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Introduction

1+ eiπ = 0

Euler’s identity is considered an example of beauty in mathematics. Some people
even call it “the most famous formula in all mathematics”.

Euler’s identity relates the natural numbers 0 and 1 and the transcendental num-
bers e and π to the complex number i. The latter is the imaginary unit satisfying

i2 =−1.

The formula above exemplifies the way mathematics reveals some unexpected struc-
ture, when one considers its concepts in the context of complex numbers.

Complex numbers form the context of complex analysis, the subject of the
present lecture notes. Complex analysis investigates analytic functions. Locally,
analytic functions are convergent power series. The well-known exponential series
extends to the complex plane and evaluates at the non-real argument iπ from Euler’s
identity as

eix =
∞

∑
n=0

(ix)n

n!
=

∞

∑
n=0

(ix)2n

(2n)!
+

∞

∑
n=0

(ix)2n+1

(2n+1)!
=

∞

∑
n=0

(−1)n ·
x2n

(2n)!
+ i ·

∞

∑
n=0

(−1)n ·
x2n+1

(2n+1)!
= cos x+ i · sin x.

The result
eiπ = cos π + i · sin π

explains the key value
eiπ =−1,

hereby proving the Euler identiy.

Note. Not every formula has already revealed its deeper meaning. A famous riddle for contem-
porary physicists is the formula

1



2 Introduction

LPlanck =

√
h̄G
c3

This formula comprises Planck’s constant h̄, Newton’s constant of gravitation G, and the velocity
of light c. The formula relates quantum theory, gravitation and the velocity of light to the Planck
lenght LPlanck, the scale where spacetime becomes quantized.



Chapter 1
Analytic Functions

It has been written that the shortest and best way between two
truths of the real domain often passes through the imaginary
one.

Jacques Hadamard, 1945

The concept of holomorphy is accessible from different directions:

• Section 1.1 starts from convergent power series. They give reasons for the def-
inition of analytic functions in Definition 1.8 (Access due to Weierstrass). All
power series from calculus extend from intervals of the real line into the domain
of complex numbers, see Section 1.3.

• Section 2.1 in Chapter 2 introduces a second path to holomorphy. It starts from
differentiability in Definition 2.1 (Access due to Cauchy). Theorem 2.3 shows:
Any analytic function in an open set U ⊂ C is differentiable. The derivative is
again an analytic function.

• A third path starts from the Cauchy-Riemann differential equations for the par-
tial derivatives in the real sense, see Theorem 2.6 (Access due to Riemann). The
theorem also proves the equivalence of path two and path three.

Deeper is the fact that any differentiable function in an open set U ⊂C is analytic.
This result follows from a simple variant of Cauchy’s integral formula. It will be
demonstrated not until Chapter 3. The proof will be the final step in establishing the
equivalence of the three paths to holomorphy.

Cauchy, Weierstrass and Riemann are the three protagonists of complex analysis
in the 19th century.

1.1 Calculus of convergent power series

Analytic functions are those functions which expand locally into a convergent power
series. Therefore the present section investigates the calculus of convergent power
series.

3



4 1 Analytic Functions

Definition 1.1 (Compact convergence). A sequence ( fν)ν∈N of functions

fν : U −→ C, ν ∈ N,

on an open subset U ⊂ C is compact convergent to a function

f : U −→ C

if for every compact subset K ⊂U the sequence of restrictions ( fν |K)ν∈N is uni-
formly convergent to f |K.

Remark 1.2 (Convergence). Consider fn : U −→ C, n ∈ N, and f : U −→ C. For

f = lim
n→∞

fn

the convergence is

• pointwise:

∀x ∈U ∀ε > 0 ∃N ∈ N ∀n≥ N : | f (x)− fn(x)|< ε

• uniform:
∀ε > 0 ∃N ∈ N ∀x ∈U ∀n≥ N : | f (x)− fn(x)|< ε

• compact:

∀K ⊂U compact ∀ε > 0 ∃N ∈ N ∀x ∈ K ∀n≥ N : | f (x)− fn(x)|< ε

Theorem 1.3 (Convergence of power series). Consider a fixed point a ∈ C and a
power series

∞

∑
n=0

cn · (z−a)n

with center a and complex coefficients

cn ∈ C, n ∈ N.

1. If the series is convergent for at least one

z0 ∈ C, z0 6= a,

then it is absolutely and compactly convergent in the whole open disk

Dr(a) := {z ∈ C : |z−a|< r}, r := |z0−a|.

The function
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f : Dr(a)−→ C, z 7→
∞

∑
n=0

cn · (z−a)n,

is continuous.

Fig. 1.1 Compact convergence in Dr(a)

2. There exists a radius
0≤ R≤ ∞,

the radius of convergence, which discriminates between the following two alter-
natives:

• The series is convergent for all z ∈ C with |z−a|< R and

• divergent for all z ∈ C with |z−a|> R.

The disk DR(a) is the named the disk of convergence. If R > 0 then the power
series is named a convergent power series.

Proof. A statement about a power series with center a reduces by the linear substi-
tution of variables

w := z−a

to a statement about a power series with center = 0. Hence, w.l.o.g. we assume a = 0.

1. Assume that the series is convergent for z0 ∈ C. Then

(cn · zn
0)n∈N

is a null-sequence, in particular bounded: Exists M > 0 such that for all n ∈ N

|cn · zn
0| ≤M.

For any z ∈ C with |z|< |z0| we have
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∞

∑
n=0
|cn · zn|=

∞

∑
n=0
|cn · zn

0| ·

∣∣∣∣∣ z
z0

∣∣∣∣∣
n

≤M ·
∞

∑
n=0

∣∣∣∣∣ z
z0

∣∣∣∣∣
n

and the dominating series is a convergent geometric series. Because the geomet-
ric series is compactly convergent for∣∣∣∣∣ z

z0

∣∣∣∣∣< 1 i.e. |z|< |z0|,

by dominated convergence the given power series is absolutely and compactly
convergent for

|z|< |z0|.

Continuity is a local property, i.e. a function is continuous iff its restriction to any
open subset is continuous. For any N ∈ N the polynomial

N

∑
n=0

cn · (z−a)n

is continuous. The uniform limit of continuous functions is continuous. Hence f
is continuous.

2. Define

R := sup

{
|z| :

∞

∑
n=0

cn · zn convergent

}
.

Due to part 1) the series is convergent for all z ∈ DR(0). By definition of R the
series is divergent for all z ∈ C with

|z|> R, q.e.d.

Like in the proof of Theorem 1.3, we will often restrict to power series with
center a = 0. If not stated otherwise, the general case then follows by a linear sub-
stitution of variables.

The following Theorem 1.4 uses the convention

1/0 = ∞ and 1/∞ = 0.

Theorem 1.4 (Radius of convergence). Consider a power series

∞

∑
n=0

cn · zn

and let R be its radius of convergence.
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1. Root test:

i) Cauchy-Hadamard formula:

R =
1

limsup
n→∞

n
√
|cn|

ii) If for suitable r > 0 and for all but finitely many indices n ∈ N

n
√
|cn|<

1
r

then R≥ r.

iii) If for suitable r > 0 and for infinitely many indices n ∈ N

n
√
|cn|>

1
r

then R≤ r.

2. Ratio test:

i) If for suitable r > 0 and for all but finitely many n ∈ N∣∣∣∣∣cn+1

cn

∣∣∣∣∣< 1
r

then R≥ r.

ii) If for suitable r > 0 and infinitely many n ∈ N∣∣∣∣∣cn+1

cn

∣∣∣∣∣> 1
r

then R≤ r.

iii) If the limit

lim
n→∞

∣∣∣∣∣cn+1

cn

∣∣∣∣∣
exists, then

1
R
= lim

n→∞

∣∣∣∣∣cn+1

cn

∣∣∣∣∣
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Proof. 1. i) Define

r :=
1

limsup
n→∞

n
√
|cn|

.

• To prove convergence for |z| < r we may assume r > 0. We choose a
number r1 with

0 < |z|< r1 < r.

Then

limsup
n→∞

n
√
|cn|=

1
r
<

1
r1

and for all but finitely many n ∈ N

|cn|<
1
rn

1
i.e. |cn| · rn

1 < 1.

Hence for suitable M > 0 and all n ∈ N

|cn| · rn
1 < M.

Analogously to the proof of Theorem 1.3 we compute

∞

∑
n=0
|cn · z|n ≤

∞

∑
n=0
|cn| ·

|z|n

rn
1
· rn

1 ≤M ·
∞

∑
n=0

∣∣∣∣∣ z
r1

∣∣∣∣∣
n

Domination by the convergent geometric series implies the absolute conver-
gence of the series

∞

∑
n=0

cn · zn.

Hence R≥ r.

• To prove divergence for |z|> r we may assume r < ∞. Then |z|> r implies

1
|z|

<
1
r
= limsup

n→∞

n
√
|cn|.

Hence infinitely many indices n ∈ N exist with

1
|z|

< n
√
|cn| i.e.

1
|z|n

< |cn| i.e. 1 < |cn · zn|.

Therefore the sequence (cn · zn)n∈N cannot be a null-sequence, and the series

∞

∑
n=0

cn zn
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cannot converge. Hence R≤ r.

The alternative from Theorem 1.3, and both parts together imply r = R.

ii) Assume for all but finitely many indices n ∈ N

n
√
|cn|<

1
r

Then
1
R
= limsup

n→∞

n
√
|cn| ≤

1
r

i.e. R≥ r.

iii) Assume an infinite set I ⊂ N such that for all n ∈ I

n
√
|cn|>

1
r

Then
1
R
= limsup

n→∞

n
√
|cn| ≥

1
r

i.e. R≤ r.

2. i) Assume for all but finitely many n ∈ N∣∣∣∣∣cn+1

cn

∣∣∣∣∣< 1
r
.

We recall the ratio test for a series of complex numbers

∞

∑
n=0

an :

If exists θ with
0 < θ < 1

such that for all but finitely many n ∈ N∣∣∣∣∣an+1

an

∣∣∣∣∣≤ θ ,

then the series is absolutely convergent.

For all z ∈ Dr(0), z 6= 0, we apply the ratio test to the power series

∞

∑
n=0

cn · zn

and set
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an := cn · zn.

Then ∣∣∣∣∣an+1

an

∣∣∣∣∣=
∣∣∣∣∣cn+1

cn

∣∣∣∣∣ · |z|< |z|r =: θ < 1.

Hence the power series converges absolutely for any z∈Dr(0), which implies R≥ r.

ii) Assume an infinite set I ⊂ N such that for all n ∈ I∣∣∣∣∣cn+1

cn

∣∣∣∣∣> 1
r

For all z ∈ C with |z|> r and for all n ∈ I

|cn+1 · zn+1|>
|z|
r
· |cn · zn|

Hence, the sequence (cn · zn)n∈N cannot be a null-sequence, and the power series
is divergent at z. We obtain R≤ r.

iii) Assume the existence of

lim
n→∞

∣∣∣∣∣cn+1

cn

∣∣∣∣∣= 1/r

Case r > 0: For small ε > 0 and all but finitely many indices n ∈ N∣∣∣∣∣cn+1

cn

∣∣∣∣∣< 1
r− ε

and

∣∣∣∣∣cn+1

cn

∣∣∣∣∣> 1
r+ ε

.

Hence, for small ε > 0 according to the first two parts

R≥ r− ε and R≤ r+ ε,

i.e.
R = r.

Case r = 0: For any ρ > 0 and all but finitely many indices n ∈ N∣∣∣∣∣cn+1

cn

∣∣∣∣∣> 1/ρ.

Part ii) implies R≤ ρ. Therefore

R = 0 = r, q.e.d.
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We recall the following ordinary rearrangement theorem about linear orders of a
series of complex numbers:

If a series converges absolutely with respect to a specific linear order of summa-
tion, then it converges absolutely with respect to each linear order of summation,
and each of these orders produces the same limit of the series, see [8, §7, Satz 8].

More subtle is Theorem 1.5 about the rearrangement of double series.

Theorem 1.5 (Cauchy’s rearrangement of double series). Consider a double se-
ries

∑
i, j∈N

ai j

of complex numbers.

1. Assume that the double series is absolutely convergent for at least one linear
order of summation. Then:

• All row-sums

Si :=
∞

∑
j=0

ai j, i ∈ N,

and all column-sums

S̃ j :=
∞

∑
i=0

ai j, j ∈ N,

are absolutely convergent.

• The series of the row-sums and the series of the column-sums have the same
value

∞

∑
i=0

Si =
∞

∑
j=0

S̃ j = ∑
i, j∈N

ai j

with respect to any linear order of the double sum on the right-hand side.

• The series of the row-sums
∞

∑
i=0

Si

and the series of the column-sums

∞

∑
j=0

S̃ j

are absolutely convergent.
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2. Assume: All row-sums

Si :=
∞

∑
j=0

ai j, i ∈ N,

are absolutely convergent, and the series

∞

∑
i=0

(
∞

∑
j=0
|ai j|

)

is convergent. Then the double series

∑
i, j∈N

ai j

is absolutely convergent for at least one linear order of summation.

Fig. 1.2 Double indices
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Note in Theorem 1.5 the difference between the order of summation of the two
series on the left-hand and on the right-hand side of the equation

∞

∑
i=0

(
∞

∑
j=0

ai j

)
= ∑

i, j∈N
ai j.

The ordinary rearrangement theorem deals with summing up all terms of the double
series at the right-hand side in an arbitrary linear order. While the left-hand side
considers two different types of summation:

∞

∑
i=0

Si

first computes all row-sums Si, and afterwards computes the sum of all row-sums.
While

∞

∑
j=0

S̃ j

first computes all column-sums S̃ j, and afterwards computes the sum of all column-
sums.

Proof. ad 1). Due to the ordinary rearrangement theorem the double series is
absolutely convergent with respect to any linear order, and its limit does not depend
on the order of summation. We choose the linear order

lim
n→∞

∑
(i, j)∈Nn×Nn

ai j =: A

with
Nn := {k ∈ N : k ≤ n},

see Figure 1.2.

Consider an arbitrary ε > 0 which will be fixed in part i) and ii).

i) Absolute convergence of each row-sum Si =
∞

∑
i=0

ai j, i ∈ N:

There exists n0 ∈ N such that for all n≥ n0

∑
N×N\(Nn×Nn)

|ai j| ≤ ε,

In particular, for any arbitrary but fixed i ∈ N and for all n≥ n0

∑
j≥n
|ai j|< ε,

i.e. the series



14 1 Analytic Functions

Si =
∞

∑
j=0

ai j

is absolutely convergent.

ii) Series of the row-sums: Claim

lim
n→∞

n

∑
i=0

Si = lim
n→∞

n

∑
i=0

(
∞

∑
j=0

ai j

)
= A = lim

n→∞
∑

(i, j)∈Nn×Nn

ai j.

There exists n1 ∈ N such that for all n≥ n1∣∣∣∣∣A− ∑
(i, j)∈Nn×Nn

ai j

∣∣∣∣∣< ε

The triangle inequality implies for n≥ max{n0, n1}∣∣∣∣∣ n

∑
i=0

(
∞

∑
j=0

ai j

)
−A

∣∣∣∣∣≤
∣∣∣∣∣ n

∑
i=0

(
∞

∑
j=0

ai j

)
− ∑

(i, j)∈Nn×Nn

ai j

∣∣∣∣∣+
∣∣∣∣∣ ∑
(i, j)∈Nn×Nn

ai j−A

∣∣∣∣∣≤
≤

∣∣∣∣∣ n

∑
i=0

(
∞

∑
j=0

ai j

)
−

n

∑
i=0

(
n

∑
j=0

ai j

)∣∣∣∣∣+ ε =

∣∣∣∣∣ n

∑
i=0

(
∑
j>n

ai j

)∣∣∣∣∣+ ε ≤

∣∣∣∣∣ n

∑
i=0

(
∑
j>n
|ai j|

)∣∣∣∣∣+ ε

≤

(
∑

N×N\(Nn×Nn)

|ai j|

)
+ ε ≤ ε + ε = 2ε

This estimate finishes the proof of

lim
n→∞

n

∑
i=0

(
∞

∑
j=0

ai j

)
= A.

iii) Absolute convergence of the series of the row-sums: Part ii) applied to the series

∑
(i, j)∈N×N

|ai j|

implies

∞

∑
i=0
|Si|=

∞

∑
i=0

(
|

∞

∑
j=0

ai j|

)
≤

∞

∑
i=0

(
∞

∑
j=0
|ai j|

)
= ∑

(i, j)∈N×N
|ai j|< ∞

iv) Interchanging the roles of i and j: Apparently one may interchange the roles
of i and j in part i) - iii).
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ad 2) Assume for any i ∈ N the convergence of

∞

∑
j=0
|ai j|

and the convergence
∞

∑
i=0

(
∞

∑
j=0
|ai j|

)
=: M < ∞.

The assumption implies for any index n ∈ N the estimate of the finite sum

∑
(i, j)∈Nn×Nn

|ai j| ≤M.

As a consequence the double sum
∑
i, j

ai j

converges absolutely in a certain linear order of summation, q.e.d.

We shall apply Theorem 1.5 when proving

• the formula for the Cauchy product of power series (Corollary 1.6),

• the change of the centre of a convergent power series (Theorem 1.7), and

• the analyticity of the composition of two analytic functions (Proposition 1.19).

Corollary 1.6 (Cauchy product of power series). Consider two power series

f (z) =
∞

∑
n=0

an · zn and g(z) =
∞

∑
n=0

bn · zn

with radius of convergence ≥ r. Then also the power series

h(z) :=
∞

∑
n=0

cn · zn,

the Cauchy product of f and g, with

cn :=
n

∑
k=0

an−k ·bk = ∑
k+m=n

ak ·bm, n ∈ N,

has radius of convergence ≥ r, and

h(z) = f (z) ·g(z).
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Proof. For z ∈ Dr(0) we show: The double series

∑
k,m

Akm

with
Akm := akzk ·bmzm = akbm · zk+m

satisfies the assumption of Theorem 1.5, part 2, with (i, j) = (k,m): First, we have

Sk :=
∞

∑
m=0

Akm

and
∞

∑
m=0
|Akm|=

∞

∑
m=0
|ak · zk ·bm · zm|= |ak · zk| ·

∞

∑
m=0
|bm · zm|.

The last series is convergent due to Theorem 1.3 applied to the power series g(z).

Secondly, the series

∞

∑
k=0

(
∞

∑
m=0
|Akm|

)
=

(
∞

∑
k=0
|ak · zk|

)
·

∞

∑
m=0
|bm · zm|

is convergent due to Theorem 1.3 applied to the power series f (z).

Now Theorem 1.5, part 1) applies: On one hand, by summing the row-sums

∑
k=0

Sk =
∞

∑
k=0

(
∞

∑
m=0

Akm

)
=

∞

∑
k=0

(
ak · zk ·

∞

∑
m=0

bm · zm

)
=

=
∞

∑
k=0

(ak · zk ·g(z)) =

(
∞

∑
k=0

ak · zk

)
·g(z) = f (z) ·g(z).

On the other hand, by summing the double sum along the diagonals

∑
k,m

Akm =
∞

∑
n=0

(
∑

k+m=n
Akm

)
=

∞

∑
n=0

cn · zn = h(z), q.e.d.

Theorem 1.7 (Changing the centre of a convergent power series). Consider a
power series

f (z) =
∞

∑
n=0

cn · zn

with center = 0 and radius of convergence r > 0. Then for any point a ∈ Dr(0) the
power series
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∞

∑
k=0

bk · (z−a)k

with center = a and coefficients

bk :=
∞

∑
n=k

(
n
k

)
cn ·an−k, k ∈ N,

is convergent with radius of convergence at least

ρ := r−|a|,

and satisfies for all z ∈ Dρ(a)

f (z) =
∞

∑
k=0

bk · (z−a)k.

Fig. 1.3 Changing the center of a convergent power series

Proof. The binomial theorem implies

zn = ((z−a)+a)n =
n

∑
k=0

(
n
k

)
an−k · (z−a)k.

Hence

f (z) =
∞

∑
n=0

cn · zn =
∞

∑
n=0

cn ·

(
n

∑
k=0

(
n
k

)
an−k · (z−a)k

)
.

For z ∈ Dρ(a) we introduce the coefficients
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Ank :=

{
cn ·
(n

k

)
·an−k · (z−a)k k ≤ n

0 otherwise

and the double series
∑
n,k

Ank.

By definition, the series of the corresponding row-sums is f (z). The double series
satisfies the assumptions of Theorem 1.5, part 2:

• For each arbitrary but fixed n ∈ N

∞

∑
k=0
|Ank|=

n

∑
k=0
|Ank|< ∞

because the series is finite.

• The series

∞

∑
n=0

(
n

∑
k=0
|Ank|

)
=

∞

∑
n=0

(
|cn| ·

n

∑
k=0

(
n
k

)∣∣∣an−k
∣∣∣ · |z−a|k

)
=

=
∞

∑
n=0
|cn| · (|a|+ |z−a|)n =

∞

∑
n=0
|cn| · rn

0 < ∞

with
r0 := |a|+ |z−a|< |a|+ρ < |a|+ r−|a|= r

is convergent, because for any w ∈ Dr(0) the series

∞

∑
n=0

cn ·wn

is absolutely convergent due to Theorem 1.3 .

Theorem 1.5 implies that the series of row-sums equals the series of column-sums,
which is

f (z) =
∞

∑
k=0

(
∞

∑
n=0

Ank

)
=

∞

∑
k=0

(
∞

∑
n=k

(
n
k

)
cn ·an−k

)
(z−a)k =

∞

∑
k=0

bk · (z−a)k, q.e.d.

If a power series f (z) with center = 0 has radius of convergence at least r, then
Theorem 1.7 states that the resulting power series g(z) with center = a has radius
of convergence at least ρ = r− |a|. But the radius of convergence of g(z) may be
strictly larger than ρ . Then the power series g(z) extends the function defined by the
power series f (z) to a larger domain of definition.
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1.2 Fundamental properties of analytic functions

We are now ready to define Weierstrass’ basic concept of complex analysis, the
analytic function. Analytic functions are those functions which locally expand into
a convergent power series.

Definition 1.8 (Analytic function). Consider an open subset U ⊂ C. A function

f : U −→ C

is analytic, if for all points a ∈U a radius r > 0 with Dr(a) ⊂U exists such that f
expands in the disk Dr(a) into a convergent power series with center = a

f (z) =
∞

∑
n=0

cn · (z−a)n.

Definition 1.8 shows that being analytic is a local property: A function f is
analytic on an open set U iff the restriction of f to each open subset of U is an-
alytic. Note that we avoid terms like “analytic at a point z0”. Being analytic always
refers to an open set, e.g., an open neighbourhood of a point z0. Moreover, analyt-
icity does not require that any of the power series with center = a is convergent for
all z ∈U .

Proposition 1.9 (Ring of analytic functions).

1. Analytic functions are continuous.

2. If the functions f ,g : U −→ C are analytic and λ ∈ C then also the functions

f +g, f ·g and λ · f

are analytic. Hence the set of analytic functions on an open set U ⊂ C is a ring
with respect to addition and multiplication, and even a C-algebra with respect to
additional scalar multiplication. If f has no zeros in U then also 1/ f is analytic
in U.

3. A power series
∞

∑
n=0

cn · (z− z0)
n

which is convergent in Dr(z0), r > 0, defines the analytic function

f : Dr(z0)−→ C, z 7→ f (z) :=
∞

∑
n=0

cn · (z− z0)
n.
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Proof. 1. Any analytic function is continuous, because a convergent power series
is continuous.

2. The analyticity of the product f ·g follows from the Cauchy product formula for
power series, see Corollary 1.6.

To prove the analyticity of 1/ f we show: If a convergent power series

f (z) =
∞

∑
n=0

cn · zn

satisfies f (0) = c0 6= 0, then for suitable r > 0 the function

1/ f : Dr(0)−→ C

expands into a convergent power series: W.l.o.g c0 = 1. Set d0 := 1 and define
the power series

g(z) :=
∞

∑
n=0

dn · zn

with recursively defined coefficients

d1 := c1 and dn :=−c1 ·dn−1− c2 ·dn−2− ...− cn−1 ·d1− cn, n≥ 2.

Let R denote the radius of convergence of f (z). We have R 6= 0. The formula of
Cauchy-Hadamard from Theorem 1.4 implies the existence of a constant M > 0
such that for all indices n ∈ N

|cn| ≤Mn

Hence, by induction, for all n≥ 1

|dn| ≤ |cn|+
n−1

∑
ν=1
|cν | · |dn−ν | ≤Mn +(1/2) ·

n−1

∑
ν=1

Mν · (2M)n−ν = (1/2) · (2M)n

Hence g has radius of convergence at least

r :=
1

2M
> 0,

therefore both power series
f (z) and g(z)

are convergent. Their Cauchy product computes as

f (z) ·g(z) = 1 i.e. g(z) = 1/ f (z)

3. We have to show that f expands for any point a∈Dr(z0) into a convergent power
series with center = a. The result follows from Theorem 1.7. We will give the
details to exemplify how to reduce a statement about a power series with arbitrary
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center to the analoguous statement for a power series with center = 0: First we
make the linear change of the argument

w := z− z0

to obtain a power series with center = 0. Then we apply Theorem 1.7. Eventually,
we translate the result back to the original series with center = a.

After the substitution
w := z− z0

the series

g(w) :=
∞

∑
n=0

cn ·wn

converges for w ∈ Dr(0). The substitution transforms the new center a to the
point

a0 := a− z0.

If we define
ρ := r−|a0|= r−|a− z0|> 0

then Theorem 1.7 implies for w ∈ Dρ(a0) the convergence of the series

f (z) = g(w) =
∞

∑
k=0

bk · (w−a0)
k

with

bk =
∞

∑
n=k

(
n
k

)
cn ·an−k

0 .

Because
w−a0 = (z− z0)− (a− z0) = z−a

we obtain for z ∈ Dρ(a)

f (z) =
∞

∑
k=0

bk · (z−a)k, q.e.d.

The importance of Proposition 1.9 is due to the explicit formulas to compute the
coefficients of the product series and the series with changed centre, respectively.
Proposition 1.9 will have an analogue for differentiable functions in Proposition 2.2.

Lemma 1.10 (Local behaviour of a power series). Consider a convergent power
series

f (z) =
∞

∑
n=0

cn · zn
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1. If
c0 6= 0

then exists r > 0 such that for all z ∈ Dr(0)

f (z) 6= 0.

2. Otherwise, if for suitable m ∈ N

c0 = c1 = ...= cm−1 = 0 but cm 6= 0

then exists r > 0 such that for all z ∈ Dr(0)\{0}

f (z) 6= 0.

Proof. 1. The claim follows from the continuity of convergent power series, see
Theorem 1.3.

2. We consider

f (z) =
∞

∑
n=m

cn · zn = zm ·
∞

∑
n=0

cn+m · zn.

The convergent power series

f1(z) :=
∞

∑
n=0

cn+m · zn

satisfies the assumption of part 1). Hence for suitable r > 0 and all z ∈ Dr(0)

f1(z) 6= 0.

Also zm 6= 0 for z ∈ Dr(0)\{0}. Hence for z ∈ Dr(0)\{0}

f (z) = zm · f1(z) 6= 0, q.e.d.

Proposition 1.11 (Uniqueness of the power series expansion). Consider two power
series

f (z) =
∞

∑
n=0

an · (z− z0)
n

and

g(z) =
∞

∑
n=0

bn · (z− z0)
n

which converge in the disk Dr(z0), r > 0. If for all z ∈ Dr(z0)

f (z) = g(z)
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then for all n ∈ N
an = bn.

Proof. For all z ∈ Dr(z0)

h(z) := f (z)−g(z) =
∞

∑
n=0

(an−bn) · (z− z0)
n = 0.

Hence the convergent power series h(z) does not satisfy the conclusion from
Lemma 1.10. As a consequence, h(z) does not satisfy neither the assumption of
part 1) nor the assumption of part 2) of the lemma, i.e. for all n ∈ N

an−bn = 0, q.e.d.

Combining Proposition 1.11 with the topological concept of connectedness will
imply the identity theorem for analytic functions. We first recall the definition of
connectedness and path-connectedness in the complex plane.

Definition 1.12 (Connectedness and path-connectedness). Consider an open set U ⊂ C.

1. The set U is disconnected if two non-empty disjoint open subsets U1,U2 ⊂ C
exist with

U =U1∪U2.

Otherwise the set U is connected.

2. The set U is path-connected if any two points a,b ∈U can be joined by a path
in U , i.e. if a continuous map

γ : [0,1]−→U

exists satisfying
γ(0) = a and γ(1) = b.

Proposition 1.13 (Connectedness and path-connectedness). For an open set U ⊂ C
holds the equivalence:

U connected ⇐⇒ U path-connected.

Proof. i) Assume U disconnected. Then

U =U1 ∪̇U2
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with two open, non-empty subsets U1, U2 ⊂ C. To show that U is not
path-connected we assume on the contrary that U is path-connected. Consider two
arbitrary points a ∈U1 and b ∈U2 and a continuous map

γ : [0,1]−→U

with
γ(0) = a and γ(1) = b.

Define
t0 := sup{t ∈ [0,1] : γ(t) ∈U1}

Then t0 ∈ [0,1], see Figure 1.4, on top. Hence

γ(t0) ∈U =U1 ∪̇U2.

Continuity of γ and openess of U1 and U2 imply: Both subsets

γ
−1(Ui)⊂ [0,1], i = 1,2,

are open in [0,1], which excludes the boundaries t0 ∈ {0,1}. Hence

t0 ∈ ]0,1[.

• If γ(t0) ∈U1, then γ−1(U1) is an open neighbourhood of t0. In particular

sup{t ∈ [0,1] : γ(t) ∈U1}> t0,

a contradiction.

• Similarly, if γ(t0) ∈U2, then γ−1(U2)⊂ I is an open neighbourhood of t0. In
particular

sup{t ∈ [0,1] : γ(t) ∈U1}< t0,

a contradiction.

The indirect proof shows that U is not path-connected.

ii) Assume U connected. Choose a fixed point a ∈U and decompose

U =U1 ∪̇U2

with
U1 := {b ∈U : b can be joined by a path to a}

U2 := {c ∈U : c cannot be joined by a path to a}
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Fig. 1.4 Connectedness and path-connectedness

• We have U1 6= /0 because a ∈U1.

