bi-
jectively to the complex representations of the simply connected, real matrix
group SU(2), see Figure 5.2.

SU(2) GL(V )

su(2) gl(V )

ρ

exp

Lie ρ

exp

Fig. 5.2 Representations of su(2) and SU(2)

The group SU(2) is the universal covering of the rotation group SO(3,R), see
Example 2.24. The covering projection

p : SU(2)−→ SO(3,R)
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is a 2-fold covering with kernel

ker p = {±1}

The covering projection induces a bijection between the set of complex irre-
ducible representations ρ of SO(3,R) and the set of those complex irreducible
representations ρ of SU(2) with

ρ(−1) = idV

according to the commutative diagram from Figure 5.3

SU(2) GL(V )

SO(3,R)

ρ

p
ρ

Fig. 5.3 Representations of SU(2) and SO(3,R)

5. Ladder operators of so(3,C): The matrices

J± = J1 ± i · J2 ∈ so(3,C)

are Hermitian conjugate to each other

(J±)∗ = J∓

We now prove that J± are the “ladder” operators of so(3,C)-modules. For the
proof we use the isomorphy from part 3

sl(2,C) ≃−→ so(3,C), h/2 7→ J3, x 7→ J+, y 7→ J−,

and carry over the result of Proposition 5.7 from sl(2,C)-modules to so(3,C)-modules:

Consider a finite-dimensional, irreducible so(3,C)-module V . Denote by e ∈V a
primitive element when considering V as sl(2,C)-module under the isomorphism

sl(2,C)≃ so(3,C)

from part 2. It satisfies the eigenvalue equation

J3.e = m · e, m ∈
1
2
Z+ (half-integer) and J+.e = 0.
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The action of J+ raises the eigenvalue of J3 by 1, while the action of J− lowers
the eigenvalue by 1: For each eigenvector v ∈V of the action of J3 with

J3.v = k ·v, k ∈ R,

holds

J3.(J+.v) = ([J3,J+]+ J+J3).v = (J++ k · J+).v = (1+ k) · (J+.v)

and

J3.(J−.v) = ([J3,J−]+ J−J3).v = (−J−+ k · J−).v = (k−1) · (J−.v).

The primitive element e ∈V is also an eigenvector of the action of J2: The equa-
tion

J±J∓ = J2
1 + J2

2 ± J3 = J2 − J2
3 ± J3

implies
J2 = J+J−+ J2

3 − J3

and
J2 = J−J++ J2

3 + J3

From the last equation and
J+.e = 0

follows
J2.e = J2

3 .e+ J3.e = m2 · e+m · e = m(m+1) · e.

Raising or lowering by J± the eigenvalue of J3 does not change the eigenvalue
of J2: If

J2.v = λ ·v, λ ∈ R,

then due to [J2,J±] = 0 also

J2.(J±.v) = ([J2,J±]+ (J±.J2).v = J±.(J2.v) = λ · (J±.v)

Different from the basis of V , which derives according to Proposition 5.7 from
the basis with elements

ei :=
1
i!
· (yi.e), i ≥ 0,

textbooks from physics like [2, Eq. 5.74] consider the basis of V

(vk)−m≤k≤m

successively defined as

vk−1 :=
1√

(m+ k)(m− k+1)
· (J−.vk), −m+1 ≤ k ≤ m, vm := e.
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These vectors satisfy, see [2, Eq. 5.71]:

J2.vk = m(m+1) ·vk (Total angular momentum)

and

J3.vk = k ·vk, −m ≤ k ≤ m (Angular momentum around the z-axis).

Hence applying the ladder operators J± moves through the eigenspace of J2

along the different eigenvectors of J3.

The construction of the sl(2,C)-modules

V (λ ), λ ∈ Z+,

from Proposition 5.7 generates all irreducible sl(2,C)-modules.

Theorem 5.10 (Classification of all finite-dimensional irreducible sl(2,C)-modules).

1. For each λ ∈ Z+ exists a finite-dimensional, irreducible sl(2,C)-module with a
primitive element of weight λ .
Each finite-dimensional, irreducible sl(2,C)-module with a primitive element of
weight λ ∈ Z+ is isomorphic to the sl(2,C)-module V (λ ) from Corollary 5.8.

The sl(2,C)-module V (λ ) splits in the category of vector spaces as the direct
sum of 1-dimensional weight spaces

V (λ ) =
λ⊕

i=0

V λ−2i.

with integer weights.

2. The map to the isomorphy classes of finite-dimensional, irreducible sl(2,C)-modules

Z+ →{[V ] : V finite-dimensional, irreducible sl(2,C)-module}, λ 7→ [V (λ )],

is bijective.

Proof. Set L := sl(2,C).

1. Existence: Choose a vector space V of dimension λ + 1 with basis (e0, ...,eλ ).
Define

L×V −→V

by linear etension of the formulas from Proposition 5.7:
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• h.ei := (λ −2i) · ei

• y.ei := (i+1) · ei+1, eλ+1 := 0

• x.ei := (λ − i+1) · ei−1, e−1 := 0

One checks, that in accordance with the commutator relations of sl(2,C)

[h,x] = 2x, [h,y] =−2y, [x,y] = h,

these definitions satisfy the equations

• h.(x.ei)− x.(h.ei) = 2x.ei

• h.(y.ei)− y.(h.ei) =−2y.ei

• x.(y.ei)− y.(x.ei) = h.ei

Hence V becomes the irreducible L-module V (λ ) from Corollary 5.8 with primitive
element e0 ∈V .

2. Classification: According to part 1 the map from the theorem is well-defined and
surjective. Concerning its injectivity: If [V (λ1)] = [V (λ2)] then

V (λ1)≃V (λ2),

in particular
1+λ1 = dim V (λ1) = dim V (λ2) = 1+λ2,

hence
λ1 = λ2.

⊓⊔

Combining Theorem 5.10 with the results displayed in Figure 5.2 and 5.3 shows:
The complex finite-dimensional irreducible representations of SO(3,R) correspond
bijectively to the sl(2,C)-modules V (λ ) with highest weight λ ∈ 2 ·Z+.

Corollary 5.11 (Classification of all finite-dimensional sl(2,C)-modules).
Each finite-dimensional sl(2,C)-module V is isomorphic to a finite direct sum of
irreducible modules of the type V (λ ) from Corollary 5.8

V =
⊕

λ∈Z+

nλ ·V (λ ), nλ ∈ N,

with multiplicity nλ ̸= 0 for at most finitely many λ .



192 5 Root space decomposition

Proof. The proof follows from Weyl’s theorem on complete reducibility, see Theo-
rem 4.30, and Theorem 5.10. ⊓⊔

Example 5.12 (Explicit realization of the finite-dimensional irreducible sl(2,C)-modules
by homogeneous polynomials).

Set L := sl(2,C).

1. The irreducible L-module of highest weight λ = 0 is the 1-dimensional vector
space C with the trivial representation

ρ : sl(2,C)→{0} ⊂ gl(C).

Its weight space decomposition is

V (0) =V 0 ≃ C.

Any non-zero element e ∈ C is a primitive element.

2. The irreducible L-module of highest weight λ = 1 is the 2-dimensional vector
space C2 with the tautological representation

ρ : L = sl(2,C) ↪−→ gl(C2).

Its weight space decomposition is

V (1) =V 1 ⊕V−1

with

V 1 = C ·
(

1
0

)
, V−1 = C ·

(
0
1

)
and primitive element

e =
(

1
0

)
,

because

x.e =
(

0 1
0 0

)
·
(

1
0

)
=

(
0
0

)
∈ C2

3. The irreducible L-module of highest weight λ = 2 is the 3-dimensional vector
space L itself, considered as L-module with respect to the adjoint representation

ad : L → gl(L).

Proposition 5.4 shows the weight space decomposition

V (2) = L = L2 ⊕L0 ⊕L−2
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with primitive element e = x ∈ B.

4. In general, the irreducible L-module V (λ ) of highest weight λ = n ∈ Z+ is iso-
mophic to the complex vector space of complex homogeneous polynomials in
two variables

P(u,v) ∈ C[u,v]

of degree = n.

The vector space C[u,v] of polynomials in two variables u and v has a basis
of monomials (uµ ·vν)µ,ν∈N. A homogeneous polynomial of degree n ∈ N is an
element

P(u,v) =
n

∑
µ=0

aµ ·uµ ·vn−µ ∈ C[u,v], aµ ∈ C.

Denote by
Poln ⊂ C[u,v]

the subspace of homogeneoups polynomials of degree n. One has

dim Poln = n+1

because the family of monomials (un−i ·vi)i=0,...,n is a base of Poln.

When identifying the canonical basis of C2 with the two variables

u =

(
1
0

)
and v =

(
0
1

)
then the tautological representation of L acts on

Pol1 ≃ C ·u⊕C ·v

by definition as the matrix product

z.
(

a
b

)
= z ·

(
a
b

)
, z ∈ L.

Here the dot on the line on the left-hand side denotes the action of the element z ∈ L,
while the dot above the line on the right-hand side denotes the product of the
matrix z ∈ sl(2,C) with a vector from C2. We obtain

h.u = u, h.v =−v; x.u = 0, x.v = u; y.u = v, y.v = 0.

More general, for each z ∈ L we consider the linear differential operator

Dz : Poln −→ Poln, P 7→ Dz P,

defined as
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(Dz P)(u,v) := (z.u) ·
∂P(u,v)

∂u
+(z.v) ·

∂P(u,v)
∂v

Notably for un−i ·vi ∈ Poln

h.(un−i ·vi) :=Dh(un−i ·vi)= u·(n−i)·un−i−1 ·vi−i·v ·un−i ·vi−1 =(n−2i)·un−i ·vi

y.(un−i ·vi) := Dy(un−i ·vi) = v · (n− i) ·un−i−1 ·vi = (n− i) ·un−i−1 ·vi+1

x.(un−i ·vi) := Dx(un−i ·vi) = u ·un−i · i ·vi−1 = i ·un−i+1 ·vi−1.

As a consequence, the map

L×Poln → Poln,(z,P) 7→ Dz P,

defines an L-module structure on Poln: We set

e := un ∈ Poln

and define for i = 0, ...,n

ei :=
1
i!
· (yi.e)

One checks by induction on i = 0, ...,n

ei =
1
i!
·n · (n−1) · ... · (n− i+1) ·un−i · vi =

(
n
i

)
·un−i · vi.

We obtain
h.ei = (n−2i) · ei

y.ei = y.
((

n
i

)
·un−i ·vi

)
=

(
n
i

)
· (n− i) ·un−i−1 ·vi+1 =

= (i+1) ·
(

n
i+1

)
·un−i−1 ·vi+1 = (i+1) · ei+1

x.ei = x.
((

n
i

)
·un−i ·vi

)
= i ·

(
n
i

)
·un−i+1 ·vi−1 =

(n− i+1) ·
(

n
i−1

)
·un−i+1 ·vi−1 = (n− i+1) · ei−1.

Due to Theorem 5.10 proof of part 1, these formulas prove Poln ≃ V (n) with
primitive element

e := un ∈ Poln.

5. One checks that the isomorphy of vector spaces

Polλ = Symλ (C ·u⊕C ·v)≃ Symλ Pol1
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induces an isomorphy of sl(2,C)-modules between Polλ and the symmetric
power Pol1 with exponent λ of the tautological sl(2,C)-module.

The example is the particular case where the symmetric power of an irreducible
module stays irreducible. In general, tensor products of irreducible representa-
tions are reducible, and to determine the splitting behaviour of tensor products
can be a tedious task.

5.3 Root space decomposition and Cartan subalgebra

In this section the Lie algebra L denotes a non-zero, semisimple complex Lie algebra
if not stated otherwise. We generalize the splitting

sl(2,C) = L0 ⊕
(
Lα ⊕L−α

)
, α = 2,

from Proposition 5.4.

According to Proposition 5.2 there exists a maximal toral subalgebra T ⊂ L, and
each toral subalgebra of L is Abelian. Hence all endomorphisms

ad h : L → L, h ∈ T,

are simultaneously diagonizable, and the whole Lie algebra L splits as a direct sum
of common eigenspaces of T , see Definition 5.13. The decomposition is named the
root space decomposition of L with respect to T .

Definition 5.13 is a companion to Definition 5.6: The weights of the adjoint
representation are named roots.

Definition 5.13 (Root space decomposition with L0). Consider a pair (L,T ) with
a semisimple Lie algebra L and a maximal toral subalgebra T ⊂ L.

1. For a complex linear functional

α : T → C

set
Lα := {x ∈ L : [h,x] = α(h) · x f or all h ∈ T}.

If Lα ̸= {0} and α ̸= 0 then α is a root, Lα the common eigenspace with respect
to α of all endomorphism ad h, h ∈ T, is the root space of α , and each non-zero
vector v∈ Lα is a root vector of (L,T ). The set of all roots of (L,T ) is denoted Φ .
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2. The vector space decomposition

L = L0 ⊕

(⊕
α∈Φ

Lα

)

is the root space decomposition of L with L0 with respect to T .

Because L is finite-dimensional there exist only finitely many roots. The zero
eigenspace

L0 := {x ∈ L : [h,x] = 0 for all h ∈ T}

plays a distinguished role. The next task is to show

L0 = T

and to improve Definition 5.13. By definition

L0 =CL(T ) := {h ∈ L : [h,T ] = 0},

the centralizer of T . Proposition 5.2 shows that T is Abelian, hence

T ⊂CL(T ).

Therefore, the main task is to prove the opposite inclusion

CL(T )⊂ T,

i.e. elements which commute with the maximal toral algebra T already belong to
T . This property will be proved in Theorem 5.17. The main steps of the proof are:

• The centralizer CL(T ) contains with each element also its ad-semisimple and its
ad-nilpotent summand, see Lemma 5.3, part i). Therefore one can consider both
types of elements separately.

• The case of ad-semisimple elements is easy, because T is maximal with respect
to ad-semisimple elements, Lemma 5.3, part ii).

• Because the subalgebra CL(T ) is Abelian all its ad-nilpotent elements belong to
the null space of the Killing form restricted to CL(T ).

• The Killing form is nondegenerate on CL(T ). Hence the nullspace of κ|CL(T )
reduces to {0}.

We recall from Lemma 4.1 that the Killing form of L is “associative”

κ([x,y],z) = κ(x, [y,z]),x,y,z ∈ L.

Lemma 5.14 and Proposition 5.16 prepare the proof of Theorem 5.17.
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Lemma 5.14 (Orthogonality of root spaces). Consider a pair (L,T ) with a semisim-
ple Lie algebra L and a maximal toral subalgebra T ⊂ L. Then for each pair of
functionals α,β ∈ T ∗ holds:

•
[Lα ,Lβ ]⊂ Lα+β .

In particular, each element element

x ∈ Lα , α ̸= 0,

is ad-nilpotent.

• If α +β ̸= 0 then
κ(Lα ,Lβ ) = 0.

Proof. i) Assume x ∈ Lα , y ∈ Lβ , h ∈ T : The Jacobi identity implies

[h, [x,y]] =−([x, [y,h]]+ [y, [h,x]]) = [x,β (h) · y]− [y,α(h) · x]

= β (h) · [x,y]+α(h) · [x,y] = (α +β )(h) · [x,y],

hence [x,y] ∈ Lα+β . Because L has only finitely many roots there exists an
exponent N ∈ N with

(ad x)n = 0 for all x ∈ Lα , n ≥ N.

ii) By assumption there exists an element h ∈ T with

(α +β )(h) ̸= 0.

For arbitrary elements x ∈ Lα , y ∈ Lβ holds due to Lemma 4.1:

κ([h,x],y) =−κ([x,h],y) =−κ(x, [h,y]).

Hence
[h,x] = α(h) · x and [h,y] = β (h) · y

imply
α(h) ·κ(x,y) =−β (h) ·κ(x,y),

and
(α +β )(h) ·κ(x,y) = 0.

As a consequence
κ(x,y) = 0.

⊓⊔
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Corollary 5.15 (Negative of a root). Consider a pair (L,T ) with a semisimple Lie
algebra L and a maximal toral subalgebra T ⊂ L. For each root α ∈ Φ also the
negative −α ∈ T ∗ is a root, i.e. −α ∈ Φ .

Proof. To show that −α ∈ Φ , assume on the contrary that −α ∈ T ∗ is not a root.
Then for all roots β ∈ Φ

β ̸=−α i.e. α +β ̸= 0

Lemma 5.14, part ii) implies for all β ∈ Φ and also for β = 0

κ(Lα ,Lβ ) = 0.

Therefore the root space decomposition with L0

L = L0 ⊕

⊕
β∈Φ

Lβ


implies

κ(Lα ,L) = 0.

Theorem 4.14 on the non-degeneratedness of the Killling form implies Lα = 0, a
contradiction to α being a root. ⊓⊔

The proof of Theorem 5.17 relies on the fact that the Killing form stays non-
degenerate when restricted to a maximal toral subalgebra. Proposition 5.16 proves
this result in two steps - a posteriori Theorem 5.17 clarifies that both steps coincide.

Proposition 5.16 (Restriction of the Killing form to a maximal toral subalge-
bra).

Consider a pair (L,T ) with L a semisimple Lie algebra with Killing form

κ : L×L −→ C,

and T ⊂ L a maximal toral subalgebra.

• The restriction of κ to the centralizer CL(T ) of T

κ|(CL(T )×CL(T )) : CL(T )×CL(T )→ C,

is non-degenerate.

• The restriction of κ to T

κ|(T ×T ) : T ×T −→ C

is non-degenerate.
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Proof. Set C :=CL(T ), the centralizer of T in L, and recall C = L0.