• U1 is open: We consider an arbitrary point b ∈U1. Openess of U implies the
existence of r > 0 with Dr(b)⊂U . Path-connectedness of the disk Dr(b)
implies Dr(b)⊂U1, see Figure 1.4, at bottom.

• U2 is open: Any point c ∈U2 has a neighbourhood Dr(c)⊂U with
suitable r > 0. Path-connectedness of Dr(c) implies Dr(c)⊂U2. Hence U2 = /0,
which finishes the proof, q.e.d.

Definition 1.14 (Domain). A domain G in C is a non-empty, connected open
subset G⊂ C.

Definition 1.15 (Isolated point, accumulation point). Consider a subset A⊂ C.



26 1 Analytic Functions

• A point a ∈ A is an isolated point if a has a neighbourhood U ⊂ C such that

U ∩A = {a}.

If A has only isolated points, then A is named a discrete set.

• A point a∈C is an cluster point or accumulation point of A if any neighbourhood
U ⊂ C of a includes a point from A\{a}, i.e. if

U ∩ (A\{a}) 6= /0.

Denote by A′ the cluster points of A. Then the isolated points in A form the
complement

A\A′.

Of course, A may have also cluster points belonging to C\A:

A′ = A.

All points of A are isolated iff A, equipped with the subspace topology from C, is a
discrete space, i.e. if each point set {a}, a ∈ A, is open.

If A ⊂U for an open set U ⊂ C, then A being discrete and closed in U means:
The set A has

• no cluster point in A (discreteness) and
• no cluster point in U (discrete and closed in U).

Hence, if A has a cluster point a0 ∈ C at all, then a0 ∈ ∂U .

Note that discreteness of A is an intrinsic property of the topological space A
equipped with its subspace topology. While A closed in U also refers to the boundary
of A in the ambient space U . The set

A1 := {1/n : n ∈ N∗} ⊂U := D2(0)

is discrete, but not closed in U . The set A1 has the cluster point

a0 = 0 ∈U \A.

While the set
A2 := {2− (1/n) : n ∈ N∗} ⊂U

is discrete and closed in U . The set A2 has no cluster point in U , because

a0 = 2 ∈ ∂U.
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Theorem 1.16 (Isolated zeros of an analytic function). Consider a domain G⊂ C
and an analytic function f defined on G. Then:

• Either f = 0

• or each point of the zero set of f is isolated.

Proof. We decompose G into the two sets

U := {a ∈ G : The power series expansion of f with center a vanishes identically}

V := {a∈G : The power series expansion of f with center a does not vanish identically}.

The uniqueness of the power series expansion due to Proposition 1.11 implies

G =U ∪̇ V.

i) U is open: If a ∈U then for suitable r > 0

f |Dr(a) = 0.

Proposition 1.11 implies that for any b ∈ Dr(a) the derived power series expansion
of f with center = b vanishes. Hence Dr(a)⊂U .

ii) V is open: If a ∈V then the power series

f (z) =
∞

∑
n=0

cn · (z−a)n

is convergent in a neighbourhood Dr(a) and by assumption

ck 6= 0

for at least one k ∈ N. Lemma 1.10 implies the existence of ρ > 0 such that for
all z ∈ Dρ(a)\{a}

f (z) 6= 0.

As a consequence Dρ(a)⊂V .

iii) Connectedness of G: The decomposition G =U ∪̇ V and connectedness of G
imply:

• Either U = /0. Then G = V and Lemma 1.10 implies that all zeros of f are iso-
lated.

• Or V = /0. Then G =U and f = 0, q.e.d.
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Theorem 1.17 is one of the fundamental results of complex analysis: An analytic
function on a domain G is already determined by its values on a sequence of pairwise
distinct points with a limit in G. In particular, the function is determined by its values
on an arbitrary small, non-zero open subset of G.

Theorem 1.17 (Identity theorem). Consider a domain G ⊂ C and two analytic
functions

f ,g : G−→ C.

If exists a subset A⊂ G with an accumulation point a ∈ G and

f |A = g|A,

then f = g.

Proof. Consider the difference
h := f −g,

which is analytic. Assume the existence of a sequence (aν)ν∈N in A\{a} with

a := lim
ν→∞

aν ∈ A

such that for all ν ∈ N
h(aν) = 0.

By continuity also h(a) = 0. The set

{aν : ν ∈ N}∪{a}

is a subset of the zero set of h. It contains the point a which is not an isolated point.
Theorem 1.16 implies h = 0, i.e.

f = g, q.e.d.

Theorem 1.17 shows: An analytic function defined on a domain G is already
determined by its power series expansion with center an arbitrary point a ∈ G. The
radius of convergence of the power series is of no importance. The ring of all conver-
gent power series with center a ∈C is named the ring of germs of analytic functions
in a neighbourhood of a.

Example 1.18 (Identity theorem). Consider

G := D2(0) and A := {1/n : n ∈ N\{0}}.

Then 0 ∈ G is an accumulation point of A. Theorem 1.17 implies: If two analytic
functions f , g on G satisfy for all n≥ 1
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f (1/n) = g(1/n)

then
f = g.

Proposition 1.19 (Composition of analytic functions). Consider two open sets U, V ⊂ C
and two analytic functions

f : U −→ C and g : V −→ C

satisfying
f (U)⊂V.

Then the composition
g◦ f : U −→ C

is also analytic.

Proof. Consider an arbitrary but fixed point a ∈U and set

b := f (a) ∈V.

Fig. 1.5 Composition of analytic functions

i) Power series expansion of f : For suitable r1 > 0 and all z ∈ Dr1(a) we have

f (z) =
∞

∑
n=0

bn · (z−a)n = b+
∞

∑
n=1

bn · (z−a)n.

The function
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φ(z) := f (z)−b =
∞

∑
n=1

bn · (z−a)n

is analytic in Dr1(a) and satisfies

φ(a) = 0.

By continuity of φ : For all r > 0 exists s,0 < s < r1, such that

∞

∑
n=1
|bn| · sn ≤ r.

As a consequence for z ∈ Ds(a)

|φ(z)| ≤ r.

ii) Power series expansion of g: For suitable r2 > 0 and all z ∈ Dr2(b)

g(z) =
∞

∑
n=0

cn · (z−b)n.

Theorem 1.3 implies for any r with 0 < r < r2

∞

∑
n=0
|cn| · rn < ∞.

As a consequence, we obtain

• for all z ∈ Ds(a) the representation

(g◦ f )(z) = g( f (z)) =
∞

∑
n=0

cn · ( f (z)−b)n =
∞

∑
n=0

cn ·φ(z)n

• and the estimate

∞

∑
n=0
|cn|

(
∞

∑
k=1
|bk| · sk

)n

≤
∞

∑
n=0
|cn| · rn < ∞

iii) Double series and rearrangement: For any n ∈ N the power φ n is analytic
in Ds(a) with convergent power series

φ(z)n =
∞

∑
k=n

dnk · (z−a)k.

For z ∈ Ds(a) we introduce the double series

∑
n,k

Dnk
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with

Dnk :=

{
cn ·dnk · (z−a)k n≤ k
0 n > k

The double series satisfies the assumptions of Theorem 1.5, part 2:

• For z ∈ Ds(a) each row-sum

∞

∑
k=0

Dnk = cn ·
∞

∑
k=n

dnk · (z−a)k

is absolutely convergent due to part ii).

• To estimate the double series
∞

∑
n,k=0
|Dnk|

note: The coefficients (dnk)n≤k of the power series of φ n(z) are polynomials in
the coefficients (bk)k∈N of the power series of φ(z). Hence for each fixed n ∈ N
they satisfy the estimate

∞

∑
k=n
|dnk| · sk ≤

(
∞

∑
k=1
|bk| · sk

)n

With the estimate from part ii) we get

∞

∑
n=0
|cn|

(
∞

∑
k=n
|dnk| · sk

)
≤

∞

∑
n=0

(
∞

∑
k=1
|bk| · sk

)n

< ∞

i.e.

∞

∑
n,k=0
|Dnk|=

∞

∑
n=0
|cn| ·

∞

∑
k=n
|dnk| · |(z−a)k| ≤

∞

∑
n=0
|cn| ·

(
∞

∑
k=n
|dnk| · sk

)
< ∞

Now Theorem 1.5, part 1, applies: We obtain the rearrangement

g( f (z)) =
∞

∑
n=0

cn ·

(
∞

∑
k=n

dnk · (z−a)k

)
=

∞

∑
k=0

(
k

∑
n=0

cn ·dnk

)
· (z−a)k

The series on the right-hand side is the power series expansion with center = a of
the composition

g◦ f

for z ∈ Ds(a), q.e.d.
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The proof of Proposition 1.19 allows to derive an explicit formula for the coeffi-
cents of the convergent power series of the composition. An analogue for differen-
tiable functions will be obtained in Proposition 2.2.

1.3 Exponential map and related analytic functions

In the present section we study functions which relate to the exponential function
and its power series expansion. For a real argument the exponential function

exp : R−→ R∗+ := {x ∈ R : x > 0}

expands into the exponential series which is convergent for all arguments. The func-
tion is bijective with derivative (ex)′ = ex. Therefore the inverse, the logarithm,

ln : R∗+ −→ R

is well-defined and locally expands into a convergent power series. The exponential
function satisfies the functional equation

exp(x1 + x2) = exp(x1) · exp(x2).

We will investigate how the exponential function and the logarithm extend to
complex arguments. In particular, we will study the unexpected behaviour of the
complex logarithm.

Theorem 1.20 (The exponential function). The exponential series

exp(z) := ez :=
∞

∑
n=0

zn

n!

is convergent for all z ∈ C. Its functional equation is the addition theorem

exp(z1 + z2) = exp(z1) · exp(z2).

In particular, for all z ∈ C

exp(z) 6= 0 and (exp z)−1 = exp(−z).

Proof. The radius of convergence R = ∞ follows from the ratio test according to
Proposition 1.4

1
R
= lim

n→∞

n!
(n+1)!

= lim
n→∞

1
n+1

= 0.

The functional equation follows from taking the Cauchy product according to Corol-
lary 1.6:
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exp(z1) · exp(z2) =
∞

∑
n=0

cn · zn

with

cn =
n

∑
k=0

zk
1

k!
·

zn−k
2

(n− k)!
=

n

∑
k=0

1
n!
·
(

n
k

)
· zk

1 · zn−k
2 =

1
n!
· (z1 + z2)

n

Hence

exp(z1) · exp(z2) =
∞

∑
n=0

1
n!
· (z1 + z2)

n = exp(z1 + z2)

In particular

1 = exp(0) = exp(z+(−z)) = exp(z) · exp(−z), q.e.d.

If one presupposes the functional equation for real arguments x1,x2, then the
functional equation for complex arguments z1,z2 follows from the Identity Theorem 1.17:
Because the left-hand side and the right-hand side are analytic and coincide on the
subset R. But the argument is misleading because the proof in the real case also uses
the Cauchy product.

For any complex argument z ∈ C the exponental series splits according to even
and odd indices as

exp(iz) =
∞

∑
n=0

in · zn

n!
=

∞

∑
n=0

i2n z2n

(2n)!
+

∞

∑
n=0

i2n+1 z2n+1

(2n+1)!
=

=
∞

∑
n=0

(−1)n z2n

(2n)!
+ i ·

∞

∑
n=0

(−1)n z2n+1

(2n+1)!

The last two series extend the well-known real power series for

cos(x) and sin(x), x ∈ R,

to complex arguments. They define the complex cos-function and the complex sin-
function.

Definition 1.21 (Complex cos- and sin-function). For complex z ∈ C one defines
the analytic functions

cos : C−→ C, cos(z) :=
∞

∑
n=0

(−1)n z2n

(2n)!

and

sin : C−→ C, sin(z) :=
∞

∑
n=0

(−1)n z2n+1

(2n+1)!
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Remark 1.22 (Euler formula).

1. Due to Definition 1.21 for any complex z ∈ C the values cos(z) and sin(z) of the
trigonometric functions relate to the value of the exponential function as

exp(iz) = cos(z)+ i · sin(z) (Euler formula).

We used this formula for real arguments x = z ∈ R in the introduction chapter.
Definition 1.21 shows that cos is an even function, i.e.

cos(z) = cos(−z),

while sin is an odd function, i.e.

sin(−z) =−(sinz).

Therefore respectively, adding and subtracting the two equations

exp(iz) = cos(z)+ i · sin(z) and exp(−iz) = cos(z)− i · sin(z)

implies for all z ∈ C

cos z :=
1
2
(eiz + e−iz) and sin z :=

1
2i
(eiz− e−iz)

2. Similar formulas hold for the hyperbolic trigonometric functions: For z ∈ C

cosh z =
1
2
(ez + e−z) and sinh z =

1
2
(ez− e−z),

when defining

cosh z :=
∞

∑
n=0

z2n

(2n)!

and

sinh z :=
∞

∑
n=0

z2n+1

(2n+1)!

A remarkable consequence of the Euler formula allows to compute the value of
the exponential function directly from the real- and imaginary part of its argument. It
shows that the complex exponential is a mixture of the real exponential and the real
trigonometric functions. The complex exponential inherits from the real exponential
the exponential growth along the real axis, and it inherits from the trigonometric
functions the periodicity along the imaginary axis.

Proposition 1.23 (Basic properties of the exponential function).

The exponential of a complex number



1.3 Exponential map and related analytic functions 35

z = x+ iy ∈ C

with real part x and imaginary part y has the form

ez = ex · (cos y+ i · sin y),

see Figure 1.6. In particular, the modulus is determined by the real part alone

|ez|= ex,

and
exp(z+2πi) = exp(z) (Periodicity 2πi).

Proof. Theorem 1.20 and the Euler formula for the argument iy, see Remark 1.22,
imply

ez = ex+iy = ex · eiy = ex · (cos y+ i · sin y).

Hence
|ez|= |ex| · |eiy|= ex · |cos(y)+ i · sin(y)|= ex

because
|cos y+ i · sin y|2 = (cos y+ i · sin y) · (cos y+ i · sin y) =

= (cos y+ i · sin y) · (cos y− i · sin y) = cos2 y+ sin2 y = 1.

Moreover
exp(z+2πi) = exp(z) · exp(2πi) =

= exp(z) · (cos 2π + i · sin 2π) = exp(z), q.e.d.

Fig. 1.6 Exponential map

Different from the real exponential the complex exponential function
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exp : C−→ C∗

is no longer bijective. The map is surjective. We will study the set of all argu-
ments which are mapped to the same value. The locally defined inverse maps are
the branches of the complex logarithm. The logarithm also serves to define the com-
plex roots of complex numbers.

Fig. 1.7 Polar coordinates

Proposition 1.24 (Logarithm, polar coordinates, and roots of unity).

1. The complex solutions w ∈ C of the equation

ew = 1

are named the logarithms of 1. They form the set of imaginary numbers

{k ·2πi : k ∈ Z}.

2. The polar coordinates (r,φ) of a complex number

z ∈ C' R2

determine the representation
z = r · eiφ ,

see Figure 1.7. For z 6= 0 the representation determines the angle φ up to an
integer multiple of 2π .

3. For any z ∈ C, z 6= 0, the equation

ew = z
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has infinitely many solutions w ∈ C: If w0 denotes one specific solution then any
solution has the form

w = w0 + k ·2πi, k ∈ Z.

4. For n ∈ N, n≥ 1, the complex solutions w of the equation

wn = 1

are named the n-th roots of unity. They all are located on the unit circle and form
the set

{e(k/n)·2πi, k = 0, ...,n−1},

see Figure 1.8.

Fig. 1.8 The 8-th roots of unity

Proof. 1. Proposition 1.23 implies for w = x+ i · y

1 = |ew|= ex =⇒ x = 0 and cos(y)+ i · sin(y) = 1.

Hence
y = k ·2π.

2. For z 6= 0 set r := |z| and consider

ζ :=
z
r

with |ζ |= 1. For suitable φ ∈ R

ζ = cos(φ)+ i · sin(φ),

hence
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z = r · eiφ .

According to part 1)

r · eiφ = r · eiψ ⇐⇒ ei(φ−ψ) = 1 ⇐⇒ φ −ψ = k ·2π, k ∈ Z.

3. The right-hand side in polar coordinates (r,φ)

z = r · eiφ ,

and the ansatz
w0 = u+ i ·v

require
eu · eiv = r · eiφ

Setting
u := ln(r)

with ln the logarithm of positive real numbers, and

v := φ

provides the specific solution

w0 = ln(r)+ iφ .

For the general solution part 1) implies

ew = ew0 ⇐⇒ ew−w0 = 1 ⇐⇒ w−w0 = k ·2πi, k ∈ Z.

4. If w = r · eiφ is an n-th root of unity, then r = 1 because |w|= 1. And

wn = ei·nφ = 1

implies due to part 1) for suitable k ∈ Z

n ·φ = k ·2π, i.e. φ = (k/n) ·2π.

The opposite claim (
e(k/n)·2πi

)n
= 1

is obvious, q.e.d.

We now consider the different solutions w of the equation ew = z for a given complex
number z 6= 0: Do the solutions extend to analytic functions in a neighbourhood of
each w when varying z? We first require continuous dependency.

Definition 1.25 (Principal value and branches of the logarithm function).
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1. Any solution w of the equation
ew = z

for a given
z = r · eiφ ∈ C∗

is named a logarithm
w = log(z)

of z. The uniquely determined solution

w = ln(r)+ i ·φ , φ ∈]−π, π]

is named
w = Log(z),

the principal value of the logarithm of z.

2. Consider an open subset U ⊂ C∗. A continuous function

f : U −→ C

is named a branch of the logarithm function if for all z ∈U

e f (z) = z.

Lemma 1.26 (Comparing two branches of the logarithm function). Consider a
domain G⊂ C∗ and two branches of the logarithm function

f , g : G−→ C.

If
f (z0) = g(z0)

for at least one z0 ∈ G, then
f = g.

Proof. By assumption
e f−g = 1.

Because both functions f and g are branches of the logarithm function, Proposition 1.24
provides for each z ∈ G an integer

k = k(z) ∈ Z

satisfying
g(z) = f (z)+ k(z) ·2πi.

Continuity of f and g and connectedness of G imply that k(z) does not depend on z.
Because
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f (z0) = g(z0)

we have k = 0, q.e.d.

Example 1.27 proves the existence of a logarithm function on a certain domain
in C∗. Because the exponential function has no zeros the logarithm does not extend
to the argument z = 0. But it remains open why the example has to exclude also
the negative real axis from the domain of definition. We will return to this question
later, see Remark 7.2.

Example 1.27 (Logarithm on the sliced plane). Consider the sliced complex plane

G := C− := C \ ]−∞,0]

i.e. the complex plane minus the negative real axis and minus the origin, see
Figure 1.9. Any z ∈ G has a unique representation by polar coordinates

z = r · ei
φ , φ ∈]−π, π[.

The principal branch of the logarithm function in G is the function

Log : G−→ C, Log(r · ei
φ) := ln(r)+ iφ , φ ∈]−π, π[.

For each branch of the logarithm function in G a unique k ∈ Z exists satisfying for
all z ∈ G

log(z) = Log(z)+ k ·2πi.

Fig. 1.9 Branch of logarithm on the sliced plane

The branches of the complex logarithm do not necessarily satisfy the functional
equation known from real arguments. In general
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log(z1 · z2) 6= log(z1)+ log(z2).

Instead the equation

log(z1 · z2) = log(z1)+ log(z2)+ k ·2πi, k ∈ {−1,0,1}

relates two branches of the complex logarithm function. The relation indicates that
the inverse function of the exponential map has to consider all branches together:
The canonical domain of definition for the complex logarithm function is not the
sliced plane from Example 1.27 but a covering of C∗ with infinitely many leaves:
The canonical domain of the complex logarithm function is a Riemann surface.

Theorem 1.28 (Analytic local branch of the logarithm function). Any point z0 ∈ C∗
has an open neighbourhood U ⊂ C∗ with an analytic branch of the logarithm func-
tion

f : U −→ C.

Proof. i) Real logarithm series: We recall the power series with center a = 0 of the
real logarithm function

ln(1+ x) =
∞

∑
n=1

(−1)n+1 ·
xn

n

which is convergent for
x ∈ R, |x|< 1.

The substitution
y := 1+ x

defines for |y−1|< 1 the power series

ln(y) =
∞

∑
n=1

(−1)n+1 ·
(y−1)n

n

ii) Extension to complex arguments: For z0 ∈ C∗ we choose a logarithm w0 ∈ C
according to Proposition 1.24, i.e. satisfying

ew0 = z0.

For z ∈ C we have ∣∣∣∣∣ z− z0

z0

∣∣∣∣∣=
∣∣∣∣∣ z
z0
−1

∣∣∣∣∣< 1 ⇐⇒ |z− z0|< |z0|.

Hence we set r := |z0| and define the domain

U := Dr(z0) = {z ∈ C∗ : |z− z0|< |z0|}.
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For z ∈U the series

f (z) := w0 +
∞

∑
n=1

(−1)n+1

n
·

(
z− z0

z0

)n

= w0 +
∞

∑
n=1

(−1)n+1

n · zn
0
· (z− z0)

n

is convergent due to the ratio test. Hence the function f is analytic in U .

iii) Analytic branch of the logarithm function: Claim: For all z ∈U

e f (z) = z.

For real numbers α ∈R with distance |α−1|< 1 we consider the following function
of the argument α

f (αz0) = w0 +
∞

∑
n=1

(−1)n+1

n
·

(
αz0− z0

z0

)n

= w0 +
∞

∑
n=1

(−1)n+1

n
· (α−1)n =

= w0 + ln(α),

see Figure 1.10. As a consequence

e f (αz0) = ew0+ln(α) = ew0 · eln(α) = αz0.

Therefore the two analytic functions

e f , id : U −→ C

coincide for all arguments
z = αz0 ∈U

with α in an open real interval. By Theorem 1.17 both functions agree, i.e. for
all z ∈U

e f (z) = z.

Hence f is an analytic branch of the logarithm function in U , q.e.d.
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Fig. 1.10 Being equal on a subset parametrized by a real interval

Theorem 1.28 and Lemma 1.26 imply: The principal value of the logarithm from
Example 1.27

Log : C− −→ C

is analytic.

Corollary 1.29 (Analytic branches of the root function). Consider a number n ∈ N∗.
Any point z0 ∈ C∗ has an open neighbourhood U ⊂ C∗ with an analytic branch

F : U −→ C

of the n-th root, i.e.
f n = idU .

If U is a domain then two analytic branches differ by an n-th root of unity.

Proof. Theorem 1.28 implies the existence of an analytic branch of the logarithm

log : U −→ C∗.

We define
f : U −→ C∗, f (z) := e(1/n)·log(z).

Then for all z ∈U

f (z)n =
(

e(1/n)·log(z)
)n

= en·(1/n)·log(z) = elog(z) = z.

The analytic branch is determined up to an n-th root of unity due to Proposition 1.24,
q.e.d.
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1.4 Outlook

Making the first step into the field of several complex variables is quite similar to the
case of one complex variable in the present chapter. Possibly the main difficulty for
the beginner, is handling the multi-indices and the multi-products of exponents used
for power of several variables. To obtain an impression of the similarities concerning
the basic concepts of convergent power series, it is worthwile to browse the first
pages of a textbook like [14, Chap. I, Sect. A] or of the lecture [5, §1].

How do the results of the present chapter generalize to the case of several com-
plex variables?

The algebraic properties of the ring of analytic functions are the subject of
[14, Chap. II, Sect. A]. For each point w ∈ Cn one obtains a local ring Ow by iden-
tifying analytic functions which coincide in an arbitrary neighbourhood of w. All
these rings are isomorphic to C{z1, ...,zn}.

The ring of convergent power series C{z1, ...,zn} in several variables is a lo-
cal ring with residue field C. The non-units form the maximal ideal. From the al-
gebraic point of view one studies the ideals and notably the prime ideals as well
as the quotient rings with respect to these ideals. [20, Abschn. 4.4] deals with
the 1-dimensional case, while [14] treats the case of several complex variables.

The whole book [10], an advanced text, is devoted to the study of the quotient
rings, named analytic algebras. Analytic algebras characterize the singularities of
complex spaces, a generalization of complex manifolds. Accordingly, the category
of analytic algebras is the means to study the local structure of complex spaces.

A different kind of generalizing power series and analytic functions

f : U −→ C, U ⊂ C open,

is to replace the image field C by a complex Banach algebra A. A typical exam-
ple from functional analysis is the Banach algebra A of all continuous linear endo-
morphisms of a complex Banach space. For an introduction and the application to
spectral theory see [2, Chap. V, XI] and [18, Kap. XIII, Num. 95-99].



Chapter 2
Differentiable Functions and Cauchy-Riemann
Differential Equations

The present chapter investigates Cauchy’s access to complex analysis by differen-
tiability. And also Riemann’s access by real differentiability and C-linearity of the
functional matrix. In addition, we start the proof of the equivalence of all three ap-
proaches.

2.1 Differentiability

We start with Cauchy’s approach.

Definition 2.1 (Differentiability). Consider a function

f : U −→ C

defined on an open subset U ⊂ C.

1. The function f is differentiable at a point z0 ∈U if the differential quotient

lim
z→z0

f (z)− f (z0)

z− z0

exists. In this case the limit is written f ′(z0) and named the derivative of f at z0.

2. The function f is differentiable if the derivative f ′(z) exists for all z ∈U .

For functions f : U −→ C depending on one complex variable the term “differen-
tiable” refers to differentiability in the complex sense, i.e. the differential quotient
considers all complex arguments z 6= z0 with limit z0. To emphasize this property
some textbooks use the term “complex differentiability”. If not stated otherwise,

45
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these lecture notes will use the term “differentiable” always in the sense of Defini-
tion 2.1.

The Cauchy-Riemann differential equations, see Theorem 2.6 will relate differ-
entiablility of f as a function of one complex variable to partial differentiability of f ,
which refers to two real variables. These variables are the real- and the imaginary
part of the complex variable.

Proposition 2.2 (Ring of differentiable functions). Consider an open set U ⊂ C.

1. The set
O(U) := { f : U −→ C | f differentiable}

is a ring with respect to addition and multiplication of functions.

2. For two elements f ,g ∈ O(U) the derivative satisfies

( f ±g)′ = f ′±g′ (Linearity), ( f ·g)′ = f ′ ·g+ f ·g′ (Product rule).

If g has no zeros then

( f/g)′ =
f ′ ·g− f ·g′

g2 (Quotient rule)

3. Consider two differentiable functions

f : U −→ C and g : V −→ C, V ⊂ C open,

satisfying
f (U)⊂V.

Then the composition
g◦ f : U −→ C

is differentiable and the derivative satisfies

(g◦ f )′(z) = g′( f (z)) · f ′(z) (Chain rule).

Proof. In all cases the proof is literally the same as the proof for differentiable
functions of one real variable, [6, Kap. 15], q.e.d.

Any power series
∞

∑
n=0

cn · (z−a)n

has a formal derivative. It is obtained by differentiating every summand separately.
The result is the power series
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∞

∑
n=1

n · cn · (z−a)n−1.

If the original series is a convergent power series then also the formal derivative
is convergent with the same radius of convergence: One applies the formula of
Cauchy-Hadamard, Theorem 1.4, and uses

n
√
|cn+1| · (n+1) = n

√
|cn+1| · n

√
n+1

and
lim
n→∞

n
√

n+1 = 1.

This result prompts the questions:

• Is a convergent power series differentiable in the sense of Definition 2.1?

• If yes, is the derivative equal to the formal derivative.

The answer to both questions is “yes”, see Theorem 2.3.

Theorem 2.3 (Differentiability of analytic functions).

1. Consider a convergent power series

f (z) =
∞

∑
n=0

cn · (z−a)n

with radius of convergence = R. Then the function

f : DR(a)−→ C

is differentiable. Its derivative f ′ is the power series obtained by formal deriva-
tion of f . The derivative has radius of convergence = R.

2. Any analytic function
f : U −→ C, U ⊂ C open,

is differentiable.

Iterated application of Theorem 2.3 shows: Any analytic function has derivatives
of arbitrary order, and each of these derivatives is again analytic.

Proof. W.l.o.g. we assume a = 0. The function

g : DR(0)−→ C, g(z) :=
∞

∑
n=1

n · cn · zn−1,

is well-defined. To prove the existence of f ′(z0) for arbitrary z0 ∈ DR(0), we com-
pute for any index n ∈ N∗
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zn− zn
0

z− z0
=: qn(z)

with
qn(z) = zn−1 + zn−2z0 + ...+ zn− jz j−1

0 + ...+ zn−1
0 .

The proof of the last equation employs the classical division algorithm. Note

qn(z0) = n · zn−1
0 .

As a consequence

f (z)− f (z0) =
∞

∑
n=0

cn · zn−
∞

∑
n=0

cn · zn
0 =

∞

∑
n=1

cn · (zn− zn
0) =

=
∞

∑
n=1

cn · (z− z0) ·qn(z) = (z− z0) ·
∞

∑
n=1

cn ·qn(z),

or
f (z)− f (z0)

z− z0
=

∞

∑
n=1

cn ·qn(z) =: f1(z).

We have

f1(z0) =
∞

∑
n=1

n · cn · zn−1
0 = g(z0).

It remains to show that f1 is continuous at z0, i.e. to show

lim
z→z0

f1(z) = f1(z0) :

We choose a radius r with
|z0|< r < R.

Then for z ∈ Dr(0)
∞

∑
n=1
|cn ·qn(z)| ≤

∞

∑
n=1
|cn| ·n · rn−1.

The last series is convergent because the formal derivative has also radius of
convergence = R. As a consequence, the series f1(z) is uniformly convergent for z ∈ Dr(0),
and the resulting function f1 is continuous, q.e.d.

2.2 Cauchy-Riemann differential equations

We now go on to Riemann’s approach to complex analysis.
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Open subsets of C can be identified with open subsets of R2. Hereby, complex
points

z = x+ i · y ∈ C

become identified with real pairs

(x,y) ∈ R2.

As a consequence, the value of a function f defined on U will be written
either f (z) in the complex context or f (x,y) in the real context.

Proposition 2.4 (Differentiability and partial derivatives). Consider an open
subset

U ⊂ C' R2

and a differentiable function
f : U −→ C.

Then the partial derivatives of f , considered as a function of two real variables,
exist at all points

z = x+ i · y ∈U,(x,y) ∈ R2,

and satisfy
∂ f
∂x

(x,y) = f ′(z) and
∂ f
∂y

(x,y) = i · f ′(z).

Proof. We compute

∂ f
∂x

(x,y) = lim
h→0
h∈R∗

f (z+h)− f (z)
h

= lim
h→0
h∈C∗

f (z+h)− f (z)
h

= f ′(z).

Similarly
∂ f
∂y

(x,y) = lim
h→0
h∈R∗

f (z+ i ·h)− f (z)
h

=

= i · lim
h→0
h∈R∗

f (z+ i ·h)− f (z)
i ·h

= i · lim
h→0
h∈C∗

f (z+ i ·h)− f (z)
i ·h

= i · f ′(z), q.e.d.

Corollary 2.5 (Partial derivatives with respect to polar coordinates). Consider
an open subset

U ⊂ C' R2

and a differentiable function
f : U −→ C.

Then with respect to polar coordinates, see Proposition 1.24,



50 2 Differentiable Functions and Cauchy-Riemann Differential Equations

z = x+ iy = r · eiφ

holds
∂ f
∂φ

(r,φ) = ir ·
∂ f
∂ r

(r,φ)

Proof. We have
x = r · cos(φ) and y = r · sin(φ).

The chain rule implies

∂ f (x(r,φ),y(r,φ)))
∂ r

=
∂ f (x,y)

∂x
·

∂x
∂ r

+
∂ f (x,y)

∂y
·

∂y
∂ r

or shortened as equality of differential operators

∂

∂ r
=

∂x
∂ r
·

∂

∂x
+

∂y
∂ r
·

∂

∂y
and similarly

∂

∂φ
=

∂x
∂φ
·

∂

∂x
+

∂y
∂φ
·

∂

∂y

As a consequence

∂ f
∂ r

= cos(φ) ·
∂ f
∂x

+ sin(φ) ·
∂ f
∂y

and
∂ f
∂φ

=−r sin(φ) ·
∂ f
∂x

+ r cos(φ) ·
∂ f
∂y

Proposition 2.4 implies

∂ f
∂ r

= cos(φ) · f ′+ sin(φ) · i f ′ = eiφ f ′

and
∂ f
∂φ

=−r sin(φ) f ′+ ir cos(φ) f ′ = ireiφ f ′, q.e.d.

Theorem 2.6 (Cauchy-Riemann differential equations and differentiability).
Consider an open subset

U ⊂ C' R2

and a function
f : U −→ C.

Denote by
f = u+ i · v

its decomposition into real part

u := Re f : U −→ R, u(z) := Re f (z),

and imaginary part

v := Im f : U −→ R, v(z) := Im f (z).
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1. If f is differentiable then the partial derivatives of u and v exist, and satisfy the
Cauchy-Riemann differential equations

∂u
∂x

=
∂v
∂y

and
∂v
∂x

=−
∂u
∂y

.

2. If the partial derivatives of u and v exist as continuous functions, and satisfy the
Cauchy-Riemann differential equations, then f is differentiable.

Proof. 1) =⇒ 2): On one hand, Proposition 2.4 implies

f ′ =
∂ f
∂x

=
∂u
∂x

+ i ·
∂v
∂x

or

i · f ′ = i ·
∂u
∂x
−

∂v
∂x

.

On the other hand,

i · f ′ =
∂ f
∂y

=
∂u
∂y

+ i ·
∂v
∂y

.

Equating real- and imaginary part in the last two equations finishes the proof.

2) =⇒ 1): Consider an arbitrary but fixed point

z = x+ i · y ∈U

and decompose
f = u+ i ·v.

The existence of the continuous partial derivatives of u implies

u((x,y)+(h1,h2))−u(x,y) = ux(x,y) ·h1 +uy(x,y) ·h2 +o(h), i.e.

u(z+h)−u(z) = ux(z) ·h1 +uy(z) ·h2 +o(h)

with arbitrary
h := h1 + i ·h2, h1,h2 ∈ R,

and using o(h) as shorthand for any function φ(h) satisfying

lim
h→0
h 6=0

φ(h)
‖h‖

= 0.

Note: The continuity of the partial derivatives assures that the rest term is o(h),
see [7, §6, Satz 2]. Analogously

v(z+h)−v(z) = vx(z) ·h1 +vy(z) ·h2 +o(h).

Hence
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f (z+h)− f (z) = u(z+h)−u(z)+ i · (v(z+h)−v(z)) =

= ux(z) ·h1 +uy(z) ·h2 + i · (vx(z) ·h1 + vy(z) ·h2)+o(h)

Now the Cauchy-Riemann differential equations replace the partial derivatives with
respect to y by partial derivatives with respect to x

f (z+h)− f (z) = ux(z) ·h1−vx(z) ·h2 + i · (vx(z) ·h1 +ux(z) ·h2)+o(h) =

= ux(z) · (h1 + i ·h2)+ i ·vx(z) · (h1 + i ·h2)+o(h) =

= ux(z) ·h+ i ·vx(z) ·h+o(h)

Hence

lim
h→0

f (z+h)− f (z)
h

= ux(z)+ i ·vx(z) = fx(z), q.e.d.

The theory of differentiable functions in open subsets U ⊂ Rn, n ≥ 2, distin-
guishes between the following types of differentiability:

• Existence of continuous partial derivatives,

• existence of the total derivative as a linear map, and

• existence of partial derivatives.

It is well known: Each of the three conditions is strictly stronger than its follower.
Therefore Theorem 2.6, part 2) has to presuppose that the partial derivatives are
continuous to obtain the existence of the derivative of f . But that’s no restriction
because we will later prove a remarkable property of the complex context: The
partial derivatives of any differentiable function are continuous.

Remark 2.7 (C-linearity of the Jacobi matrix). When identifying the field C with
the real vector space R2 one identifies

1 ∈ C with
(

1
0

)
∈ R2 and i ∈ C with

(
0
1

)
∈ R2

1. The multiplication
(x+ i · y) · (u+ i ·v) ∈ C

translates to (
x
y

)
∗
(

u
v

)
=

(
xu− yv
xv+ yu

)
A matrix (

a b
c d

)
∈M(2×2,R)

defines a C-linear map
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T : C−→ C

iff
T (i) = i ·T (1).

The latter equation states (
a b
c d

)
·
(

0
1

)
=

(
0
1

)
∗
(

a
c

)
i.e. (

b
d

)
=

(
−c
a

)
, i.e. a = d and b =−c

2. As a consequence: If a function

f = u+ i ·v : U → C, U ⊂ C open,

has partial derivatives under the identification C' R2, then its Jacobi matrix

Jac( f ) =


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


defines a C-linear map iff the partial derivatives of the real and imaginary part
of f satisfy the Cauchy-Riemann differential equations.

Corollary 2.8 (Relation between real and imaginary part). Consider a domain
G⊂ C and two differentiable functions

f ,g : G−→ C

with Re( f ) = Re(g). Then
Im( f )− Im(g) = c

for a suitable constant c ∈ R.

Proof. Theorem 2.6 implies

∂ (Im( f )− Im(g))
∂x

=
∂ (Im( f )− Im(g))

∂y
= 0

which finishes the proof, q.e.d.

A deep theorem proves that a differentiable function is analytic, hence has deriva-
tions of arbitrary order. In particular, the derivative of a differentiable function is
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continuous. The proof will be given in Chapter 3 when showing the equivalence of
all three approaches to complex analysis.



Chapter 3
Cauchy’s Integral Theorem for disk and annulus

The two main methods in analysis are differentiation and integration. Chapter 2
dealt with differentiability. We now add to Complex Analysis a series of results
obtained by integration.

3.1 Cauchy kernel and Cauchy integration

The section investigates the integration of complex differentiable functions defined
in disks and annuli. We prove a simple variant of Cauchy’s integral theorem. It is a
consequence of the Cauchy-Riemann differential equations expressed in polar co-
ordinates. The integral theorem implies Cauchy’s integral formula which represents
the values of a complex differentiable function by an integral. As an application
Theorem 3.8 collects several equivalent conditions for a function to be holomor-
phic.

Remark 3.1 (Path integral). We integrate continuous functions

f : U −→ C

defined on subsets U ⊂ C along paths contained in U .

1. First, we consider a continuously differentiable path

γ : [a,b]−→U

depending on a real parameter from a compact interval [a,b]⊂ R. One defines∫
γ

f (z) dz :=
∫ b

a
f (γ(t)) · γ ′(t) dt :=

55
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:=
∫ b

a
Re
(

f (γ(t)) · γ ′(t)
)

dt + i ·
∫ b

a
Im
(

f (γ(t)) · γ ′(t)
)

dt.

One checks that the integral does not depend on the choice of the parametrization γ ,
i.e. the integral is invariant with respect to parameter transformations.

Secondly, a piecewise continuously differentiable path γ is a continuous path
composed of finitely many successive continuously differentiable paths

γ j, j = 1, ...,n.

One defines ∫
γ

f (z) dz :=
n

∑
k=1

∫
γk

f (z) dz.

2. For an annulus

A := {z ∈ C : r1 ≤ |z| ≤ r2} ⊂U, 0 < r1 < r2,

one chooses the orientation of the two continuously differentiable component
paths γ j j = 1,2, of the boundary

∂A = Dr1(0) ∪ Dr2(0)

as follows, see Figure 3.1: When moving along γ j, j = 1,2, the interior of A is
on the left-hand side. Hence

γ2 : [0,2π]−→ C, γ2(t) = r2 · eit ,

and
γ1 : [0,2π]−→ C, γ1(t) = r1 · e−it .

3. A similar rule holds for integrating along the boundary of a disk Dr(0), the limit
of an annulus with r2 = r and r1 = 0.

Fig. 3.1 Orientation of boundary paths of an annulus
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Lemma 3.2 prepares the proof of Cauchy’s integral theorem, Theorem 3.3. The
main step in the proof is to employ the relation between the partial derivatives with
respect to polar coordinates of a differentiable function.

Lemma 3.2 (Integration of differentiable functions defined in disk or annulus).
Consider two radii

0≤ r1 < r2 < ∞

and the open annulus
A := {z ∈ C : r1 < |z|< r2}.

For a differentiable function
f : A−→ C.

the integral

I(r) :=
∫
|z|=r

f (z) dz

does not depend on the parameter

r ∈]r1,r2[.

Proof. The function
F : A−→ C, F(z) := z · f (z)

is also differentiable. Then

I(r) =
∫
|z|=r

F(z) ·
dz
z

Using the standard parametrization of the circle with radius r by polar coordinates

z = reiφ and φ ∈ [0,2π].

we get

dz = ireiφ dφ and
dz
z
= i ·dφ .

Hence

I(r) = i
∫ 2π

0
F(reiφ )dφ .

It suffices to show
dI
dr

= 0. Using the formula from Corollary 2.5 we compute

dI
dr
(r) = i ·

∫ 2π

0

∂F
∂ r

(reiφ )dφ =
1
r
·
∫ 2π

0

∂F
∂φ

(reiφ )dφ =

=
1
r
·
[
F(reiφ )

]φ=2π

φ=0 = 0, q.e.d.
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Theorem 3.3 (Cauchy’s integral theorem for disk and annulus). Consider two
radii

0≤ r1 < r2 < ∞

and the closed annulus or disk respectively

A := {z ∈ C : r1 ≤ |z| ≤ r2}.

Any differentiable function
f : U −→ C

defined on an open neighbourhood

A⊂U ⊂ C

satisfies ∫
∂A

f (z) dz = 0.

Proof. i) Case 0 < r1: Lemma 3.2 implies∫
∂A

f (z) dz =
∫
|z|=r2

f (z) dz−
∫
|z|=r1

f (z) dz = 0.

Here we used the convention from Remark 3.1 concerning the orientation of the
paths in ∂A.

ii) Case 0 = r1: We have to show

lim
r1→0

∫
|z|=r1

f (z) dz = 0.

Set
M := max{| f (z)| : |z| ≤ r1}< ∞

and estimate integrand and curve length as∣∣∣∣∫|z|=r1

f (z) dz
∣∣∣∣≤M ·

∣∣∣∣∫|z|=r1

dz
∣∣∣∣≤M ·2πr1.

Hence
lim

r1→0

∫
|z|=r1

f (z) dz = 0.

The claim follows from part i), q.e.d.

The most important integrand of path integration in complex analysis is the
Cauchy kernel

1
z−ζ
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In addition to Lemma 3.2, a second step to obtain Cauchy’s integral formula is to
represent the winding number of a path as a path integral of the Cauchy kernel,
see Lemma 3.4. The proof expands the Cauchy kernel into a convergent geometric
series.

Lemma 3.4 (Winding number). Consider a point a ∈ C and a radius

r > 0, r 6= |a|.

Then
1

2πi

∫
|z|=r

dz
z−a

=

{
0 if |a|> r
1 if |a|< r

Hence the integral is considered the winding number n(γ; a) of the path

γ : [0,2π]−→ C, γ(t) := r · eit ,

with respect to the point a ∈ C.

Proof. Case |a|> r: In a suitable neighbourhood

U ⊃ {z ∈ C : |z|> r}

the function

U −→ C, z 7→
1

z−a
,

is differentiable. Hence the claim of the lemma follows from Theorem 3.3.

Case |a|< r, see Figure 3.2:

Fig. 3.2 Winding number

The Cauchy kernel expands into the convergent geometric series
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1
z−a

= (1/z) ·
1

1− (a/z)
= (1/z) ·

∞

∑
n=0

an

zn =
∞

∑
n=0

an · z−n−1.

The last series is uniformly convergent for |z|= r. Using the standard parametriza-
tion of the circle with radius r we obtain∫

|z|=r

dz
z−a

=
∞

∑
n=0

an ·
∫
|z|=r

z−n−1dz =
∞

∑
n=0

an ·
∫ 2π

0
r−n−1e(−n−1)iφ ir · eiφ dφ =

= i ·
∞

∑
n=0

an · r−n
∫ 2π

0
e−niφ dφ

Because ∫ 2π

0
e−niφ dφ =

{
2π if n = 0
0 if n 6= 0

we obtain ∫
|z|=r

dz
z−a

= 2πi, q.e.d.

Theorem 3.5 (Cauchy’s integral formula for disk and annulus). Consider two
radii

0≤ r1 < r2 < ∞

and the closed annulus or disk respectively

A := {z ∈ C : r1 ≤ |z| ≤ r2}.

Moreover, consider an open neighbourhood A⊂U and a differentiable function

f : U −→ C.

Then for any a ∈ Å

f (a) =
1

2πi

∫
∂A

f (z)
z−a

dz

Theorem 3.5 is a first example how to obtain the values of a differentiable func-
tion at a point a by a path integral around a. Evidently, Theorem 3.5 generalizes
Lemma 3.4 about the winding number.

Proof. For a given point a ∈ Å we split the Cauchy integral as

1
2πi

∫
∂A

f (z)
z−a

dz =
1

2πi

∫
∂A

f (z)− f (a)
z−a

dz+
1

2πi

∫
∂A

f (a)
z−a

dz

After applying Lemma 3.4 to the second integral we obtain
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1
2πi

∫
∂A

f (z)
z−a

dz =
1

2πi

∫
∂A

f (z)− f (a)
z−a

dz+ f (a).

We claim
1

2πi

∫
∂A

f (z)− f (a)
z−a

dz = 0.

For r ∈ [r1,r2] set

I(r) :=
1

2πi

∫
|z|=r

f (z)− f (a)
z−a

dz.

We consider the integrand as a function of z which extends to U :

U −→ C, z 7→


f (z)− f (a)

z−a
if z 6= a

f ′(a) if z = a

The function is differentiable at all points z ∈ U \ {a}. At z = a the integrand is
continuous because

lim
z→a
z 6=a

f (z)− f (a)
z−a

= f ′(a).

Therefore:

• The integral I(r) depends continuously on the parameter r ∈ [r1,r2].

• The integrand is differentiable in each of the two open annuli in U

A1 := {z ∈U : r1 < |z|< |a|} and A2 := {z ∈U : |a|< |z|< r2}.

Lemma 3.2 implies, that I(r) remains constant when the parameter r varies in the
interval

[ r1, |a| [ or ] |a|,r2 ].

As a consequence

I(r1) = lim
r↑a

I(r) = I(a) = lim
r↓a

I(r) = I(r2)

We obtain
1

2πi

∫
∂A

f (z)− f (a)
z−a

dz = I(r2)− I(r1) = 0,

which finishes the proof, q.e.d.

We are now ready to prove the converse of Theorem 2.3.

Corollary 3.6 (Differentiable functions are analytic). Consider an open subset U ⊂ C
and a differentiable function
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f : U −→ C.

For any point a ∈ U and any finite radius r > 0 with Dr(a) ⊂ U the function f
expands uniquely into a convergent power series

f (z) =
∞

∑
n=0

cn · (z−a)n

with coefficients

cn =
1

2πi

∫
|ζ−a|=r

f (ζ )
(ζ −a)n+1 dζ , n ∈ N.

In particular, the function f is analytic.

Proof. W.l.o.g. 0 ∈U and a = 0. Theorem 3.5 implies for all z ∈ Dr(0)

f (z) =
1

2πi

∫
|ζ |=r

f (ζ )
ζ − z

dζ

The geometric series of the Cauchy kernel

1
ζ − z

=
1/ζ

1− (z/ζ )
=

∞

∑
n=0

zn

ζ n+1

converges due to
ζ 6= 0 and |z/ζ |< 1.

We obtain by rearrangement of integration and summation

f (z) =
1

2πi

∫
|ζ |=r

(
f (ζ ) ·

∞

∑
n=0

zn

ζ n+1

)
dζ =

∞

∑
n=0

(
1

2πi

∫
|ζ |=r

f (ζ )
ζ n+1 dζ

)
zn

The uniqueness of the power series expansion follows from Proposition 1.11, q.e.d.

Corollary 3.7 (Differentiable functions have derivatives of arbitrary order). A
differentiable function

f : U −→ C

defined on an open set U ⊂ C has derivatives f (n) of arbitrary order n ∈ N.

Proof. The claim follows from Corollary 3.6 and Theorem 2.3, q.e.d.

The results from Corollary 3.6 and 3.7 are in striking contrast to the properties
of functions of a real variable: If a function

g : V −→ R,
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defined on an open set V ⊂ R, is differentiable in the real sense, then the derivative

g′ : V −→ R

is not necessarily continuous, and the second derivative of g does not necessarily
exist. And even if g has derivatives of any order, the function does not necessarily
expand into a convergent power series: A counter example is the function

g : R−→ R, g(x) :=

{
e−1/x2

x 6= 0
0 x = 0

All derivatives g(n),n ∈ N, exist and satisfy g(n)(0) = 0. But extending g into the
complex plane creates an essential singulartiy at z = 0, see Definition 4.4.

3.2 The concept of holomorphy

We now combine the results obtained so far to prove the equivalence of the three
approaches to complex analysis due to Cauchy, Weierstrass, and Riemann.

Theorem 3.8 (Equivalence of the approaches of Cauchy, Weierstrass, Riemann).
For a function

f : U −→ C

defined on an open set U ⊂ C the following properties of f are equivalent:

1. The function is differentiable. (Cauchy)

2. The function is analytic. (Weierstrass)

3. The function has continuous partial derivatives which satisfy the Cauchy-Riemann
differential equations. (Riemann)

We emphasize, that each of the three properties from Theorem 3.8 does not refer to
a single point but always considers a whole open set.

Fig. 3.3 Equivalence of the classical approaches to holomorphy
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Proof. Figure 3.3 collects the results which imply the equivalences from Theorem 3.8:

• Implication 1: Theorem 2.3
• Implication 2: Corollary 3.6
• Implication 3: Theorem 2.6, part 1), and Corollary 3.7
• Implication 4: Theorem 2.6, part 2), q.e.d.

Definition 3.9 (Holomorphic function). A function

f : U −→ C

on an open set U ⊂ C is holomorphic if it satisfies the three equivalent properties
from Theorem 3.8. A globally defined holomorphic function, i.e. U = C, is named
an entire function.

In the literature, holomorphic is often used as a synonym for differentiable. But the
usage is not uniform. For more on the historical background
see [20, Kap. Historische Einführung].

Definition 3.10 (Taylor series). Consider a holomorphic function

f : U −→ C, U ⊂ C open.

For any a ∈U the uniquely determined convergent power series

f (z) =
∞

∑
n=0

cn · (z−a)n

is the Taylor series of f with center = a. If f 6= 0 but f (a) = 0 with

c0 = ...= ck−1 = 0 but ck 6= 0

then
ord( f ;a) := k ∈ N

is named the order of f at a or the order of the zero of f at a.

The Corollaries 3.6 and 3.16 prove two formulas to derive the coefficients
of the Taylor series of f from respectively a path integral of f and from the
derivatives f (n), n ∈ N.

The three views onto holomorphy from Theorem 3.8 are on an equal footing.
They should not be played off against each other like the different views onto an
elephant in a well-known Indian simile, see Figure 3.4:
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A group of blind men heard that a strange animal, called an elephant, had been
brought to the town, but none of them were aware of its shape and form. Out of cu-
riosity, they said: ”We must inspect and know it by touch, of which we are capable”.
So, they sought it out, and when they found it they groped about it. In the case of
the first person, whose hand landed on the trunk, said ”This being is like a thick
snake”. For another one whose hand reached its ear, it seemed like a kind of fan. As
for another person, whose hand was upon its leg, said, the elephant is a pillar like a
tree-trunk. The blind man who placed his hand upon its side said the elephant, ”is
a wall”. Another who felt its tail, described it as a rope. The last felt its tusk, stating
the elephant is that which is hard, smooth and like a spear.

Fig. 3.4 The blind men and the elephant (Unknown illustrator)

Of course, the comparison is not exact: Holomorphy is not comparable with an
elephant - at least, not in every respect .

Corollary 3.11 shows that one cannot choose arbitrary functions as real part or
as imaginary part of a holomorphic function: Real part and imaginary part of a
holomorphic function have to be harmonic.

Corollary 3.11 (Harmonic function). Consider an open subset
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U ⊂ C' R2

and a holomorphic function
f : U −→ C.

with decomposition
f = u+ i · v.

Then real and imaginary part
u,v : U −→ R

are harmonic functions, i.e. they are twice continuously differentiable and satisfy
the Laplace equation

∆ u = ∆ v = 0

with Laplace operator

∆ :=
∂ 2

∂x2 +
∂ 2

∂y2.

Proof. The proof applies the Cauch-Riemann differential equations from Theorem 2.6:

∂

∂x

(
∂u
∂x

)
=

∂

∂x

(
∂v
∂y

)
and

∂

∂y

(
∂u
∂y

)
=−

∂

∂y

(
∂v
∂x

)
=−

∂

∂x

(
∂v
∂y

)

implies
∆ u = 0,

and analogously
∆ v = 0, q.e.d.

The Cauchy-Riemann differential equations can be written in an elegant compact
form by introducing two specific linear partial differential operators.

Definition 3.12 (Wirtinger operators). Consider an open subset

U ⊂ C' R2.

The following linear differential operators, named Wirtinger operators,

∂

∂ z
:=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂ z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)

are defined on functions
f : U −→ C

with partial derivations.
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Proposition 3.13 (Wirtinger test for differentiability). Consider an open subset

U ⊂ C

and a function
f : U −→ C.

The following conditions are equivalent:

1. The function f is holomorphic.

2. The function f has continous partial derivations and satisfies
∂ f
∂ z

= 0.

If these conditions are satisfied then

f ′ =
∂ f
∂ z

.

Proof. i) Equivalence: Because of Theorem 2.6 it suffices to show that the condition

∂ f
∂ z

= 0

is equivalent to the validity of the Cauchy Riemann differential equations. Using the
decompositions into real- and imaginary part

z = x+ iy and f = u+ iv

the condition
∂ f
∂ z

=
1
2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) =

=
1
2

(
∂u
∂x
−

∂v
∂y

)
+

i
2

(
∂u
∂y

+
∂v
∂x

)
= 0

is equivalent to
∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−
∂v
∂x

.

ii) Complex derivative: If f is holomorphic then according to Proposition 2.4

f ′(z) =
∂ f
∂x

=
∂ f
∂ z

+
∂ f
∂ z

=
∂ f
∂ z

, q.e.d.

Remark 3.14 (Wirtinger calculus). The Wirtinger operators satisfy the usual rules
for partial derivatives. In particular they satisfy the chain rule

f ′(γ(t)) = fz(γ(t)) · γ ′(t)+ fz(γ(t)) · γ ′(t).
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Due to Theorem 3.8 we know that a holomorphic function f has derivatives f (n)

of arbitrary order n∈N. We now generalize Cauchy’s integral formula to an integral
representation of f (n).

Corollary 3.15 (Cauchy’s integral formula for the derivatives). Consider two
radii

0≤ r1 < r2 < ∞

and the closed annulus or disk respectively

A := {z ∈ C : r1 ≤ |z| ≤ r2}.

Moreover, consider an open neighbourhood A⊂U and a holomorphic function

f : U −→ C.

Then for any point a ∈ Å and all n ∈ N the derivatives satisfy Cauchy’s integral
formula

f (n)(a) =
n!

2πi

∫
∂A

f (ζ )
(ζ −a)n+1 dζ

Proof. The proof is by induction on n ∈ N. It uses the theorem on interchanging
integration and partial differentiation in case of an integrand with continuous partial
derivatives.

Start of induction n = 0: Theorem 3.5.

Induction step n−1 7→ n: Assume

f (n−1)(a) =
(n−1)!

2πi

∫
∂A

f (ζ )
(ζ −a)n dζ

We apply on both sides of the equation the Wirtinger operator
∂

∂ z
at z = a. Proposi-

tion 3.13 implies

f (n)(a) =
∂

∂ z
f (n−1)(a) =

(n−1)!
2πi

∫
∂A

f (ζ ) ·
∂

∂ z

(
1

(ζ −a)n

)
dζ .

Because
∂

∂ z

(
1

(ζ −a)n

)
= (−n)(ζ −a)−n−1(−1)

we obtain

f (n)(a) =
n!

2πi

∫
∂A

f (ζ )
(ζ −a)n+1 dζ ,

which finishes the induction step and proves the corollary, q.e.d.
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Corollary 3.16 (Coefficients of the Taylor series). Consider a holomorphic func-
tion

f : U −→ C

defined on an open set U ⊂ C.

For any a ∈U and radius r > 0 with Dr(a)⊂U the Taylor series of f

f (z) =
∞

∑
n=0

cn · (z−a)n, z ∈ Dr(a),

has coefficients

cn =
1

2πi

∫
|ζ−a|=r

f (ζ )
(ζ −a)n+1 dζ =

f (n)(a)
n!

Proof. Apply Corollary 2.3 and Corollary 3.15, q.e.d.

3.3 Principal theorems about holomorphic functions

Theorem 3.17 (Mean value property of holomorphic functions). Consider an
open set U ⊂ C and a holomorphic function

f : U −→ C.

For any a ∈ U and r > 0 with Dr(a) ⊂ U the function f satisfies the mean value
formula

f (a) =
1

2π

∫ 2π

0
f (a+ reiφ ) dφ .

Proof. The mean value formula equals Cauchy’s integral formula from Theorem 3.5

f (a) =
1

2πi

∫
|ζ |=r

f (ζ )
ζ −a

dζ

with the parametrization

ζ = a+ r · eiφ , dζ = ir · eiφ dφ , q.e.d.

Theorem 3.18 (Maximum principle). Consider a domain G⊂ C and a holomor-
phic function

f : G−→ C.

If the modulus | f | assumes its maximum at a point a ∈ G then f is constant, equal
to f (a).
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Proof. By assumption

| f (a)|= sup{| f (z)| : z ∈ G}.

W.l.o.g.
f (a) ∈ R∗+.

Theorem 3.17 implies the existence of a radius r0 > 0 such that for all 0 < r ≤ r0
holds

f (a) =
1

2π

∫ 2π

0
f (a+ reiφ ) dφ =

1
2π

∫ 2π

0
Re f (a+ reiφ ) dφ .

Note that the integral of the imaginary part of the integrand vanishes, because the
left-hand side of the equation is real.

The assumption | f (a+ reiφ )| ≤ f (a) implies

Re f (a+ reiφ )≤ f (a).

If we had
Re f (a+ reiφ0)< f (a)

for a certain φ0 ∈ [0,2π], then by continuity of f

1
2π

∫ 2π

0
Re f (a+ reiφ ) dφ <

1
2π

∫ 2π

0
f (a) dφ = f (a),

a contradiction. Hence for all φ ∈ [0,2π] and for all 0≤ r < r0

Re f (a+ reiφ ) = f (a).

As a consequence, the real part Re f is constant in Dr0(a). Corollary 2.8 implies that
the holomorphic function f itself is constant in Dr0(a). The Identity Theorem 1.17
implies that f is constant in G, q.e.d.

Corollary 3.19 (Fundamental theorem of algebra). Any polynomial

p(z) ∈ C[z]

of degree k ≥ 1 has at least one complex root.

Proof. Because the polynomial p has positice degree we have

lim
z→∞
|p(z)|= ∞.

Hence |p| assumes its minimum at a point a ∈ C. In case p(z) 6= 0 for all z ∈ C
the inverse function 1/p were holomorphic in C and |1/p| would assume its maxi-
mum at a. Then Theorem 3.18 implies that 1/p and also p itself are constant. The
contradiction to deg p≥ 1 proves the existence of at least one zero of p, q.e.d.
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A direct consequence of the Identity Theorem and the Maximum Principle is the
Open Mapping Theorem. A map

f : U −→ C, U ⊂ C open,

is open if for all open sets V ⊂U the image

f (V )⊂ C

is open, i.e. f maps open sets in the domain to open sets in the image.

Theorem 3.20 (Open mapping theorem). Consider a domain G ⊂ C and a non-
constant holomorphic function

f : G−→ C.

Then f is an open map, and the image f (G)⊂ C is also a domain.