• Non-degenerateness of κ|(C×C): Consider an arbitrary

h ∈C = L0 with κ(h,C) = 0, i.e. κ(h,L0) = 0.

Lemma 5.14 implies for each root α ∈ Φ

κ(h,Lα) = 0.

Hence the root-space decomposition of L with L0 implies

κ(h,L) = 0.

Because κ is non-degenerate according to the Cartan criterion from
Theorem 4.14, the last equation implies h = 0.

• Non-degenerateness of κ|(T ×T ): Consider an element h ∈ T ⊂C with

κ(h,T ) = 0.

Due to part i): In order to show h = 0, it is sufficient to show

κ(h,C) = 0.

For an arbitrary element x ∈C consider its abstract Jordan decomposition within
the semisimple Lie algebra L

x = s+n

Lemma 5.3, part ii) implies n ∈C and s ∈ T , in particular by assumption

κ(h,s) = 0.

Due to [h,C] = 0 by definition of C we conclude

ad[h,C] = [ad h,ad(C)] = 0

Therefore the ad-nilpotency of n implies the nilpotency of the composition

ad h◦ad n

Lemma 4.1 concludes
κ(h,n) = 0

Hence
κ(h,x) = κ(h,s)+κ(h,n) = 0.

Because x ∈C is arbitrary, we obtain

κ(h,C) = 0
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Part i) concludes h = 0.
⊓⊔

Now we are prepared to complete our task by proving Theorem 5.17.

Theorem 5.17 (A maximal toral subalgebra equals its centralizer). Consider a
semisimple complex Lie algebra L and a maximal toral subalgebra T ⊂ L. Then

T =CL(T ).

Proof. According to Proposition 5.2 the toral subalgebra T is Abelian.
Therefore T ⊂CL(T ). It remains to prove the opposite inclusion

CL(T )⊂ T.

For the proof set C :=CL(T ).

Due to Lemma 5.3, part ii) for each x ∈C with abstract Jordan decomposition

x = s+n

the semisimple summand s belongs to T . Hence it remains to show: Any
ad-nilpotent element n ∈C belongs to T . The proof relies on the
non-degenerateness of the restricted Killing κT form.

i) C is nilpotent: According to Engel’s theorem, see Theorem 3.10, it suffices to
show that for each element x ∈C the endomorphism

ad x ∈ End(C)

is nilpotent. For the proof consider the abstract Jordan decomposition in L

x = s+n.

On one hand, Lemma 5.3, part ii) implies s ∈ T . Hence [s,C] = 0 by definition. On
the other hand, the endomorphism ad n ∈ End(L) is nilpotent, hence a posteriori
also the restriction adC n ∈ End(C). As a consequence,

ad x = ad n

is nilpotent.

ii) T ∩ [C,C] = {0}: By definition of the centralizer [C,T ] = {0}. Lemma 4.1
implies

0 = κ([T,C],C) = κ(T, [C,C]).

Due to Proposition 5.16, part ii) the restriction κ|(T ×T ) is non-degenerate. Hence
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T ∩ [C,C] = {0}.

iii) C is Abelian: We argue by indirect proof. Assume on the contrary

[C,C] ̸= 0

Part i) implies that the Lie algebra C is nilpotent. Corollary 3.13 applies to the ideal

{0} ̸= I := [C,C]⊂C

and provides an element
0 ̸= x ∈ Z(C)∩ [C,C].

The element x is not ad-semisimple, because ad-semisimple elements from C
belong to T according to Lemma 5.3, part ii) and

T ∩ [C,C] = {0}

according to part ii). Therefore n ̸= 0 in the abstract Jordan decomposition

x = s+n

and n ∈C according to Lemma 5.3, part i). Moreover

x ∈ Z(C) =⇒ n ∈ Z(C)

according to Theorem 1.19. The nilpotency of ad n and the property [n,y] = 0 for
all y ∈C imply the nilpotency of

(ad n)◦ (ad y).

As a consequence κ(n,y) = 0 according to Lemma 4.1. We obtain

κ(n,C) = 0

Proposition 5.16 implies n = 0, a contradiction.

iv) C ⊂ T : We argue by indirect proof. Assume the existence of an
element x ∈C \T , and consider the abstract Jordan decomposition

x = s+n.

First n ̸= 0, because otherwise x = s is semisimple and Lemma 5.3, part ii)
implies x ∈ T , a contradiction. Secondly, Lemma 5.3, part i) implies n ∈C.
Thirdly, in order to show

κ(n,C) = 0

we consider an arbitrary element y ∈C. The endomorphism ad(n) is nilpotent.
Moreover [n,y] = 0 because C is Abelian by part iii). Hence the composition
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ad(n)◦ad(y)

is nilpotent and
κ(n,y) = tr(ad(n)◦ad(y)) = 0.

Proposition 5.16 part i) applies and shows n = 0, a contradiction.
⊓⊔

Consider a pair (L,T ) with a complex semisimple Lie algebra L and a maximal
toral subalgebra T ∈ L. Theorem 5.17 allows to replace in the root space
decomposition of L with L0 from Definition 5.13 the eigenspace L0 =CL(T ) by T .

Due to Corollary 5.15 the roots of L appear in pairs (α,−α). Chapter 6 and 7 will
explain how to choose from each pair one root such that the chosen roots can be
considered a set Φ+ of positive roots.

Definition 5.18 (Root space decomposition or Cartan decomposition). Consider
a pair (L,T ) with a semisimple Lie algebra L and a maximal toral subalgebra T ⊂ L.
Denote by Φ the root set of (L,T ). The splitting of L as the direct sum of eigenspaces
of T

L = T ⊕

(⊕
α∈Φ

Lα

)
= T ⊕

( ⊕
α∈Φ+

(
Lα ⊕L−α

))
is named the root space decomposition or Cartan decomposition of L.

Definition 5.19 (Cartan subalgebra). Consider a Lie algebra L. A Cartan subal-
gebra H of L is a nilpotent subalgebra H ⊂ L equal to its normalizer, i.e.

H = NL(H)

Lemma 5.20 (Cartan subalgebras of a semisimple Lie algebra). For a semisim-
ple Lie algebra L each maximal toral subalgebra T ⊂ L is a Cartan subalgebra
of L.

Proof. i) T is nilpotent: According to Proposition 5.2 any toral subalgebra T ⊂ L is
Abelian, in particular nilpotent.

ii) T satisfies the normalizer condition: Consider an arbitrary element x ∈ NL(T ).
We have to show x ∈ T . According to Theorem 5.17 it is sufficient for x ∈ T to
show

x ∈CL(T )

i.e. to show for all h ∈ T
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[h,x] = 0

For the proof apply the root space decomposition of L. It represents x uniquely as

x = xT + ∑
α∈Φ

xα , xT ∈ T, xα ∈ Lα .

The assumption x ∈ NL(T ) implies

[h,x] = [h,xT ]+ ∑
α∈Φ

α(h) · xα = ∑
α∈Φ

α(h) · xα ∈ T

Hence
[h,x] ∈ T ∩

⊕
α∈Φ

Lα = {0}.

The opposite inclusion T ⊂ NL(T ) holds obviously because T is a subalgebra. As a
consequence

NL(T ) = T.

⊓⊔

Remark 5.21 (Cartan subalgebras of a semisimpleLie algebra).

1. For a semisimple Lie algebra L the two concepts Cartan subalgebra and maximal
toral subalgebra are even equivalent, see [24, Chapter 15.3].

2. A Cartan subalgebra H ⊂ L of a semisimple Lie algebra L is not uniquely de-
termined. But each two Cartan subalgebras - and a posteriori each two maximal
toral subalgebras T ⊂ L - are conjugate under the group of inner automorphisms
of L. By definition an inner automorphism of L is a map

L −→ L, z 7→ (exp adx)(z), x ∈ L ad-nilpotent.

For a proof see [24, Chap. 16.4, Corollary] One defines the rank of the semisim-
ple Lie algebra L as

rank L := dimC H.





Chapter 6
Root systems from an axiomatic point of view

Our point of departure is the root space decomposition of a complex semisimple Lie
algebra

L = T ⊕

( ⊕
α∈Φ+

(Lα ⊕L−α)

)
,

see Definition 5.18.
We separate the concept of roots from the concept of a Lie algebra as its origin,

and study the properties of Φ in the context of abstract root systems. Here we follow
Serre’s guide [40]. Different from many other authors Serre introduces a root system
in an axiomatic way by its set of reflections. The existence of an invariant scalar
product on the vector space generated by the elements of a root system is then a
consequence and not a prerequisite. Serre develops the properties of a root system
by focusing on the real vector space V spanned by the roots.

The base field in the present chapter is R, all vector spaces are real and finite-
dimensional.

6.1 Root system

The ambient space of an abstract root system is a real vector space V . One may
conceive of V as the real vector space spanned by the root set of a semisimple Lie
algebra L, i.e. as the real vector space spanned by certain non-zero, linear functionals
on a maximal toral subalgebra of L.

Definition 6.1 (Symmetry). Consider a vector space V . A symmetry of V with vec-
tor α ∈V,α ̸= 0, is a R-linear automorphism

σ : V →V

205
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with the following two properties

1. σ(α) =−α

2. The fixed space
Hσ := {x ∈V : σ(x) = x}

of elements fixed by σ is a hyperplane in V , i.e. codimV Hσ = 1.

Lemma 6.2 (Symmetry). Consider a vector space V and a non-zero element α ∈V .

1. Each symmetry
σ : V −→V

with vector α induces the splitting

V = R ·α ⊕Hσ

In particular
σ

2 = idV .

If
x = µ1(x) ·α + v(x) ∈V with µ1 ∈V ∗, v(x) ∈ Hσ ,

then
σ(x) = x−2µ1(x) ·α

2. Each symmetry σ with vector α induces the linear functional

α
∗ := 2µ1 : V −→ R,

which satisfies
α
∗(α) = 2 and ker α

∗ = Hσ .

3. Conversely, for each non-zero linear functional

α
∗ : V −→ R with α

∗(α) = 2,

the map
σ : V −→V, x 7→ x−α

∗(x) ·α,

is a symmetry with vector α , induced functional α∗, and fixed space Hσ = ker α∗.

In the following we define a root system Φ . It has the decisive property that for
all α ∈ Φ the linear functional α∗ ∈V ∗ takes on integer values on all
elements β ∈ Φ .
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Definition 6.3 (Root system, rank and Cartan integers). A root system R in a
vector space V is a pair

R = (V,Φ)

with a real vector space V and a subset Φ ⊂V with the following properties:

• (R1) Finite and spanning: The set Φ is finite, 0 /∈ Φ , and spanRΦ =V .

• (R2) Invariance under distinguished symmetries: For each α ∈ Φ there is a sym-
metry

σ : V −→V

with vector α , which leaves Φ invariant, i.e. σ(Φ)⊂ Φ .

• (R3) Cartan integers: For all α ∈ Φ each symmetry σ with vector α as in axiom
(R2) satisfies for all β ∈ Φ

σ(β ) = β−< β ,α > ·α

with integer values < β ,α > ∈ Z. The integers

< β ,α > ∈ Z,α,β ∈ Φ ,

are named the Cartan integers of Φ .

• (R4) Reducedness: For each α ∈ Φ the only roots proportional to α are α itself
and −α , i.e.

(R ·α)∩Φ = {α,−α}.

The dimension of V is the rank of the root system, the elements of Φ are named the
roots of the root system.

In the literature condition (R4) is considered an additional requirement for a re-
duced root system. If the base field is not algebraically closed one has to distinguish
between reduced and non-reduced root systems. These lecture notes consider only
reduced root systems. Therefore we omit the attribute reduced.

Note that the function
<−,−>: V ×V −→ R

which defines the Cartan integers < β ,α > is linear in the first argument β but not
necessarily in the second argument α . For any α ∈ Φ :

< α,α >= 2.

Lemma 6.4 (Uniqueness of the symmetry). The symmetry σ with vector α from
Definition 6.3 part (R2) is uniquely determined by α .
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Proof. Assume two symmetries σi, i = 1,2, of V with vector α satisfying

σi(Φ)⊂ Φ , i = 1,2.

The symmetries satisfy
σi(Φ) = Φ , i = 1,2,

because Φ is a finite set, and σi is an automorphism. Consider the automorphism
of V

u := σ2 ◦σ1 : V −→V.

It satisfies
u(α) = α and u(Φ) = Φ .

Due to the formula from Lemma 6.2, part 1 for i = 1,2 the symmetries

σi : V −→V,

and a posteriori also u, induce on the quotient V/Rα the identity. There exists a
linear functional

f : V −→ R with f (α) = 0

such that for all x ∈V
u(x) = x+ f (x) ·α

Iteration shows for arbitrary n ∈ N and all x ∈V

un(x) = x+n · f (x) ·α

The restriction u|Φ is a permutation of Φ . Hence u|Φ has finite order, i.e. an expo-
nent n0 ∈ N exists with

(u|Φ)n0 = id|Φ .

Hence
un0 = id

because Φ spans V . As a consequence

n0 · f = 0

which implies f = 0 and therefore u = idV . We obtain

σ1 ◦σ2 = idV

Because
σi = σ

−1
i

one obtains also
σ1 ◦σ

−1
2 = idV or σ1 = σ2

⊓⊔
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Notation 6.5 (Root σα ). For a root system Φ the unique symmetry σ from Lemma 6.4
with vector α will be denoted σα .

Definition 6.6 (Weyl group). The Weyl group W of a root system (V,Φ) of V is
the subgroup of GL(V ) generated by all symmetries

σα : V −→V, α ∈ Φ .

The symmetries σα , α ∈ Φ , are named the Weyl reflections of the root system.

The Weyl group W permutes the elements of the finite set Φ , hence W is a
finite group. As a consequence, one may average an arbitrary scalar product over
the elements of the Weyl group, obtaining a scalar product which is invariant with
respect to W .

Lemma 6.7 (Invariant scalar product). Let Φ be a root system of a vector space V .
Then a scalar product (−,−) exists on V which is invariant under the Weyl group W
of Φ . With respect to any invariant scalar product the Cartan integers satisfy

< β ,α >= 2 ·
(β ,α)

(α,α)
, α,β ∈ Φ .

Proof. Take an arbitrary scalar product B on V and define the bilinear form (−,−)
as

(x,y) := ∑
w∈W

B(w(x),w(y)), x,y ∈V,

as the average over the Weyl group, which is a finite group. Apparently, (−,−)
is positive definite, hence a scalar product. By construction, the scalar product
is W -invariant. For two roots α,β ∈ Φ the corresponding Cartan integer < β ,α >
is defined by the equation

σα(β ) = β−< β ,α > α.

Because
σα(α) =−α, and (σα)

2 = id

and due to the invariance of the scalar product:

−(α,β ) = (σα(α),β ) = ((σα)
2(α),σα(β )) =

= (α,σα(β )) = (α,β−< β ,α > α) =

= (α,β )−< β ,α > (α,α),

which proves
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< β ,α >= 2 ·
(α,β )

(α,α)
= 2 ·

(β ,α)

(α,α)

⊓⊔

Corollary 6.8 (Fixed space of a symmetry). Consider a root system Φ of a vector
space V . The fixed space of the symmetry σα of a root α ∈ Φ is the orthogonal
space of the root

Hσα
= α

⊥

Hence σα is the reflection at the orthogonal hyperplane α⊥.

Proof. A given element v ∈ α⊥ has a representation

v = ∑
i

ti ·αi, αi ∈ Φ .

Then
σα(v) = ∑

i
ti ·σα(αi) = ∑

i
ti · (αi−< αi,α > ·α) =

= ∑
i

ti ·αi −∑
i

ti ·2 ·
(αi,α)

(α,α)
·α = v−2 ·

(v,α)

(α,α)
·α = v

Hence
α
⊥ ⊂ Hσα

Both subspaces of V have codimension = 1. Therefore

Hσα
= α

⊥

⊓⊔

Now, after constructing an Euclidean space (V,(−,−)) of the root system Φ , we
can define the length of a root and the angle between two roots. In the following we
always provide a root system Φ with a fixed W -invariant Euclidean structure on its
vector space V .

Definition 6.9 (Length of roots and angle between roots). Consider a root system Φ

and the corresponding Euclidean vector space (V,(−,−)).

1. The length of a root α ∈ Φ is defined as

∥α∥ :=
√

(α,α).

2. The angle included between two roots α,β ∈ Φ

θ := ∢(α,β ) with 0 ≤ θ ≤ π
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is defined according to

cos(θ) :=
(α,β )

∥α∥ · ∥β∥

Lemma 6.10 (Possible angles and length ratio of two roots). Consider a root sys-
tem Φ and two non proportional roots α,β ∈ Φ . Table 6.1 displays the only pos-
sible angles ∢(α,β ) included by α and β , and the ratios of the length of α and β

if ∥β∥ ≥ ∥α∥.

No. < α,β > < β ,α > ∢(α,β ) ∥β∥2/∥α∥2 ∆ = {α,β}
1 0 0 π

2 undet. A1 ×A1

2 1 1 π

3 1

3 -1 -1 2π

3 1 A2

4 1 2 π

4 2

5 -1 -2 3π

4 2 B2

6 1 3 π

6 3

7 -1 -3 5π

6 3 G2

Table 6.1 Angles and length of roots

The last column of the table indicates the type of the root system of rank = 2 with
base ∆ = {α,β}. The concept will be introduced in Definition 6.13, see also Theo-
rem 6.31.

Proof. We employ the Cartan integers < α,β >,< β ,α > ∈ Z.
Both Cartan integers have equal sign due to Lemma 6.7. If α and β are not
proportional, then the angle θ := ∢(α,β ) is different from zero and different
from π , hence

|cos θ |< 1

Therefore

4 > 4 · cos2
θ = 2 · (α,β )

∥β∥2 ·2 · (β ,α)

∥α∥2 =< α,β > ·< β ,α > ≥ 0.

If ∥β∥ ≥ ∥α∥ then
|< α,β > | ≤ |< β ,α > |,

because

< α,β ≯= 0 =⇒ ∥β∥2

∥α∥2 =
< β ,α >

< α,β >
=

|< β ,α > |
|< α,β > |
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Hence only the combinations from the table are possible.
⊓⊔

The formulas from the proof of Lemma 6.10 indicate : For two non-proportional
roots α,β ∈ Φ the product of their Cartan integers determines the included angle θ = ∢(α,β ),
while the quotient of the Cartan integers determines their length ratio ∥β∥/∥α∥ with
the only exception of the orthogonal case θ = π/2.

Example 6.11 (Root systems of rank ≤ 3).

• Rank = 1: The only root system is Φ = {±α} with V = R.

• Rank = 2: Figure 6.1 displays all root systems of rank = 2, see also Theorem 6.27
and Proposition 6.29.

• Rank = 3: See the figures in [18, Chap. 8.9] as one example.

Fig. 6.1 Root systems of rank = 2

Lemma 6.12 (Roots with acute angle). If two non-proportional roots α,β ∈ Φ

include an acute angle, i.e. (α,β )> 0, then also α −β ∈ Φ .
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Proof. According to Table 6.1 the assumption (α,β )> 0 implies, depending on the
ratio

∥β∥2/∥α∥2,

< β ,α >= 1 or < α,β >= 1.

In the first case σα(β ) = β − α , in the second case σβ (α) = α − β . In both
cases α −β ∈ Φ because the Weyl reflections

σα , σβ ∈ W

leave Φ invariant and the negative of a root is also a root. ⊓⊔

Definition 6.13 (Base of a root system, positive and negative roots).

Consider a root system Φ in a vector space V .

i) A set
∆ = {α1, ...,αr}

of roots αi ∈ Φ , i = 1, ...,r, is a base of Φ and the elements of ∆ are named simple
roots iff

• The family (αi)i=1,...,r is a basis of V ,

• and each root β ∈ Φ has a representation with integer coefficients

β =
r

∑
i=1

ki ·αi, ki ∈ Z,

with either all ki ≥ 0 or all ki ≤ 0.

ii) With respect to a base ∆ a root β is

• positive, β ≻ 0, iff all ki ≥ 0

• negative, β ≺ 0, iff all ki ≤ 0.

The subset Φ+ ⊂ Φ is defined as the set of all positive roots and the
subset Φ− ⊂ Φ as the set of all negative roots.

Theorem 6.14 (Existence of a base). Every root system Φ in a vector space V has
a base ∆ .

Proof. The construction of a candidate for ∆ is straightforward. But the proof that
the candidate is indeed a base, will take several steps.
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i) Construction of ∆ : Because Φ is finite, a linear functional t ∈V ∗ exists
with t(α) ̸= 0 for all α ∈ Φ . Set

Φ
+
t := {α ∈ Φ : t(α)> 0}

and call α ∈ Φ
+
t decomposable in Φ

+
t iff

α = α1 +α2 with α1,α2 ∈ Φ
+
t

and otherwise indecomposable in Φ
+
t . We claim that the set

∆ := {α ⊂ Φ
+
t : α indecomposable in Φ

+
t }

is a base of Φ .

ii) Representation of elements from Φ
+
t : We claim that each β ∈ Φ

+
t has the form

β = ∑
α∈∆

kα ·α with all kα ∈ Z+.

Otherwise consider the non-empty subset C ⊂ Φ
+
t of all elements which lack such

a representation, and choose an element β ∈C with t(β )> 0 minimal. By
construction β ∈ Φ

+
t cannot be indecomposable in Φ

+
t . Hence β ∈ Φ

+
t is

decomposable in Φ
+
t , i.e.

β = β1 +β2

with β1,β2 ∈ Φ
+
t and β1 ∈C or β2 ∈C. We get

t(β ) = t(β1)+ t(β2)

which implies
0 < t(β1)< t(β ) and 0 < t(β2)< t(β ),

a contradiction to the minimality of t(β ) within t(C).

iii) Angle between elements from ∆ : We claim that two different roots α ̸= β

from ∆ are either orthogonal or include an obtuse angle, i.e. (α,β )≤ 0.
Otherwise (α,β )> 0 and we obtain from Lemma 6.12 the root

γ := α −β ∈ Φ .

As a consequence
α = β + γ,

and γ /∈ Φ
+
t because α is indecomposable in Φ

+
t . Hence −γ ∈ Φ

+
t which implies

β = α +(−γ)

decomposable in Φ
+
t , a contradiction which proves the claim.
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iv) Linear independency: We claim that each finite subset A ⊂V with all different
elements α,β ∈ A satisfying

t(α)> 0 and (α,β )≤ 0

is linearly independent. For the proof assume the existence of a representation

0 = ∑
α∈A

nα ·α

with coefficients nα ∈ R for all α ∈ A. Separating summands with positive
coefficients from those with negative coefficients gives an equation

∑
β∈A1

kβ ·β = ∑
γ∈A2

kγ · γ =: v ∈V

with disjoint subsets A1,A2 ⊂ A and all kβ , kγ ≥ 0. Then

(v,v) = ∑
β∈A1,γ∈A2

kβ · kγ · (β ,γ)≤ 0.

Hence v = 0. Now
0 = t(v) = ∑

β∈A1

kβ · t(β )

with t(β )> 0 for all β ∈ A1 implies kβ = 0 for all β ∈ A1. Similarly kγ = 0 for
all γ ∈ A2. Hence

nα = 0

for all α ∈ A. Hence the family of elements from A is linearly independent.

The sequence of all steps i) until iv) proves the claim of the theorem.
⊓⊔

The proof of Theorem 6.14 constructs a base ∆ by starting from a certain func-
tional t ∈ V ∗. Conversely Lemma 6.15 shows that any base can be obtained in this
way: Each base of a root system Φ is the set of indecomposable elements in Φ

+
t for

a suitable linear functional t ∈V ∗.

Lemma 6.15 (Base and a determining linear functional). In a vector space V
consider a root system Φ with a base ∆ . Denote by

Φ = Φ
+ ∪̇ Φ

−

the induced decomposition of Φ . Then

• A functional t ∈V ∗ exists with t(α) ̸= 0 for all α ∈ Φ such that

Φ
+ = Φ

+
t := {α ∈ Φ : t(α)> 0} and Φ

− = Φ
−
t := {α ∈ Φ : t(α)< 0}
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• For each functional t ∈V ∗ with Φ+ ⊂ Φ
+
t holds

∆ = {α ∈ Φ
+
t : α indecomposable in Φ

+
t }.

Proof. The base ∆ defines the decomposition

Φ = Φ
+ ∪̇ Φ

−.

First, because the family of elements from the base ∆ are a basis of V there exists a
linear functional t ∈V ∗ with t(α)> 0 for all α ∈ ∆ . Then

Φ
+ = Φ

+
t and Φ

− = Φ
−
t

Secondly, for each functional t ∈V ∗ with

∆ ⊂ Φ
+
t

follows
Φ

+ ⊂ Φ
+
t and Φ

− ⊂ Φ
−
t .

And the decomposition

Φ
+ ∪̇ Φ

− = Φ = Φ
+
t ∪̇ Φ

−
t

implies
Φ

+ = Φ
+
t and Φ

− = Φ
−
t .

As a consequence, the indecomposable elements from both sets Φ+ and Φ
+
t are

equal, i.e. ∆ = ∆ ′. ⊓⊔

Corollary 6.16 (Two distinct roots of a base are orthogonal or include an obtuse
angle). Consider a base ∆ of a root system Φ in a vector space V . Then any two
different roots

α ̸= β ∈ ∆

are orthogonal or include an obtuse angle, i.e. (α,β )≤ 0.

Proof. According to Lemma 6.15 a suitable functional t ∈V ∗ exists with

∆ = {α ∈ Φ
+
t : α indecomposable in Φ

+
t }.

Part iii) in the proof of Theorem 6.14 shows (α,β )≤ 0. ⊓⊔
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6.2 Action of the Weyl group

Our aim in the present chapter is the classification of all possible root systems. This
result derives from two facts.

First, the Cartan numbers of a root system Φ of a real vector space V are integers.
This fact restricts the angle and the relative length of two roots, see Lemma 6.10.
The second fact results from investigating different group actions of the Weyl group,
in particular the transitive action on the set of bases of a given root system. Besides
the action of the Weyl group W on Φ

W ×Φ → Φ ,(w,α) 7→ w(α),

we study the action of W

• on the linear functionals induced by α ∈ Φ as

<−,α >: V −→ R, v 7→< v,α >:= 2 ·
(v,α)

(α,α)

• on the Weyl reflections
σα : V −→V, α ∈ Φ ,

• and on the bases ∆ of Φ .

We will show: A root system is characterized by the matrix of its Cartan integers,
the Cartan matrix. Only finitely many types of Cartan matrices exist.

Definition 6.17 (Group action). A group G acts on a set X if a map exists

G×X −→ X , (g,x) 7→ g.x

with the following properties:

e.x = x for all x ∈ X , e ∈ G the neutral element,

and
(g1 ·g2).x = g1.(g2.x) for all g1,g2 ∈ G and all x ∈ X .

The group acts transitive if for all x ∈ X the induced map

G −→ X , g 7→ g.x,

is surjective.

Lemma 6.18 (Action of the Weyl group on Cartan integers and on symmetries).
Consider a root system Φ in a vector space V with Weyl group W .
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1. Set
A := {<−,α >∈V ∗ : α ∈ Φ} .

The map
W ×A −→ A, (w,<−,α >) 7→<−,w(α)>

is a group action.

2. The conjugation

W ×W −→ W , (w1,w2) 7→ w1 ◦w2 ◦w−1
1 ,

is a group action.

3. Denote by
C := {∆ ⊂ Φ : ∆ a base of Φ}

the set of all bases of Φ . The map

W ×C −→C, (w,∆) 7→ w(∆) := {w(α) : α ∈ ∆},

is a group action.

Remark 6.19 (Action on the dual space). Consider a root system Φ with Weyl
group W .

1. For all α ∈ Φ and w ∈ W holds

<−,w(α)>=<−,α > ◦w−1

For the proof it is sufficient to consider a Weyl reflection w = σβ , β ∈ Φ . The
proof employs the invariance of the scalar product (−,−) with respect to σβ , and
the property

σ
2
β
= id, i. e. σβ = σ

−1
β

.

Then

<−,α > ◦σ
−1
β

=<−,α > ◦σβ =< σβ (−),α >= 2 ·
(σβ (−),α)

(α,α)
=

= 2 ·
(σ2

β
(−),σβ (α))

(α,α)
= 2 ·

(−,σβ (α))

(α,α)
= 2 ·

(−,σβ (α))

(σβ (α),σβ (α))
=

=<−,σβ (α)>

2. Accordingly one extends the action of W to an action on the dual space V ∗:

W ×V ∗ →V ∗,(w, t) 7→ w(t) := t ◦w−1.
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Proposition 6.20 (Properties of the Weyl group). Consider a root system Φ of a
vector space V and denote by W its Weyl group. Denote by ∆ a fixed base of Φ .
Then

1. Embedding ∆ into half-spaces: For each functional t ∈ V ∗ an element w ∈ W
exists such that all α ∈ ∆ satisfy

w(α) ∈ Φ
+
t

2. Transitive action on bases: The action of W on the set of bases of Φ is transitive,
i.e. for any base ∆ ′ of Φ an element w ∈ W exists with

w(∆) = ∆
′.

3. Any root extends to a base: For any root α ∈ Φ an element w ∈ W exists with

w(α) ∈ ∆ , i.e. Φ = W (∆).

4. Generators of W : The Weyl group W is generated by the Weyl reflections σα of
the roots α ∈ ∆ .

Proof. Denote by W∆ ⊂ W the subgroup generated by the Weyl reflections σα of
the roots α ∈ ∆ . We first show that the first three claims of the Proposition can be
satisfied with Weyl reflections from W∆ . The final step of the proof will show

W = W∆ .

i) Each Weyl reflection σα ∈ W with α ∈ ∆ leaves the set Φ+ \{α} invariant:
Assume that ∆ comprises at least two roots. Consider an element β ∈ Φ+ \{α}. It
has a representation

β = ∑
γ∈∆

kγ · γ, kγ ≥ 0, for all γ ∈ ∆ .

Due to axiom (R4) from Definition 6.3 the root β is not proportional to α ,
because −α /∈ Φ+. Hence kγ > 0 for at least one γ ∈ ∆ \{α}. We get

σα(β ) = β−< β ,α > α =

=

(
∑
γ∈∆

kγ · γ

)
−< β ,α > α = (kα−< β ,α >) ·α + ∑

γ∈∆\{α}
kγ · γ.

Hence also σα(β ) has at least one coefficient kγ > 0. Because ∆ is a base, all
coefficients are non-negative and

σα(β ) ∈ Φ
+ \{α}.
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ii) We introduce the distinguished vector ρ ∈V , which is defined as half the sum of
all positive roots

ρ := (1/2) · ∑
β∈Φ+

β .

According to part i) each Weyl reflection σα ∈ W with α ∈ ∆ permutes all positive
roots different from α and σα(α) =−α . Hence

σα(ρ) = σα((ρ −α/2)+α/2) = (ρ −α/2)−α/2 = ρ −α.

We now show that the first three claims can be satisfied already by taking Weyl
reflections from W∆ .

iii) Claim: Part 1 of the Proposition can be achieved with an element w ∈ W∆ : For a
given functional t ∈V ∗ we choose an element w ∈ W∆ with t(w(ρ)) maximal with
respect to all elements from W∆ . For all α ∈ ∆ holds according to part ii):

α = ρ −σα(ρ)

w(α) = w(ρ)−w(σα(ρ))

t(w(α)) = t(w(ρ))− t(w(σα(ρ))).

Because also w◦σα ∈ W∆ we have due to the choice of w ∈ W∆

t(w(ρ))≥ t(w(σα(ρ)))

or for all α ∈ ∆

t(w(α))≥ 0, i.e. w(α) ∈ Φ
+
t

iv) Claim: Part 2 of the proposition can be achieved with an element w ∈ W∆ : First,
Lemma 6.15 applies to ∆ ′ and provides a functional t ′ ∈V ∗

• satisfying
t ′(α) ̸= 0

for all α ∈ Φ

• and
t ′(α ′)> 0

for all α ′ ∈ ∆ ′.

Secondly, the already proved Part 1 of the proposition applies to t ′ and provides an
element w ∈ W∆ such that all α ∈ ∆ satisfy

t ′(w(α))≥ 0

Then the functional
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t := t ′ ◦w ∈V ∗

satisfies for all α ∈ ∆

t(α)≥ 0.

Here the case t(α) = 0 is excluded, because otherwise the root w(α) ∈ Φ would
satisfy

t ′(w(α)) = 0,

which is excluded because t ′ does not vanish on any root from Φ .

Applying now Lemma 6.15 to the pairs (∆ , t) and (∆ ′, t ′) characterizes ∆ as the set
of indecomposable elements of Φ

+
t and ∆ ′ as the set of indecomposable elements

of Φ
+
t ′ . Therefore

w(∆) = {w(α) ∈ Φ : α ∈ Φ
+
t indecomposable in Φ

+
t }=

= {w(α) ∈ Φ : t(α) = t ′(w(α))> 0, w(α) indecomposable in Φ
+
t ′ }=

= {β ∈ Φ
+
t ′ : β indecomposable in Φ

+
t ′ }= ∆

′

v) Claim: Part 3 of the Proposition can be achieved with an element w ∈ W∆ : For
fixed α ∈ Φ we find a functional t0 ∈V ∗ with

t0(α) = 0 but t0(β ) ̸= 0

for all roots β not proportional to α . Because Φ is a finite set, the minimum

min{|t0(β )| : β ∈ Φ not proportional to α}

is positive. Hence a small perturbation of t0 provides a linear functional t ∈V ∗ and
an ε > 0 such that for all roots β not proportional to α

|t(β )|> ε

but
t(α) = ε.

Denote by ∆t the base of Φ induced by t according to the proof of Theorem 6.14.
By part iv) an element w ∈ W∆ exists with

w(∆t) = ∆ .

The root α ∈ Φ is contained in Φ
+
t . It is indecomposable because t(β )> ε for all

roots β ∈ Φ
+
t which are non-proportional to α . Therefore α ∈ ∆t , which

implies w(α) ∈ ∆ .

vi) Claim W∆ = W : Because the Weyl group is generated by all
symmetries σα , α ∈ Φ , it suffices to show that



222 6 Root systems from an axiomatic point of view

σα ∈ W∆

for all α ∈ Φ . We choose an arbitrary root α ∈ Φ . According to part v) an
element w ∈ W∆ exists with

β := w(α) ∈ ∆ .

First, we show
w−1 ◦σw(α) = σα ◦w−1 :

We apply both sides to a root γ ∈ Φ . Left-hand side:

(w−1 ◦σw(α))(γ) = w−1(γ−< γ,w(α)> ·w(α)) =

= w−1(γ)−< γ,w(α)> ·w−1(w(α)) =

= w−1(γ)−< γ,w(α)> ·α

Right-hand side:

(σα ◦w−1)(γ) = σα(w−1(γ)) = w−1(γ)−< w−1(γ),α > ·α

It remains to show:
< γ,w(α)>=< w−1(γ),α >,

i.e the equality of the two linear functionals

<−,w(α)>=< w−1(−),α > .