Proof. To show the openess of f (G) consider an arbitrary but fixed w0 ∈ f (G). We
shall construct an open neighourhood of w0 in C, which is contained in f (G).

i) Consequences of f−1(w0) having only isolated points:

Because f is not constant, the Identity Theorem 1.17 implies that f attains in a
neighbourhood Dr(z0)⊂ G of z0 the value w0 only at the point z0. Hence a
radius r > 0 exists with

Dr(z0)∩ f−1(w0) = {z0}.

The compact boundary ∂Dr(z0) maps to the compact set f (∂Dr(z0)). The latter set
is disjoint from {w0}. Therefore boths sets have a positive distance: There
exists ε > 0 with

z ∈ ∂Dr(z0) =⇒ | f (z)−w0|> 3ε.

ii) Claim Dε(w0)⊂ f (G):

For z ∈ ∂Dr(z0) and w ∈ Dε(w0) we have

| f (z)−w)| ≥ | f (z)−w0|− |w−w0| ≥ 3ε− ε = 2ε,

and
| f (z0)−w|= |w0−w|< ε,

in particular
| f (z0)−w|< | f (z)−w|.

Now consider an arbitrary but fixed value

w ∈ Dε(w0) :

To obtain a contradiction, assume that
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f −w : Dr(z0)−→ C

has no zeros. Then the function

g :=
1

f −w
: Dr(z0)−→ C

is holomorphic. The Maximum Principle, see Theorem 3.18, implies

|g(z0)|< sup{|g(z)| : z∈Dr(z0)}=max{|g(z)| : z∈Dr(z0)}=max{|g(z)| : z∈ ∂Dr(z0)}.

Hence
| f (z0)−w|> min{| f (z)−w| : z ∈ ∂Dr(z0)},

a contradiction to the previous estimate

| f (z0)−w|< | f (z)−w|.

As a consequence
f −w : Dr(z0)−→ C

has a zero in Dr(z0), i.e. f attains in Dr(z0) the value

w ∈ Dε(w0),

which finishes the proof.

iii) Connectedness of f (G):

Part ii) implies that f (G) is open. Continuity of f implies that f (G) is connected.
q.e.d.

Theorem 3.21 (Cauchy inequalities). Consider a power series

f (z) =
∞

∑
n=0

cn · (z−a)n

with radius of convergence at least r > 0. Assume the existence of a constant M such
that

| f (z)| ≤M

for all z ∈ Dr(a). Then for all n ∈ N

|cn| ≤
M
rn

Proof. Corollary 3.6 implies for all ρ < r and for all n ∈ N
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cn =
1

2πρn ·
∫ 2π

0
f (a+ reiφ ) · e−inφ dφ

Because |e−inφ |= 1 we have the estimate

|cn| ≤
1

2πρn ·M ·2π =
M
ρn

and

|cn| ≤
M
rn, q.e.d.

Corollary 3.22 (Growth condition and boundary distance). Consider an open
subset U ⊂ C and a holomorphic function

f : U −→ C

satisfying for all z ∈U
| f (z)| ≤M

Then for any point z ∈U with boundary distance at least r > 0, i.e.

Dr(z)⊂U,

holds for all n ∈ C the estimate

| f (n)(z)| ≤
n!
rn ·M

Proof. According to Corollary 3.16 the Taylor series

f (z) =
∞

∑
n=0

cn · (z−a)n

has coefficients

cn =
f (n)(a)

n!
.

The Cauchy estimates from Theorem 3.21 imply

f (n)(a)≤
n!
rn ·M, q.e.d.

Corollary 3.23 (Liouville’s theorem). A bounded entire function

f : C−→ C

is constant.
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Proof. Assume the existence of a constant M > 0 such for all z ∈ C

| f (z)| ≤M.

According to Corollary 3.6, for any radius r > 0 the function f expands for
all z ∈ Dr(0) into a unique convergent power series with center = 0

f (z) =
∞

∑
n=0

cn · zn.

Theorem 3.21 implies for any r ∈ R and all n ∈ N the estimate

|cn| ≤
M
rn

As a consequence cn = 0 for all n≥ 1, q.e.d.

Remark 3.24 (Unboundedness of the complex sin-function). The sin-function is
bounded for all real arguments x ∈ R:

|sin(x)| ≤ 1.

Because sin is not constant, Corollary 3.23 implies: The complex sinus-function

sin : C−→ C

is not bounded.

The Cauchy kernel can be used to generate a holomorphic function from the path
integral of a continuous function. Proposition 3.25 will be applied in the proof of
Theorem 3.26.

Proposition 3.25 (Cauchy kernel). Consider a piecewise continuously differen-
tiable path

γ : I −→ C

defined on a compact interval I ⊂ R, and denote by

|γ| := γ(I)⊂ C

the image curve.

For any continuous function

ψ : |γ| −→ C

the function
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f : C\ |γ| −→ C, f (z) :=
1

2πi

∫
γ

ψ(ζ )

ζ − z
dζ ,

is holomorphic: For any point a ∈ C and radius r > 0 with

Dr(a)∩|γ|= /0

the function f expands for all z ∈ Dr(a) into the convergent power series

f (z) =
∞

∑
n=0

cn · (z−a)n

with

cn =
1

2πi

∫
γ

ψ(ζ )

(ζ −a)n+1 dζ .

Fig. 3.5 Integration with the Cauchy kernel

Proof. For z ∈ Dr(a) and ζ ∈ |γ| we have

|(z−a)/(ζ −a)|< 1.

The Cauchy kernel expands into a convergent geometric series

1
ζ − z

=
1

(ζ −a)− (z−a)
=

1
ζ −a

·
1

1− (z−a)/(ζ −a)
=

∞

∑
n=0

(z−a)n

(ζ −a)n+1.

For fixed z ∈ Dr(0) the series on the right-hand side is uniformly convergent on the
compact set |γ|. Interchanging summation and integration implies

f (z)=
1

2πi

∫
γ

ψ(ζ )

z−ζ
dζ =

1
2πi

∞

∑
n=0

(
(z−a)n ·

∫
γ

ψ(ζ )

(ζ −a)n+1 dζ

)
=

∞

∑
n=0

cn ·(z−a)n, q.e.d.
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Note that we did use only continuity of ψ in the proof of Proposition 3.25. The
holomorphy of the result is due to the holomorphic dependency of the Cauchy kernel
on z.

Theorem 3.26 (Weierstrass convergence theorem). Consider an open set U ⊂ C
and a sequence ( fν)ν∈N of holomorphic functions

fν : U −→ C,

which is compact convergent towards a function

f : U −→ C.

Then f is holomorphic.

In addition, for all n ∈ N also the sequence of n-th derivatives(
f (n)ν : U −→ C

)
ν∈N

is compact convergent towards the n-th derivative f (n).

Proof. The limit f is continuous as compact limit of continuous functions.

i) Holomorphy of the limit: Consider an arbitrary but fixed point a ∈U and a
radius r > 0 with Dr(a)⊂U . Theorem 3.5 provides for any z ∈ Dr(a) the Cauchy
integral representation

fν(z) =
1

2πi

∫
|ζ−a|=r

fν(ζ )

ζ − z
dζ .

The integral is taken along the compact boundary ∂Dr(a). Here the sequence of
integrands

∂Dr(a)−→ C, z 7→
fν(ζ )

ζ − z
, ν ∈ N,

is uniformly convergent towards the function

∂Dr(a)−→ C, z 7→
f (ζ )
ζ − z

, ν ∈ N.

Hence interchanging integration and limit is admissible. In the limit for z ∈ Dr(a)

f (z) =
1

2πi

∫
|ζ−a|=r

f (ζ )
ζ − z

dζ .

Due to Proposition 3.25 the restriction



3.3 Principal theorems about holomorphic functions 77

f |Dr(a) : Dr(a)−→ C

is holomorphic. The arbitrary choice of a proves that f is holomorphic in U .

ii) Compact convergence of the derivatives f (n)ν : Consider a given compact
set K ⊂U and a given index n ∈ N.

Compactness of K implies the existence of ε > 0 such that for all a ∈ K
also Dε(a)⊂U . Choose a compact subset K′ ⊂U such that for all a ∈ K

Dε/2(a)⊂ K′.

Fig. 3.6 Estimating derivatives on K by function values on K′

We obtain from Corollary 3.22 for all z ∈ K∣∣∣ f (n)ν (z)− f (n)(z)
∣∣∣≤ n!

(ε/2)n · ‖ fν − f‖K′

Here the maximum-norm on the compact set K′ is

‖ fν − f‖K′ := max{| fν(z)− f (z)| : z ∈ K′}.

Because ( fν)ν∈N is uniformly convergent on K′ towards f we conclude

lim
ν→∞
‖ fν − f‖K′ = 0 =⇒ lim

ν→∞
‖ f (n)ν − f (n)‖K = 0,

which finishes the proof of the compact convergence of
(

f (n)ν

)
ν∈N

towards f (n),
q.e.d.
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Remark 3.27 (Counter example). The analogue of Theorem 3.26 does not hold in
the real context: Consider the family ( fν)ν∈N of differentiable functions

fν : R−→ R, fν(x) :=
1
ν
· sin(νx).

The sequence is uniformly convergent with limit f = 0. But the series of derivatives

( f ′ν)ν∈N with f ′ν(x) = cos(νx)

is not convergent.

Remark 3.28 (Topological vector space). For any open set U ⊂ C the set

O(U) := { f : U −→ C| f holomorphic}

is a topological C-vector space with respect to the topology of compact convergence.
Defining for relatively compact open subsets

W ⊂⊂U, i.e. W ⊂U compact,

and for any f ∈ O(U)

‖ f‖W := max{| f (z)| : z ∈W}

shows: The topology of compact convergence on O(U) is the Fréchet topology de-
fined by the seminorms corresponding to an exhaustion (Wν)ν∈N of U by relatively
compact open subsets. Theorem 3.26 shows: The topological vector space O(U) is
complete, see also [5, §2].

A useful exercise to become familiar with the present section is to investigate: In
which way do the different results depend on Cauych’s integral formula?

3.4 Outlook

Similar to Remark 3.28 one considers for an open set U ⊂ C the vector spaces of
holomorphic, square-integrable functions

OHilb(U) := { f : U −→ C | f holomorphic and
∫

U
| f (x+ iy)|2 dxdy < ∞}

with the Hermitian scalar product
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<−,−>: OHilb(U)×OHilb(U)−→ C, < f ,g >:=
∫

U
f (x+ iy) ·g(x+ iy) dxdy.

One checks that
(OHilb(U),<−,−>)

is a Hilbert space, and one proves that the injection

OHilb(U) ↪−→ O(U)

is continuous and compact [11, Chap. VI, §3].

Analysis of several complex variables considers holomorphic functions defined
on open sets U ⊂ Cn. Cauchy’s integral formula generalizes to holomorphic func-
tions of several complex variables, see [5, §1]. As a consequence, a continu-
ous function f of several complex variables with holomorphic partial derivatives
is holomorphic. One can even dismiss the presupposition that f is continuous,
see [14, Chap. 1, Sect. A].

For principal results about holomorphic functions of several complex variables
see also [5, §2].





Chapter 4
Isolated Singularities of Holomorphic Functions

Isolated singularities of a holomorphic function f are isolated points of an open
set U ⊂ C such that the function f is holomorphic in the complement. It is possible
to expand f in a punctured disk around an isolated singularity a into a convergent
Laurent series with summands

cn · (z−a)n, cn ∈ C, n ∈ Z.

Apparently the Laurent series generalizes the Taylor series. The summands of the
Taylor series have only non-negative powers, and the Taylor series is convergent in
any disk where f is holomorphic.

The new fundamental concept of the present chapter is the concept of a mero-
morphic function.

We will often denote an open punctured disk with center = a by

D∗r (a) := Dr(a)\{a}.

4.1 Laurent series and types of singularities

Definition 4.1 (Laurent series). A convergent Laurent series with center a ∈ C is
a series

f (z) =
∞

∑
n=−∞

cn · (z−a)n

which converges in an open annulus

{z ∈ C : r1 < |z−a| < r2}, 0≤ r1 < r2 ≤ ∞.

81
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Here convergence of a series of complex summands

∞

∑
n=−∞

an, an ∈ C,

means that both series
∞

∑
n=0

an and
∞

∑
n=1

a−n

are convergent.

If a Laurent series converges pointwise for z ∈C in an annulus, then it converges
absolutely and uniformly in any compact smaller annulus.

Proposition 4.2 (Convergence of Laurent series). Consider a Laurent series

f (z) =
∞

∑
n=−∞

cn · (z−a)n

which converges pointwise in the open annulus

{z ∈ C : r1 < |z−a|< r2}, 0≤ r1 < r2 ≤ ∞.

Assume two radii ρ1,ρ2 > 0 satisfying

r1 < ρ1 < ρ2 < r2.

Then the Laurent series converges absolutely and uniformly in the compact annulus

{z ∈ C : ρ1 ≤ |z−a| ≤ ρ2}.

More specific: The series
∞

∑
n=0

cn · (z−a)n

converges absolutely and uniformly in the disc

{z ∈ C : |z−a| ≤ ρ2},

and the series
−1

∑
n=−∞

cn · (z−a)n

converges absolutely and uniformly in

{z ∈ C : ρ1 ≤ |z−a|}.

Proof. W.l.o.g. we may assume a = 0.
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i) By assumption the series
∞

∑
n=0

cn · zn

converges for any point z ∈ C with

r1 < |z|< r2.

Therefore it converges absolutely and uniformly for

z ∈ Dρ2(0).

ii) Concerning the series
−1

∑
n=−∞

cn · zn

we substitute
ζ := 1/z

and consider the series
∞

∑
n=1

c−n ·ζ n

Then

r1 < |z|< r2 =⇒
1
r2

< |ζ |<
1
r1

Therefore
∞

∑
n=1

c−n ·ζ n

converges for
ζ ∈ D1/r1(0).

As a consequence, the series is absolutely and compactly convergent for

ζ ∈ D1/ρ1(0),

and the original series
−1

∑
n=−∞

cn · zn

is absolutely and compactly convergent for z ∈ C satisfying

ρ1 ≤ |z|, q.e.d.

Theorem 4.3 (Laurent expansion in an annulus). Consider two radii

0≤ r1 < r2 ≤ ∞
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and the open annulus

G := {z ∈ C : r1 < |z−a|< r2}.

Then any holomorphic function

f : G−→ C

expands uniquely into a Laurent series

f (z) =
∞

∑
n=−∞

c · (z−a)n

which is convergent in G.

For all n ∈ Z the coefficients of the Laurent series can be obtained as

cn =
1

2πi

∫
|ζ−a|=r

f (ζ )
(ζ −a)n+1 dζ

for any radius r with r1 < r < r2.

Proof. W.l.o.g assume a = 0.

i) Uniqueness of the Laurent series: Assume that f has a Laurent expansion
satisfying for z ∈ G

f (z) =
∞

∑
m=−∞

cm · zm

Then

f (reiφ ) =
∞

∑
m=−∞

cm · rm · ei·mφ .

Uniform convergence of the series on the circuit |z| = r implies for arbitrary but
fixed n ∈ Z∫ 2π

0
f (reiφ ) · e−inφ dφ =

∞

∑
m=−∞

cm · rm ·
∫ 2π

0
ei(m−n)φ dφ = 2π · cn · rn.

As a consequence

cn =
1

2πrn

∫ 2π

0
f (reiφ ) · e−inφ dφ

is determined by the values of f . Moreover, making the substitution

ζ = reiφ , dζ = ireiφ dφ ,

shows
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1
2πi

∫
|ζ |=r

f (z)
ζ n+1 dζ =

1
2πi

∫ 2π

0

f (reiφ)

rn+1ei(n+1)φ · ireiφ dφ = cn.

ii) Existence of the Laurent series: We show the convergence of the two derived
infinite series by dominating each of them by a suitable geometric series. Consider
an arbitrary but fixed value z ∈ G. Choose two radii

r1 < ρ1 < |z|< ρ2 < r2.

Cauchy’s integral formula, see Theorem 3.5, implies

f (z) =
1

2πi

∫
|ζ |=ρ2

f (ζ )
ζ − z

dζ −
1

2πi

∫
|ζ |=ρ1

f (ζ )
ζ − z

dζ .=: I(ρ2)− I(ρ1)

• For I(ρ2) we have
|ζ |= ρ2 > |z|.

Hence the Cauchy kernel expands as the convergent geometric series

1
ζ − z

=
1
ζ
·

1
1− (z/ζ )

=
∞

∑
n=0

zn

ζ n+1

and

I(ρ2) =
1

2πi

∫
|ζ |=ρ2

f (z)
ζ − z

dζ =
1

2πi

∞

∑
n=0

(∫
|ζ |=ρ2

f (ζ )
ζ n+1 dζ

)
· zn

• Analogously, for I(ρ1) we have

|ζ |= ρ1 < |z|.

Hence the Cauchy kernel expands as the convergent geometric series

1
ζ − z

=
−1
z
·

1
1− (ζ/z)

=−
∞

∑
n=0

ζ n

zn+1 =−
−1

∑
n=−∞

zn

ζ n+1

and

−I(ρ1) =−
1

2πi

∫
|ζ |=ρ1

f (ζ )
ζ − z

dζ =
1

2πi

−1

∑
n=−∞

(∫
|ζ |=ρ1

f (ζ )
ζ n+1 dζ

)
· zn.

Note that the integrand of the coefficient integrals is holomorphic within the whole
annulus. Hence Lemma 3.2 implies that the values of the coefficient integrals in both
representations do not change when taking

|ζ |= r with arbitrary r1 < r < r2

as common path of integration, i.e.
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|ζ |=ρ2

f (ζ )
ζ n+1 dζ =

∫
|ζ |=r

f (ζ )
ζ n+1 dζ =

∫
|ζ |=ρ1

f (ζ )
ζ n+1 dζ

As a consequence
f (z) = I(ρ2)− I(ρ1) =

=
∞

∑
n=0

(
1

2πi

∫
|ζ |=r

f (ζ )
ζ n+1 dζ

)
· zn +

−1

∑
n=−∞

(
1

2πi

∫
|ζ |=r

f (ζ )
ζ n+1 dζ

)
· zn =

∞

∑
n=∞

(
1

2πi

∫
|ζ |=r

f (ζ )
ζ n+1 dζ

)
· zn

Hence f (z) has the Laurent expansion

f (z) =
∞

∑
n=−∞

cn · zn

with the expected coefficients

cn =
1

2πi

∫
|ζ |=r

f (ζ )
ζ n+1 dζ , q.e.d.

The type of the Laurent series at an isolated singularity determines the type of
the singularity.

Definition 4.4 (Classification of isolated singularities). Consider a point a ∈C, a
radius r > 0, and a holomorphic function in the punctured disk

f : D∗r (a)−→ C

with Laurent series

f (z) =
∞

∑
n=−∞

cn · (z−a)n.

Then exactly one of the following cases happens:

1. For all indices n < 0 holds cn = 0. Then the Laurent series reduces to a power
series convergent in the whole disc Dr(a). The point a is named a removable
singularity of f .

2. An index k > 0 exists with

c−k 6= 0 and cn = 0 for all n <−k.

The point a is named a pole of order k of f . Notation:

ord( f ; a) =−k.
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Note. The order of a pole is a positive integer, while the order of the function f
at the pole is the corresponding negative integer.

3. Infinitely many indices n < 0 exist with cn 6= 0. The point a is named an essential
singularity of f .

Theorem 4.5 (Riemann’s theorem on removable singularities). A holomorphic
function

f : D∗r (a)−→ C, a ∈ C, r > 0,

has a removable singularity at a ∈C iff f is bounded in a punctured disk D∗r0
(a) for

a suitable r0 > 0.

In this case for z ∈ D∗r (a)

f (z) =
∞

∑
n=0

cn · (z−a)n,

and the function f extends to a holomorphic function

f̂ : Dr(a)−→ C

by the definition
f̂ (a) := c0.

Proof. W.l.o.g. a = 0.

i) In case of a removable singularity at a the function f expands into a convergent
power series with center = a, hence is a continuous function. As consequence f is
bounded in a neighbourhood of a.

ii) Assume the existence of a radius r0 with 0 < r0 < r and a bound M < ∞ such
that

| f (z)|< M

for
z ∈ D∗r0

(a).

Theorem 4.3 implies for all n≥ 1 and all 0 < ρ ≤ r0

c−n =
1

2πi

∫
|z|=ρ

f (z)
z−n+1 dz =

ρn

2π

∫ 2π

0
f (a+ρ · eiφ ) · einφ dφ .

Hence
|c−n| ≤ ρ

n ·M.

Because ρ is arbitrary we obtain
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c−n = 0, i.e.

the Laurent series reduces to a power series, q.e.d.

A characterization of essential singularities and of poles will be given in Theorem 4.10
and Theorem 4.12 respectively.

4.2 Meromorphic functions and essential singularities

Definition 4.6 (Meromorphic function). Consider an open subset U ⊂C. A mero-
morphic function in U is a holomorphic function defined on an open subset U ′ ⊂U

f : U ′ −→ C

such that

• the complement U ′ \U has only isolated points, and

• each point of U ′ \U is a pole of f .

Note. If U ′ = U in Definition 4.6, then f is holomorphic. Hence a holomorphic
function is also meromorphic.

Proposition 4.7 (Laurent expansion of meromorphic functions). Each mero-
morphic function f on an open set U ⊂ C expands at a pole a ∈ U of order = k
into a convergent Laurent series

f (z) =
∞

∑
n=−k

cn(z−a)n

with c−k 6= 0.

1. If a punctured disk
D∗r (a), r > 0,

contains no singularity of f , then the Laurent series is convergent for all z ∈ D∗r (a).

2. In D∗r (a) the function f is the quotient

f (z) =
g
h

of the restriction of the two holomorphic functions
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g,h : Dr(a)−→ C

with
h(z) := (z−a)k and g := h · f .

Proof. The claim is a Corollary of Theorem 4.3, q.e.d.

Corollary 4.8 (Field of meromorphic functions).

1. The set M (G) of meromorphic functions on a domain G ⊂ C is a field with
respect to addition and multiplication. It is the quotient field of the integral
domain O(G). For two meromorphic functions f ,g ∈M (G), g 6= 0, and a ∈ G
we have

ord

(
f
g

; a

)
= ord( f ;a)−ord(g;a).

2. The quotient f/g of two polynomials

f ,g ∈ C[z], g 6= 0,

is named a rational function. The field C(z) of rational functions is the quotient
field of the ring C[z] of polynomials.

Proof. i) The sum and the product of two meromorphic functions is meromorphic:
The singularities of respectively sum and product are contained in the union of the
singularities of respectively the summands and the factors.

ii) In order to show that the inverse of a meromorphic function f is meromorphic,
we apply Proposition 4.7. Connectedness of G implies that g 6= 0 has only isolated
zeros. For a given point a ∈ G exists a radius r > 0 such that in D∗r (a):

•
f =

g
h

with the restrictions of the holomorphic functions

g,h : Dr(a)−→ C

h(z) = (z−a)k for z ∈ Dr(a) for a suitable k ∈ C.

• The function g has no zeros.

Hence for z ∈ D∗r (a)
1

f (z)
=

(z−a)k

g(z)

If
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g(z) =
∞

∑
n=0

cn · (z−a)n

with
c0 = ...= cm−1 = 0 and cm 6= 0,

then
g(z) = (z−a)m ·g1(z)

with

g1 : Dr(a)−→ C, g1(z) :=
∞

∑
n=0

cn+m · (z−a)n,

a holomorphic function without zeros. We obtain

1
g
=

1
(z−a)m ·

1
g1

In D∗r (a) the holomorphy of 1/g1, see Proposition 2.2, implies the holomorphy
of 1/g. Hence also the product

1
f
=

(z−a)k

g

is holomorphic. Moreover

f =
(z−a)m

(z−a)k ·g1 =⇒ ord( f ;a) = m− k

and
1
f
=

(z−a)k

(z−a)m ·
1
g1

=⇒ ord(1/ f ;a) = k−m =−ord( f ;a), q.e.d.

Remark 4.9 (Order function as group morphism). Corollary 4.8 shows that for a do-
main G⊂C and any point a ∈G the order function defines a group homomorphism

ord(−; a) : (M (G)∗, ·)−→ (Z,+)

from the multiplicative group of non-zero meromorphic functions to the additive
group of integers.

Theorem 4.10 (Casorati-Weierstrass). Assume that the holomorphic function

f : D∗r (a)−→ C, r > 0,

has an essential singularity at a ∈ C. Then f comes near a ∈ C arbitrary close to
any complex value, i.e. for any c ∈ C exists a sequence (zν)ν∈N of points
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zν ∈ D∗r (a)

with
lim

ν→∞
zν = a and lim

ν→∞
f (zν) = c.

Proof. The proof is indirect. Assume the existence of a value c ∈ C which is not
an accumulation point of f (D∗r (a)). Then exist ε > 0 and 0 < ρ < r such that for
all z ∈ D∗ρ(a)

| f (z)− c| ≥ ε.

The function

D∗ρ(a)−→ C, g(z) :=
1

f (z)− c
,

is holomorphic. Its modulus is bounded by 1/ε . Theorem 4.5 implies that g extends
holomorphically to the whole disc Dρ(a). For z ∈ D∗ρ(a) holds

f (z) =
1

g(z)
+ c.

If g has at a a zero of order k, then f has at a a pole of order k. If g(a) 6= 0 then f
is even holomorphic in Dρ(a). Both alternatives contradict the assumption about f ,
which proves the claim, q.e.d.

Remark 4.11 (Essential singularity).

1. The holomorphic function

f : C∗ −→ C, f (z) := e1/z,

has the Laurent series

f (z) =
∞

∑
n=0

1
n!
·

1
zn

Hence the point a= 0 is an essential singularity of f . Strengthening Theorem 4.10
we show that f assumes any value c ∈ C∗ in any neighbourhood of a = 0:
The existence of the logarithm according to Proposition 1.24 implies that the
equation

ew = c

has a solution w0. Hence any solution wν has the form

wν = w0 +ν ·2πi, ν ∈ Z.

If wν 6= 0 then set
zν := 1/wν .

As a consequence
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f (zν) = ewν = c

and
lim

ν→∞, wν 6=0
zν = 0.

2. The function
f (z) = e1/z

exemplifies the claim of Picard’s big theorem: Any holomorphic function as-
sumes in any neighbourhood of an essential singularity any value c ∈ C with at
most one exception infinitely often. For a proof see [21, Kap. 10, §4].

Theorem 4.12 (Characterization of a pole). A holomorphic function

f : D∗r (a)−→ C, a ∈ C, r > 0,

has a pole at a ∈ C iff
lim

z→a, z 6=a
| f (z)|= ∞.

Proof. i) Assume that f has a pole of order k ≥ 1 at a. Then for all z ∈ D∗r (a)

f (z) =
1

(z−a)k ·g(z)

with a holomorphic function
g : Dr(a)−→ C.

As a consequence
lim

z→a, z 6=a
| f (z)|= ∞.

ii) If
lim

z→a, z 6=a
| f (z)|= ∞,

then f has at a neither an essential singularity, see Theorem 4.10, nor a removable
singularity, see Theorem 4.5. Hence f has a pole at a, q.e.d.

4.3 The generating function of the Bernoulli numbers

Definition 4.13 (Generator of the Bernoulli numbers). The holomorphic func-
tion

f : D∗r (0)−→ C, f (z) :=
z

ez−1
, r := 2π,
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has a removable singularity at a = 0, because

ord( f ;a) = ord(id;a)−ord(ez−1;a) = 1−1 = 0.

The Bernoulli numbers (Bn)n∈N are defined via the coefficients of the power series
with center a = 0

z
ez−1

=
∞

∑
n=0

Bn

n!
· zn.

The series has radius of convergence = 2π . It is named the generating function of
the Bernoulli numbers.

Remark 4.14 (Recursion formula for Bernoulli numbers).

1. One easily computes the first Bernoulli numbers:

z
ez−1

=
z

z+ z2/2!+ z3/3!+O(4)
=

1
1+ z/2!+ z2/3!+O(3)

=

= 1−(z/2+z2/3!+O(3))+(z/2+O(3))2+O(3)= 1−z/2−z2/6+z2/4+O(3)=

= 1− z/2+(1/12) · z2 = B0 +B1 · z+(B2/2!) · z2 +O(3)

Hence the first Bernoulli numbers are

B0 = 1, B1 =−1/2, B2 = 1/6.

2. A second method to compute Bernoulli numbers is the recursion formula: For
all N ∈ N∗

N

∑
n=0

(
N +1

n

)
·Bn = 0

with B0 = 1.Proof: The defining equation

z
ez−1

=
∞

∑
n=0

Bn

n!
· zn

implies

1 = (ez−1) ·
1
z
·

z
ez−1

=

(
∞

∑
m=0

zm

(m+1)!

)
·

(
∞

∑
n=0

Bn

n!
· zn

)
=

=
∞

∑
N=0

(
∑

n+m=N

1
(m+1)!

·
Bn

n!

)
· zN =

∞

∑
N=0

(
N

∑
n=0

Bn

(N +1−n)! ·n!

)
· zN =
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=
∞

∑
N=0

(
1

(N +1)!
·

N

∑
n=0

(
N +1

n

)
·Bn

)
· zN , q.e.d.

One checks
B3 = 0, B4 =−1/30, B5 = 0, B6 = 1/42

B7 = 0, B8 =−1/30, B9 = 0, B10 = 5/66.

Proposition 4.15 (Vanishing of Bernoulli numbers with odd index ≥ 3). For
all k ≥ 1 holds

B2k+1 = 0.

Proof. To prove the claim we have to show that the Taylor series with center = 0 of

F(z) :=
z

ez−1
+

z
2

has only coefficents with even index, or

F(z) = F(−z).

We compute

F(z) =
z

ez−1
+

z
2
=

2 · z+ z · ez− z
2 · (ez−1)

=
z
2
·

ez +1
ez−1

and

F(−z) =

(
−

z
2

)
·

e−z +1
e−z−1

=

(
−

z
2

)
·

1+ ez

1− ez = F(z), q.e.d.

Proposition 4.16 (Bernoulli numbers in the Taylor series of cotangent and tan-
gent).