According to Remark 6.19 for the left-hand side holds

<−,w(α)>=<−,α > ◦w−1 =< w−1(−),α >,

which proves the claim.

As a consequence
w−1 ◦σβ = w−1 ◦σw(α) = σα ◦w−1

i.e
σα = w−1 ◦σβ ◦w ∈ W∆ .

⊓⊔

Definition 6.21 (Cartan matrix).

Consider a root system Φ in a vector space V and a base ∆ = {α1, ...,αr} of Φ .
The Cartan matrix of ∆ is the matrix of the Cartan integers of the roots from ∆

Cartan(∆) :=
(
< αi,α j >1≤i, j≤r

)
∈ M(r× r,Z).

Here the index i denotes the row and the index j denotes the column.
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Note that the Cartan matrix is not necessarily symmetric. All diagonal elements
of the Cartan matrix have the value

< αi,αi >= 2,

which follows from
−α = σα(α) = α−< α,α > ·α

for each root α ∈ Φ .

For i ̸= j only values
< αi,α j >≤ 0

are possible according to Corollary 6.16. Moreover, these values are restricted to the
set

{0,−1,−2,−3}

according to Lemma 6.10 and Corollary 6.16.

The Cartan matrix is defined with reference to a base ∆ and with reference to a
numbering of its elements. Lemma 6.22 shows: Each two bases of Φ have the same
Cartan matrices.

Lemma 6.22 (Independence of the Cartan matrix from the choosen base).

Consider a root system Φ of rank

r = rank Φ .

Any two bases ∆ ,∆ ′ of Φ have the same Cartan matrix up to a renumbering of the
elements of the bases. More specifically:

An element w ∈ W of the Weyl group of Φ exists with w(∆) = ∆ ′ and

Cartan(∆) =Cartan(∆ ′).

Proof. According to Proposition 6.20 an element w ∈ W exists with w(∆) = ∆ ′

after renumbering, i.e.

∆ = {α1, ...,αr} =⇒ ∆
′ = {w(α1), ...,w(αr)}.

According to Remark 6.19

<−,w(α j)>=<−,α j > ◦w−1

which implies

< w(αi),w(α j)>=< w−1(w(αi)),α j >=< αi,α j >

⊓⊔
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As a consequence of Lemma 6.22 one speaks of the Cartan matrix of a root system,
independently from the choice of a base.

The Cartan matrix encodes the full information of the root system Φ , notably the
dimension of its ambient space V . Theorem 6.23 shows that each bijective map
between two bases of root systems with the same Cartan matrix extends to an
isomorphism of the ambient vector spaces of the root systems.

Theorem 6.23 (The Cartan matrix characterizes the root system).

Consider a root system Φ in a vector space V and a base

∆ = {α1, ...,αr}

of Φ . Let V ′ be a second vector space and

∆
′ = {α

′
1, ...,α

′
r}

a base of a root system Φ ′ in V ′. If a bijective map

f : ∆ → ∆
′

exists with
Cartan(∆) =Cartan(∆ ′),

then a unique isomorphism of vector spaces

F : V →V ′

exists with
F(Φ) = Φ

′ and F |∆ = f .

Proof. i) Construction of F : Because the elements from ∆ form a basis of the
vector space V we may define

F : V →V ′

as the uniquely determined linear extension of f . And because ∆ and ∆ ′ have the
same cardinality the linear map F is an isomorphism.

ii) Conjugation of the Wely groups: We show that the Weyl groups W and W ′ are
conjugate via F , i.e.

W ′ = F ◦W ◦F−1 i.e. W ′ ◦F = F ◦W :

For the proof it is sufficient two consider two roots α,β ∈ ∆ . Then

(σ f (α) ◦F)(β ) = σ f (α)( f (β )) = f (β )−< f (β ), f (α)> f (α)
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and

(F ◦σα)(β ) = F(σα(β )) = F(β−< β ,α,> α) = f (β )−< β ,α,> f (α)

Hence for every root α ∈ ∆

σ f (α) ◦F = F ◦σα .

Moreover, the conjugation is compatible with taking the product of Weyl
reflections. The Weyl groups W and W ′ are generated by the Weyl reflections of
the elements from respectively ∆ and ∆ ′, see Proposition 6.20. Hence

W ′ ◦F = F ◦W .

iii) Mapping Φ : According to part ii) in combination with Proposition 6.20, part 3

Φ
′ = W (∆ ′) = W ′(F(∆)) = F(W (∆)) = F(Φ)

⊓⊔

6.3 Coxeter graph and Dynkin diagram

Due to Theorem 6.23 a root system Φ in a vector space is completely determined
by its Cartan matrix. Hence the classification of root systems reduces to the
classification of possible Cartan matrices. The Cartan integers satisfy a set of
restrictions. The present section shows how the language of Cartan matrices
translates to a data structure from Discrete Mathematics. The data structure is an
undirected graph with multiple edges, called the Coxeter graph of the root system.

Therefore, we first define the Coxeter graph of Φ , and then classify all possible
graphs from a class of graphs, which covers all Coxeter graphs. The classification
is achieved by calculating within Euclidean vector spaces. Theorem 6.27 gives the
final classification. A minor shortcoming of the Coxeter graph of a root system is
the fact that it contains no information about the relative length of the roots.
Therefore one upgrades the Coxeter graph by orientating the edges by a pointer
from a long root to a short root. The result is the Dynkin diagram of Φ .

Definition 6.24 (Coxeter graph of a root system). Consider a root system Φ of a
vector space V and a base ∆ of Φ . The Coxeter graph of Φ is the undirected graph

Coxeter(Φ) = (N,E)

with

• vertex set N := ∆
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• and edge set E: Each pair of distinct roots

α,β ∈ ∆ , α ̸= β ,

is joined by exactly
< α,β > ·< β ,α >

undirected edges.

Note: The Coxeter graph of Φ does not depend on the choice of the base ∆ of Φ ,
see Theorem 6.23.
Recall from Lemma 6.10 and Corollary 6.16: The angle θ between two
roots α ̸= β ∈ ∆ is determined by the product of their Cartan integers as

< α,β >< β ,α >= 4 · cos2
θ ∈ {0,1,2,3}, π/2 ≤ θ < π.

If (−,−) denotes a scalar product on V which is invariant under Φ , then

< α,β >< β ,α >= 4 ·
(α,β )2

∥α∥2 · ∥β∥2.

In order to classify all Coxeter graphs, we introduce the concept of an ad-
missible graph. Each Coxeter graphs defines an admissible graph. The next step,
Theorem 6.27, classifies all connected admissible graphs. A second step must show
that all connected admissible graphs are Coxeter graphs. We will show a partial
result for the second step in Chapter 7 and give a reference for the remaining part.

Definition 6.25 (Admissible graph). Consider an Euclidean space (V,(−,−)) and
an undirected graph (N,E) with a finite vertex set N ⊂ V and with edge set E.
Assume that the vertex set

N = {v1, ...,vr} ⊂V

is a linearly independent family (vi)i=1,...,r of unit vectors satisfying for 1 ≤ i ̸= j ≤ r

(vi,v j)≤ 0,

and that each pair of distinct vertices vi v j ∈V is joined by

4 · (vi,v j)
2 ∈ N

edges from E. Then the graph (N,E) is named admissible if each pair of distinct
nodes is joined by at most 3 edges, otherwise the graph is named non-admissible.
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Lemma 6.26 (Coxeter graph and admissible graph). Each Coxeter graph of a
root system Φ defines an admissible graph after normalizing the lenght of the roots
of a base ∆ of Φ .

Proof. After choosing a scalar product (−,−) on V , which is invariant under the
Weyl group of Φ , one defines for each α ∈ ∆ the unit vector

αu :=
α

∥α∥
∈ (V,(−,−)).

Then the following graph (N,E) is admissible: Vertex set

N := {αu : α ∈ ∆}

and edge set E: Each pair of distinct vertices αu, βu ∈ N is joined by exactly

< α,β >< β ,α >

edges. The claim
4(αu,βu)

2 ∈ {0,1,2,3}

follows immediately from the formula

4(αu,βu)
2 = 4 ·

(α,β )2

∥α∥2 · ∥β∥2 =< α,β >< β ,α > ∈ {0,1,2,3}

as noted above. ⊓⊔

Theorem 6.27 (Classification of connected admissible graphs). Each connected
admissible graph belongs to exactly one of the classes from Figure 6.2 - up to a
numbering of the vertices:
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Fig. 6.2 Connected admissible graphs

Figure 6.2 means:

• The integer at a link between two vertices vi ̸= v j is the number of edges between
the two vertices; a link without a number indicates a single edge.

• Graphs from series Ar,r ≥ 1: Each pair of subsequent roots include the angle 2π

3 .
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• Graphs from series Br/Cr,r ≥ 2: The first r−2 pairs of subsequent roots include
the angle 2π

3 , the last two roots include the angle 3π

4 .

• Graphs from series Dr,r ≥ 4: The first r−3 subsequent pairs of roots include the
angle 2π

3 , root αr−2 includes with each of the two roots αr−1 and αr the angle 2π

3 .

• Exceptional graph G2: ∆ = (α1,α2). The two roots include the angle 5π

6 .

• Exceptional graph F4: ∆ = (α1, ...,α4). The pairs (α1,α2) and (α3,α4) include
the angle 2π

3 , the pair (α2,α3) includes the angle 3π

4 .

• Exceptional graphs Er,r ∈ {6,7,8} : ∆ = (α1, ...,αr). All subsequent pairs of
the chain include the angle 2π

3 . Also the distinguished root α2 and the root α4

include the angle 2π

3 .

Proof. The proof is taken from [24, Chap. 11.4].

1. Removing vertices and incident edges: For an admissible graph each subgraph,
which is obtained by removing a subset of vertices and their incident edges, is
admissible.

2. Number of vertices and edges: An admissible graph has less edges, counted
without multiplicity, than vertices, i.e. |E|< |N|:

Assume N = {v1, ...,vr} ⊂V . Consider the element

v :=
r

∑
i=1

vi ∈V.

Then v ̸= 0 because the family (vi)i=1,...,r is linearly independent. We obtain

0 < (v,v) =
r

∑
i=1

(vi,vi)+2 · ∑
1≤i< j≤r

(vi,v j).

If (vi,v j) ̸= 0 then

4 · (vi,v j)
2 ∈ {1,2,3} and (vi,v j)< 0,

which implies
2 · (vi,v j)≤−1.

Therefore

0 < r+2 · ∑
1≤i< j≤r

(vi,v j)≤ r+2 · |E| · (−1/2) = r−|E|
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and
|E|< |N|.

3. Cycle-free: A cycle C = (NC,EC) were an admissible graph according to part 1,
but would violate part 2 because

|EC|= |NC|.

4. Bounded fan: For each vertex of an admissible graph the number of incident
edges, counted with multiplicity, is at most = 3: Denote by

Inc(v) := {e ∈ E : e incident with v}

the set of edges incident to a vertex v. We have to show

|Inc(v| ≤ 3.

Denote by {w1, ...,wk} the set of vertices adjacent to v, see Figure 6.3.

Fig. 6.3 Vertex v with incident edges

Because an admissible graph is cycle free due to part 3, two different vertices

wi ̸= w j, 1 ≤ i ̸= j ≤ k

are not adjacent, and therefore

(wi,w j) = 0

i.e. the family
B := (wi)i=1,...,k

is an orthogonal family in (V,(−,−)). Because the family
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(v,w1, ...,wk)

is linearly independent as a subfamily of the linearly independent family of all
vertices in N, the family B extends to an orthomormal family

B̃ = (wi)i=0,...,k

by adding a unit-vector

w0 ∈ span < v,w1, ...,wk >

It satisfies
(w0,v) ̸= 0

because otherwise w0 = 0. The orthogonal decomposition with respect to B̃

v =
k

∑
i=0

(v,wi) ·wi.

implies

1 = (v,v) =
k

∑
i=0

(v,wi)
2

and therefore
k

∑
i=1

(v,wi)
2 < 1.

As a consequence
k

∑
i=1

4 · (v,wi)
2 < 4

which excludes more than 3 edges incident with v.

5. Triple edge: The only connected admissible graph with a triple edge is the graph
of type G2 from Figure 6.2. Apparently the graph is admissible. The fact that
type G2 is the only connected admissible graph with a triple edge follows from
part 4.

6. Blowing down simple paths : Blowing down a simple path, i.e. a path without
multiple edges, results in a new admissible graph (N′,E ′). Figure 6.4 shows a
graph (N,E) which cannot be admissible because its blow-down (N′,E ′) is
non-admissible:
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Fig. 6.4 Blowing down a simple path with non-admissible resulting graph

Denote by C = {w1, ...,wn} ⊂ N the vertices of the path. By assumption
for i = 1, ...,n−1

4 · (wi,wi+1)
2 = 1, i.e. 2 · (wi,wi+1) =−1.

The graph (N′,E ′), resulting from blowing down the original path, has

• vertex set

N′ = (N \C)∪{w0}, w0 :=
n

∑
i=1

wi ∈V,

• and edge set E ′ obtained from E by removing all edges of the path C and
replacing each edge of E, which is incident with a vertex of C, by a
corresponding edge incident with w0.

We show that the graph (N′,E ′) is admissible: Linear independence of the
vertex set N′ is obvious. We compute

(w0,w0) =
n

∑
1≤i, j≤n

(wi,w j) =
n

∑
i=1

(wi,wi)+2 · ∑
1≤i< j≤n

(wi,w j) =

n+2 ·
n−1

∑
i=1

(wi,wi+1) = n+2 · (n−1) · (−1/2) = n− (n−1) = 1,

which shows that also the vector w0 is a unit vector. In (N,E) any vertex w
from N \C is adjacent to at most one vertex from the path, because an
admissible graph is cycle free according to part 3. Hence

• either (w,w0) = 0

• or exactly one index i = 1, ...,n exists with 0 ̸= (w,wi).

In either case holds
4 · (w,w0)

2 ∈ {0,1,2,3}.
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7. Prohibited subgraphs: A connected admissible graph does not contain any
subgraph from Figure 6.5:

Fig. 6.5 Types of prohibited subgraphs and their non-admissible blow-down in cases b)-d)

Here a number 2 on a line connecting two vertices means that the two vertices
are joined by 2 edges. The prohibited subgraphs from Figure 6.5 contain at least
one of the following constellations of nodes respectively edges:

a) A vertex with more than 3 incident edges is prohibited according to part 4.

b) Two pairs of adjacent vertices connected by a multiple edge.

c) One pair of adjacent vertices connected by a multiple edge, and another
vertex with 3 incident edges.

d) Two distinct vertices, both have at least 3 incident edges.

In any of the subgraphs b)-d) it would be possible to blow down a path to a
vertex with at least 4 incident edges, which contradicts part 4 and part 6.

8. The types of admissible connected graphs: Each connected admissible graph
belongs to one of the types from Figure 6.6:



234 6 Root systems from an axiomatic point of view

Fig. 6.6 Admissible connected graphs

a) No multiple edges, no vertex with 3 incident edges: All connected admissible
graphs from Figure 6.6 type a) belong to type Ar, r ≥ 1, from Figure 6.2.

b) A single pair of vertices with a double edge, no vertex with 3 incident edges:
See part 9.

c) A single pair of vertices with a triple edge, no further vertices. The only
connected admissible graph from Figure 6.6 type c) is the exceptional graph G2
from Figure 6.2. For the proof see part 5.

d) No multiple edges, a single vertex with 3 incident single edges: See part 10.

These graphs are admissible. The fact, that there are no other types of
admissible graphs, result from excluding the prohibited subgraphs from part 7.

9. Admissible graphs from series Br, Cr and exceptional graph F4: All connected
admissible graphs from Figure 6.6 type b) belong to series Br or are the
exceptional graph F4 in Figure 6.2.

Consider the two vectors from V
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u :=
p

∑
i=1

i ·ui and v :=
q

∑
i=1

i ·vi.

They are linearly independent. Using

2 · (ui,ui+1) =−1

we compute

(u,u) = ∑
1≤i, j≤p

i · j · (ui,u j) =
p

∑
i=1

i2 · (ui,ui)+2 ·
p−1

∑
i=1

i(i+1) · (ui,ui+1) =

=
p

∑
i=1

i2 +2 ·
p−1

∑
i=1

(−1/2) · i(i+1) =
p

∑
i=1

i2 −
p−1

∑
i=1

i2 −
p−1

∑
i=1

i =

= p2 − (1/2)p(p−1) = (p/2)(p+1).

Analogously
(v,v) = (q/2)(q+1).

Because
4 · (up,vq)

2 = 2

we obtain

(u,v)2 = (p ·up,q ·vq)
2 = p2 ·q2 · (up,vq)

2 = (1/2)· p2 ·q2.

Employing the Cauchy-Schwarz inequality

(u,v)2 < (u,u) · (v,v)

with u and v linearly independent gives

(1/2)· p2q2 < (p/2)(p+1) · (q/2)(q+1).

Multiplying both sides by 2 implies

p2 ·q2 < (1/2)p(p+1)q(q+1) = (1/2)pq(p+1)(q+1)

pq < (1/2)(p+1)(q+1) = (1/2)pq+(1/2)(p+q+1)

pq < (p+q+1)

(p−1)(q−1)−2 < 0

and eventually
(p−1)(q−1)< 2.

This restriction allows only the possibilities
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(p,q) = (1,≥ 2),(p,q) = (≥ 2,1),(p,q) = (2,2),(p,q) = (1,1).