1. The cotangent function

cot z :=
cos z
sin z

is meromorphic in C with pole set

P = Z ·π.

Each pole has order = 1. Its Laurent series with center a = 0 is

cot z =
1
z
+

∞

∑
k=1

(−1)k ·
22k ·B2k

(2k)!
· z2k−1

The series is convergent for 0 < |z|< π .
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2. The tangent function

tan z :=
sin z
cos z

is meromorphic in C with pole set

P = (π/2)+Z ·π.

Its Taylor series is

tan z =
∞

∑
k=1

(−1)k−1 ·
22k · (22k−1) ·B2k

(2k)!
· z2k−1

The series has radius of convergence = π/2.

Proof. 1. We recall from Proposition 4.15 the function

F(z) :=
z

ez−1
+

z
2
=

z
2
·

ez +1
ez−1

=
∞

∑
k=0

B2k

(2k)!
· z2k.

Moreover, we use the representation of the trigonometric functions by exponen-
tials from Remark 1.22 and obtain

cot z =
cos z
sin z

= i ·
e2iz +1
e2iz−1

hence

zcot z = iz ·
e2iz +1
e2iz−1

= F(2iz) =
∞

∑
k=0

B2k

(2k)!
· (2iz)2k =

=
∞

∑
k=0

(−1)k ·
22k ·B2k

(2k)!
· z2k.

2. We use the formula
tan z = cot z−2 · cot 2z,

which follows according to

cot z−2 · cot 2z =
cos z
sin z

−2 ·
cos 2z
sin 2z

=
cos z
sin z

−
cos2 z− sin2 z

cos z · sin z
=

sin2 z
sin z · cos z

=
sin z
cos z

= tan z

We obtain

tan z =
∞

∑
k=0

(−1)k ·
22k ·B2k

(2k)!
· z2k−1−2 ·

∞

∑
k=0

(−1)k ·
22k ·B2k

(2k)!
· (2z)2k−1 =
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=
∞

∑
k=1

(−1)k−1 ·
22k · (22k−1) ·B2k

(2k)!
· z2k−1.

In both cases the value of the radius of convergence follows from Theorem 4.3,
q.e.d.

4.4 Outlook

The singularities of holomorphic functions of several complex variables are no
longer points, they do not have dimension zero. The singularities are higher-
dimensional analytic sets. They carry their own complex structure, and have to be
investigated independently from the embedding space. The global viewpoint leads
to the study of complex spaces, see [12, Chap. 1 and 4].

The lingua franca used for the general theory of complex spaces is the language
of sheaves, [5, §6].



Chapter 5
Mittag-Leffler Theorem and Weierstrass
Product Formula

The Mittag-Leffler problems asks for meromorphic functions with prescribed neg-
ative parts of the Laurent series at a discrete set of points. While the Weierstrass
problem deals with a similar problem in the context of holomorphic functions: The
Weierstrass problem prescribes a discrete set of zeros and corresponding orders, and
asks for holomorphic functions with these zeros.

The solution of both problems provides powerful existence theorems for both
types of functions.

5.1 Meromorphic functions with prescribed principal parts

The current section formalizes the Mittag-Leffler problem and presents its solution.

Definition 5.1 (Principal part). Consider a meromorphic function f in C. Because
all poles of f are isolated singularities, the function f has at any pole a∈C a Laurent
expansion with center = a

f (z) =
∞

∑
n=−k

cn · (z−a)n, c−k 6= 0.

The rational function
−1

∑
n=−k

cn · (z−a)n

which sums up the finitely many summands with negative exponent, is the principal
part of f at a.

The Mittag-Leffler problem considers a discrete set P ⊂ C and prescribes for
each a ∈ P a principal part

97
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Ha(z) =
−1

∑
n=−ka

ca,n · (z−a)n, c−k 6= 0.

The problem asks:

Does there exists a meromorphic function f in C with poles exactly at the points
from P and with the prescribed principal parts? If yes, how many solutions do exist?
The solution of the problem is additive.

Remark 5.2 (Mittag-Leffler problem for finitely many principal parts). If the pole set
is finite

P = {a1, ...,am},

then the Mittag-Leffler problem has the trivial solution

f = Ha1 + ...+Ham

which just adds the finitely many principal parts.

The solution of the Mittag-Leffler problem for the general case will be given in
Theorem 5.4. Note that the discreteness of P⊂ C implies the countability of P.

Definition 5.3 (Compact convergence of meromorphic functions). Consider an
open subset U ⊂ C. A series

∞

∑
ν=0

fν

of meromorphic functions fν , ν ∈ N, on U is compactly convergent, if for any
compact subset K ⊂U an index ν0 exists such that

• the functions
fν , ν ≥ ν0,

have no pole in K,

• and the series
∞

∑
ν=ν0

fν

converges uniformly on K.

Theorem 3.26 implies: The limit of a compact convergent series of meromorphic
functions is meromorphic.
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Theorem 5.4 (Solution of the Mittag-Leffler problem). Consider a sequence (aν)ν∈N
of pairwise distinct complex points aν ∈ C satisfying

lim
ν→∞
|aν |= ∞,

and an attached sequence of principal parts

Hν(z) =
−1

∑
n=−kν

cν ,n · (z−aν)
n, ν ∈ N, kν ∈ N.

Then:

• In C a meromorphic function F exists with exactly these principal parts.

• If two meromorphic functions F1 and F2 in C have the same principal parts, then
their difference

F2−F1

is holomorphic in C, i.e. an entire function.

Proof. i) Polynomial approximation: The idea of this step is to exhaust C by a se-
quence of relatively compact subsets

Dk(0)⊂⊂ Dk+1(0), k ∈ N,

and to approximate the local solutions by polynomials, holomorphic on C.

For each k ∈ N we collect the principal parts with center in the annulus

Ak := {z ∈ C : k ≤ |z|< k+1}

by defining

Fk := ∑
ν : aν∈Ak

Hν .

The sum is finite because Ak is compact and P is discrete. The function Fk is mero-
morphic in C with poles exactly in Ak. Because the function Fk is holomorphic in
the disk Dk(0), its approximation by a suitable polynomial Φk from its Taylor series
in Dk(0) satisfies

‖Fk−Φk‖Dk−1(0) < (1/2)k.

Note that the meromorphic function in C

Fk−Φk

has the same poles and principal parts as Fk. Define

F :=
∞

∑
k=0

(Fk−Φk).
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To prove that the series is compact convergent, we note that the series

∑
ν≥k
‖Fν −Φν‖Dk−1(0)

is dominated by the series
∑
ν≥k

(1/2)ν < ∞.

Hence F is meromorphic in C. By construction, F has the prescribed poles and
principal parts.

ii) General solution: Apparently the difference F2−F1 is holomorphic, q.e.d.

There exist meromorphic functions which equal the infinite series of their prin-
cipal parts, see Example 5.5. But in general, the series of principal parts is not con-
vergent. The difference between the two meromorphic functions from Example 5.5
and from Proposition 5.6 is the pole order k of their principal parts. In the first ex-
ample with k = 2 the series of principal parts is convergent. While in the second
example k = 1, and the series of principal parts is not convergent. Here one has to
introduce additional holomorphic summands - like Φk in the proof of Theorem 5.4 -
to enforce convergence.

Example 5.5 (Sum of infinitely many principal parts). We investigate the meromor-
phic function in C

f (z) :=
π2

sin2(πz)
.

i) Computing the principal parts: The pole set P of f is the set of integers

P = Z.

We compute the principal part H0(z) of f at a = 0:

π2

sin2(πz)
=

π2

(πz− (π3z3/6)+O(5))2 =

=
π2

π2z2 +O(4)
=

π2

z2π2(1+O(2))
=

1
z2 · (1+O(2))

Hence

H0(0) =
1
z2

with a pole of order = 2. Because f is peridodic with period = 1 the principal part
of f at arbitrary z = n ∈ Z is

Hn(z) =
1

(z−n)2
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ii) Convergence of the series of principal parts: Consider the series

∑
n∈Z

Hn(z) = ∑
n∈Z

1
(z−n)2

of meromorphic functions in C. Each summand Hn is meromorphic in C with a
single pole at z = n, and each pole has order = 2. To prove the compact convergence
of the series of meromorphic functions

∑
n∈Z

Hn,

we choose an arbitrary but fixed radius r > 0. For all indices |n|> r the function Hn
has no pole on the compact set Dr(0).

In addition, we choose an index n0 > 2r. Then for all n≥ n0 and all z ∈ Dr(0):

|n− z| ≥ n− r ≥ n− (n/2) = n/2,

hence ∣∣∣∣∣ 1
(z−n)2

∣∣∣∣∣≤ 1
(n/2)2

The convergence of the dominating series

4 ·
∞

∑
n=1

(1/n)2

implies the uniform convergence of

∑
|n|≥n0

fn

on Dr(0). As a consequence, the limit

F(z) := ∑
n∈Z

Hn(z)

is meromorphic in C.

iii) A functional equation: The two meromorphic functions f (z) and F(z) have the
same principal parts. Their difference

g := f −F

is an entire function. We claim: Each of the three functions φ ∈ { f ,F,g} satisfies
the functional equation

φ(z)+φ(z+(1/2)) = 4 ·φ(2z).
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• φ = F :

F(z) = ∑
n∈Z

1
(z−n)2 = ∑

n∈Z

4
(2z−2n)2

and

F(z+(1/2)) = ∑
n∈Z

1
(z+(1/2)−n)2 = ∑

n∈Z

4
(2z− (2n−1))2

imply

F(z)+F(z+(1/2)) = ∑
m∈Z

4
(2z−m)2 = 4 ·F(2z).

• φ = f :

f (z)+ f (z+(1/2)) =
π2

sin2(πz)
+

π2

cos2(πz)
=

π2

sin2(πz) · cos2(πz)
=

=
4π2

sin2(2πz)
= 4 · f (2z).

• φ = g: The functional equation of

g = f −F

follows from the two previous functional equations.

iv) Consequences of the functional equation: If an entire function φ satisfies the
functional equation

φ(z)+φ(z+(1/2)) = 4 ·φ(2z)

then φ = 0.

For the proof set
M := sup

|z|=2
|φ(z)|.

Then

M = sup
|z|=1
|φ(2z)| ≤ 1/4 ·

(
sup
|z|=1
|φ(z)|+ sup

|z|=1
|φ(z+(1/2))|

)
≤

≤ 1/4 · (M+M) =
M
2
.

Here the last estimate follows from the maximum principle Theorem 3.18. As a
consequence

M = 0 and φ = 0

due to the Identity Theorem 1.17.

v) Representation as sum of all principal parts: As consequence of step i) - iv) we
obtain the representation of the meromorphic function on the left-hand side



5.1 Meromorphic functions with prescribed principal parts 103

π2

sin2(πz)
= ∑

n∈Z

1
(z−n)2

as the sum of its principal parts on the right-hand side.

Proposition 5.6 (Partial fraction expansion of the cot-function). The cot-function
is meromorphic in C and expands as the partial fraction

π · cot(πz) =
1
z
+

∞

∑
n=1

2z
z2−n2.

Proof. i) First we determine the principal parts of the meromorphic function

π · cot(πz) = π ·
cos(πz)
sin(πz)

:

The pole set is P = Z. At the center a = 0

πcot(πz) = π ·
1+O(2)

πz+O(3)
= π ·

1+O(2)
πz · (1+O(2))

=

=
1
z
· (1+O(2)) =

1
z
+O(1).

Hence π · cot(πz) has at a = 0 the principal part

H0(z) =
1
z
.

Because the function has period = 1 its principal part at the pole n ∈ Z is

Hn(z) =
1

z−n
.

All poles have order = 1.

ii) The infinite series of the principal parts Hn is not convergent. Therefore we
subtract the holomorphic summands −(1/n) to enforce convergence. We claim that
the modified series of meromorphic functions

G(z) :=
1
z
+ ∑

n∈Z
n6=0

(
Hn(z)+

1
n

)
=

1
z
+ ∑

n∈Z
n6=0

(
1

z−n
+

1
n

)
=

=
1
z
+

∞

∑
n=1

(
1

z−n
+

1
n

)
+

∞

∑
n=1

(
1

z+n
−

1
n

)
=

1
z
+

∞

∑
n=1

2z
z2−n2

is compact convergent. For the proof note
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1
z−n

+
1
n
=

n+(z−n)
n(z−n)

=
z

n(z−n)
.

For arbitrary but fixed radius r > 0 choose n0 > 2r. For z ∈ Dr(0) and n≥ n0 holds

|z−n| ≥
n
2

and

∣∣∣∣∣ z
n(z−n)

∣∣∣∣∣= |z|
n · |z−n|

≤
r

n(n/2)
=

2r
n2.

Hence
∞

∑
n=n0

∥∥∥∥∥ 1
z−n

+
1
n

∥∥∥∥∥
Dr(0)

≤ 2r ·
∞

∑
n=n0

1
n2 < ∞,

and similarly for
−n≤−n0.

Therefore

G(z) =
1
z
+ ∑

n∈Z
n6=0

(
1

z−n
+

1
n

)
=

1
z
+

∞

∑
n=1

2z
z2−n2

is a meromorphic function in C.

iii) Due to part i) and ii) the two functions G and π cot(πz) have the same princi-
pal parts. We show that they are equal. Outside the poles on one hand,

d
dz

(πcot(πz)) =−
π2

sin2(πz)
.

On the other hand, Theorem 3.26 implies

d
dz

G(z) =−
1
z2−∑

n∈Z
n6=0

1
(z−n)2 =−∑

n∈Z

1
(z−n)2 =−

π2

sin2(πz)
.

Here the last equality is a consequence of the result from Example 5.5. Hence

d
dz

G(z) =
d
dz
(πcot(πz))

or
G(z) = πcot(πz)+ const.

The function G is odd, i.e. G(z) =−G(−z). Also the function

π · cot(πz)

is odd because cos is even and sin is odd. Therefore the constant = 0, i.e.
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π · cot(πz) =
1
z
+

∞

∑
n=1

2z
z2−n2, q.e.d.

The partial fraction expansion of the cotangent function is the key to a summation
problem, which occupied several European mathematicians in the second half of
the 17th century. The first formulas from Proposition 5.7 are due to Leonhard Euler
(1735 or 1740), a student of Johann Bernoulli (1667-1748), see Figure 5.1.

Fig. 5.1 Euler’s first two formula from [3, p. 129] (emphasis added by J.W.)

Proposition 5.7 (Summae serierum reciprocarum and Bernoulli numbers). For
all k ∈ N∗

∞

∑
n=1

1
n2k = (−1)k−1 ·

22k−1 ·π2k ·B2k

(2k)!

in particular
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∞

∑
n=1

1
n2 =

π2

6
,

∞

∑
n=1

1
n4 =

π4

90
,

∞

∑
n=1

1
n6 =

π6

945
,

∞

∑
n=1

1
n8 =

π8

9450
,

∞

∑
n=1

1
n10 =

π10

93.555
,

∞

∑
n=1

1
n12 =

691 ·π12

682.593.555

Note. Proposition 5.7 implies that the Bernoulli numbers with even index change
their sign from one number to the next.

Proof. Recall from Proposition 5.6 the partial fraction expansion of the cotangent
function

π · cot(πz) =
1
z
+

∞

∑
n=1

2z
z2−n2

For |z|< 1 we expand each summand of the series into a convergent geometric series

2z
z2−n2 =−

1
n2 ·

2z
1− (z2/n2)

=−
2z
n2 ·

∞

∑
k=0

z2k

n2k =−2 ·
∞

∑
k=1

z2k−1

n2k

• On one hand, applying Theorem 1.5, part 2), to rearrange the double series we
obtain

π · cot(πz) =
1
z
−2 ·

∞

∑
n=1

(
∞

∑
k=1

z2k−1

n2k

)
=

1
z
−2 ·

∞

∑
k=1

(
∞

∑
n=1

1
n2k

)
· z2k−1

• On the other hand, the cotangent series from Proposition 4.16

cot z =
1
z
+

∞

∑
k=1

(−1)k ·
22k ·B2k

(2k)!
· z2k−1

implies

π · cot(πz) =
1
z
+2 ·

∞

∑
k=1

(−1)k ·
22k−1 ·π2k ·B2k

(2k)!
· z2k−1

Comparing coefficients proves the claim, q.e.d.

The Riemann ζ -function generalizes the integer exponent k ∈ N∗ from the for-
mulas in Proposition 5.7 to a complex variable s. Recall

ns := es·ln(n).

Remark 5.8 (Riemann ζ -function). On the right half-plane

RH(1) := {s ∈ C : Re s > 1}

the Riemann ζ -function
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ζ : RH(1)−→ C, ζ (s) :=
∞

∑
n=1

1
ns

is holomorphic, see [25, Teil I, §1, Beispiel a) zu Satz 2].

Euler’s result from Proposition 5.7 computes the values

ζ (2k), k ∈ N.

We will state some further results about the Riemann ζ -function in Remark 5.29.

5.2 Infinite products of holomorphic functions

The investigation of infinite products of holomorphic functions employs the con-
cept of normal convergence. Normal convergence assures that an infinite product of
holomorphic functions has a zero at a∈C if and only if at least one factor has a zero
at the point a.

Normal convergence is strictly stronger than compact convergence. Theorem 5.11
and the example from Remark 5.12 show: Normal convergence is strictly stronger
than compact convergence. Compact convergence does not assure the desirable
property concerning the zeros of a product.

Definition 5.9 (Normal convergence). Consider an open subset U ⊂ C and a se-
quence of holomorphic functions

fν : U −→ C, ν ∈ N.

i) The series
∞

∑
ν=0

fν

is normally convergent if for any compact subset K ⊂U the series of norms

∞

∑
ν=0
‖ fν‖K

is convergent.

ii) The infinite product
∞

∏
ν=0

fν
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is normally convergent if the series

∞

∑
ν=0

( fν −1)

is normally convergent.

Lemma 5.10 (Some estimates for logarithm and exponential). Consider a com-
plex number u ∈ C with |u| ≤ 1/2. Then

|Log(1+u)| ≤ 2|u| and |eu−1| ≤ 2|u|.

Proof. Estimating the geometric series

∞

∑
n=0
|u|n =

1
1−|u|

≤ 2

shows

|Log(1+u)|=

∣∣∣∣∣ ∞

∑
n=1

(−1/n)n+1 ·un

∣∣∣∣∣= |u| ·
∣∣∣∣∣ ∞

∑
n=0

(−1/n)n+2 ·un

∣∣∣∣∣≤ |u| · ∞

∑
n=0
|u|n ≤ 2|u|,

and

|eu−1|=

∣∣∣∣∣ ∞

∑
n=1

un

n!

∣∣∣∣∣≤ |u| · ∞

∑
n=0
|u|n ≤ 2|u|, q.e.d.

Theorem 5.11 (Normal convergence). Consider an open subset U ⊂ C and a se-
quence of holomorphic functions

fν : U −→ C, ν ∈ N.

Assume that the infinite product
∞

∏
ν=0

fν

is normally convergent. Then:

1. The product is compact convergent towards a holomorphic function

F : U −→ C,

i.e.

F = lim
N→∞

(
N

∏
ν=0

fν

)
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with respect to compact convergence.

2. The limit F has a zero at a ∈U iff at least one factor fν has a zero at a. In this
case

ord(F ;a) =
∞

∑
ν=0

ord( fν ;a).

3. The limit F is independent from the order of the factors in the product.

Proof. 1. For each ν ∈ N we set

φν := fν −1.

Assume that
∞

∏
ν=0

fν

is normally convergent. For any arbitrary but fixed compact K ⊂U the series

∞

∑
ν=0
‖φν‖K

converges. In particular, an index ν0 exist such that for all ν ≥ ν0

‖φν‖K ≤ 1/2.

Hence for all ν ≥ ν0 the function fν has no zeros on K and

Log fν = Log(1+Φν)

is well-defined on K by the Log-series. For any N ∈ N, N ≥ n0. The functional
equations of exp implies on K

N

∏
ν=ν0

fν =
N

∏
ν=ν0

(1+Φν) =
N

∏
ν=ν0

exp(Log(1+Φν)) = exp

(
N

∑
ν=ν0

Log(1+Φν)

)

Lemma 5.10 implies for ν ≥ ν0

‖Log(1+φν)‖K ≤ 2 · ‖φν‖K .

The convergence of
∞

∑
ν=0
‖φν‖K

implies: The series
∞

∑
ν=ν0

log(1+φν)

is uniformly convergent on K, and due to the continuity of the exponential
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∞

∏
ν=0

fν = exp

(
∞

∑
ν=0

Log(1+Φν)

)

is uniformly convergent on K.

2. In the compact set K ⊂U from part 1) the product

∞

∏
ν=ν0

fν = exp

(
∞

∑
ν=ν0

Log(1+Φν)

)

has no zero because the exponential function has no zeros. As a consequence, the
zeros in K of the infinite product

F =
∞

∏
ν=ν0

fν

are the zeros in K of the finite product

∏
0≤ν<ν0

fν ,

and for all points a ∈ K

ord(F ;a) = ∑
0≤ν<ν0

ord( fν ;a) =
∞

∑
ν=0

ord( fν ;a)

3. The independence of the value of the product from the order of its factors follows
from the analogous property of absolutely convergent series, q.e.d.

Remark 5.12 (Normal convergence and compact convergence). Due to Theorem 5.11
normal convergence of an infinite product implies compact convergence. But in gen-
eral, the opposite direction does not hold: Consider the sequence of constant func-
tions

fν := 1/2,ν ∈ N,

defined on C. We have

Fn :=
n

∏
ν=0

fν = (1/2)n+1,

hence
F = lim

n→∞
Fn = 0,

but no factor fν has a zero. Apparently, the product

n

∏
ν=0

fν
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does not satisfy the definition of normal convergence: The sequence ( fν − 1)ν∈N
does not converge towards zero, hence

∑
ν∈N

( fν −1)

is not convergent.

5.3 Weierstrass product theorem for holomorphic functions

The Weierstrass problem ask’s for a holomorphic function, which vanishes exactly
at a given set of points with prescribed order. If such a solution exists the problem
asks for the general solution. The solution of the Weierstrass problem is multiplica-
tive.

Proposition 5.13 shows a specific case of the Weierstrass problem. All prescribed
zeros are equidistant simple zeros: The solution is obtained by taking the product of
linear polynomials vanishing at the given points.

Proposition 5.13 (Product representation of the sin-function). For the sequence
of holomorphic functions

fn : C−→ C, fn(z) := 1−
z2

n2, n≥ 1.

the infinite product
∞

∏
n=1

fn

is normally convergent. It satisfies for all z ∈ C

∞

∏
n=1

(
1−

z2

n2

)
=

sin(πz)
πz

.

Proof. i) Normal convergence: We show the normal convergence of the series

∞

∑
n=1

z2

n2.

Consider the compact set K := Dr(0) with arbitrary but fixed radius r > 0. For
any z ∈ K ∥∥∥∥∥ z2

n2

∥∥∥∥∥
K

=
r2

n2.
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Moreover
∞

∑
n=1

r2

n2 = r2 ·
π2

6
< ∞.

ii) Properties of the product: We consider the entire function

F(z) :=
∞

∏
n=1

(
1−

z2

n2

)
.

Because F(0) = 1, there exists 0 < r < 1 such that for z ∈ Dr(0)

|F(z)−1|< 1.

Hence the logarithm
Log F : Dr(0)−→ C

is a well-defined holomorphic function. Taking the derivative shows

d
dz

Log F(z) =
∞

∑
n=1

d
dz

Log

(
1−

z2

n2

)
=

∞

∑
n=1

−2z
1− (z2/n2)

·
1
n2 =

=
∞

∑
n=1

2z
z2−n2 = π · cot(πz)−

1
z
=

d
dz

(
Log

sin(πz)
πz

)
.

Here we used Theorem 3.26 to interchange derivation and summation, the formula

d
dz

(Log h) =
h′

h
,

the cot-representation from Proposition 5.6, and the quotient rule for the holomor-
phic function

h(z) =
sin πz

πz
.

Hence

Log F(z) = Log
sin(πz)

πz
+ const

or

F(z) =
sin(πz)

πz
· const.

iii) Product representation: The functions on the left-hand side and on the right-hand
side coincide for z = 0 with const = 1. Hence for all z ∈ C

F(z) =
sin(πz)

πz
, q.e.d.
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Corollary 5.14 (Wallis product). The number π/2 has the infinite product expan-
sion

π

2
=

2 ·2
1 ·3
·

4 ·4
3 ·5
· ... ·

2n ·2n
(2n−1)(2n+1)

· ...

Proof. Proposition 5.13 show for the argument z = 1/2

2
π
=

∞

∏
n=1

(
1−

1
4n2

)
.

The reciprocal value is the product formula

π

2
=

∞

∏
n=1

4n2

4n2−1
=

∞

∏
n=1

2n ·2n
(2n−1)(2n+1)

, q.e.d.

Proposition 5.15 (Local logarithm of holomorphic functions without zeros).
Any holomorphic function without zeros

f : Dr(0)−→ C∗, 0 < r ≤ ∞,

has a holomorphic logarithm, i.e. a holomorphic function

g : Dr(0)−→ C

exists with
f = eg.

Proof. By assumption the function

f ′

f
: Dr(0)−→ C

is well-defined and holomorphic. It expands into a convergent power series

f ′

f
=

∞

∑
n=0

cn · zn.

Hence for any constant c ∈ C the power series

g(z) := c+
∞

∑
n=0

cn

n+1
· zn+1

with radius of convergence at least = r is on Dr(0) a primitive of the quotient f ′/ f .
We choose the constant c such that

ec = eg(0) = f (0).
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Then for all z ∈ Dr(0)
eg(z) = f (z),

because for all z ∈ Dr(0)

d
dz

(
e−g(z) · f (z)

)
=−g′(z) · e−g(z) · f (z)+ e−g(z) · f ′(z) =

= e−g(z) ·
(
−g′(z) · f (z)+ f ′(z)

)
= 0,

which implies for all z ∈ Dr(0)

e−g(z) · f (z) = 1, q.e.d.

Theorem 5.16 (Solution of the Weierstrass problem). Consider a sequence of
pairwise distinct points (aν)ν∈N in C with

lim
ν→∞
|aν |= ∞

and a sequence (kν)ν∈N of natural numbers kν ≥ 1, ν ∈ N. Then a holomorphic
function

F : C−→ C,

exists with zeros exactly the points aν , ν ∈ N, and

ord(F ; aν) = kν .

Any two holomorphic functions F1,F2 with these properties relate as

F2 = eg ·F1

with a holomorphic function
g : C−→ C.

Proof. i) Quotient of two particular solutions: The relation

F2 = eg ·F1

follows from Proposition 5.15 because the quotient F2/F1 is holomorphic on C and
has no zeros.

ii) Polynomial approximation: For any n ∈ N we consider the polynomial

Pn(z) := ∏
n≤|aν |<n+1

(z−aν)
kν .

The polynomial has the prescribed zeros and orders in the annulus
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An := {z ∈ C : n≤ |z|< n+1},

and is holomorphic without zeros in the disc Dn(0). Proposition 5.15 provides a
holomorphic function

fn : Dn(0)−→ C

with
Pn|Dn(0) = e fn .

A suitable Taylor polynomial gn from the Taylor expansion of fn is a polynomial
approximation of fn with

‖ fn−gn‖Dn−1(0) < (1/2)n.

iii) Normal convergence: We show that the infinite product

F(z) :=
∞

∏
n=0

Pn(z) · e−gn(z)

is normally convergent on C. For the proof consider an arbitrary but fixed radius

0 < r < ∞

and choose an index
n0 ≥ r+2.

Then for all n≥ n0
Dr(0)⊂ Dn−1(0).

For n≥ n0 and z ∈ Dr(0) holds∥∥Pn · e−gn −1
∥∥

Dr(0)
=
∥∥∥e( fn−gn)−1

∥∥∥
Dr(0)

≤ 2 · ‖ fn−gn‖Dr(0) ≤ (1/2)n−1

using the estimate for the exponential from Lemma 5.10. As a consequence

∞

∑
n=n0

‖Pn · e−gn −1‖Dr(0) ≤
∞

∑
n=n0

(1/2)n−1 < ∞

which finishes the proof of normal convergence. Due to Theorem 5.11 the function F
has the prescribed zeros, q.e.d.

The general concept to formalize the input data of Theorem 5.16 is the concept
of a divisor.

Remark 5.17 (Divisor).

1. A divisor on a non-empty set U ⊂ C is a map

D : U −→ Z
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with support
supp D := {z ∈U : D(z) 6= 0}

a discrete set, closed in U . Hence the support of a divisor on U is a countable set,
discrete without any cluster point in U .

A divisor D is non-negative, denoted

D≥ 0,

if D(z)≥ 0 for all z ∈U . A non-negative divisor is positive, denoted

D > 0,

if D(z)> 0 for at least one z ∈U .

2. Any meromorphic function f ∈M (U) defines on U the divisor ( f ) := D, named
a principal divisor, with

D : U −→ Z, D(a) := ord( f ; a).

Concerning the opposite direction, Theorem 5.16 implies: Any divisor on C is a
principal divisor, i.e. for suitable f ∈M (C)

D = ( f ).

For the proof one decomposes

D = D1−D2

with two divisors D1,D2 ≥ 0 on C and

supp D1∩ supp D2 = /0.

One chooses an enumeration

supp D1 = (aν)ν∈N

and the sequence (kν)ν∈N with

kν := D(aν), ν ∈ N.

Theorem 5.16 provides an entire function f1 with D1 = ( f1). Analogously an
entire function f2 exists with D2 = ( f2). Then

f :=
f1

f2
∈M (C)

satisfies
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( f ) = ( f1)− ( f2) = D1−D2 = D.

The question on the existence of holomorphic functions leads to the concept of
a domain of holomorphy. This concept will show its far-reaching consequences in
complex analysis of several variables.

Remark 5.18 (Domain of holomorphy).

1. A domain G⊂ C is a domain of holomorphy of a holomorphic function

f : G−→ C,

if f does not extend holomorphically across any point of the boundary ∂G, i.e.
for any point a ∈ G the convergence disk Dr(a) of the Taylor series

f (z) =
∞

∑
n=0

cn · (z−a)n

satisfies
Dr(a)⊂ G.