The first two give the same Coxeter graph. It has type Br =Cr,r ≥ 3. The third
possibility is the exceptional type F4. The fourth possibility is type B2.

10. Admissible graphs from series Dr and exceptional graphs Er, r = 6,7,8 : All
admissible graphs from Figure 6.6 type d) belong to series Dr, r ≥ 4, in
Figure 6.2 or are the exceptional graphs types Er,r ∈ {6,7,8} in Figure 6.2.

Similar to the proof of part 9 we define the vectors from V

u :=
r−1

∑
i=1

i ·ui,v :=
p−1

∑
i=1

i · vi and w :=
q−1

∑
i=1

i ·wi.

Note
r, p,q ≥ 2.

The three vectors (u,v,w) are pairwise orthogonal and the four
vectors (x,u,v,w) are linearly independent. Denote by

θ1 := ∢(x,u), θ2 := ∢(x,v), θ3 := ∢(x,w)

the angles between the vector x and each of the other three vectors. Similarly to
the calculation in part 4 we obtain

1 >
3

∑
i=1

cos2
θi.

Similarly to the calculation in part 9 we have

(u,u) = (r/2)(r−1), (v,v) = (p/2)(p−1), (w,w) = (q/2)(q−1).

Using in addition
4 · (x,ur−1)

2 = 1

we obtain

cos2
θ1 =

(x,u)2

∥x∥2 · ∥u∥2 =
(r−1)2 · (x,ur−1))

2

∥u∥2 =
(r−1)2 ·2 · (1/4)

r(r−1)
= (1/2)(1−(1/r))

and analogously for cos2 θ2 and cos2 θ3. Hence

1 >
3

∑
i=1

cos2
θi = (1/2)[(1− (1/r))+(1− (1/p))+(1− (1/q))]

or
1 < (1/r)+(1/p)+(1/q).

W.l.o.g we may assume
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q ≤ p ≤ r

Hence
1 < (1/r)+(1/p)+(1/q)≤ 3/q

which implies
3 > q ≥ 2, i.e. q = 2.

We obtain

1 < (1/r)+(1/p)+(1/2), i.e. 1/2 < (1/r)+(1/p),

Because p ≤ r we obtain

1/2 < 2/p and 2 ≤ p < 4.

In case p = 3 we have r < 6. In case p = 2 the parameter r may have any
value ≥ 2.

Summing up: When r ≥ p ≥ q then the only possibilities for (r, p,q) are

(5,3,2),(4,3,2),(3,3,2),(≥ 2,2,2).

These possibilities refer to the exceptional graphs E8,E7,E6 or to the graphs
from series Dr,r ≥ 4.
⊓⊔

Definition 6.28 (Irreducible root system). Consider a root system Φ of a vector
space V and denote by (−,−) a scalar product on V invariant with respect to the
Weyl group W of Φ .

1. The root system Φ is reducible iff it splits into two non-empty, orthogonal sub-
sets. iff a decomposition

Φ = Φ1 ∪̇ Φ2, Φ1 ̸= /0, Φ2 ̸= /0,

exists with
(Φ1,Φ2) = 0.

Otherwise Φ is irreducible.

2. Analogously defined are the terms reducible and irreducible for a base ∆ of Φ .

Proposition 6.29 (Irreducibility of a root system and connectedness of its Coxeter
graph). Consider a root system Φ of a vector space V and a base ∆ of Φ .

1. Φ is irreducible if and only if ∆ is irreducible.
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2. ∆ is irreducible if and only if the Coxeter graph of Φ is connected.

Proof. 1. i) Suppose Φ reducible with decomposition

Φ = Φ1 ∪̇ Φ2; Φ1 ̸= /0, Φ2 ̸= /0.

Define ∆i := Φi ∩∆ , i = 1,2. Then

∆ = ∆1 ∪̇ ∆2

and (∆1,∆2) = 0.

Assume ∆1 = /0. Then ∆ = ∆2 ⊂ Φ2 which implies

(Φ1,∆2)⊂ (Φ1,Φ2) = 0.

Because
V = spanR ∆ = spanR ∆2

we even get
(Φ1,V ) = (Φ1,∆2) = 0.

Therefore
Φ1 = 0,

which is excluded. As a consequence:

∆1 ̸= /0 and similarly ∆2 ̸= /0.

The decomposition
∆ = ∆1∪̇∆2

proves the reducibility of ∆ .

ii) For the opposite direction suppose ∆ reducible with decomposition

∆ = ∆1 ∪̇ ∆2.

Denote by W the Weyl group of Φ . Define

Φi := W (∆i), i = 1,2.

According to Lemma 6.20 any root β ∈Φ has the form β =w(α) for suitable w ∈ W
and α ∈ ∆ . Therefore

Φ = Φ1 ∪ Φ2.

The Weyl group is generated by the symmetries σα ,α ∈ ∆ . Explicit calculation
shows for each root α ∈ span ∆1:

• If α1 ∈ ∆1 then also σα1(α) ∈ span ∆1.
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• If α2 ∈ ∆2 then σα2(α) = α .

As a consequence W (∆1) ⊂ span ∆1 and similarly W (∆2) ⊂ span ∆2. The or-
thogonality (∆1,∆2) = 0 implies the orthogonality

(Φ1,Φ2) = 0, notably Φ1 ∩ Φ2 = /0.

Because ∆i ̸= /0 and id ∈ W also Φi ̸= /0, i = 1,2. Therefore Φ is reducible with
decomposition

Φ = Φ1 ∪̇ Φ2.

2. The claim is obvious: Two roots of ∆ are not joined by an edge of the Coxeter
graph if and only if the roots are orthogonal. ⊓⊔

The Coxeter graph, which employs the product of Cartan integers as its weights,
does not encode the relative length of two roots, i.e. their length ratio. The length
ratio derives from the quotient of the Cartan integers(

∥β∥
∥α∥

)2

=
< β ,α >

< α,β >
if < α,β ≯= 0.

Knowing the product of the Cartan integers is not sufficient to reconstruct the
Cartan matrix. Hence the Coxeter graph does not encode the full information about
the root system. We will see that a base of the root systems belonging to the
types Br,Cr,G2,F4 is made up by roots with different lengths. As a consequence,
after complementing the Coxeter graph by the information about the length ratio
the series Br and Cr of root systems will differ for r ≥ 3, see Theorem 6.31.

The Dynkin diagram of a root system complements the Coxeter graph by the
information about the length ratio of the elements from a base. This information
can be encoded by an orientation of the edges pointing from the long root to the
short root in case two non-orthogonal roots have different length.

But in any case, the (absolute) length of a root is not defined because an invariant
scalar product of a root system is not uniquely determined.

Definition 6.30 (Dynkin diagram of a root system). Consider a root system Φ and
its Coxeter graph

Coxeter(Φ) = (N,E)

The Dynkin diagram of Φ is the directed graph

Dynkin(Φ) := (N,ED)

with
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• the same vertex set: N = ∆ .

• and the same edges from E, but some edges provided with an orientation: Each
edge between two vertices, which represent roots of different lenght, carries an
arrow pointing from the vertex of the long root to the vertex of the short root.

Note: The Coxeter graph and the Dynkin diagram of a root system have the same
set of vertices and edges. In the Dynkin diagram an edge with a orientation
indicates that the incident roots have different length.

Theorem 6.31 (Classification of connected Dynkin diagrams).
Consider an irreducible root system Φ . Then its Dynkin diagram belongs to exactly
one the following types, see Figure 6.7:

• Series Ar,r ≥ 1

• Series Br,r ≥ 2

• Series Cr,r ≥ 3

• Series Dr,r ≥ 4

• Exceptional type G2

• Exceptional type F4

• Exceptional types Er, r ∈ {6,7,8}.

In Theorem 6.31 the two types Br and Cr are distinguished only by the length ratio
of their roots. Moreover, if one dismisses the restriction of the rank r then one has
the following repetitions of low rank:

C1 = B1 = A1 and C2 = B2 and D3 = A3.
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Fig. 6.7 The Dynkin diagrams of irreducible root systems

Proof. The statement follows from the classification of Coxeter graphs according
to Theorem 6.27 and the restriction of the length ratio of two roots from a base
according to Lemma 6.10: An edge from the Coxeter graph links two roots with
length ratio ̸= 1 if and only if the edge has multiplicity m ∈ {2,3}. Therefore the
Dynkin diagrams distinguish between the two series Br and Cr if r ≥ 3. ⊓⊔

The Dynkin diagram of a root system contains the full information of the Cartan
matrix of the root system. Conversely from a Dynkin diagram one can construct a
corresponding root system, cf. [24, Chap. 12.1].





Chapter 7
Explicit calculation of the root system

The objective of the present chapter is to classify complex semisimple Lie algebras L
by their Dynkin diagram, more precisely the Dynkin diagram of a root system of L.
The result is one of the highlights of Lie algebra theory. It completely encodes the
structure of these Lie algebras by a certain finite graph, a data structure from discrete
mathematics.

In the present chapter L denotes a complex semisimple Lie algebra, H ⊂ L a
maximal toral subalgebra and Φ the root set of L with respect to H, if not stated
otherwise. The corresponding root set decomposition of (L,H) is

L = H ⊕

(⊕
α∈Φ

Lα

)
.

According to the Cartan criterion the semisimpleness of L is equivalent to the non-
degenerateness of the Killing form κ of L. Due to Proposition 5.16 also the restric-
tion of the Killing form κ of L to H

κ|(H ×H) : H ×H → C

is non-degenerate.

7.1 Root systems of complex semisimple Lie algebras

In the present section Theorem 7.5 will show that the pair

R := (V := spanRΦ ,Φ)

satisfies the axioms of a root system from Definition 6.3.

243
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Roots of L are linear functionals on H. Therefore we translate properties of H
to properties of the dual space H∗ and vice versa. The transfer is achieved by the
restriction of the Killing form

κ|(H ×H) : H ×H −→ C,

which is non-degenerate according to Proposition 5.16. We obtain an isomorphism

j : H ≃−→ H∗

For each λ ∈ H∗ we denote by

tλ := j−1(λ ) ∈ H

the inverse image. Then
λ = j(tλ ) = κ(tλ ,−).

In particular, each root α ∈ Φ ⊂ H∗ defines an elements tα ∈ H with

α = κ(tα ,−) : H −→ C

relating roots from Φ to well-determined elements from the maximal toral subalgebra H.

Next we transfer the restriction κ|(H×H) of the Killing form to a non-degenerate
bilinear form on the dual space H∗.

Definition 7.1 (Non-degenerate bilinear form on H∗). For the pair (L,H) the non-
degenerate form κ|(H ×H) on H induces a symmetric bilinear form on the dual
space H∗

κ
∗ : H∗×H∗ → C,κ∗(λ ,µ) := κ(tλ , tµ).

which is non-degenerate.

Combining the definition of κ∗(λ ,µ) with the definition of tµ and tλ results in
the following formula

κ
∗(λ ,µ) = κ(tλ , tµ) = λ (tµ) = µ(tλ ).

Recall from Corollary 4.18 the semisimpleness of all complex Lie algebras L of the
A,B,C,D-series within the range of Proposition 2.15. To motivate the separate
steps in calculating the root system of L we first consider Example 7.2.

Example 7.2 (The root system of sl(3,C)).
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Set L := sl(3,C) and recall the standard basis (Ei j)1≤i, j≤3 of M(3×3,C).

i) Maximal toral subalgebra: The subalgebra

H := span < h1 := E11 −E22,h2 := E22 −E33 >⊂ L

is a maximal toral subalgebra. It has dimension dim H = 2.

ii) Rootspace decomposition: The rootspace decomposition of (L,H) is

L = H ⊕

 ⊕
α∈{α1,α2,α3}

(Lα ⊕L−α)

 .

All root spaces are 1-dimensional. The root set

Φ = {±α1,±α2,±α3}

satisfies

• Lα1 = span < x1 := E12 >,L−α1 = span < y1 := E21 >

α1 : H → C, α1(h1) = 2, α1(h2) =−1

• Lα2 = span < x2 := E23 >,L−α2 = span < y2 := E32 >

α2 : H → C, α2(h1) =−1, α2(h2) = 2

• Lα3 = span < x3 := E13 >,L−α3 = span < y3 := E31 >

α3 : H → C, α3(h1) = 1, α3(h2) = 1

Therefore
α3 = α1 +α2

and
∆ := {α1,α2}

is a base of Φ .

iii) Killing form: To compute the Killing form κ and its restriction

κ|(H ×H) : H ×H → C

one can use the formula

κ(z1,z2) = 2n · tr(z1 ◦ z2),z1,z2 ∈ sl(n,C),

with n = 3, see [24, Chapter 6, Ex. 7]. E.g.,
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tr(h1 ◦h2) = tr((E11 −E22)◦ (E22 −E33)) = tr(−E22 ◦E22) =−tr(E22) =−1.

We obtain (
κ(hi,h j)1≤i, j≤2

)
= 6 ·

(
2 −1
−1 2

)
,

a positive-definite matrix.

iv) Lenght of roots: With respect to the isomorphy

j : H ∼−→ H∗, tλ 7→ λ ,

we get
tα1 = (1/6) ·h1, tα2 = (1/6) ·h2.

The family (α1,α2) is linearly independent and a basis of H∗. According to
Definition 7.1, the Kiling form κ induces on H∗ the bilinear form

κ
∗ : H∗×H∗ → C.

The induced bilinear from has with respect to the basis (α1,α2) of H∗ the matrix

(κ∗(αi,α j)1≤i, j≤2) = (αi(tα j)1≤i, j≤2) =
(
(κ(tαi , tα j)1≤i, j≤2

)
= (1/6) ·

(
2 −1
−1 2

)
.

In particular, all roots αi, i = 1,2,3, have the same lenght:

κ
∗(αi,αi) = 2 · (1/6) = 1/3.

The real vector space
V := spanR < α1,α2 > .

satsifies
dimR V = dimC H∗ = 2.

The restriction of the bilinear form κ∗ to V is a real, positive-definite form (−,−)
on V , hence a scalar product. We now prove by explicit computation: The root
set Φ of (L,H) defines a root system (V,Φ) in the sense of Definition 6.3.

v) Weyl reflections: Consider the Euclidean space (V,(−,−)). For i = 1,2,3 define
the symmetries with vector αi ∈V

σi : V →V, x 7→ x−6 · (x,αi) ·αi.

Here the factor 6 has been choosen in order to get

σi(αi) =−αi.
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One checks

σ1(α2) = α3,σ1(α3) = σ1(α1)+σ1(α2) =−α1 +α2 +α1 = α2

σ2(α1) = α3,σ2(α3) = α1

σ3(α1) = α1 −6 · (α1,α3) ·α3 = α1 − (α1 +α2) =−α2,

σ3(α2) = α2 − (α1 +α2) =−α1.

Hence the restriction
σi|Φ : Φ −→ Φ

is well-defined and permutes the elements of Φ . Therefore

σi = σαi , i = 1,2,3,

Moreover
σ−αi = σαi , i = 1,2,3,

because according to Corollary 6.8 these symmetries are the reflections on the
hyperplanes

(−αi)
⊥ = α

⊥
i .

Each symmetry leaves the scalar product invariant, because for α ∈ Φ , x,y ∈V,

(σα(x),σα(y)) = (x−6(x,α) ·α,y−6(y,α) ·α) =

(x,y)−6(y,α)(x,α)−6(x,α)(α,y)+36(x,α)(y,α)(α,α) = (x,y)

using (α,α) = 1/3.

vi) Cartan integers: From the symmetries of part v) one reads off the Cartan
numbers

< αi,αi >= 2, i = 1,2, and < α1,α2 >=< α2,α1 >=−1

which are integers indeed.

vii) Reducedness: Apparently for each α ∈ Φ the only roots proportional to α

are ±α .

viii) Cartan matrix, Coxeter graph, Dynkin diagram: The Cartan matrix with
respect to

∆ := {α1,α2}

and the given numbering is

Cartan(∆) =

(
2 −1
−1 2

)
.
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According to Lemma 6.10 both roots from ∆ have the same lenght and include the
angle (2/3) ·π . Therefore Coxeter graph and Dynkin diagram of Φ contain the
same information. According to the classification from Theorem 6.31 the root
system of sl(3,C) has type A2. The scalar product (−,−) induced from the Killing
form is invariant with respect to the Weyl group

W = span < σα1 ,σα2 > .

The following two propositions collect the main properties of the root set Φ of a
semisimple complex Lie algebra L. They generalize the result from Proposition 5.4
about the structure of sl(2,C).

Proposition 7.3 considers the complex linear structure of L and its canonical
subalgebras sl(2,C) ⊂ L. While Proposition 7.4 considers the integrality proper-
ties of the root set Φ with respect to the bilinear form induced by the Killing form,
see Definition 7.1. These properties assure that Φ is a root system in the sense of
Definition 6.3. They allow to apply the classification of respectively Coxeter graphs
from Theorem 6.27 and Dynkin diagrams from Theorem 6.31. They show which
Dynkin diagrams result from the roots systems of the classical Lie algebras of the
ABCD-series in Proposition 7.6 - 7.9.

Recall from Corollary 5.15 that for any root α ∈ Φ of L also the negative −α is
a root of L.

Proposition 7.3 prepares the proof of Theorem 7.5 by investigating in detail the
root spaces Lα , α ∈ Φ , of L.

Proposition 7.3 (Complex semisimple Lie algebras as sl(2,C)-modules). Con-
sider a pair (L,H) with L a complex semisimple Lie algebra and H ⊂ L a maximal
toral subalgebra. Denote by (−,−) the non-degenerate bilinear form on H∗ from
Definition 7.1.