As a consequence,
Dr(a)∩∂G = /0.

2. A domain G⊂C is the maximal domain of existence for a holomorphic function

f : G−→ C

if there is no domain G ( Ĝ⊂ C with a holomorphic function

f̂ : Ĝ−→ C

satisfying
f̂ |G = f .

3. The sliced complex plane G := C− is the maximal domain of existence of the
holomorphic function

Log : G−→ C,

defined in Example 1.27.

But G is not the domain of holomorphy of Log: For a ∈ C− with Re a < 0 the
Taylor expansion

Log(z) =
∞

∑
n=0

cn · (z−a)n

has radius of convergence = |a|, and

D|a|(a)(C−.
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4. Any domain G ⊂ C is the maximal domain of existence of a holomorphic func-
tion

f : G−→ C.

For the proof one chooses a discrete subset A⊂G with set of accumulation points

A′ = ∂G.

A generalization of Theorem 5.16 provides a non-constant holomorphic function f
with zero set A. Hence the Taylor series of f with center an arbitrary point z0 ∈G
is not convergent for any boundary point from ∂G.

5. Much deeper is the result that any domain G ⊂ C is a domain of holomorphy,
see [21, Kap. 5, §2].

A meromorphic function is locally the quotient of two holomorphic functions,
see Corollary 4.8. Theorem 5.19 states a global version of this property.

Theorem 5.19 (Global meromorphic function as quotient of entire functions).
Any meromorphic function f ∈M (C) has the form

f =
g
h

with entire functions g,h ∈ O(C), h 6= 0.

Proof. W.l.o.g. f 6= 0. Consider the pairwise different poles of f

a0,a1,a2, ... of order k0,k1,k2, ... .

Theorem 5.16 implies the existence of a holomorphic function h ∈O(C) with zeros
exactly at

a0,a1,a2, ... of order k0,k1,k2, ... .

Then the function
g := f ·h ∈ O(C)

is holomorphic, and satifies

f =
g
h
, q.e.d.

Proposition 5.13 exemplifies that a holomorphic function f can be represented
as infinite product of its zeros. For a point a ∈ C,a 6= 0, the polynomial

1−
z
a

has a zero exactly for z = a, and the zero has order = 1. To represent f one could
therefore attempt to take the infinite product of such factors. But in general the
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product is not convergent. To enforce normal convergence one multiplies each poly-
nomial with a non-negative factor. An example of this idea has been given in the
proof of Theorem 5.16.

We now present an explicit construction to enforce normal convergence of a so-
lution of the Weierstrass problem, see Theorem 5.22.

Definition 5.20 (Weierstrass elementary factors and canonical product). Con-
sider a natural number p ∈ N∗. The holomorphic function

Ep : C−→ C, Ep(z) := (1− z) · exp

(
z+

z2

2
+

z3

3
+ ...+

zp

p

)
,

is named the Weierstrass elementary factor of order p. For a sequence (aν)ν≥1 of
points aν ∈ C∗ the infinite product of elementary factors, a formal expression,

∞

∏
ν=1

Ep

(
z

aν

)

is named a canonical product.

A Weierstrass elementary factor Ep(z/a) has exactly one zero, namely at z = a
with

ord(Ep(z/a);a) = 1

We now investigate under which assumptions a canonical product is normally
convergent.

Lemma 5.21 (Weierstrass elementary factor). The Weierstrass elementary factor Ep
of order = p satisfies for |z| ≤ 1 the estimate

|Ep(z)−1| ≤ |z|p+1.

Proof. i) Power series expansion: The Weierstrass elementary factor expands into a
convergent power series with center = 0

Ep(z) = 1−
∞

∑
ν=p+1

aν · zν

with real coefficients aν ≥ 0. For the proof consider the expansion

Ep(z) = 1−
∞

∑
ν=1

aν · zν .

On one hand, its derivative has the Taylor series
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Ep
′(z) =−

∞

∑
ν=1

ν ·aν · zν−1.

On the other hand, by the product rule

Ep
′(z) =−exp

(
z+

z2

2
+

z3

3
+ ...+

zp

p

)
+

+(1− z) · (1+ z+ ...+ zp−1) · exp

(
z+

z2

2
+

z3

3
+ ...+

zp

p

)
=

=−zp · exp

(
z+

z2

2
+

z3

3
+ ...+

zp

p

)
.

The coefficient comparison shows

aν = 0 for 1≤ ν ≤ p

and
aν ≥ 0 for p+1≤ ν .

ii) Estimate: Due to part i)

|Ep(z)−1|=

∣∣∣∣∣ ∞

∑
ν=p+1

aν · zν

∣∣∣∣∣≤ |z|p+1 ·
∞

∑
ν=p+1

aν · |z|ν−p−1

The equation

0 = Ep(1) = 1−
∞

∑
ν=p+1

aν

implies
∞

∑
ν=p+1

aν = 1.

As a consequence for |z| ≤ 1

|Ep(z)−1| ≤ |z|p+1 ·
∞

∑
ν=p+1

aν = |z|p+1, q.e.d.

Theorem 5.22 (Canonical products and Weierstrass product theorem). Con-
sider a sequence (aν)ν≥1 of points aν ∈ C∗, not necessarily pairwise distinct. Then
for any p ∈ N with

∞

∑
ν=1

1
|aν |p+1 < ∞

the canonical product
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∞

∏
ν=1

Ep

(
z

aν

)
• is normal convergent,
• is a holomorphic function F on C with zeros exactly at the points from the se-

quence,
• and order of each zero equal to the multiplicity of the point within the sequence.

Proof. To prove normal convergence we consider an arbitrary but fixed radius r > 0.
There exists an index n0 such that for all ν ≥ ν0

|aν | ≥ r.

For z ∈ Dr(0) and ν ≥ ν0 we have ∣∣∣∣∣ z
aν

∣∣∣∣∣≤ 1.

Hence Lemma 5.21 implies∣∣∣∣∣Ep

(
z

aν

)
−1

∣∣∣∣∣≤
∣∣∣∣∣ z
aν

∣∣∣∣∣
p+1

≤ rp+1 ·
1

|aν |p+1

and

∑
ν≥ν0

∣∣∣∣∣Ep

(
z

aν

)
−1

∣∣∣∣∣≤ rp+1 · ∑
ν≥ν0

1
|aν |p+1 < ∞, q.e.d.

Example 5.23 (Canonical product). We consider the sequence of complex points

(aν)ν∈N = (0,±1,±2, ...).

With the choice p = 1 the series

∞

∑
ν=1

1
|aν |p+1

is convergent. Theorem 5.22 implies the normal convergence of the canonical prod-
uct

∞

∏
ν=1

E1

(
z

aν

)
= ∏

n∈Z
n6=0

E1

(
z
n

)
=

∞

∏
n=1

(
1−

z2

n2

)
.

Hence Proposition 5.13 implies

∞

∏
ν=1

E1

(
z

aν

)
=

sin πz
πz

.
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We now extend the Γ -function, originally defined for real x > 0, to a holomorphic
function in the right half-plane.

For any n ∈ Z set

RH(n) := {z ∈ C : Re z > n}.

Definition 5.24 (Γ -function). The function

Γ : RH(0)−→ C, Γ (z) :=
∫

∞

0
tz−1 · e−t dt,

is named Γ -function.

Proposition 5.25 (Holomorphy of the Γ -function). For all z ∈ RH(0)∫
∞

0
tz−1 · e−t dt < ∞

The Γ -function is well-defined and holomorphic.

Proof. i) Convergence of the integral: For z ∈ RH(0)

tz−1 = e(z−1) ln t

implies with x := Re z > 1 the estimate∣∣tz−1∣∣= e(x−1) ln(t) = tx−1.

Hence ∣∣∣∣∫ t2

t1
tz−1 · e−t dt

∣∣∣∣≤ ∫ ∞

0
tx−1e−t dt = lim

R↑∞
ε↓0

∫ R

ε

tx−1 · e−t dt

if the limit on the right-hand side exists:

• Convergence at the lower bound t ↓ 0: For all x, t > 0 we have

|tx−1e−t | ≤ tx−1,

and ∫ 1

0
tx−1 dt < ∞

because x > 0.

• Convergence at the upper bound t ↑ ∞: We have

lim
t→∞

tx+1e−t = 0.

Hence exists t0 such that for all t ≥ t0
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∣∣tx−1e−t ∣∣= ∣∣∣∣∣ 1
t2 · t

x+1e−t

∣∣∣∣∣= 1
t2 · |t

x+1e−t | ≤
1
t2

The integral is convergent because∫
∞

1

1
t2 dt < ∞.

ii) Holomorphy: For arbitrary but fixed

0 < t1 < t2 < ∞

the function
RH(0)−→ C, z 7→

∫ t2

t1
tz−1 · e−t dt,

is holomorphic, because

∂

∂ z

∫ t2

t1
tz−1 · e−t dt =

∫ t2

t1

∂ tz−1

∂ z
· e−t dt

and
∂ tz−1

∂ z
=

∂e(z−1)·ln t

∂ z
= 0.

To prove the holomorphy of Γ we show that the limit

lim
R↑∞
ε↓0

∫ R

ε

tz−1 · e−t dt

satisfies compact convergence with respect to z for any sequence of integrals in-
dexed by Rν and εµ . Then we apply Weierstrass convergence Theorem 3.26: A
given compact subset K ⊂ RH(0) is contained in a strip

{z ∈ C : x1 ≤ Re z≤ x2}, 0 < x1 < x2 < ∞.

For z ∈ K then∣∣∣∣∫ 1

ε

tz−1 · e−t dt
∣∣∣∣≤ ∫ 1

ε

tx1−1 · e−t dt and
∣∣∣∣∫ R

1
tz−1 · e−t dt

∣∣∣∣≤ ∫ R

1
tx2−1 · e−t dt

For both estimates the integral on the right-hand side is independent from z, and
convergent for ε ↓ 0 and R ↑ ∞. We obtain the compact convergence for z ∈ RH(0)

lim
R↑∞
ε↓0

∫ R

ε

tz−1 · e−t dt = Γ (z),

which finishes the proof of the holomorphy of the Γ -function, q.e.d.
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Proposition 5.26 (Functional equation of the Γ -function). The Γ -function satis-
fies the functional equations

Γ (z+1) = z ·Γ (z), z ∈ RH(0), z ∈ RH(0),

Γ (n) = (n−1)!, n ∈ N∗.

Proof. Because Γ is holomorphic, the Identity Theorem 1.17 implies: It suffices to
prove the claim for real arguments x > 0 only. We apply partial integration∫

u′ ·v dt = [u ·v]−
∫

u ·v′ dt :

Then

Γ (x+1) = lim
R↑∞
ε↓0

∫ R

ε

e−t · tx dt = lim
R↑∞
ε↓0

[
−e−t · tx]x=R

x=ε
+x · lim

R↑∞
ε↓0

∫ R

ε

e−t · tx−1 dt = x ·Γ (x)

The first functional equation and the equation

Γ (1) =
∫

∞

0
e−t dt =

[
−e−t]t=∞

t=0 = 0− (−1) = 1

imply by induction the second functional equation, q.e.d.

It is not unusual in complex analysis that a holomorphic function, at first defined
only on a small open set U , extends to a meromorphic function on a much bigger
open set. The best known example is the convergent geometric series

f (z) =
∞

∑
n=0

zn

which has the convergence disk U = D1(0). The series is not convergent on the
boundary ∂U , in particular it is not convergent for z = 1. The equality

f (z) =
1

1− z

shows the reason: The function f has a pole at the boundary of U . Nevertheless, the
function f extends the geometric series meromorphically to the whole plane. The
meromorphic extension f has a single pole at a = 1. The pole has order = 1.

A similar meromorphic extension is possible for the Γ -function, see Theorem 5.27.

Theorem 5.27 (Meromorphic extension of the Γ -function). The holomorphic
function

Γ : RH(0)−→ C
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extends to a meromorphic function on C, also denoted by Γ . The extended Γ -function
has the pole set

P = {−n : n ∈ N}.

Each pole has order = 1. The principal part of Γ at z =−n is

H−n(z) =
(−1)n

n!
·

1
z+n

Proof. The functional equation of the Γ -function from Proposition 5.26 implies for
each arbitrary but fixed n ∈ N and all z ∈ RH(0)

Γ (z) =
Γ (z+n)

z(z+1) · ... · (z+n−1)
.

For arbitrary but fixed z ∈ C we choose n ∈ N with z+n ∈ RH(0) and define

Γ (z) :=
Γ (z+n)

z(z+1) · ... · (z+n−1)

Due to the functional equation the definition of Γ (z) is independent from the choice
of n.

The right-hand side is a meromorphic function on the half-plane RH(−n). Its
pole set is

Pn = {0,−1, ...,−n+1}.

Because the choice of n ∈ N is arbitrary, the holomorphic function Γ extends to a
meromorphic function on all of C. It expands at z =−n as

Γ (z) =
Γ (z+n+1)

z(z+1) · ... · (z+n)
=

1
z− (−n)

·Ψ(z)

with

Ψ(z) :=
Γ (z+n+1)

z(z+1) · ... · (z+n−1)
.

The function Ψ is holomorphic in a neighbourhood of z =−n because

Ψ(−n) =
Γ (1)

(−n)(−n+1) · ... ·−1
= (−1)n ·

1
n!

Therefore the principal part of Γ at z =−n is

(−1)n

n!
·

1
z− (−n)

, q.e.d.
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Theorem 5.28 (Product representation of the Γ -function).

1. The Γ -function has the product representation as a meromorphic function on C

Γ (z) =
e−C·z

z
·

∞

∏
n=1

ez/n

1+(z/n)

Here

C := lim
N→∞

[(
N

∑
n=1

1
n

)
− ln N

]
is the Euler-Mascheroni constant.

2. The Γ -function relates to the inverse sin-function as

Γ (z) ·Γ (1− z) =
z

sin(πz)

considered as an equality of meromorphic functions on C. In particular, the Γ -function
is meromorphic without zeros.

Proof. 1. According to Theorem 5.27 the function Γ -function has the pole set −N.
All poles have order = 1. Using a suitable canonical product we construct a
function γ with the same poles and principal parts as Γ .

i) Inverse γ of a canonical product: Theorem 5.22 implies that the canonical
product

z ·
∞

∏
n=1

E1

(
1−

z
(−n)

)
= z ·

∞

∏
n=1

E1(1+(z/n))

is normal convergent and represents an entire function with zero set −N. All
zeros have order = 1. Recall

E1(1+(z/n)) := (1+(z/n)) · exp(z/n).

Hence the inverse of the canonical product, multiplied with a non-zero constant,

γ(z) :=
e−C·z

z
·

∞

∏
n=1

ez/n

1+(z/n)

has the same poles as the Γ -function.

Using the definition of the Euler-Mascheroni constant and the continuity of the
exponential we now derive a second representation

γ(z) =
1
z
· lim

N→∞

(
exp

[
−z ·

((
N

∑
n=1

1
n

)
− ln N

)]
·

N

∏
n=1

ez/n

1+(z/n)

)
=
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=
1
z
· lim

N→∞

(
exp(z · ln N) ·

N

∏
n=1

n
n+ z

)
=

= lim
N→∞

Nz ·N!
z · (z+1) · ... · (z+N)

ii) Functional equation of γ and principal parts: From the last formula of part i)
one derives that γ satisfies the same functional equations as Γ :

γ(z+1) = z · γ(z)

as well as
γ(1) = 1 and γ(n) = (n−1)!

The last formula implies

γ(z) =
γ(z+n)

z · (z+1) · ... · (z+n)
, z ∈ C,

Hence γ has the same principal parts as Γ :

Hγ,−n(z) =
(−1)n

n1 ·
1

z+n
, n ∈ N.

iii) Equality Γ = γ: Part i) and ii) show: The two meromorphic functions Γ and γ

have the same poles and the same principal parts. Therefore their difference

g := Γ − γ : C−→ C

is an entire function. We claim g = 0: In the strip

B1,2 := {z ∈ C : 1≤ Re z≤ 2}

we have for x := Re(z)
|Γ (z)| ≤ Γ (x).

The latter function is continuous on the compact interval [1,2] ⊂ R, hence
bounded. For x > 0 we have∣∣∣∣∣ Nz ·N!

z · (z+1) · ... · (z+N)

∣∣∣∣∣≤ nx ·N!
x · (x+1) · ... · (x+N)

which implies
|γ(z)| ≤ γ(x).

The latter function is also continuous, hence bounded on [1,2]⊂ R. As a conse-
quence, the function g is bounded in B1,2.

The functional equations of Γ and γ
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Γ (z+1) = z ·Γ (z) and γ(z+1) = z · γ(z)

imply

g(z+1) = z ·g(z) i.e. g(z) =
g(z+1)

z
As a consequence, the holomorphic function g is also bounded in the strip

B0,1 := {z ∈ C : 0≤ Re z≤ 1}.

Eventually, we introduce the entire function

S : C−→ C, S(z) := g(z) ·g(1− z).

Boundedness of g in B0,1 implies boundedness of S in B0,1. For all z ∈ C

S(z+1) := g(z+1) ·g(−z) = z ·g(z) ·g(−z) =−g(z) · (−z) ·g(−z) =

=−g(−z) ·g(−z+1) =−S(z).

As a consequence, the function S has period = 2, and due to

S(z+1) =−S(z)

the function S is even bounded in the strip

B0,2 := {z ∈ C : 0≤ Re z≤ 2}.

The periodicity of S implies that S is even bounded in C, hence constant by
Liouville’s Theorem, see Corollary 3.23. The equality

S(z+1) =−S(z)

implies
S = 0.

The representation
S(z) = g(z) ·g(1− z)

of S as a product of two holomorphic functions shows g = 0, q.e.d.

2. To prove the claim, one first uses the equalities

Γ = γ and γ(1− z) = (−z) · γ(−z)

from part 1):

γ(z)·γ(1−z)= (−z)·γ(z)·γ(−z)= (−z)·
e−Cz

z
·

∞

∏
n=1

ez/n

1+(z/n)
·

eCz

(−z)
·

∞

∏
n=1

e−z/n

1− (z/n)
=
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=
1

z ·∏∞
n=1(1− (z2/n2))

=
π

sin πz

The last equality is the product representation of the sin-function from Example 5.23,
q.e.d.

Remark 5.29 (ζ -function and Γ -function).

i) Similarly to the Γ -function also the ζ -function is holomorphic in the half-space
RH(1) and extends to a meromorphic function on C. The extended ζ -function is
holomorphic on C\{1}. The isolated singularity is a first order pole at a = 1.

ii) On the negative real axis the ζ -function satisfies for all k ∈ N∗

ζ (−2k) = 0 and ζ (1−2k) =−
B2k

2k
Riemann conjectured that all other complex zeros are located on the critical line

1
2
+ i ·R⊂ C.

iii) The ζ -function satisfies a functional equation which compares the values at the
complex arguments s and 1− s, which are in mirror symmetry to the point = 1/2 on
the critical line: If one defines on C the meromorphic Λ -function by

Λ(s) := π
−(s/2) ·Γ (s/2) ·ζ (s)

then
Λ(s) = Λ(1− s).

Concerning these and other results consult [25, Teil I, §3 and §4].

iv) One may visualize the Riemann ζ -function as a landscape determined by the
graph of the function: A point of the landscape with plane coordinate s ∈ C has the
height |ζ (s)|. The ζ -landscape has one single peak at s = 1/2 of infinite height,
and infinitely many valleys at sea level.

The Riemann conjecture states: Besides the obvious valleys at sea level which are
located at points with plane coordinate s =−2k, k ∈ N∗, all other valleys at
sealevel are located on the critical line.
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5.4 Outlook

The problems of Mittag-Leffler and Weierstrass generalize from complex analysis
to non-compact Riemann surfaces (manifolds depending on one complex variable)
and to general Stein manifolds (several complex variables). In the context of several
complex variables the two problems are distinguished as Cousin-I (additive) and
Cousin-II (multiplicative) problem. The investigation of these problems triggered
the development of analysis on complex manifolds in the midst of the 20th century.
By means of sheaf theory the problems have been solved in a very satisfactory way,
see [11, Kap. V, §2].

• What is a sheaf?
• How to generalize the Mittag-Leffler and Weierstrass problems to the context of

manifolds by using sheaf theory?
• Which mathematical tools serve to solve the Cousin problems?

The Riemann ζ -function from Remark 5.8 is one of the main contributions of
complex analysis to number theory. The study of number theory by analytic means
is the subject of the mathematical field called Analytical Number Theory. A recom-
mendable introduction to the Γ -function and the Riemann ζ -function is [25].

One of the mathematical millenium problems asks for a proof of Riemann’s con-
jecture, see [1]. It is well-known that the conjecture is equivalent to a result about
the zeros of a certain family of real polynomials

Jd,n ∈ R[X ]

which are well-defined for each degree d ∈ N∗ and any index n ∈ N. These poly-
nomials, named Jensen polynomials, derive from the series expansion of the Λ -
function defined in Remark 5.29. It suffices to prove the result for n = 0 only.
Recently a new approach [13] was published, which proves the result for Jd,0

with 1≤ d ≤ 8. Nevertheless, currently (June 2019) the conjecture is still open.

In Algebraic Geometry there is an analogue to Riemann’s conjecture. The ana-
logue is part of the Weil conjectures. They deal with the zero sets of polynomials
with rational coefficients. The first non-trivial case investigates the points with ra-
tional coordinates on an elliptic curve, see [23, Chap. IV, §1]. The Weyl conjec-
tures from the midth of the 20th century have been proven by Deligne in 1973, see
[16, Appendix C]. His proof shows the strenght of Gothendieck’s reformulation of
Algebraic Geometry.



Chapter 6
Integral Theorems of Complex Analysis

Cauchy’s general integral theorem is a result about the integration of a holomorphic
function along the boundary of a relatively compact subdomain of its domain of
definition. The theorem follows from converting the curve integral into a surface
integral. Hence it is a specific case of the Green-Riemann integral formula. For a
complex differentiable function the integrand of the surface integral vanishes due to
the Cauchy-Riemann differential equations.

6.1 Cauchy’s integral theorem and the residue theorem

The present section generalizes Chapter 3 concerning the domain of integration.
Chapter 3 considered disks and annuli. Their boundary consist of one or two circles.
The Cauchy integral theorem and the Cauchy integral formula for annuli follow
from expanding the Cauchy kernel into a convergent geometric series and choosing
the standard representation of the boundary circles. The result shows: The Cauchy
integrals from Chapter 3 do not depend on the specific path of integration. They are
dependent on the integrand being holomorphic or having singularities in the interior.
But the impact of the singularity is confined to its residue.

In the more general context of the present chapter we integrate along the bound-
ary of relatively compact open sets A⊂⊂ C. All integral formulas are special cases
of Stoke’s integral formula. Stoke’s formula converts the surface integral about A
into a path integral along the boundary ∂A. Therefore we have to presuppose that A
has a smooth boundary.

A compact set A ⊂ C has a smooth boundary if ∂A is locally a curve with a
continuously differentiable parameter representation. This concept is formalized in
Definition 6.1.

131
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Definition 6.1 (Smooth boundary). A set A⊂R2 has a smooth boundary, see Fig-
ure 6.1, if any point a ∈ ∂A has an open neighbourhood U ⊂R2 and a continuously
differentiable function

ρ : U −→ R

such that:

• The set A∩U lies on one side of the zero set of ρ , i.e.

A∩U = {(x,y) ∈U : ρ(x,y)≤ 0}

• The zero set of ρ has a well-defined normal vector, i.e. for all (x,y) ∈U

grad(ρ)(x,y) 6= 0.

The boundary is piecewise smooth if all but finitely many points a ∈ ∂A satisfy the
above definition.

Fig. 6.1 Smooth boundary ∂A with exterior normal vector at a ∈ ∂A

Remark 6.2 (Smooth boundary).

1. In Definition 6.1 the zero set

V (ρ) := {(x,y) ∈U : ρ(x,y) = 0}

equals the local boundary, i.e.

V (ρ) =U ∩∂A.

2. For all (x,y) ∈V (ρ)
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grad(ρ)(x,y) 6= 0.

Hence V (ρ) is locally the graph of a continuously differentiable function

x = x(y) or y = y(x).

This representation follows from the Implicit Function Theorem, see [7].

3. If a ∈ ∂A is a smooth boundary point then the exterior normal vector at a ∈ ∂A
is well defined: It is the multiple of the gradient of unit lenght pointing to the
exterior of A. Integration along ∂A with the induced orientation requires to
parametrize the curve of integration in such a way that the interior Å is left-hand
side when moving along the curve.

Theorem 6.3 (Green-Riemann formula). Consider an open subset U ⊂R2 and a
compact subset

D⊂U

with piecewise smooth boundary ∂D. Let

P,Q : U −→ C

be two functions with continuous partial derivatives. Then

∫
∂D

P dx+Q dy =
∫∫

D

(
∂Q
∂x
−

∂P
∂y

)
dxdy.

Figure 6.2 shows the set D with boundary

∂D =C1∪C2∪C3∪C4.
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Fig. 6.2 Compact set D with piecewise smooth boundary ∂D =C and oriented boundary curves

The Green-Riemann formula is a specific case of respectively Gauss’ integral
formula or - even more general - of Stoke’s theorem∫

∂D
ω =

∫
D

dω

for a differential form ω which is continuously differentiable. Stokes’ theorem
states: The primitive ω integrated along the boundary ∂D equals the derivative dω

integrated along the bounded compact D.

To derive the Green-Riemann formula from Stokes’ theorem one considers

ω := P(x,y) dx+Q(x,y) dy

obtaining

dω =−
∂P(x,y)

∂y
dx∧dy+

∂Q(x,y)
∂x

dx∧dy

For integration on compact sets D⊂ R2 the differential form dx∧dy is the positive
oriented surface element d(x,y) and can be replaced by the symbol dxdy. For a proof
of Gauss’ and Stoke’s theorem see [8].



6.1 Cauchy’s integral theorem and the residue theorem 135

Theorem 6.4 (Cauchy’s integral theorem (general case)). Consider an open
set U ⊂ C and a compact set A ⊂ A with piecewise smooth boundary. Any holo-
morphic function

f : U −→ C

satisfies ∫
∂A

f (z) dz = 0.

Proof. We reduce the theorem to the Green-Riemann formula. The decomposition
of arguments into real and imaginary part

z = x+ iy

implies the decomposition of differential forms

dz = dx+ idy.

Due to Theorem 6.3∫
∂A

f (z) dz =
∫

∂A
( f dx+ i · f dy) =

∫∫
A

(
i ·

∂ f
∂x
−

∂ f
∂y

)
dx∧dy.

Due to the holomorphy of f the Cauchy-Riemann differential equations in the form
of Proposition 2.4 imply

i ·
∂ f
∂x

=
∂ f
∂y

which finishes the proof, q.e.d.

Definition 6.5 (Residue). Consider a holomorphic function with an isolated singu-
larity at a point a ∈ C

f : D∗r (a)−→ C, r > 0.

If

f (z) =
∞

∑
n=−∞

cn(z−a)n

denotes the Laurent expansion of f at a, then

res( f ; a) := c−1 ∈ C

is the residue of f at a.

Theorem 6.6 (Residue theorem). Consider an open set U ⊂ C and a compact
set A⊂U with piecewise smooth boundary. For any finite set of interior points
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a1, ...,am ∈ Å

each holomorphic function

f : U \{a1, ...,am} −→ C

satisfies ∫
∂A

f (z) dz = 2πi ·
m

∑
j=1

res( f ; a j).

Proof. For ε > 0 we set

Aε := A\
m⋃

j=1

Dε(a j),

see Figure 6.3. For suitable ε > 0 we may assume Dε(a j) ⊂ A for all j = 1, ...,m,
and pairwise disjoint.

Fig. 6.3 Paths of integration

Cauchy’s Integral Theorem 6.4 implies∫
∂Aε

f (z) dz = 0.

Hence ∫
∂A

f (z) dz =
m

∑
j=1

(∫
|z−a j |=ε

f (z) dz
)
,
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which reduces the proof of the theorem to a local computation at a given isolated
singularity a ∈U of f : Assume

f (z) =
∞

∑
n=−∞

cn · (z−a)n.

To compute ∫
|z−a|=ε

f (z) dz

we choose the standard parametrization of the circuit ∂Dε(a)

z = a+ εeiφ , φ ∈ [0,2π], with dz = iεeiφ dφ .

Then ∫
|z−a|=ε

f (z) dz =
∞

∑
n=−∞

cn ·
(∫ 2π

0
ε

neinφ · iεeiφ dφ

)
=

=
∞

∑
n=−∞

cn · iεn+1
(∫ 2π

0
ei(n+1)φ dφ

)
= 2πi · c−1 = 2πi · res( f ;a), q.e.d.

Theorem 6.7 (Cauchy’s integral formula (general case)). Consider an open
set U ⊂ C and a compact set A ⊂ A with piecewise smooth boundary. Any holo-
morphic function

f : U −→ C

satisfies for any a ∈ Å and arbitrary n ∈ N

f (n)(a) =
n!

2πi

∫
∂A

f (z)
(z−a)n+1 dz.

Proof. The integrand
f (z)

(ζ −a)n+1

has a single pole at z = a. Theorem 6.6 implies

∫
∂A

f (z)
(ζ −a)n+1 dζ = 2πi · res

(
f (z)

(z−a)n+1; a

)

To compute the residue we consider the Taylor expansion with center = a

f (z) = ∑
k=0

ck · (z−a)k with ck =
f (k)(a)

k!

which implies
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res

(
f (z)

(z−a)n+1; a

)
= cn =

f (n)(a)
n!

, q.e.d.

Theorem 6.8 is a converse of Cauchy’s integral theorem.

Theorem 6.8 (Morera’s Theorem). Consider a domain G ⊂ C and a continuous
function

f : G−→ C.

If for all rectangles R⊂ G which are parallel to the axes of C' R2 holds∫
∂R

f (z) dz = 0

then the function f is holomorphic.

Proof. The claim is local. Hence we may assume G = Dr(0) a disk with center = 0.
Define

F : G−→ C, F(z) :=
∫

γ

f (ζ ) ζ ,

with a path γ in G from z0 = 0 to z composed of two adjacent lines, one being
parallel to the x-axis and the other being parallel to the y-axis. By assumption, the
value F(z) is independent from the choice of the two lines.