Then the root set Φ and the root spaces Lα from the rootspace decomposition

L = H ⊕

(⊕
α∈Φ

Lα

)

have the following properties:

1. Spanning: The root set spans H∗

spanCΦ = H∗

2. Duality of root spaces: For each α ∈ Φ the vector spaces Lα and L−α are dual
with respect to the Killing form, i.e. the bilinear map

Lα ×L−α → C, (x,y) 7→ κ(x,y),
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is non-degenerate. For each x ∈ Lα , y ∈ L−α holds

[x,y] = κ(x,y) · tα ,

in particular
[Lα ,L−α ] = C · tα

3. Subalgebras Sα ≃ sl(2,C): For each α ∈ Φ holds

(α,α) ̸= 0

and there exists a unique element

hα ∈ [Lα ,L−α ] with α(hα) = 2,

in particular

hα =
2

(α,α)
· tα

For each non-zero xα ∈ Lα exists an element yα ∈ L−α satisfying

[xα ,yα ] = hα

The morphism of Lie algebras

sl(2,C)−→ Sα := spanC < hα , xα , yα > ⊂ L,

defined on the standard basis of sl(2,C) as

h :=
(

1 0
0 −1

)
7→ hα , x :=

(
0 1
0 0

)
7→ xα , y :=

(
0 0
1 0

)
7→ yα ,

is an isomorphism. Thereby L becomes an sl(2,C)-module.

Note: In Proposition 7.3, part 3 the element yα ∈ L−α is uniquely determined, see
Proposition 7.4.

Proof. 1. Spanning: For an indirect proof assume

spanCΦ ⫋ H∗

is a proper subspace. A non-zero linear functional

h ∈ (H∗)∗ ≃ H

exists which satisfies for all α ∈ Φ

h ̸= 0 and α(h) = 0.

Then for all α ∈ Φ
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[h,Lα ] = 0,

and also
[h,H] = 0

because the maximal toral subalgebra subalgebra H is Abelian due to
Proposition 5.2. The root space decomposition of L implies [h,L] = 0, i.e.

h ∈ Z(L).

Because the center of the semisimple Lie algebra L is trivial, one obtains

h = 0

This contradiction proves spanCΦ = H∗.

In order to prove the remaining claims we recall from Lemma 5.14: For two
linear functionals λ ,µ ∈ H∗ with

λ +µ ̸= 0

the orthogonality of the eigenspaces, i.e.

κ(Lλ ,Lµ) = 0.

As a consequence, for two roots α,β with β ̸=−α , i.e.

α +β ̸= 0,

holds
κ(Lα ,Lβ ) = 0,

and due to H = L0 also
κ(Lα ,H) = 0.

2. Duality of root spaces:

• If
x ∈ Lα , α ∈ Φ ,

satisfies κ(x,L−α) = 0, then the root space decomposition from
Definition 5.13 and Lemma 5.14 imply κ(x,L) = 0. The non-degenerateness
of κ implies x = 0. Hence the bilinear map

Lα ×L−α −→ C, (x,y) 7→ κ(x,y)

is non-degenerate.

• We have
[Lα ,L−α ]⊂ L0 = H
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according to Theorem 5.17. The Killing form is associative according to
Lemma 4.1. Hence for all h ∈ H and arbitrary, but fixed (x,y) ∈ Lα ×L−α

κ(h, [x,y]) = κ([h,x],y) = κ(α(h)x,y) = α(h)κ(x,y) =

= κ(tα ,h) ·κ(x,y) = κ(h, tα) ·κ(x,y) = κ(h,κ(x,y) · tα),

here we used the definition of tα with

α = κ(tα ,−).

Non-degenerateness of the restriction κ|(H ×H) implies

[x,y] = κ(x,y) · tα .

The duality between Lα and L−α provides for each non-zero xα ∈ Lα an
element yα ∈ L−α , such that

κ(xα ,yα) ̸= 0,

which proves in particular

[Lα ,L−α ] = C · tα

3. Subalgebra Sα ≃ sl(2,C):

• We first claim
α(tα) ̸= 0 :

For the proof choose an arbitrary, but fixed non-zero xα ∈ Lα . Because Lα

and L−α are dual according to part 2 one can find an element

y ∈ L−α with κ(xα ,y) ̸= 0,

w.l.o.g.
κ(xα ,y) = 1 and [xα ,y] = κ(xα ,y) · tα = tα

For an indirect proof of the claim assume on the contrary

α(tα) = 0.

Consider the subalgebra

S :=< xα , y, tα > ⊂ L.

Because
tα ∈ H, xα ∈ Lα and y ∈ L−α ,

the commutators satisfy
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[tα ,xα ] = α(tα)xα = 0, [tα ,y] =−α(tα)y = 0, [xα ,y] = tα .

Apparently the Lie algebra S is nilpotent, in particular solvable. The
semisimplicity of L implies that the adjoint representation

ad : L −→ gl(L)

embeds L into the matrix Lie algebra gl(L). According to Lie’s theorem, see
Theorem 3.21, with respect to a suitable basis of L the solvable subalgebra S
embeds into the subalgebra of upper triangular matrices. Thereby the element

ad(tα) = ad [xα ,y] = [ad xα ,ad y],

the commutator of two endomorphisms, becomes a strict upper triangular
matrix. Therefore ad(tα) is a nilpotent endomorphism, i.e. tα ∈ L is
ad-nilpotent. Because H is a maximal toral subalgebra, the element tα ∈ H is
also ad-semisimple, hence tα = 0. This contradiction proves the claim

0 ̸= α(tα) = (α,α).

• Because
[Lα ,L−α ] = C · tα and α(tα) ̸= 0

there exists an element hα ∈ [Lα ,L−α ] satisfying

α(hα) = 2

From
α(hα)

2
=

α(tα)
(α,α)

follows

hα =
2

(α,α)
· tα

Multiplying y ∈ L−α by a suitable constant provides an element yα ∈ L−α

with
[xα ,yα ] = hα

We obtain
[hα ,xα ] = α(hα) · xα = 2 · xα

[h,yα ] =−α(hα) · yα =−2 · yα

[xα ,yα ] = hα .

Therefore the subalgebra

Sα := spanC < hα , xα , yα >
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is isomorphic to sl(2,C).
⊓⊔

Because L is a sl(2,C)-module with respect to each subalgebra Sα the results from
section 5.2 about the structure of irreducible sl(2,C)-module apply. They imply a
series of integrality and rationality properties of L, see Proposition 7.4. For two
roots α,β ∈ Φ we will often employ the formula

β (hα) =
2 ·β (tα)
(α,α)

=
2 ·κ(tβ , tα)
(α,α)

=
2 · (β ,α)

(α,α)
.

It derives from the relation between hα and tα from Proposition 7.3 and from the
defining relation

κH(tβ ,−) = β

The numbers β (hα) will turn out as the Cartan integers < β ,α > of the root
system. Notably they are integers.

Proposition 7.4 (Integrality and rationality properties of the root set). Consider
a pair (L,H) with L a complex semisimple Lie algebra and H ⊂ L a maximal toral
subalgebra. Denote by Φ the roots of (L,H), Then the roots and the rootspaces from
the rootspace decomposition

L = H ⊕

(⊕
α∈Φ

Lα

)

have the following properties:

1. Root spaces are 1-dimensional: For each root α ∈ Φ also −α ∈ Φ and

dim Lα = dim L−α = 1.

As a consequence
|Φ |= dim L−dim H

2. Integrality: For each pair α,β ∈ Φ and the element hα from Proposition 7.3
holds

β (hα) ∈ Z and β −β (hα) ·α ∈ Φ .

3. Rationality and scalar product: Consider a basis B = (α1, ...,αr) of the complex
vector space H∗ made up from roots αi ∈ Φ , i = 1, ...,r. Then any root β ∈ Φ is
a rational combination of elements from B, i.e.

Φ ⊂VQ := spanQ{α1, ...,αr}

and
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dimQ VQ = dimC H.

The bilinear form (−,−) from Definition 7.1 restricts from H∗ to a rational
form (−,−)Q on VQ ⊂ H∗, and

(−,−)Q : VQ×VQ →Q

is positive definite, i.e. a scalar product.

4. Symmetries: Extending scalars from Q to R shows

dimR Φ = dimC H∗

and extends the scalar product from VQ to a scalar product (−,−) on V .

For each root α ∈ Φ the map

σα : V →V, v 7→ σα(v) := v−
2 · (v,α)

(α,α)
·α,

is a symmetry of V with vector α and Cartan integers

< β ,α >:=
2 · (β ,α)

(α,α)
= β (hα) ∈ Z, β ∈ Φ .

It satisfies
σα(Φ)⊂ Φ

In addition: Each symmetry σα leaves invariant the scalar product (−,−) on V .

5. Proportional roots: For each α ∈ Φ the only roots proportional to α are ±α .

Proof. 1. Root spaces are 1-dimensional: According to Proposition 7.3, part 2 the
root spaces Lα and L−α are dual with respect to the Killing form κ , i.e. the
bilinear form

κ|(Lα ×L−α) : Lα ×L−α −→ C, (x,y) 7→ κ(x,y),

is non-degenerate. In order to show

dim Lα = 1

we assume on the contrary

dim Lα = dim L−α > 1.

Consider an element xα ∈ Lα , xα ̸= 0, and the correponding subalgebra

Sα ≃ sl(2,C)
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from Proposition 7.3, part 3. According to Proposition 7.3, part 1 an
element hα ∈ Sα exists with

α(hα) = 2.

The restriction
κ(xα ,−)|L−α : L−α −→ C

is non-zero. The linear functional has a non-trivial kernel, i.e. an element

e ∈ L−α , y ̸= 0,

exists with
κ(xα ,e) = 0

The latter formula implies [xα ,e] = 0, see Proposition 7.3, part 2. As a
consequence e ∈ L is a primitive element of an irreducible Sα -submodule of L
with weight

(−α)(hα) =−2 < 0.

The latter property contradicts the fact that all primitive elements of an
irreducible sl(2,C)-module have a non-negative weight, see Proposition 5.7.

2. Integrality: Choose a non-zero element y ∈ Lβ . The element y can be considered
in two different roles. On one hand, being a root vector of L the element y ∈ Lβ

satisfies
[hα ,y] = β (hα) · y.

On the other hand considered as an element of the Sα -module L according to
Proposition 7.3, part 3, the element y ∈ L is a weight vector with weight

β (hα) ∈ Z.

Applying yα ∈ Sα reduces the weight in K by subtracting the number 2 and
reduces the corresponding root of L by subtracting the linear functional α .
Similarly, applying xα ∈ Sα adds respectively the number 2 and the linear
functional α .

K :=
⊕
j∈Z

Lβ+ j·α ,

is a Sα -submodule of L. The action of Sα on K moves y ∈ K through weight
spaces of K: For each j ∈ Z

• either
Lβ+ j·α = 0

• or
dim Lβ+ j·α = 1 and (β + j ·α ∈ Φ or β + j ·α = 0).

After finitely many applications of xα to y ∈ L a primitive element of K is
obtained and Proposition 5.7 applies, see Figure 7.1.



256 7 Explicit calculation of the root system

Fig. 7.1 The double role of y ∈ Lβ (Case β (hα )≥ 0)

In particular

β (hα) weight =⇒ −β (hα) = β (hα)−2 ·β (hα) weight

which implies
β −β (hα) ·α ∈ Φ

Note: All weight spaces of K displayed on the right-hand side are non-zero.
Hence also the corresponding eigenspaces of the linear functionals on the
left-hand side are non-zero. In particular

β −β (hα) ·α ∈ Φ

is a root.

3. Rationality and scalar product: First, due to Proposition 7.3, part 1 the complex
vector space H∗ has a basis

B = (α j)1≤ j≤r

of roots.

The subsequent proof goes along the following steps:

• Claim: Φ ⊂VQ. We show for the proof that for each root β ∈ Φ the uniquely
determined coefficients ci ∈ C, i = 1, ...,r, in the representation
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β =
r

∑
i=1

ci ·αi

are even rational, i.e. ci ∈Q for i = 1, ...,r.

Multiplying the above representation of β successively for j = 1, ...,r by

2
(α j,α j)

and applying the bilinear form (−,α j) to the resulting equation gives a
system of linear equations

b = A · c

for the vector of indeterminates c := (c1, ...,cr)
⊤. The left-hand side is the

vector

b =

(
2 · (β ,α j

(α j,α j)

)⊤

and the coefficient matrix is

A =

(
a ji :=

2 · (αi,α j)

(α j,α j)

)
The system is defined over the ring Z because for two roots γ,δ ∈ Φ

2 ·
(γ,δ )

(δ ,δ )
= γ(hδ )

and
γ(hδ ) ∈ Z

according to part 2. The coefficient matrix

A ∈ M(r× r,Z)

is invertible as an element from GL(r,Q). It originates by multiplying
for j = 1, ...,r the row with index j of the matrix

(αi,α j)1≤i, j≤r ∈ GL(r,C)

by the non-zero scalar 2/(α j,α j). And the latter matrix defines the bilinear
non-degenerate form (−,−) on H∗. As a consequence, the unique solution of
the linear system of equations is already defined over the base field Q, i.e.

c j ∈Q for all j = 1, ...,r.

Hence Φ ⊂VQ. As a consequence
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dimQ spanQ Φ = dimQ VQ = dimC H∗,

and
V := spanR Φ =⇒ dimR V = dimC H∗.

• We claim that the restricted bilinear form

(−,−)Q := (−,−)|VQ

is a scalar product, i.e. that it is defined over the field Q and is positive
definite:

– Positive-definiteness: For two linear functionals λ ,µ ∈VQ we compute

(λ ,µ) = κ(tλ , tµ) = tr(ad tλ ◦ad tµ)

for the endomorphism

ad tλ ◦ad tµ : L −→ L

In order to evaluate the trace we employ the defining property of a root
space: If z ∈ Lγ then

(ad tµ)(z) = γ(tµ) · z

and
(ad tλ ◦ad tµ)(z) = γ(tλ ) · γ(tµ) · z.

Using the Cartan decomposition

L = H ⊕

(⊕
γ∈Φ

Lγ

)

and observing [H,H] = 0 and dim Lγ = 1 due to part 1, we obtain

(λ ,µ) = tr(ad tλ ◦ad tµ) = ∑
γ∈Φ

γ(tλ ) · γ(tµ)

as sum of the eigenvalues of

ad tλ ◦ad tµ : L −→ L.

In particular
(λ ,λ ) = ∑

γ∈Φ

γ(tλ )
2 ≥ 0.

The vanishing
(λ ,λ ) = 0

implies: For all γ ∈ Φ holds
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0 = γ(tλ ) = κ
∗(λ ,γ),

and therefore λ = 0 because

spanC Φ = H∗

and
κ
∗ : H∗×H∗ −→ C

is non-degenerate.

– Defined over Q: For each root α ∈ Φ the relation between the two
elements tα and hα from H due to Proposition 7.3, part 3 and the
integrality γ(hα) ∈ Z from part 2 show

2 ·
(γ,α)

(α,α)
= 2 ·

γ(tα)
(α,α)

= γ(hα) ∈ Z

Hence
4 · γ(tα)2 = (α,α)2 · γ(hα)

2.

We obtain

(α,α) = ∑
γ∈Φ

γ(tα)2 = (1/4) · (α,α)2 · ∑
γ∈Φ

γ(hα)
2.

Dividing both sides by (α,α)> 0 shows

1 = (1/4) · (α,α) · ∑
γ∈Φ

γ(hα)
2

and

(α,α) =
4

∑γ∈Φ γ(hα)2 ∈Q+.

As a consequence for each β ∈ Φ ,

(β ,α) = (1/2)(α,α) ·β (hα) ∈Q.

The general elements
λ , µ ∈VQ

have the representations

λ =
r

∑
i=1

ci ·αi and µ =
r

∑
j=1

d j ·α j with ci, d j ∈Q, i, j = 1, ...,r.

Therefore

(λ ,µ) =
r

∑
i, j=1

ci ·d j · (αi,α j) ∈Q
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Hence the restriction
(−,−)|VQ

is defined over Q.

4. Symmetries: The map
σα : V −→V

is a symmetry of V with vector α . Due to part 2) its Cartan number is an integer

< β ,α >=
2 · (β ,α)

(α,α)
= β (hα) ∈ Z.

The inclusion
σα(Φ)⊂ Φ

has been proven in part 2). In order to prove the invariance of the scalar product
with respect to the Weyl group it suffices to consider three roots α,β ,γ ∈ Φ :

(σα(β ),σα(γ)) = (β −β (hα)α,γ − γ(hα) ·α) =

= (β ,γ)−β (hα)(α,γ)− γ(hα)(β ,α)+β (hα)γ(hα)(α,α)

Using

(α,γ) = (1/2)(α,α)γ(hα) and (α,β ) = (1/2)(α,α)β (hα)

we confirm
(σα(β ),σα(γ)) = (β ,γ).

5. Proportional roots: Assume the existence of a root γ ∈ Φ such that also

t · γ ∈ Φ for a suitable t ∈ R\{±1}

Then exists a root β ∈ Φ and t ∈ R with 0 < t < 1 such that also

α := t ·β ∈ Φ

We calculate
σβ (α) = α −α(hβ ) ·β = α − t ·β (hβ ) ·β

For the Cartan integer
< α,β >= t ·β (hβ ) = 2t

follows
2t ∈ Z

which - due to 0 < t < 1 - implies

t = 1/2 and α, 2α ∈ Φ .
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But 3α /∈ Φ : Otherwise repeating the argument with the two proportional
roots 2α and 3α would imply

2α =
1
2
·3α,

a contradiction.

With respect to the sl(2,C)-module structure of L induced from the action of

Sα =< xα ,yα ,hα >,

see Proposition 7.3, part 3), we have for each root vector z ∈ L2α :

• hα .z = 2 ·2 · z, because z ∈ L2α .

• xα .z ∈ L3α = {0} implies xα .z = 0

• From hα = [xα ,yα ] results

hα .z = xα .(yα .z)− yα .(xα .z) = xα .(yα .z)

Then
yα .z ∈ Lα = C · xα =⇒ xα .(yα .z) ∈ C · [xα ,xα ] = 0,

which implies
hα .z = 4z = {0},

a contradiction to z ̸= 0.

⊓⊔

We now combine the result of Proposition 7.3 and 7.4, and construct the root
system of a semisimple complex Lie algebra L.

Theorem 7.5 (Root system of a complex semisimple Lie algebra). Let L be a
complex semisimple Lie algebra.

1. After choosing a maximal toral subalgebra H ⊂ L the root space decomposition
from Definition 5.18

L = H ⊕

(⊕
α∈Φ

Lα

)
determines the set Φ of roots, and

R := (V := spanRΦ ,Φ)

is a root system according to Definition 6.3.
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2. From the Killing form κ of L derives a scalar product (−,−) on V

(λ ,µ) := κ(tλ , tµ), λ ,µ ∈V,

which is defined over Q, i.e. satisfying for α,β ∈ Φ

(α,β ) ∈Q.

The scalar product is invariant with respect to the Weyl group W of R.

Note: Due to Remark 5.21 each two maximal toral subalgebras of L are conjugate
under an automorphism of L.

Proof. The pair R = (V,Φ) has the following properties:

• (R1) Finite and spanning: The root set Φ is finite because L has finite dimension, 0 /∈ Φ ,
and Φ spans V by definition.

• (R2) Invariance under distinguished symmetries: We choose a basis

B := (β j) j=1,...,r, r := dimC H

of V formed by elements from Φ . For each α ∈ Φ we define a symmetry

σα : V −→V

as follows: For β ∈ B set

σα(β ) := β −β (hα) ·α,

and extend the definition by linearity. Here

hα ∈ [Lα ,L−α ]⊂ H

denotes the uniquely determined element from Proposition 7.3, part 3 with

α(hα) = 2.

Then for all roots β ∈ Φ

σα(β ) = β −β (hα) ·α.

and
σα(α) =−α.

Proposition 7.4, part 4 and part 2 imply that σα is a symmetry with vector α ∈V
and

σα(Φ)⊂ Φ .

• (R3) Cartan integers: By construction, for each pair of roots α, β ∈ Φ holds
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< β ,α > = β (hα).

The integrality result from Proposition 7.4, part 2 shows

< β ,α > ∈ Z.

• (R4) Reducedness: The reducedness of R holds due to Proposition 7.4, part 5.

The bilinear form (−,−) was introduced in Definition 7.1. Its properties follow
from Proposition 7.4, part 3 and part 4. ⊓⊔

7.2 Root systems of the A,B,C,D-series in explicit form

We will show in the present section that the Dynkin diagrams of type Ar,Br,Cr,Dr
from Theorem 6.31 are the Dynkin diagrams of the root systems of the complex Lie
algebras belonging to the classical groups of the correponding types, see Proposition
2.15. We show the simpleness of these Lie algebras as a consequence of their Cartan
decomposition. We follow [21, Chap. III, §8, Chap. X, §3] and [18, Chap. 7.7].

The Lie algebras of the classical groups are subalgebras of the Lie algebra sl(n,C).
We introduce the following notation for the elements of the canonical basis of the
vector space M(n×n,C):

Ei j ∈ M(n×n,C)

is the matrix with entry = 1 at place (i, j) and entry = 0 for all other places. Our
matrix computations are based on the formulas

Ei j ·Ekl = δ jk ·Eil ,1 ≤ i, j,k, l ≤ n.

The family
(Eii)1≤i≤n

is a basis of the subspace of diagonal matrices d(n,C). Denote the elements of the
dual base by

ε̂i := (Eii)
∗ ∈ d(n,C)∗, i = 1, ...,n.

Due to Corollary 4.18 the Lie algebras

sl(n,C), so(n,C), sp(2n,C)

of the classical complex matrix groups from the A,B,C,D-series are semisimple.
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Proposition 7.6 (Type Ar). The Lie algebra

L := sl(r+1,C),r ≥ 1,

has the following characteristics:

1. dim L = (r+1)2 −1.

2. The subalgebra
H := d(r+1,C)∩L

is a maximal toral subalgebra with dim H = r.

3. The family (hi)i=1,...,r with

hi := Eii −Ei+1,i+1

is a basis of H.

4. Define the functionals

εi := (ε̂i|H) ∈ H∗, i = 1, ...,r+1.

Then the root set Φ of L has the elements

εi − ε j, 1 ≤ i ̸= j ≤ r+1.

The corresponding root spaces are 1-dimensional, generated by the elements

Ei j, 1 ≤ i ̸= j ≤ r+1.

A base of Φ is the set ∆ := {αi : 1 ≤ i ≤ r} with

αi := εi − εi+1.

The positive roots are the elements of Φ+ = {εi − ε j : i < j}. They have the
representation

εi − ε j =
j−1

∑
k=i

αk ∈ Φ
+.

5. For each positive root α := εi − ε j ∈ Φ+ the subalgebra

Sα ≃ sl(2,C)

is generated by the three elements

hα := Eii −E j j, xα := Ei j, yα := E ji.

6. The Cartan matrix of Φ is
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Cartan(∆) =


2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
. . .

. . .
0 . . . −1 2 −1
0 . . . 0 −1 2

 ∈ M((r+1)× (r+1),Z).

All roots α ∈ ∆ have the same length. The only pairs of roots from ∆ , which are
not orthogonal, are

(αi,αi+1), i = 1, ...,r−1.

Each pair includes the angle (2/3)π . In particular the Dynkin diagram of the
root system Φ from Figure 7.2 has type Ar from Theorem 6.31.

Fig. 7.2 Dynkin diagram of the root system of type Ar

Proof. 4) For i ̸= j elements h ∈ H act on Ei j according to

[h,Ei j] = h ·Ei j −Ei j ·h = εi(h) ·Ei j − ε j(h) ·Ei j = (εi(h)− ε j(h)) ·Ei j

Due to the formula from Proposition 7.4, part 1 there are no further roots.

5) According to part 4) the commutators are

[hα ,xα ] = [hα ,Ei j] = (εi(hα)− ε j(hα))Ei j = 2 ·Ei j = 2 · xα

[hα ,yα ] = [hα ,E ji] = (ε j(hα)− εi(hα))E ji =−2 ·E ji =−2 · yα

[xα ,yα ] = [Ei j,E ji] = Eii −E j j = hα .

6) The Cartan matrix has the entries

< β ,α >= β (hα),α,β ∈ ∆ .

We have to consider

• βk = εk − εk+1,1 ≤ k ≤ r and

• α j = ε j −ε j+1,1 ≤ j ≤ r, with corresponding elements h j = E j j −E j+1, j+1 ∈ H.

We compute
βk(hα j) = (εk − εk+1)(E j j −E j+1, j+1) =

= δk j −δk, j+1 −δk+1, j +δk+1, j+1 = 2δk j −δk, j+1 −δk+1, j =
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=


2, if k = j
−1, if |k− j|= 1
0, if |k− j| ≥ 2

The angle between each pair (α,β ) of distinct, non-orthogonal roots in ∆ is (2/3)π ,
and the symmetry of the Cartan matrix implies

1 =
< β ,α,>

< α,β >
=

∥β∥2

∥α∥2

Hence all simple roots have the same length. The root system Φ has a connected
Dynkin diagram, it has type Ar from Theorem 6.31. ⊓⊔

In dealing with the Lie algebra sp(2r,C) we note that X ∈ sp(2r,C) iff

σ ·X⊤ ·σ = X

with

σ :=
(

0 1

−1 0

)
and σ

−1 =−σ .

This condition is equivalent to

X =

(
A B
C −A⊤

)
with symmetric matrices B = B⊤ and C =C⊤. The following proposition will refer
to this type of decomposition.

Proposition 7.7 (Type Cr). The Lie algebra

L := sp(2r,C), r ≥ 3,

has the following characteristics:

1. dim L = r(2r+1).

2. The subalgebra

H :=
{(

D 0
0 −D

)
∈ L : D ∈ d(r,C)

}
is a maximal toral subalgebra with dim H = r.

3. The family
(hi := Eii −Er+i,r+i)1≤i≤r

is a basis of H.
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4. Define the functionals

εi := ε̂i|H ∈ H∗, i = 1, ...,2r.

Then the root spaces and their corresponding roots are
Ei j −Er+ j,r+i,1 ≤ i ̸= j ≤ r εi − ε j

Ei,r+ j +E j,r+i,1 ≤ i ≤ j ≤ r εi + ε j

Er+i, j +Er+ j,i,1 ≤ i ≤ j ≤ r −εi − ε j

Grouped in a different way the root set Φ comprises the elements
εi − ε j : 1 ≤ i ̸= j ≤ r Type a
±(εi + ε j) : 1 ≤ i ̸= j ≤ r Type b
±2 · εi : 1 ≤ i ≤ r Type c

A base of Φ is the set
∆ := {α1, ...,αr}

with - note the different form of the last root αr -

• α j := ε j − ε j+1,1 ≤ j ≤ r−1,

• αr = 2 · εr

The set Φ+ of positive roots comprises the elements
εi − ε j : 1 ≤ i < j ≤ r Type a
εi + ε j : 1 ≤ i < j ≤ r Type b
2 · εi : 1 ≤ i ≤ r Type c

5. For each positive root α ∈ Φ+ the subalgebra

Sα =< hα ,xα ,yα >≃ sl(2,C)

has the generators:

• Type a: If α := εi − ε j ∈ Φ+,1 ≤ i < j ≤ r, then

hα :=(Eii−Er+i,r+i)−(E j j−Er+ j,r+ j), xα :=Ei j−Er+ j,r+i, yα :=E ji−Er+i,r+ j.

• Type b: If α := εi + ε j ∈ Φ+,1 ≤ i < j ≤ r, then

hα :=(Eii−Er+i,r+i)+(E j j−Er+ j,r+ j), xα :=Ei,r+ j+E j,r+i, yα :=Er+i, j+Er+ j,i.

• Type c: If α := 2εi ∈ Φ ,1 ≤ i ≤ r, then

hα := Eii −Er+i,r+i, xα := Ei,r+i, yα := Er+i,i.
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6. The Cartan matrix of the root system Φ referring to the basis ∆ is

Cartan(∆) =



2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
. . .

. . .
0 . . . −1 2 −1 0
0 . . . 0 −1 2 −1
0 . . . 0 −2 2


∈ M(r× r,Z),

entry <αi,α j > at position (row,column)= (i, j). Note the distinguished entry −2
in the last row: The Cartan matrix is not symmetric.
All roots α j ∈ ∆ ,1 ≤ j ≤ r− 1 have equal length, they are the short roots. The
root αr is the long root:

√
2 =

∥αr∥
∥α j∥

,1 ≤ j ≤ r−1.

The only pairs of simple roots with are not orthogonal are

(αi,αi+1), i = 1, ...,r−1.

For i = 1, ...,r − 2 these pairs include the angle
2π

3
, while the pair (αr−1,αr)

inludes the angle
3π

4
. In particular the Dynkin diagram of the root system Φ

from Figure 7.3 has type Cr according to Theorem 6.31.

Fig. 7.3 Dynkin diagram of the root system of type Cr

Proof. 1) Using the representation

X =

(
A B
C −A⊤

)
∈ sp(2r,C)

with symmetric matrices B = B⊤ and C = C⊤ we obtain from the number of free
parameters for A,B,C

dim L = r2 +2 ·

(
r2 − r

2
+ r

)
= 2r2 + r = r(2r+1).
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4) Note for all h ∈ H
εi(h) =−εr+i(h).

For h ∈ H the commutators are:

[h,Ei j −Er+ j,r+i] = h · (Ei j −Er+ j,r+i)− (Ei j −Er+ j,r+i) ·h =

= εi(h)Ei j − εr+ j(h)Er+ j,r+i − ε j(h)Ei j + εr+i(h)Er+ j,r+i =

= (εi(h)− ε j(h))Ei j − (εr+ j(h)− εr+i(h))Er+ j,r+i =

= (εi(h)− ε j(h))Ei j +(ε j(h)− εi(h))Er+ j,r+i =

(εi(h)− ε j(h))(Ei j −Er+ j,r+i)

[h,Ei,r+ j +E j,r+i] = εi(h)Ei,r+ j + ε j(h)E j,r+i − εr+ j(h)Ei,r+ j − εr+i(h)E j,r+i =

(εi(h)− εr+ j(h))Ei,r+ j +(ε j(h)− εr+i(h))E j,r+i =

= (εi(h)+ ε j(h))Ei,r+ j +(ε j(h)+ εi(h))E j,r+i =

(εi(h)+ ε j(h))(Ei,r+ j +E j,r+i)

[h,Er+i, j +Er+ j,i] = εr+i(h)Er+i, j + εr+ j(h)Er+ j,i − ε j(h)Er+i, j − εi(h)Er+ j,i =

= (εr+i(h)− ε j(h))Er+i, j +(εr+ j(h)− εi(h))Er+ j,i =

= (−εi(h)− ε j(h))Er+i, j +(−ε j(h)− εi(h))Er+ j,i =

= (−εi(h)− ε j(h))(Er+i, j +Er+ j,i)

The positive roots have the base representation

εi − ε j =
j−1

∑
k=i

αk,1 ≤ i < j ≤ r.

εi + ε j = 2 · εr +
j−1

∑
k=i

αk +2 ·
r−1

∑
k= j

αk,1 ≤ i < j ≤ r.

2 · εi = αr +
r−1

∑
k=i

2 ·αk,1 ≤ i ≤ r−1.

Part 6) The Cartan matrix has the entries β (hα),α,β ∈ ∆ . We have to consider the
roots

• βk = εk − εk+1,1 ≤ k ≤ r−1, and

• βr = 2εr
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and the roots

• α j = ε j − ε j+1,1 ≤ j ≤ r−1, with elements hα j = h j −h j+1 and

• αr = 2εr with element hαr = hr.

Accordingly, we calculate the cases:

• For 1 ≤ j,k ≤ r−1:

βk(hα j) = (εk − εk+1)(E j j −E j+1, j+1) = δk, j −δk, j+1 −δk+1, j +δk+1, j+1 =

= 2 ·δk, j −δk, j+1 −δk, j−1

• For 1 ≤ j ≤ r−1,k = r:

βr(hα j) = 2 · εr(E j j −E j+1, j+1) = 2(δr j −δr, j+1) =−2δr, j+1

• For 1 ≤ k ≤ r−1, j = r:

βk(hαr) = (εk − εk+1)(Err) = δkr −δk+1,r =−δk+1,r

• For j = k = r:
βr(hαr) = 2 · εr(Err) = 2.

If α ̸= β and < α,β >,< β ,α ≯= 0 then

β (hα)

α(hβ )
=

∥β∥2

∥α∥2

Hence

2 =
−2
−1

=
αr(hαr−1)

αr−1(hαr)
=

∥αr∥2

∥αr−1∥2.

⊓⊔

In dealing with the Lie algebra
so(2r,C)

it is useful to consider a matrix M ∈ so(2r,C) as a scheme having 2×2-matrices as
entries: We introduce the non-Abelian C-algebra

R := M(2×2,C)

as ring of coefficients and consider matrices

M = ((a jk)1≤ j,k≤r) ∈ M(r× r,R)≃ M(2r×2r,C)

as matrices with entries from R
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a jk ∈ R,1 ≤ j,k ≤ r.

For each 1 ≤ j,k ≤ r we introduce the matrix

Ẽ jk ∈ M(r× r,R)

with only one nonzero entry, namely 1 ∈ R, at place ( j,k). We distinguish the
following elements from R, which can be expressed by using the Pauli matrices,
see Remark 2.21, extended by

σ0 := 1=

(
1 0
0 1

)
:

h := σ2 =

(
0 −i
i 0

)
s :=

1
2

(
i −1
−1 −i

)
= (1/2) · (iσ3 −σ1), t :=

1
2

(
i 1
1 −i

)
) = (1/2) · (iσ3 +σ1)

u :=
1
2

(
i 1
−1 i

)
= (1/2) · i(σ0 +σ2) v :=

1
2

(
i −1
1 i

)
= (1/2) · i(σ0 −σ2)

satisfying

• s = s⊤, h · s = s,s ·h =−s

• t = t⊤, h · t =−t, t ·h = t

• u⊤ = v, h ·u = u ·h = u

• v⊤ = u, h ·v = v ·h =−v

• [s, t] =−h

• u2 −vv2 =−h

E.g. the matrix h · Ẽ j j ∈ M(r× r,R) is the block matrix with the single block h ∈ R
at the diagonal place with index ( j, j). The block is

h =

(
0 −i
i 0

)
∈ M(2×2,C)

which implies

h · Ẽ j j = i · (E2 j+1,2 j −E2 j,2 j+1) ∈ M(2r×2r,C).
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Proposition 7.8 (Type Dr). The Lie algebra

L := so(2r,C), r ≥ 4,

has the following characteristics:

1. dim L = r(2r−1).

2. The subalgebra

H := spanC < h · Ẽ j j : 1 ≤ j ≤ r > ⊂ (d(r,R)∩L)

is a maximal toral subalgebra with dim H = r.