Claim: The function F satisfies the Cauchy-Riemann differential equations. For the
proof we compute for z ∈ G

∂

∂x
F(z) =

∂

∂x
F(x+ iy) =

∂

∂x

(∫ iy

0
f (ζ ) dζ +

∫ x+iy

iy
f (ζ ) dζ

)
=

=
∂

∂x

(∫ y

0
f (it) dt +

∫ x

0
f (t + iy) dt

)
=

∂

∂x

(∫ x

0
f (t + iy) dt

)
= f (x+ iy) = f (z)

Similarly
∂

∂y
F(z) =

∂

∂y

(∫ x

0
f (ζ ) dζ +

∫ x+iy

x
f (ζ ) dζ

)
=

=
∂

∂y

(∫ x

0
f (t) dt +

∫ y

0
f (x+ it) i ·dt

)
Note for the last integral the parametrization

ζ := i · t,

inducing
dζ = i ·dt.

Hence
∂

∂y
F(z) =

∂

∂y

(∫ y

0
f (x+ it) i ·dt

)
= i · f (x+ iy) = i · f (z)
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Therefore F has continuous partial derivatives, which satisfy the Cauchy-Riemann
differential equations. Hence due to Theorem 3.8 the function F is holomorphic,
and F ′ is holomorphic too. Proposition 2.4 implies

F ′ =
∂F
∂x

= f , q.e.d.

6.2 Computation of integrals using the residue theorem

One of the main applications of the residue theorem in real analysis and mathemat-
ical physics is the computation of integrals.

Example 6.9 (Integration along the real axis). The meromorphic function on C

f (z) :=
1

1+ z2

has the poles
z =±i.

Each pole has order = 1.

f (z) =
1

1+ z2 =
1

z− i
·

1
z+ i

Hence the principal part

Hi(z) =
1

z− i
·

1
2i

and

res( f ; i) =
1
2i

To compute the integral ∫
∞

−∞

dx
1+ x2 = lim

R→∞

∫ R

−R

dx
1+ x2

we extend the path of integration from −R to R on the real axis by the semi-circle

γR ⊂ C

in the upper half-plane
H := {z ∈ C : Im z > 0},

see Figure 6.4.
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Fig. 6.4 Extended path of integration

Theorem 6.6 implies

2πi ·
1
2i

= π =
∫ R

−R

dx
1+ x2 +

∫
γR

dz
1+ z2

We have

lim
R→∞

∣∣∣∣∣
∫

γR

1
1+ z2 dz

∣∣∣∣∣≤ lim
R→∞

πR ·
1

R2−1
dz = 0

As a consequence ∫
∞

−∞

dx
1+ x2 = π.

Example 6.9 is a specific case of the following Proposition 6.10.

Proposition 6.10 (Integration of rational functions). Consider two polynomials

p,q ∈ C[z],

and assume
deg q≥ 2+deg p

and the polynomial q without zeros on the real axis. Then∫
∞

−∞

p(x)
q(x)

dx = 2πi · ∑
a∈H pole

of p/q

res(p/q;a)

Proof. Theorem 6.6 implies
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Fig. 6.5 Path of integration

2πi ·
m

∑
j=1

res(p/q;a j) =
∫ R

−R

p(x)
q(x)

dx+
∫

γR

p(z)
q(z)

dz

The assumption
deg q≥ 2+deg p

implies the existence of constants C,R0 > 0 such that for all R≥ R0 and |z|= R∣∣∣∣∣ p(z)
q(z)

∣∣∣∣∣≤ C
R2

see Figure 6.5. W.l.o.g. all poles of p/q in H

a1, ...,am

have modulus less R0. For R≥ R0 we have∣∣∣∣∣
∫

γR

p(z)
q(r)

dz

∣∣∣∣∣≤
∫

γR

∣∣∣∣∣ p(z)
q(z)

∣∣∣∣∣ dz≤ πR ·
C
R2.

As a consequence

lim
R→∞

∫
γR

p(z)
q(r)

dz = 0

and ∫
∞

−∞

p(x)
q(x)

dx = lim
R→∞

∫ R

−R

p(x)
q(x)

dx = 2πi · ∑
a∈H

pole of p/q

res(p/q; a), q.e.d.
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Lemma 6.11 (Computation of the residue). Consider two functions f ,g which
are holomorphic in a neighbourhood of a point a ∈ C. Assume

ord(g; a) = 1.

Then

res

(
f
g

; a

)
=

f (a)
g′(a)

Proof. The Taylor expansion of g around a

g(z) = 0+g′(a)(z−a)+O(2).

implies the Laurent expansion of f/g around a:

f (z)
g(z)

=
1

z−a
·

f (z)
g′(a)+O(1)

=
1

z−a
·

f (z)
g′(a)(1+O(1))

=

=
1

z−a
·

f (a)
g′(a)

(1+O(1)).

Hence

res( f/g; a) =
f (a)
g′(a)

, q.e.d.

Corollary 6.12 (Integration of a specific rational function).∫
∞

−∞

dx
1+ x4 =

π
√

2

Proof. i) The meromorphic function on C

f (z) :=
1

1+ z4

has pole set

{z ∈ C : z4 =−1}= {eiπ·((1/4)+(k/2)) : k = 0,1,2,3}.

Each pole has order = 1. The two poles in H are

a0 = ei·π/4 and a1 = ei·3π/4.

Due to Lemma 6.11 the corresponding residues are respectively

1/4 · e−i(3/4)π and 1/4 · e−i(1/4)π .

Proposition 6.10 implies
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∞

−∞

dx
1+ x4 =

iπ
2
· (e−i(3/4)π + e−i(1/4)π) =

=
iπ
2
·
√

2
2
· (−1− i+1− i) =

π
√

2
, q.e.d.

Proposition 6.13 (Integration of a trigonometric function).∫
∞

−∞

sin x
x

dx = π.

Proof. The integrand is continuous along the real axis, in particular at the point 0 ∈ R.
Therefore ∫

∞

−∞

sin(x)
x

dx = lim
R→0

∫
δR

sin(z)
z

dz

with path of integration δR from Figure 6.6. To evaluate the integral on the right-
hand side we recall

sin(z) =
1
2i
· (eiz− e−iz),

and consider the meromorphic function on C

f (z) :=
eiz

z

Both functions

f (z) and
e−iz

z
have a single pole at z = 0. The pole has order = 1 with residue = 1.

i) First we consider the integration

f (z) =
eiz

z
along the two paths

δR and γ
+
R

from Figure 6.6.
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Fig. 6.6 Paths of integration

To estimate∫
γ
+
R

eiz

z
dz =

∫
π

0
exp(iR · eiφ ) ·

iR · eiφ

Reiφ dφ = i ·
∫

π

0
exp(iR · eiφ ) dφ

we use

exp(iR · eiφ ) = exp(iR · (cos φ + i · sin φ)) = exp(−Rsin φ) · exp(iR · cos φ)

We obtain
|exp(iR · eiφ )|= exp(−R · sin φ)

and ∣∣∣∣∣
∫

γ
+
R

eiz

z
dz

∣∣∣∣∣≤
∫

π

0
exp(−R · sin φ) dφ = 2 ·

∫
π/2

0
exp(−R · sin φ) dφ
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For φ ∈ [0,π/2] we estimate

0≤ φ · (2/π)≤ sin φ .

Hence∣∣∣∣∫
γ
+
R

exp(iR · eiφ )

∣∣∣∣≤ 2 ·
∫

π/2

0
exp(−R ·(2/π) ·φ) dφ ≤ 2 ·

∫
∞

0
exp

(
−2R

π
·φ

)
dφ =

= 2 ·

[
(−π)

2R
· exp

(
−2R

π
·φ

)]φ=∞

φ=0

=
−π

R
·

[
exp

(
−2R

π
·φ

)]φ=∞

φ=0

=
π

R

As a consequence

lim
R→∞

∫
γ
+
R

eiz

z
dz = 0.

The function f (z) has no poles in H. Therefore Theorem 6.6 implies

0 =
∫

δR

eiz

z
dz+

∫
γ
+
R

eiz

z
dz.

As a consequence

lim
R→∞

∫
δR

eiz

z
dz = 0.

ii) We now consider the integrand
e−iz

z

along the two paths of integration −δR and γ
−
R from Figure 6.6. We parametrize

z := R · eiψ , dz = iR · eiψ dψ.

Then ∫
γ
−
R

e−iz

z
dz =

∫ 0

−π

exp(−iR · eiψ) ·
iR · eiψ

R · eiψ dψ =

= i ·
∫ 0

−π

exp(−iR · eiψ) dψ.

We substitute
ψ =−φ , dψ =−dφ

obtaining ∫
γ
−
R

e−iz

z
dz = i ·

∫
π

0
exp(−iR · e−iφ )dφ

From
exp(−iR · e−iφ ) = exp(−iR · (cos φ − i · sin φ))
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follows the estimate

|exp(−iR · e−iφ )|= exp(−Rsin(φ))

Hence ∣∣∣∣∣
∫

γ
−
r

e−iz

z
dz

∣∣∣∣∣≤
∫

π

0
exp(−R · sin φ) dφ .

Due to the estimate from part i)

lim
R→∞

∫
γ
−
R

e−iz

z
dz = 0.

Theorem 6.6 implies - note the orientation of the integration paths -

2πi =−
∫

δR

e−iz

z
dz+

∫
γ
−
R

e−iz

z
dz.

Hence

lim
R→∞

∫
δR

e−iz

z
dz =−2πi.

iii) As a consequence from part i) and ii) we get

∫
∞

−∞

sin x
x

dx = lim
R→∞

(∫
δR

sin z
z

dz

)
=

1
2i
· lim

R→∞

(∫
δR

eiz z
z

dz−
∫

δR

e−iz z
z

dz

)
=

=
1
2i
· (0− (−2πi)) = π, q.e.d.

Lemma 6.14 (Gauss integral). ∫
∞

−∞

e−x2
dx =

√
π

Proof. Set

I :=
∫

∞

−∞

e−x2
dx.

Introducing polar coordinates:

I2 =
∫

∞

−∞

e−x2
dx ·

∫
∞

−∞

e−y2
dy=

∫ ∫
R2

e−(x
2+y2) dx dy=

∫
∞

r=0

(∫ 2π

φ=0
dφ

)
r ·e−r2

dr =

= 2π ·
∫

∞

0
r · e−r2

dr = π ·
∫

∞

0
e−t dt = π ·

[
−e−t]t=∞

t=0 = π

Here we made the final substitution
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r2 = t, 2rdr = dt.

We obtain
I2 = π and I =

√
π, q.e.d.

Proposition 6.15 (Fresnel integrals).

∫
∞

0
cos(x2) dx =

∫
∞

0
sin(x2) dx =

√
π

8

Proof. The proof relates the Fresnel integrals to the Gauss integral from Lemma 6.14.

i) For R > 0 we choose the path γR from Figure 6.7 as path of integration.

Fig. 6.7 Path of integration

∫
γR

e−z2
dz =

∫
π/4

0
exp(−R2 · e2iφ ) · iR · eiφ dφ

Hence∣∣∣∣∫
γR

e−z2
dz
∣∣∣∣≤ ∫ π/4

0
exp(−R2 ·cos(2φ)) ·R dφ =

1
2
·
∫

π/2

0
exp(−R2 ·cos φ) ·R dφ =

=
1
2
·
∫

π/2

0
exp(−R2 · sin φ) ·R dφ ≤

1
2
·
∫

∞

0
exp(−R2 ·

2
π
·φ) ·R dφ =
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=
1
2
·

[
−

π

2R2 ·R · exp(−R2 ·
2
π
·φ)

]φ=∞

φ=0

=−
π

4R
·

[
exp(−R2 ·

2
π
·φ)

]φ=∞

φ=0

=
π

4R

which implies

lim
R→∞

∫
γR

e−z2
dz = 0.

ii) The integrand e−z2
is holomorphic. Theorem 6.6 implies

0 =
∫ R

0
e−x2

dx+
∫

γR

e−z2
dz+

∫ 0

Reiπ/4
e−z2

dz

or ∫
∞

0
e−x2

dx = lim
R→∞

∫ Reiπ/4

0
e−z2

dz.

iii) We parametrize the line of integration of the integral on the right-hand side as

z = teiπ/4, t ∈ [0,R] and dz = eiπ/4dt, z2 = it2.

∫ Reiπ/4

0
e−z2

dz = eiπ/4 ·
∫ R

0
e−it2

dt = eiπ/4 ·
(∫ R

0
cos(t2) dt− i ·

∫ R

0
sin(t2) dt

)
iv) As a consequence
√

π

2
=
∫

∞

0
e−x2

dx= eiπ/4 ·
∫

∞

0
e−it2

dt = eiπ/4 ·
(∫

∞

0
cos(t2) dt− i ·

∫
∞

0
sin(t2) dt

)
.

Computing
√

π

2
· e−iπ/4 =

√
π

2
·

1− i
√

2
= (1− i) ·

√
π

8

and comparing real part and imaginary part proves

∫
∞

0
cos(t2) dt =

√
π

8
=
∫

∞

0
sin(t2) dt, q.e.d.

6.3 Applications of the residue theorem in complex analysis

Proposition 6.16 (Counting zeros and poles of a meromorphic function). Con-
sider a domain G⊂ C and a non-constant meromorphic function f on G.

If A ⊂U is a compact subset with piecewise smooth boundary such that f has
neither zeros nor poles on ∂A, then the numbers N of zeros and P of poles of f in A
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- counted with multiplicity - satisfy

N−P =
1

2πi
·
∫

∂A

f ′(z)
f (z)

dz.

Proof. The quotient f ′/ f is meromorphic on U . Consider a point a ∈ A and set

k := ord( f ; a).

The Laurent expansions with center = a are

f (z) =
∞

∑
n=k

cn · (z−a)n, ck 6= 0,

f ′(z) =
∞

∑
n=k

n · cn · (z−a)n−1.

• If k 6= 0 then
ord( f ; a) = k and ord( f ′; a) = k−1,

hence
ord( f ′/ f ; a) = ord( f ′; a)−ord( f ; a) =−1.

Hence the quotient f ′/ f has a pole of order = 1 at a. Its residuum follows from

f ′(z)
f (z)

=
k · ck(z−a)k−1 + terms of higher order

ck(z−a)k + terms of higher order
=

k
z−a

+O(0)

as
res( f ′/ f ; a) = k = ord( f ; a).

• If k = 0 then f (a) 6= 0, and
f , f ′, and 1/ f

are holomorphic in a neigbourhood of a. Hence

res( f ′/ f ; a) = 0 = ord( f ; a).

Theorem 6.6 implies∫
∂A

f ′(z)
f (z)

dz = 2πi ·∑
a∈A

res( f ′/ f ; a) = 2πi ·∑
a∈A

ord( f ; a) = N−P, q.e.d.

Theorem 6.17 states that for a holomorphic map f the number of zeros within a
compact set A remains constant under a perturbation φ , if the latter remains small
on the boundary ∂A - and a posteriori within the compact set.
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Theorem 6.17 (Rouché’s theorem). Consider a compact set A⊂C with piecewise
smooth boundary and an open neighbourhood A⊂U. If

f , φ : U −→ C

are two holomorphic functions satisfying for all z ∈ ∂A

|φ(z)|< | f (z)|,

then
f and the disturbed funtion f −φ

have the same number of zeros in A - counted with multiplicity.

Proof. For each arbitrary but fixed real parameter t ∈ [0, 1] we consider the holo-
morphic function

Ft := f − t ·φ : U −→ C.

We have
f0 = f and f1 = f −φ .

By assumption each Ft has no zeros on ∂A. We denote by Nt the number of zeros
of Ft in A. Proposition 6.16 implies

Nt =
1

2πi
·
∫

∂A

F ′t (z)
Ft(z)

dz ∈ N.

Because the integrand depends continuously on t ∈ [0, 1] we obtain

N0 = N1, q.e.d.

Remark 6.18 (Fundamental theorem of algebra). Rouché’s theorem provides a sec-
ond proof of the fundamental theorem of algebra, cf. Corollary 3.19:

Consider a complex polynomial of degree = n

p(z) = zn +an−1 · zn−1 + ...+a1 · z+a0 ∈ C[z].

The function f (z) := zn has the only zero z = 0; it has multiplicity = n. Define the
polynomial of degree ≤ n−1

φ(z) :=−(an−1 · zn−1 + ...+a1 · z+a0) ∈ C[z].

For R > 0 sufficiently large we have for all |z|= R due to their distinct degrees

| f (z)|> |φ(z)|.

Theorem 6.17 implies that
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p(z) = f (z)−φ(z)

has the same number of zeros as f (z), i.e. p(z) has n zeros, q.e.d.

Example 6.19 (Counting zeros of a polynomial). To determine the number of zeros
of the polynomial

p(z) = z4 +5z+2

in the unit disk D1(0) we set
f (z) := 5z+2

and
φ(z) :=−z4.

The linear polynomial f has the single zero z =−2/5 in the unit disk; the zero has
multiplicity = 1.

For |z|= 1 we have

|φ(z)|= 1

and
| f (z)|= |5z+2| ≥ |5z|− |2|= 3,

in particular
|φ(z)|= 1 < 3≤ | f (z)|.

Theorem 6.17 implies that
p(z) = f (z)−φ(z)

has a single zero in the unit disk, like f (z).

Theorem 6.20 (Inverse function theorem). Consider an open subset U ⊂ C and
a holomorphic function

f : U −→ C

with
f ′(a) 6= 0

for a point a ∈U. Then open neighbourhoods

V1 ⊂U of a and V2 ⊂ C of b := f (a)

exist such that
f |V1 : V1 −→V2

is bijective, and the inverse map

g := ( f |V1)
−1 : V2 −→V1
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is holomorphic, satisfying

g′(b) =
1

f ′(a)
.

Proof. See Figure 6.8 for the notation.

Fig. 6.8 Locally defined inverse function

i) Bijectivity: The function

f −b

has a zero of order = 1 at z= a because f ′(a) 6= 0. Lemma 1.10 implies the existence
of a radius r > 0 such that

Dr(a)⊂U,

and a is the only zero of f −b in Dr(a). In particular

ε := inf{| f (z)−b| : |z−a|= r}> 0.

For any arbitrary but fixed w ∈ C with

|w−b|< ε

we apply Rouché’s Theorem 6.17 to the compact set

A := Dr(a)

and the two holomorphic functions

f −b and φ := w−b :
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For |z−a|= r we have

|φ(z)|= |w−b|< ε ≤ | f (z)−b|.

Hence for exactly one point z ∈ Dr(a)

0 = ( f (z)−b)−φ = f (z)−b− (w−b) = f (z)−w.

We set
V2 := Dε(b) and V1 := Dr(a)∩ f−1(V2).

Then
f |V1 : V1 −→V2

is bijective with inverse function

g : V2 −→V1, g(w) := z.

ii) Holomorphy: For arbitrary but fixed w0 ∈V2 we claim

g(w0) =
1

2πi
·
∫

∂V1

z · f ′(z)
f (z)−w0

dz.

The integral on the right-hand side can be computed by the residue theorem: The
integrand has in V1 a single pole at

z0 := g(w0).

Due to part i) the pole has order = 1. Lemma 6.11 determines the residuum

res

(
z · f ′(z)

f (z)−w0
; z0

)
=

z0 · f ′(z0)

f ′(z0)
= z0 = g(w0).

Theorem 6.6 implies

1
2πi
·
∫

∂V1

z · f ′(z)
f (z)−w0

dz = res

(
z · f ′(z)
f (z)−w

; z0

)
= g(w0).

To prove that g is holomorphic we note: The function g has continuous partial
derivatives and satisfies

∂g/∂w = 0.

Both statements follow from interchanging integration and derivation in the integral-
representation of g because the pole of the integrand is not located on the path of
integration.

iii) Derivative: The claim
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g′(w) =
1

f ′(z)
, w := f (z),

follows from applying the chain rule to the composition

g◦ f = id, q.e.d.

Note. In the context of real analysis one cannot conclude that the inverse of an
injective differentiable function is again differentiable. A counter example is the
function f (x) = x3 at the point x = 0.



Chapter 7
Homotopy

Homotopy means continuous deformation of continuous maps. Homotopy is a prin-
ciple investigated in the mathematical field of Algebraic Topology. The first concept
from Algebraic Topology which relies on homotopy is the concept of simple con-
nectedness, see Section 7.2.

In the context of complex analysis the objects to deform are paths, considered
as continuous maps from the closed unit interval to a domain in C. The interplay
of simple connectedness and holomorphy provides some of the most remarkable
results from complex analysis, see also Section 8.2 in Chapter 8.

In the whole chapter G ⊂ C denotes a domain, because all results refer to con-
nected open sets. The term continuously differentiable path γ in G means a continous
function

γ : [0,1]−→ G

which is piecewise continuously differentiable.

7.1 Integration along homotopic paths

If a function f has a holomorphic primitive (Deutsch: Stammfunktion) then integra-
tion of f along a path equals the difference of the primitive at the endpoints of the
path. In particular, the integral is independent from the path chosen between the two
points.

Proposition 7.1 (Integration and primitive). Consider a holomorphic function

f : G−→ C

which has a primitive F in G, i.e. having a holomorphic function

155
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F : G−→ C

satisfying
f := F ′.

Then for any piecewise continuously differentiable path

γ : [0,1]−→ G

holds ∫
γ

f (z) dz = F(γ(1))−F(γ(0)).

In particular, the path integral is independent of the path choosen from the point γ(0)
to the point γ(1).

Proof. By definition ∫
γ

f (z) dz =
∫ 1

0
f (γ(t)) · γ ′(t) dt.

Setting
γ1 := Re γ and γ2 := Im γ

and identifying G⊂ C' R2 we compute

d
dt

F(γ(t)) =
d
dt

F(γ1(t),γ2(t)) =
dF
∂x

(γ(t)) · γ ′1 (t)+
dF
∂y

(γ(t)) · γ ′2 (t)

The holomorphy of F implies due to Proposition 2.4

d
dt

F(γ(t)) = F ′( γ(t)) · γ ′1 (t)+ i ·F ′( γ(t)) · γ ′2 (t) = F ′(γ(t)) · γ ′(t)

Hence ∫
γ

f (z) dz =
∫ 1

0
f (γ(t)) · γ ′(t) dt =

∫ 1

0
F ′(γ(t)) · γ ′(t) dt =

=
∫ 1

0

d
dt

F(γ(t)) dt = F(γ(1))−F(γ(0)), q.e.d.

In general, a holomorphic function does not have a primitive for arbitrary
domain G, see Remark 7.2. The existence of a primitive may depend on a certain
topological property of the domain G.

Remark 7.2 (Obstruction to a global branch of the logarithm function). Consider
the function

f : C∗ −→ C∗, f (z) := 1/z.
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The residue Theorem 6.6 implies∫
|z|=1

f (z) dz =
∫
|z|=1

dz
z
= 2πi.

And Proposition 7.1 concludes that f has no primitive in the domain G := C∗.

As a consequence, there is no holomorphic branch of the logarithm

F : C∗ −→ C

satisfying for all z ∈ C
exp(F(z)) = z.

For an indirect proof, assume exp(F(z)) = z. Taking the derivative gives

F ′(z) · exp(F(z)) = 1

i.e.
F ′(z) = exp(F(z))−1 = 1/z = f (z),

a contradiction, because f has no primitive in C∗.

Despite Remark 7.2, locally any holomorphic function has a primitive and
Proposition 7.1 applies.

Proposition 7.3 (Local existence of a primitive). Consider a holomorphic func-
tion

f : G−→ C

defined on a disk
G := Dr(z0), r > 0.

Then f has a primitive in G.

Proof. For z ∈ G the function f expands into a convergent power series

f (z) =
∞

∑
n=0

cn · (z− z0)
n.

Therefore the power series

F : G−→ C, F(z) :=
∞

∑
n=0

cn

n+1
· (z− z0)

n+1,

is convergent in G, and F is a primitive of f in G, q.e.d.
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We now define and investigate the basic topological concept of the present chap-
ter.

Definition 7.4 (Homotopy). Two paths

γ0, γ1 : [0,1]−→ G

with
z0 := γ0(0) = γ1(0) and z1 := γ0(1) = γ1(1)

are homotopic in G if a continuous map

Φ : [0,1]× [0,1]−→ G

exists with
Φ(−,0) = γ0 and Φ(−,1) = γ1

and
γs := Φ(−,s) : [0,1]−→ G, s ∈]0,1[,

is a path with γs(0) = z0 and γs(1) = z1.

The map Φ is named a homotopy between the paths γ0 and γ1. The family of
curves

(γs := Φ(−,s))s∈[0,1]

is a deformation of γ0 to γ1, see Figure 7.1.

In case both paths are continuously differentiable, then all paths γs, s ∈ [0,1],
have to be continuously differentiable too.

A homotopy Φ(t,s) has two variables. The second variable s parametrizes the
intermediate paths γs, while the first variable t parametrizes the points along a given
path γs. All intermediate paths in Definition 7.4 have the same start z0 and the same
end z1.

Theorem 7.5 (Integration along homotopic paths). Consider a holomorphic func-
tion

f : G−→ C

and two homotopic, continuously differentiable paths

γ0,γ1 : [0,1]−→ G

from a point z0 ∈ G to a point z1 ∈ G. Then∫
γ0

f (z) dz =
∫

γ1

f (z) dz.
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Proof. It suffices to show: For any deformation (γs = Φ(−,s))s∈[0,1] of γ0 to γ1 the
integral

I(s) :=
∫

γs

f (z) dz

does not depend on s ∈ [0,1].

Fig. 7.1 Integration along homotopic paths

Choose an arbitrary but fixed s∈ [0,1]. Compactness of [0,1] and continuity of Φ

imply the existence of
ε,δ > 0

and of a finite decomposition

t0 = 0 < t1 < ... < tn = 1

of the parameter interval [0,1], such that the sets

Uk := Dε(γs(tk))⊂ G, k = 0, ...,n,

satisfy: For all |s− s′|< δ and k = 1, ...,n

γs′([tk−1, tk])⊂Uk.

Denote the restriction by
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γs′,k := γs′ |[tk−1, tk], k = 1, ...,n.

We have ∫
γs

f (z) dz =
n

∑
k=1

(∫
γs,k

f (z) dz
)
.

For arbitrary but fixed s′ with
|s− s′|< δ

denote by
αk ⊂Uk, k = 1, ...,n,

the line connecting γs(tk) with γs′(tk). Proposition 7.3 provides a primitive of f in Uk,
and Proposition 7.1 implies∫

γs,k

f (z) dz =
∫

αk−1

f (z) dz+
∫

γs′,k

f (z) dz−
∫

αk

f (z) dz

Summing up all summands for k = 1, ...,n proves∫
γs

f (z) dz =
∫

γs′
f (z) dz, q.e.d.

7.2 Simply connectedness

The present section starts the investigation of simply connected domains. The in-
vestigation will be continued in Section 8.2 with the classification of all simply
connected domains in C up to biholomorphic equivalence.

The concept of simply connectedness relies on closed paths and their homotopy.
For closed paths the following Definition 7.6 of homotopy is slightly different from
Definition 7.4.

Definition 7.6 (Closed paths and their homotopy). A path

γ : [0,1]−→ G

is closed if γ(0) = γ(1). Two closed paths

γ0, γ1 : [0,1]−→ G

are homotopic as closed paths in G if a continuous map

Φ : [0,1]× [0,1]−→ G

exists with
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Φ(−,0) = γ0,Φ(−,1) = γ1

and all paths γs := Φ(−,s), s ∈]0,1[, are closed.

If γ0,γ1 are continuously differentiable, then also all paths γs, s ∈]0,1[ are re-
quired to be continuously differentiable.

In Definition 7.6 all paths

γs := Φ(−,s), s ∈ [0,1],

are closed, but - different from Definition 7.4 - each path γs may be attached to a
different distinguished point γ(0,s) = γ(1,s).

Fig. 7.2 Homotopic as closed paths

Definition 7.7 (Null-homotopic). Consider a closed path

γ : [0,1]−→ G.

The path γ is a constant path in G if for suitable z0 ∈ G

γ(t) = z0

for all t ∈ [0,1]. The path γ is null-homotopic in G if γ is homotopic as closed path
in G to a constant path in G.
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Theorem 7.8 (Integration along homotopic closed paths). Consider a holomor-
phic function

f : G−→ C

and two closed, continuously differentiable paths

γ0, γ1 : [0,1]−→ G

which are homotopic as closed paths in G. Then∫
γ0

f (z) dz =
∫

γ1

f (z) dz.

In particular, ∫
γ0

f (z) dz = 0

if γ0 is null-homotopic in G.

The proof of Theorem 7.8 is analogous to the proof of Theorem 7.5. The second
part of the theorem follows from the first part.

Definition 7.9 (Simply connectedness, star domain).

1. A domain G⊂ C is simply connected if any closed path

γ : [0,1]−→ G

is null-homotopic.

2. The domain G is a star domain with respect to a point a ∈G if for any z ∈G also
the line from z to a belongs to G.

Remark 7.10 (Star domains are simply connected). Any star domain G with respect
to a point a ∈ G is simply connected.

For the proof consider a closed path

γ : [0,1]−→ G

Then
Φ : [0,1]× [0,1]−→ G, Φ(t,s) := as+(1− s)γ(t),

is a homotopy from γ to the constant curve at a, q.e.d.

In general, for three points zi ∈ G, i = 0,1,2, and two paths in G, a path α1
from z0 to z1 and a path α2 from z1 to z2, the product
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α1 ∗α2

is the path in G from z0 to z2

α1 ∗α2 : [0,1]→ G, t 7→

{
α1(2t) t ∈ [0,1/2]
α2(2t−1) t ∈ [1/2,1]

.

The inverse path α
−1
1 is defined as the path in G from z1 to z0

α
−1
1 (t) := α1(1− t).

Theorem 7.11 (Path-independence in simply connected domains). Consider a
simply connected domain G⊂ C and a holomorphic function

f : G−→ C.

Then for any two points z0, z1 ∈ G and continuously differentiable paths

γ0,γ1 : [0,1]−→ G

from z0 to z1 holds ∫
γ0

f (z) dz =
∫

γ1

f (z) dz.