3. For any pair 1 ≤ j < k ≤ r each of the four elements

s · (Ẽ jk − Ẽk j), t · (Ẽ jk − Ẽk j), u · Ẽ jk − v · Ẽk j, v · Ẽ jk −u · Ẽk j

generates a 1-dimensional root space, belonging to the respective root

α =


ε j + εk

−ε j − εk

ε j − εk

−ε j + εk

Here
ε j : H −→ C

are the C-linear functionals which are dual to the family

h · Ẽ j j, 1 ≤ j ≤ r,

i.e.
εi(h · Ẽ j j) = δi j.

4. The root set Φ of L has the elements

−ε j − εk, ε j + εk, −ε j + εk, ε j − εk,1 ≤ j < k ≤ r,

for short

Φ = {±ε j ± εk : 1 ≤ j < k ≤ r} (each combination o f signs).

A base of Φ is the set
∆ := {α1, ...,αr}

with - note the different form of the last root αr -

• α j := ε j − ε j+1,1 ≤ j ≤ r−1,



7.2 Root systems of the A,B,C,D-series in explicit form 273

• αr = εr−1 + εr

The set of positive roots is Φ+ = {ε j ± εk : 1 ≤ j < k ≤ r}.

5. For each positive root α := ε j + εk ∈ Φ+,1 ≤ j < k ≤ r, the subalgebra

Sα ≃ sl(2,C)

is generated by the three elements

hα := h · (Ẽ j j + Ẽkk), xα := s · (Ẽ jk − Ẽk j), yα := t · (Ẽ jk − Ẽk j).

For each positive root α := ε j − εk ∈ Φ+,1 ≤ j < k ≤ r, the subalgebra

Sα ≃ sl(2,C)

is generated by the three elements

hα := h · (Ẽ j j − Ẽkk), xα := u · Ẽ jk − v · Ẽk j, yα := v · Ẽ jk −u · Ẽk j.

6. The Cartan matrix of the root system Φ referring to the basis ∆ is

Cartan(∆) =



2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
. . .

. . .
0 . . . −1 2 −1 −1
0 . . . 0 −1 2 0
0 −1 0 2


∈ M(r× r,Z).

Note the distinguished Cartan integers

< αr−2,αr >=< αr,αr−2 >

All roots α ∈ ∆ have the same length. The only pairs of simple roots with are not
orthogonal are

(αi,αi+1), i = 1, ...,r−2, and (αr−2,αr).

These pairs include the angle (2/3)π . The Dynkin diagram of the root system Φ

from Figure 7.4 has type Dr from Theorem 6.31.
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Fig. 7.4 The Dynkin diagram of the root system of type Dr

Proof. 3) The general element of H has the form

z =
r

∑
ν=1

aν · (h · Ẽνν), aν ∈ C.

The element z acts on s · (Ẽ jk − Ẽk j) according to

[z,s · (Ẽ jk − Ẽk j)] = ε j(z) ·hs · Ẽ jk − εk(z) ·hs · Ẽk j −εk(z) · sh · Ẽ jk +ε j(z) · sh · Ẽk j =

ε j(z) · s · Ẽ jk − εk(z) · s · Ẽk j + εk(z) · s · Ẽ jk − ε j(z) · s · Ẽk j =

= (ε j(z)+ εk(z)) · s · (Ẽ jk − Ẽk j)

The element z acts on t · (Ẽ jk − Ẽk j) according to

[z, t · (Ẽ jk − Ẽk j)] = ε j(z) ·ht · Ẽ jk − εk(z) ·ht · Ẽk j − εk(z) · th · Ẽ jk + ε j(z) · th · Ẽk j =

−ε j(z) · t · Ẽ jk + εk(z) · t · Ẽk j − εk(z) · t · Ẽ jk + ε j(z) · t · Ẽk j =

= (−ε j(z)− εk(z)) · t · (Ẽ jk − Ẽk j)

The element z acts on u · Ẽ jk −v · Ẽk j according to

[z,u · Ẽ jk−v · Ẽk j] = ε j(z) ·hu · Ẽ jk−εk(z) ·hv · Ẽk j −εk(z) ·uh · Ẽ jk+ε j(z) ·vh · Ẽk j =

ε j(z) ·u · Ẽ jk + εk(z) ·v · Ẽk j − εk(z) ·u · Ẽ jk − ε j(z) ·v · Ẽk j =

= (ε j(z)− εk(z)) · (u · Ẽ jk −v · Ẽk j)

The element z acts on v · Ẽ jk −u · Ẽk j according to

[z,v · Ẽ jk−u · Ẽk j] = ε j(z) ·hv · Ẽ jk−εk(z) ·hu · Ẽk j −εk(z) ·vh · Ẽ jk+ε j(z) ·uh · Ẽk j =

−ε j(z) ·v · Ẽ jk − εk(z) ·u · Ẽk j + εk(z) ·v · Ẽ jk + ε j(z) ·u · Ẽk j =

= (−ε j(z)+ εk(z)) · (v · Ẽ jk −u · Ẽk j).

We have

|Φ |= 4 · r(r−1)
2

= 2r · (r−1) = r · (2r−1)− r = dim L−dim H

in accordance with the formula from Proposition 7.4, part 1.
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4) The positive roots have the base representation

εi − ε j =
j−1

∑
k=i

αk,1 ≤ i < j ≤ r,

εi + ε j =
r−2

∑
k=i

αk +
r

∑
k= j

αk,1 ≤ i < j ≤ r.

5) For α := ε j + εk ∈ Φ+,1 ≤ j < k ≤ r, the commutators are

[hα ,xα ] = [h · (Ẽ j j + Ẽkk),s · (Ẽ jk − Ẽk j)] =

= hs · (Ẽ j j + Ẽkk)(Ẽ jk − Ẽk j)− sh · (Ẽ jk − Ẽk j)(Ẽ j j + Ẽkk) =

= s · (Ẽ jk − Ẽk j)+ s · (Ẽ jk − Ẽk j) = 2 · xα

[hα ,yα ] = [h ·(Ẽ j j + Ẽkk), t ·(Ẽ jk − Ẽk j)] =−t ·(Ẽ jk − Ẽk j)− t ·(Ẽ jk − Ẽk j) =−2 ·yα

[xα ,yα ] = [s · (Ẽ jk − Ẽk j), t(Ẽ jk − Ẽk j)] = [s, t] · (Ẽ jk − Ẽk j)
2 =

= (−h) · (−Ẽ j j − Ẽkk) = hα

For α := ε j − εk ∈ Φ+,1 ≤ j < k ≤ r, the commutators are

[hα ,xα ] = [h · (Ẽ j j − Ẽkk, u · Ẽ jk −v · Ẽk j] = hu · Ẽ jk +hv · Ẽk j +uh · Ẽ jk +vh · Ẽk j =

u · Ẽ jk −v · Ẽk j +u · Ẽ jk −v · Ẽk j = 2u · Ẽ jk −2v · Ẽk j = 2 · xα

[hα ,yα ] = [h · (Ẽ j j − Ẽkk),v · Ẽ jk −u · Ẽk j] = hv · Ẽ jk +hu · Ẽk j +vh · Ẽ jk +uh · Ẽk j =

−v · Ẽ jk +u · Ẽk j −v · Ẽ jk +u · Ẽk j = 2u · Ẽk j −2v · Ẽ jk =−2 · yα

[xα ,yα ] = [u · Ẽ jk −v · Ẽk j,v · Ẽ jk −u · Ẽk j] =

=−u2Ẽ j j −v2Ẽkk +v2Ẽ j j +u2Ẽkk =

= (v2 −u2) · Ẽ j j +(u2 −v2) · Ẽkk = h · (Ẽ j j − Ẽkk) = hα

6) The Cartan matrix has the entries

< β ,α >= β (hα),α,β ∈ ∆ .

We have to consider

• α j = ε j − ε j+1,1 ≤ j ≤ r−1 with elements hα j = h · (Ẽ j j − Ẽ j+1, j+1) and

• αr = εr−1 + εr with element hαr = h · (Ẽr−1,r−1 + Ẽr,r)

and

• βk = εk − εk+1,1 ≤ k ≤ r−1 and
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• βr = εr−1 + εr.

If 1 ≤ j,k ≤ r−1 then

(εk−εk+1)(h·(Ẽ j j−Ẽ j+1, j+1))= δk j−δk, j+1−δk+1, j+δk+1, j+1 = 2δk j−δk, j+1−δk+1, j =

=


2, if j = k
−1, if | j− k|= 1
0, if | j− k| ≥ 2

If k = r and 1 ≤ j ≤ r−1 then

(εr−1 + εr)(h · (E j j −E j+1, j+1)) = δr−1, j −δr−1, j+1 +δr, j −δr, j+1 =−δr, j+2

=

{
−1, if j = r−2

0, if j ̸= r−2

If 1 ≤ k ≤ r−1 and j = r then

(εk − εk+1)(h · (Er−1,r−1 +Er,r)) = δk,r−1 +δk,r −δk+1,r−1 −δk+1,r =−δk,r−2

=

{
−1, if k = r−2
0, if k ̸= r−2

If k = r = 2 then

(εr−1 + εr)(h · (Ẽr−1,r−1 + Ẽr,r)) = δr−1,r−1 +δr,r = 2.

If α ̸= β and < α,β >,< β ,α ≯= 0 then

< α,β >

< β ,α >
=

∥β∥2

∥α∥2 = 1.

We read off

< αr−2,αr−1 >< αr−1,αr−2 >=< αr−2,αr >< αr,αr−2 >=

= (−1) · (−1) = +1

and
< αr−1,αr >< αr,αr−1 >= 0 ·0 = 0

As a consequence, there is a single edge between the vertices of the pair

αr−2 and αr−1

and between the vertices of the pair

αr−2 and αr,
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but no edge between the vertices of the pair

αr−1 and αr.

⊓⊔

In order to employ the result of Proposition 7.8 for the investigation of the Lie
algebra

so(2r+1,C)

we consider the matrices from M(r× r,R), used in Proposition 7.8, as matrices
from M(2r×2r,C), and embedd them via the canonical embedding

M(2r×2r,C)−→ M((2r+1)× (2r+1),C)

as block matrices

A 7→ Â :=
(

A 0
0 0

)
∈ M((2r+1)× (2r+1),C).

Proposition 7.9 (Type Br). The Lie algebra

L := so(2r+1,C),r ≥ 2,

has the following characteristics:

1. dim L = r(2r+1).

2. The subalgebra

H := spanC < h · Ê j j : 1 ≤ j ≤ r > ⊂ (d(2r+1,C)∩L)

is a maximal toral subalgebra with dim H = r.

3. For 1 ≤ j ≤ r denote by
ε j := (h · Ê j j)

∗ ⊂ H∗

the dual functionals. For each pair 1 ≤ j < k ≤ r each of the four elements

s · (Ê jk − Êk j), t · (Ê jk − Êk j), u · Ê jk − v · Êk j, v · Ê jk −u · Êk j

generates the 1-dimensional root space belonging to the respective root

α =


ε j + εk

−ε j − εk

ε j − εk

−ε j + εk
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In addition, for each index j = 1, ...,r

• a 1-dimensional root space is generated by the matrix

X j ∈ so(2r+1,C)

with exactly four non-zero entries: The vector

B1 :=
(

1
−i

)
∈ M(2×1,C)

at places (2 j−1,2r+1) and (2 j,2r+1) and the vector −B⊤
1 at places (2r+1,2 j−1)

and (2r+1,2 j).

• and a 1-dimensional root space is generated by the matrix

Yj ∈ so(2r+1,C)

with exactly four non-zero entries: The vector

B2 :=
(

1
i

)
∈ M(2×1,C)

at places (2 j−1,2r+1) and (2 j,2r+1) and the vector −B⊤
2 at places (2r+1,2 j−1)

and (2r+1,2 j).

For j = 1, ...,r the respective roots belonging to X j and Yj are

α =±ε j.

4. The root system Φ of L is

Φ = {±εk ± εn : 1 ≤ k < n ≤ r}∪{±ε j : j = 1, ...,r}.

A base of φ is the set
∆ = {α1, ...,αr}

with - note the different form of the last root -

• α j := ε j − ε j+1,1 ≤ j ≤ r−1,

• αr := εr.

The set of positive roots is

Φ
+ = {εi ± ε j : 1 ≤ i < j ≤ r}∪{ε j : 1 ≤ j ≤ r}.
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5. For a positive root α ∈ Φ+ the subalgebra

Sα =< hα , xα , yα > ≃ sl(2,C)

has the generators:

• If α = ε j + εk, 1 ≤ j < k ≤ r, then

hα := h · (Ê j j + Êkk), xα := s · (Ê jk − Êk j), yα := t · (Ê jk − Êk j).

• If α = ε j − εk,1 ≤ j < k ≤ r, then

hα := h · (Ê j j − Êkk), xα := u · Ê jk − v · Êk j, yα := v · Ê jk −u · Êk j.

• If α = ε j,1 ≤ j ≤ r, then

hα := 2h · Ê j j, xα = X j, yα = Yj.

6. The Cartan matrix of the root system Φ referring to the base ∆ is

Cartan(∆) =



2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
. . .

. . . 0
... 0
... 0

0 . . . 0 −1 2 −2
0 0 −1 2


∈ M(r× r,Z).

Note the distinguished entries in the last row and the last column.
The roots α j, j = 1, ...,r − 1, have equal length; they are the long roots. The
root αr is the single short root. The length ratio is

∥α j∥
∥αr∥

=
√

2, j = 1, ...,r−1.

The non-orthogonal pairs of roots from ∆ are

(α j,α j+1), j = 1, ...,r−1.

Each pair (α j,α j+1), j = 1, ...,r − 2, encloses the angle
2π

3
, while the last

pair (αr−1,αr) encloses the angle
3π

4
. The Dynkin diagram of Φ from Figure 7.5

has type Br from Theorem 6.31.
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Fig. 7.5 The Dynkin diagram of the root system of type Br

Proof. Most part of the proof follows from the corresponding statements in
Proposition 7.8. In addition:

3) The general element of H has the form

z =
r

∑
ν=1

aν ·h · Êνν ,aν ∈ C.

In addition to the action of H on the root space elements from Proposition 7.8 one
has the action on the additional elements X j and Yj: For 1 ≤ j ≤ r the
element z ∈ H acts according to

[z,X j] =−ε j(z) ·X j, [z,Yj] = ε j(z) ·Yj.

We have

|Φ |= 4 · r(r−1)
2

+2r = 2r2 = r · (2r+1)− r = dim L−dim H

in accordance with the formula from Proposition 7.4, part 1.4) The positive roots

have the base representation:

ε j =
r

∑
k= j

αk,1 ≤ j ≤ r,

εi − ε j =
j−1

∑
k=i

αk,1 ≤ i < j ≤ r.

5) Note:
B1 ·B⊤

2 −B2 ·B1
⊤ = 2 ·h ∈ M(2×2,C).

6) The computation of the Cartan matrix is similar to the computation in the proof
of Proposition 7.8.
⊓⊔

Theorem 7.10 (The classical complex Lie algebras are simple). The Lie algebras
of the complex classical matrix groups of the types

Ar,r ≥ 1;Br,r ≥ 2;Cr,r ≥ 3;Dr,r ≥ 4,

are simple.
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Proof. We know from Corollary 4.18 that each classical Lie algebra L is semisim-
ple. According to Theorem 4.21 the semisimple Lie algebra L splits into a direct
sum of simple Lie algebras:

L =
m⊕

j=1

L j

with simple Lie algebras L j, j = 1, ...,m. The direct sum of maximal toral subalge-
bras

Tj ⊂ L j, j = 1, ...,m

is a maximal toral subalgebra of L. For each pair i ̸= j and each pair of roots αi of Li
and α j ∈ L j the corresponding Cartan integers vanish

< αi,α j >= 0.

Hence the Coxeter graph and a posteriori the Dynkin diagram has m connected
components, which implies m = 1. ⊓⊔

Remark 7.11 (Real simple Lie algebras). Also the Lie algebras of the real classical
groups belonging to types

Ar, r ≥ 1; Br, r ≥ 2; Cr, r ≥ 3; Dr, r ≥ 4;

are simple.

7.3 Review and outlook

Remark 7.12 (Classifying complex semisimple Lie algebras by Dynkin diagrams).
Denote by

L , R, D

respectively the set of isomorphism classes of complex semisimple Lie algebras,
the set of roots systems, and the set of Dynkin diagrams. Then exist maps

FL : L −→ R and FR : R −→ D

and
F := FR ◦FL : L −→ D ,

defined as follows and satisfying the following properties:

1. Theorem 7.5 constructs the map FL .
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2. The map FL does not depend on the choice of a maximal toral subalgebra. For a
proof see the reference in Remark 5.21.

3. The map FL is bijective. The proof follows from a theorem of Serre,
see [24, Sect. 18.4, Theor.]. For a simple Lie algebra L the root system FL (L) is
irreducible, see [24, Chap. 14.1, Prop.].

4. Definition 6.24 and 6.30 define the map FR .

5. Theorem 6.23 implies: The map FR is injective.

6. The map FR is surjective. For a proof see [24, Sect. 12.1, Theor.].

7. Propositions 7.6 - 7.8 show: At least the Dynkin diagrams of type A,B,C,D
from Theorem 6.31 are contained in the image of F .

Part 1 - 6 imply: The map
F : L −→ D

is bijective, i.e. the isomorphism classes of complex semisimple Lie algebras
correspond bijectively to the Dynkin diagrams from Theorem 6.31.

For further topics in a more general context see Figure 0.1.
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