Proof. Consider the closed path

γ := γ0 ∗ γ
−1
1 .

According to Theorem 7.8

0 =
∫

γ

f (z) dz =
∫

γ0

f (z) dz−
∫

γ1

f (z) dz, q.e.d.

Theorem 7.12 (Global primitives in simply connected domains). If the domain G⊂ C
is simply connected, then any holomorphic function

f : G−→ C

has a primitive, i.e. a holomorphic function

F : G−→ C

with F ′ = f .

Proof. We choose a fixed point z0 ∈ G and define
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F : G−→ C, F(z) :=
∫

γ

f (ζ ) dζ =:
∫ z

z0

f (ζ ) dζ .

Here the integral is computed along a continuously differentiable path γ in G from z0
to z. The result does not depend on the choice of γ , see Theorem 7.11.

In order to show that F is holomorphic we choose an arbitrary but fixed point z1 ∈ G
and a disk

U := Dr(z1)⊂ G.

Fig. 7.3 Splitting the path of integration

Denote by

F1 : U −→ C

a local primitive of f according to Proposition 7.3. Then for any z ∈U

F(z) =
∫ z

z0

f (ζ ) dζ =
∫ z1

z0

f (ζ ) dζ +
∫ z

z1

f (ζ ) dζ =

=
∫ z1

z0

f (ζ ) dζ +[F1(z)−F(z1)] = const +F1(z),

which proves the holomorphy of F . Moreover, for z ∈U

F ′(z) = F ′1(z) = f (z), q.e.d.

Corollary 7.13 globalizes the local statement of Proposition 5.15. It explains the
result of Example 1.27.

Corollary 7.13 (Global branches in simply connected domains). Consider a
simply connected domain G⊂ C and a holomorphic function without zeros

f : G−→ C∗.
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1. In G exists a holomorphic branch of the logarithm of f , i.e. a holomorphic func-
tion

F : G−→ C

satisfying
eF = f .

All holomorphic branches Fk of the logarithm are the functions

Fk := F + k ·2πi, k ∈ Z.

2. In G exists for any n ∈ N∗ a holomorphic branch of the n-th root of f , i.e. a
holomorphic function

F : G−→ C∗

satisfying
Fn = f .

All holomorphic branches of the n-th root are the functions

Fk := e2πi·(k/n) ·F, k = 0,1, ...,n−1.

Proof. 1. We choose a point z0 ∈ G and a logarithm w0 of f (z0), i.e.

ew0 = f (z0) 6= 0.

Theorem 7.12 provides a primitive F of the holomorphic function f ′/ f with F(z0) = w0.
The proof of the claim

eF = f

follows in an analoguous manner as in the proof of Proposition 5.15.

2. We choose a holomorphic branch of the logarithm

log : G−→ C∗

and define
F := e(1/n)·log f : G−→ C.

Then
Fn = en·(1/n)·log f = elog f = f .

If F̃ also satisfies F̃n = f , then (
F̃
F

)n

= 1.

As a consequence,

Fk :=
F̃
F
= e2πi·(k/n)
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with a fixed k ∈ {0, ...,n−1} is an n-th root of unity, q.e.d.

7.3 Outlook

Maps like
exp : C−→ C∗

and
C∗ −→ C∗, z 7→ zk,

are examples of covering projections. For a covering projection

f : X −→ Y

between topological spaces X and Y the pre-image of small open subsets V ⊂ Y
splits into a disjoint union of sets which f maps homeomorphically to V . The num-
ber of pre-images is constant along Y .

The theory of covering projections belongs to the field of algebraic topology.
Algebraic topology studies the relation between the category of topological spaces
and the category of groups. A first set of relevant groups are the fundamental groups
of topological spaces. The fundamental group of a topological space X classifies up
to homotopy the closed curves in X . Moreover, the results from algebraic topology
allow to prove statements about topological spaces by means of algebra. The funda-
mental group is a functor from the category of topological spaces to the category of
groups.

Good textbooks on algebraic topology are [17], [22, Kap. III], and [24].



Chapter 8
Holomorphic Maps

8.1 Montel’s theorem

Lemma 8.1 (Bolzano-Weierstrass theorem: Analogue for a sequence of sequences).
Consider a sequence (Aν)ν∈N of sequences

Aν = (aνn)n∈N, ν ∈ N,

of complex numbers aνn ∈ C.
Assume: For each n∈N exists a constant Mn ∈R+ which bounds the n-th element

of all sequences Aν , i.e. for all ν ∈ N

|aνn| ≤Mn.

Then a subsequence (Aνk)k∈N of (Aν)ν∈N exists, such that for all n ∈ N the n-th
elements of the subsequence converge, i.e.

an := lim
k→∞

aνkn

exists.

The original Bolzano-Weierstrass theorem considers a bounded sequence of num-
bers. It states the convergence of a suitable subsequence. Lemma 8.1 considers
the more general case of a sequence of sequences, such that the elements with a
fixed index from each sequence are bounded. The lemma implies the existence of
a subsequence of sequences which converges component-wise. When considering
a sequence of numbers as a vector a ∈ CN with infinitely many components, then
Lemma 8.1 generalizes the Bolzano-Weierstrass theorem from numbers to infinite
vectors.

Proof. First, the proof applies step by step the original Bolzano-Weierstrass theo-
rem to select subsequences of (Aν)ν∈N with convergent components. Secondly, the
diagonal sequence is defined.

167
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i) Iterative choice of subsequences:

• The sequence of zero components

(aν0)ν∈N

is bounded by M0. The Bolzano-Weierstrass theorem provides after step = 0 a
subsequence

(Aνk,0)k∈N of (Aν)ν∈N

with limit
a0 := lim

k→∞
aνk,00.

• The sequence of first components

(aνk,01)k∈N

is bounded by M1. The Bolzano-Weierstrass theorem provides after step = 1 a
subsequence

(Aνk,1)k∈N of (Aνk,0)k∈N

with additional limit
a1 := lim

k→∞
aνk,11.

• Continuing in this manner, one obtains after step = n a subsequence

(Aνk,n)k∈N of (Aνk,n−1)k∈N

with additional limit
an := lim

k→∞
aνk,nn.

ii) Diagonal sequence: To finish the proof we define the subsequence

(Aνk)k∈N of (Aν)ν∈N

as follows: For k ∈ N
Aνk := Aνk,k

the sequence which has been chosen during step = k at position = k. Hence for
all n ∈ N the n-th element of the sequence Aνk is the number aνk,kn. We claim: For
all n ∈ N

an = lim
k→∞

aνk,kn

The proof follows from step = k considering k ≥ n.

We now apply Lemma 8.1 to a sequence ( fν)ν∈N of uniformly bounded holo-
morphic functions: For given ν ∈ N the sequence Aν will the sequence of the Taylor
coefficients of fν .
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Proposition 8.2 (Uniform boundedness and compactly convergent subsequence).
Consider a sequence ( fν)ν∈N of holomorphic functions

fν : Dr(0)−→ C, ν ∈ N,

defined on a disk Dr(0), r > 0.
Assume the existence of a constant M ∈ R+ such that for all z ∈ Dr(0) and

all ν ∈ N
| fν(z)| ≤M.

Then ( fν)ν∈N has a subsequence

( fνk)k∈N

which is compactly convergent to a holomorphic function

f : Dr(0)−→ C.

Proof. i) Choosing a subsequence: For each ν ∈ N the Taylor coefficients of the
holomorphic function

fν(z) =
∞

∑
n=0

aνn · zn

satisfy for all n ∈ N the Cauchy estimate

|aνn| ≤
M
rn,

see Theorem 3.21. For each ν ∈ N we consider the sequence of the Taylor coeffi-
cients of fν

Aν := (aνn)n∈N

Lemma 8.1 provides a subsequence (Aνk)k∈N of (Aν)ν∈N such that for each n ∈ N
the n-th elements aνkn of the sequences Aνk are convergent:

an := lim
k→∞

aνkn

Apparently, for all n ∈ N also

|an| ≤
M
rn.

For all z ∈ Dr(0) the power series

f (z) :=
∞

∑
n=0

an · zn

is convergent because
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|an · zn| ≤M ·

(
|z|
r

)n

and
|z|
r
< 1.

Hence the power series f (z) is a holomorphic function

f : Dr(0)−→ C.

ii) Compact convergence: In order to show that ( fνk)k∈N is compactly convergent
to f we may assume that the selected subsequence equals the original sequence ( fν)ν∈N.
Consider an arbitrary but fixed radius 0 < ρ < r and ε > 0.

Claim: There exists an index ν0 such that for all z ∈ Dρ(0) and all ν ≥ ν0

| f (z)− fν(z)|< ε.

The convergence of the geometric series

∞

∑
n=0

M ·

(
ρ

r

)n

provides an index N ∈ N such that

∞

∑
n=N

M ·

(
ρ

r

)n

<
ε

4

As a consequence we obtain for all z ∈ Dρ(0) and all ν ∈ N the coarse estimate∣∣∣∣∣ ∞

∑
n=N

an · zn−
∞

∑
n=N

aνn · zn

∣∣∣∣∣≤ ∞

∑
n=N

M ·

(
ρ

r

)n

+
∞

∑
n=N

M ·

(
ρ

r

)n

<
ε

2

Due to step i) for all n ∈ N the limit

lim
ν→∞

aνn = an

provides an index ν0 such that for all z ∈ Dρ(0), for all ν ≥ ν0, and for the finitely
many indices n = 0,1, ...,N−1

|an · zn−aνn · zn|= |an−aνn| · |z|n ≤ |an−aνn| ·ρn <
ε

2N

Summing up we obtain for all z ∈ Dρ(0) and all ν ≥ ν0∣∣∣∣∣ ∞

∑
n=0

an · zn−
∞

∑
n=0

aνn · zn

∣∣∣∣∣≤
∣∣∣∣∣N−1

∑
n=0

(an−aνn) · zn

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
n=N

(an−aνn) · zn

∣∣∣∣∣≤
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≤ N ·
ε

2N
+

ε

2
= ε, q.e.d.

Montel’s Theorem 8.3 generalizes the Bolzano-Weierstrass theorem, valid for
number sequences, to sequences of holomorphic functions. The condition on bound-
edness from the original theorem has to be replaced by boundedness of the sequence
on compact subsets. The resulting subsequence of holomorphic functions is com-
pactly convergent to a holomorphic limit.

Theorem 8.3 (Montel’s theorem for locally bounded sequences of holomorphic
functions). Consider an open subset U ⊂ C and a sequence ( fν)ν∈N of holomor-
phic functions

fν : U −→ C, ν ∈ N.

Assume: For any compact subset K ⊂ U exists a constant MK > 0 such that for
all ν ∈ N

‖ fν‖K ≤MK .

Then a subsequence
( fνk)k∈N

exists which is compact convergent on U with limit a holomorphic function

f : U −→ C.

Proof. i) Fixed compact subset: Consider an arbitrary but fixed compact set K ⊂U .
Because K is compact there exists a constant M > 0 and finitely many disks

Dri(ai) with closure Dri(ai)⊂U, i = 1, ...,n,

such that

K ⊂
n⋃

i=1

Dri(ai)

and
‖ fν‖Dri (ai)

≤M.

Applying Proposition 8.2 successively for the finitely many indices i = 1, ...,n pro-
vides a subsequence ( fνk)k∈N which converges on K uniformly to a function

fK : K −→ C.

ii) Exhaustion by compact subsets: We claim the existence of a sequence (Kν)ν∈N
of increasing compact subsets

K0 ⊂ K1 ⊂ ...⊂U

such that:

• The sequence (Kν)ν∈N is an exhaustion of U , i.e.
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U =
⋃

ν∈N
Kν ,

• and for each compact subset K ⊂U exists an index ν ∈ N with K ⊂ Kν .

We construct Kν by shrinking U to the subset of points with boundary distance at
least 1/2ν and bound at most 2ν : For each ν ∈ N the set

Kν := {z ∈U : D1/2ν (z)⊂U}∩D2ν (0)

is bounded and closed, hence compact by the Heine-Borel theorem. Any compact
subset K⊂U is bounded and has finite distance from the boundary of U , see [7, § 3].
Hence K ⊂ Kν for suitable ν ∈ N.

Due to part i) we now choose successively subsequences of ( fν)ν∈N which con-
verge uniformly on

K0,K1, ...,Kn, ...

For the final subsequence of holomorphic functions

( fνk)k∈N of ( fν)ν∈N

the function fνk at position k is by definition the k-th function of that subsequence
of functions which has been chosen for Kk. Then ( fνk)k∈N converges uniformly on
any Kν , ν ∈ N. Hence ( fνk)k∈N converges compactly to f , and the function f is
holomorphic, q.e.d.

8.2 Riemann Mapping Theorem

The Riemann mapping theorem deals with the classification of simply connected
domains in the complex plane up to biholomorphic maps: Two domains G1 and G2
will be considered equivalent if a biholomorphic map

G1
'−→ G2

exists. Elements from a given equivalence class are indistinguishable by means of
complex analysis. Riemann’s mapping theorem, Theorem 8.12, states: The equiv-
alence relation has exactly two classes. One class contains i.a. the unit disk, the
sliced plane and the upper half-plane. The other class has only one single member,
the complex plane.

In the present section we denote by
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D := D1(0)

the unit disk with center = 0. We study holomorphic functions with domain or range
in D. After proving some results about the group Aut(D) of holomorphic automor-
phisms of D, the proof of Theorem 8.12 proceeds along the following steps: Con-
sider a proper simply connected domain G (C.

• Study injective holomorphic maps defined on G, see Lemma 8.9 and 8.10.

• Investigate a stretching lemma for injective holomorphic maps G −→ D, see
Lemma 8.11.

• Verify that injective holomorphic maps with maximal stretching are surjective,
see Theorem 8.12.

Theorem 8.4 (Schwarz Lemma about holomorphic endomorphism of D). Con-
sider a holomorphic function on the unit disk

f : D−→ D

satisfying f (0) = 0. Then

| f ′(0)| ≤ 1 and | f (z)| ≤ |z| for all z ∈ D.

In addition: If
| f (z0)|= |z0|

for at least one z0 ∈ D∗ or if
| f ′(0)|= 1

then f is a rotation, i.e. there exists θ ∈ [0,2π[ such that for all z ∈ D

f (z) = z · eiθ .

Proof. i) The function f expands into a convergent power series

f (z) =
∞

∑
n=1

cn · zn = z ·g(z)

with g a holomorphic function on D. The derivative is

f ′(z) = g(z)+ z ·g′(z)

hence f ′(0) = g(0). For any radius 0 < r < 1 and all z ∈ D with |z|= r holds

r · |g(z)|= | f (z)|< 1

hence
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|g(z)|< 1/r.

The maximum principle, Theorem 3.18, implies the same estimate in the whole
disk Dr(0), i.e. for all z ∈ Dr(0):

|g(z)|< 1/r.

Taking the limit limr→1 proves for all z ∈ D

|g(z)| ≤ 1.

As a consequence

| f ′(0)|= |g(0)| ≤ 1 and | f (z)|= |z| · |g(z)| ≤ |z|.

ii) Each of the two additional assumptions imply that g assumes the maximum of its
modulus at a point from D: If

| f ′(0)|= 1

then |g(0)|= 1. And if for z0 6= 0

| f (z0)|= |z0|

then

|g(z0)|=
| f (z0)|
|z0|

= 1.

Theorem 3.18 concludes that g is constant, i.e. for all z ∈ D

g(z) = eiθ

with a fixed θ ∈ [0,2π[. As a consequence for all z ∈ D

f (z) = z · eiθ , q.e.d.

Corollary 8.5 (Automorphisms of D fixing the origin). Any holomorphic auto-
morphism

f : D−→ D

with f (0) = 0 is a rotation.

Proof. Theorem 8.4 implies | f ′(0)| ≤ 1. The inverse function

g := f−1

satisfies the same assumptions. Hence also

|g′(0)| ≤ 1.
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From g◦ f = id follows

g′(0) =
1

f ′(0)

by the chain rule. Hence | f ′(0)|= 1. Theorem 8.4 implies that f is a rotation, q.e.d.

Notation 8.6 (Automorphism group of D).

Aut(D) := {φ : D−→ D |φ biholomorphic}

denotes the group of holomorphic automorphims of the unit disk.

Proposition 8.7 shows: It is no restriction to assume f (0) = 0 in Theorem 8.4 and
Corollary 8.5.

Proposition 8.7 (Transitive action of Aut(D)). The group Aut(D) of holomorphic
automorphisms acts transitively on D, i.e. for any pair of points a, b ∈ D exists

φ ∈ Aut(D) with φ(a) = b.

Proof. The group action is the canonical map

Aut(D)×D−→ D, (φ ,z) 7→ φ(z).

Because Aut(D) is a group, it suffices to show: For each a ∈ D exists φ ∈ Aut(D)
with φ(a) = 0.

We prove that the map

φa : D−→ C, φa(z) :=
z−a

az−1
,

belongs to Aut(D). Evidently

φa(a) = 0 and (φa ◦φa)(a) = a.

We even have
φa ◦φa = id

because for all z ∈ D

(φa ◦φa)(z) = φa

(
z−a

az−1

)
=

z−a
az−1

−a

a ·
z−a

az−1
−1

=
z−a−a(az−1)
az−aa−az+1

=
z(1−aa)

1−aa
= z
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The map φa extends to the boundary ∂D. If

|z|2 = zz = 1

then

φa(z) ·φa(z) =
(z−a)(z−a)
(az−1)(az−1)

=
1−az− za+aa
1−az−az+aa

= 1

Hence φa(∂D)⊂ ∂D, and φa ◦φa = id implies ∂D⊂ φa(∂D), hence

φa(∂D) = ∂D.

Because φa(0) = a ∈ D we conclude

φa(D)⊂ D.

Hence φa ∈ Aut(D) which finishes the proof, q.e.d.

Theorem 8.8 (Structure of Aut(D)). The group Aut(D) of holomorphic automor-
phisms has the form

Aut(D) = {eiα ·φa : α ∈ [0,2π[, a ∈ D} ' [0,2π[×D.

Here

φa(z) :=
z−a
az−1

, z ∈ D.

In particular, holomorphic automorphisms of D depend on three real parameters.

Proof. i) Reduction to automorphisms fixing the origin: For a given holomorphic
automorphism

f : D−→ D

set
z0 := f (0) ∈ D.

We recall from the proof of Proposition 8.7 that

φz0 ∈ Aut(D) and φz0(z0) = 0.

Hence the composition
g := φz0 ◦ f ∈ Aut(D)

fixes the center 0∈D. Corollary 8.5 implies that g is a rotation, i.e. for suitable α ∈ [0,2π[
and all z ∈ D

g(z) = eiα · z.

Because φ−1
z0

= φz0 we obtain
f = φz0 ◦g,
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or for all z ∈ D

f (z) = φz0(e
iα · z) =

eiα z− z0

z0zeiα −1
= eiα ·

z− z0e−iα

z0zeiα −1
= eiα ·

z−a
az−1

= eiα ·φa(z)

with
a := z0e−iα ∈ D.

ii) Parametrizing Aut(D): If

φ := eiα
φa = eiβ

φb ∈ Aut(D)

then application to a and b shows

φ(a) = 0 and φ(b) = 0,

hence a = b. While application to a point z0 6= a shows

eiα
φ(z0) = eiβ

φ(z0) with φ(z0) 6= 0,

hence α = β , q.e.d.

In the following, Lemma 8.9 studies the image of simply connected domains G
under injective holomorphic maps. And subsequently, Lemma 8.10 proves the exis-
tence of such maps under the assumption G 6= C.

Lemma 8.9 (Injective holomorphic maps). Consider a domain G⊂ C and an in-
jective holomorphic map

f : G−→ C.

Then also f (G)⊂ C is a domain and

f : G−→ f (G)

is biholomorphic.

If G is even simply connected, then also f (G) is simply connected.

Proof. i) Homeomorphy of f : Because f is not constant, Theorem 3.20 implies: The
map f is an open map, and the image f (G)⊂C is also a domain. Hence the inverse
map

f−1 : f (G)−→ G

is continuous. As a consequence

f : G−→ f (G)

is a homeomorphism, which implies that also f (G) is simply connected.
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ii) Holomorphy of the inverse f−1: To prove the holomorphy of f−1 it suffices to
show for all z ∈ G

f ′(z) 6= 0

and to apply Theorem 6.20 about the inverse function. Consider an arbitrary but
fixed z0 ∈ G. After choosing translations in C we may assume z0 = 0 and

f : Dr(0)−→ C

with f (0) = 0 but without zeros in Dr(0)∗. Being injective implies that f is not
constant. Hence

k := ord( f ; 0) ∈ N∗

is well-defined, and for all z ∈ Dr(0)

f (z) = zk · f1(z)

with a holomorphic function f1 without zeros in Dr(0). Proposition 5.15, or Corollary 7.13,
imply the existence of a holomorphic root

k
√

f1.

Therefore
g : Dr(0)−→ C,g(z) := z · k

√
f1 =

k
√

f ,

satisfies
gk = f

and
k ·ord(g; 0) = ord( f ; 0) = k.

As a consequence
ord(g; 0) = 1.

Theorem 6.20 implies that g is locally biholomorphic, i.e. for a suitable radius 0 < ρ ≤ r

g|Dρ(0) : Dρ(0)
'−→ g(Dρ(0)) =: V

and the following diagram commutes

Dρ(0) C

V

f

g|Dρ(0) z 7→ zk

Injectivity of f implies k = 1, hence

f ′(0) 6= 0, q.e.d.
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Lemma 8.10 (Embedding simply connected domains into D). Consider a simply
connected domain G (C. Then a subdomain

G0 ⊂ D

with a biholomorphic map
f : G '−→ G0

exists.

Proof. i) Pushing G away from the origin to G1: Choose a point a ∈ C \G and
consider the translation

f1 : C−→ C, f1(z) := z−a.

Then
G1 := f1(G)⊂ C∗

is simply connected.

ii) The “square root” G2 of G1: Because G1 ⊂ C∗ is simply connected, Corollary
7.13 provides a holomorphic square root

g : G1 −→ C

satisfying for all z ∈ G1
g(z)2 = z.

The root g is injective because

g(z1) = g(z2) =⇒ z1 = g(z1)
2 = g(z2)

2 = z2.

Lemma 8.9 implies that
G2 := g(G1)⊂ C∗

is a simply connected domain, and

g : G1 −→ G2

is biholomorphic.

We claim: For any w ∈ C∗

w ∈ G2 =⇒ −w /∈ G2,

see Figure 8.1. For the indirect proof assume

w ∈ G2 and −w ∈ G2.

Choose inverse images z1, z2 ∈ G1 with
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g(z1) = w and g(z2) =−w.

Then
z1 = g(z1)

2 = w2 = (−w)2 = g(z2)
2 = z2.

Hence
w = g(z1) = g(z2) =−w

or w = 0, a contradiction.

Fig. 8.1 The square root G2 =
√

G1

iii) Embedding G2 into D by reflection: Because G2 is an open set, we may choose
a point b ∈ G2 and a radius r > 0 such that

Dr(b)⊂ G2.

Due to part ii)
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Dr(−b)∩G2 = /0, i.e.

for all z ∈ G2
|z+b|= |z− (−b)|> r.

The map

f2 : G2 −→ C, f2(z) :=
r

z+b
,

is well-defined because −b /∈ G2. The map is injective and holomorphic, and satis-
fies

f2(G2)⊂ D.

By Lemma 8.9 the injective holomorphic composition

f := f2 ◦g◦ f1 : G−→ D

embedds G into D, q.e.d.

In Lemma 8.10 one cannot drop the assumption that the domain G (C is simply
connected: Consider the domain

G := C∗ (C

which is not simply connected. Any bounded holomorphic function f on G extends
holomorphically to the origin 0 ∈C due to Theorem 4.5. Hence f is constant due to
Liouvielle’s Theorem, Corollary 3.23. As a consequence, G cannot be biholomor-
phically equivalent to a subset of the unit disk D, where the identity is a non-constant
bounded holomorphic function.

Thanks to Lemma 8.10 the classification of proper, simply connected subdomains
of C reduces to the classification of simply connected subdomains G of D. The final
step will show: It is possible to stretch G ⊂ D biholomorphically to the whole unit
disk D. The main result is the “stretching lemma” 8.11.

Lemma 8.11 should be contrasted with Schwarz Lemma 8.4. The domain of the
holomorphic map from Lemma 8.11 leaves out at least one point of D. The holo-
morphic map f from Schwarz Lemma, which is defined on all of D, satisfies

| f ′(0)| ≤ 1.

Lemma 8.11 (Stretching lemma for D). Consider a simply connected proper sub-
domain

G0 ( D

and assume 0 ∈ G0. Then a domain G⊂ D with 0 ∈ G1 and a biholomorphic map

f : G0
'−→ G
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exist with
f (0) = 0 and | f ′(0)|> 1.

Proof. Recall from Theorem 8.8 the automorphism φz0 ∈ Aut(D), z0 ∈ D,

φz0(z) :=
z− z0

z0z−1
.

The maps are idempotent
φz0 ◦φz0 = id

and satisfy
φz0(z0) = 0.

i) Construction of f : By assumption a point

a ∈ D\G0

exists. We choose b ∈ D with b2 = a.

First we map G0 away from the origin by considering

G1 := φa(G0)⊂ C∗.

Denote by
g : G1 −→ C

the branch of the square root with g(a) = b, which exists due to Corollary 7.13. The
map g is injective. We consider the composition

f := φb ◦g◦φa : G0 −→ D

and define
G := f (G0).

By construction f is holomorphic, injective and satisfies f (0) = 0.

ii) The derivative f ′(0): By the chain rule the derivative of f computes as

f ′(0) = φ
′
b(b) ·g′(a) ·φ ′a(0).

The derivative of a fractional linear transformation

φ(z) =
αz+β

γz+δ

computes as

φ
′(z) =

α(γz+δ )− γ(αz+β )

(γz+δ )2 =
αδ −βγ

(γz+δ )2

• We obtain
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φ
′
a(z) =

−1+aa
(az−1)2,

hence
φ
′
a(0) =−1+ |a|2

• and similarly

φ
′
b(b) =

−1+ |b|2

(|b|2−1)2 =
1

|b|2−1

• Moreover
g(z)2 = z =⇒ 2g(z) ·g′(z) = 1

i.e.

g′(z) =
1

2g(z)
, g′(a) =

1
2g(a)

=
1

2b

As a consequence

f ′(0) =
(
|a|2−1

)
·

1
2b
·

1
|b|2−1

and

| f ′(0)|= (1−|b|4) ·
1

2|b|
·

1
1−|b|2

=
1+ |b|2

2|b|
> 1.

The last estimate follows from
|b|< 1

which implies
0 < (1−|b|)2 = 1+ |b|2−2|b|

i.e.
2|b|< 1+ |b|2, q.e.d.

Theorem 8.12 (Riemann mapping theorem). For each simply connected, proper
subdomain of the plane

G (C

exists a biholomorphic map
f : G '−→ D

onto the unit disc.

In Theorem 8.12 the assumption G 6= C is necessary, i.e. the domain G has to
be a proper subdomain of the complex plane. The plane C and the unit disk D are
not biholomorphic equivalent, because each bounded holomorphic function on C
is constant according to Liouville’s theorem, Corollary 3.23, while the identity is a
non-constant bounded holomorphic function on D.
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Proof. Due to Lemma 8.10 we may assume G ⊂ D. For the proof we need to con-
sider only the case G 6= D. W.l.o.g. 0 ∈ G due to Proposition 8.7.

i) Set of embeddings: We consider the set of injective holomorphic maps to the unit
disk which fix the origin

F := { f : G−→ D : f holomorphic, injective, and f (0) = 0}.

The set is not empty because idG ∈F .

For a suitable radius r > 0 we have Dr(0) ⊂ G. The Cauchy inequalities from
Theorem 3.21 imply for each f ∈F

| f ′(0)| ≤
1
r
.

Hence
M := sup{| f ′(0)| : f ∈F}< ∞,

and idG ∈F implies
M ≥ 1.

In part ii) we will show that the supremum M is attained by an element f ∈F . If the
function f is not a biholomorphic map to the unit disk, then part iv) will construct a
contradiction to the maximality of f by applying Lemma 8.11.

ii) Constructing an extremal f ∈F : We choose a sequence ( fν)ν∈N of
functions fν ∈F , ν ∈ N, with

lim
ν→∞
| f ′ν (0)|= M.

Due to Montel’s Theorem 8.3 we may even assume that the sequence

( fν)ν∈N

is compactly convergent to a holomorphic function

f : G−→ C.

Theorem 3.26 about the convergence of the derivatives implies

lim
ν→∞

f ′ν (0) = f ′(0).

In particular
| f ′(0)|= M ≥ 1.

Moreover for all z ∈ G
| f (z)| ≤ 1.
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Assume
| f (z0)|= 1

for a point z0 ∈G. Then f assumes the maximum of its modulus at z0. Theorem 3.18
implies that f is constant, contradicting

| f ′(0)| ≥ 1.

Hence
f : G−→ D.

iii) Injectivity of f : By indirect proof. We assume the existence of two distinct
points z1 6= z2 ∈ G with

w := f (z1) = f (z2).

Then the function
g := f −w : G−→ C

has the isolated zeros z = z1 and z = z2. We choose two disjoint disks

Dr(z1) and Dr(z2)

such that g has no zeros in

Dr(z1)\{z1} and in Dr(z2)\{z2},

see Figure 8.2.

Fig. 8.2 Injectivity of f
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The functions
gν := fν −w, ν ∈ N,

are compact convergent to g. For ν ∈ N suitable large the function gν has the same
number of zeros like g in each of both closed disks, see Theorem 6.17. Hence gν has
zeros in each of the two discs. As a consequence fν is not injective, a contradiction.

iv) Surjectivity of f : By indirect proof. Assume

G0 := f (G)( D.

By Lemma 8.9 the domain G0 is simply connected because f is injective due to
part iii). Lemma 8.11 implies the existence of an injective map

g : G0 −→ D

with
g(0) = 0 and |g′(0)|> 1.

Hence the composition
f̃ := g◦ f : G−→ D

is holomorphic and injective, satisfying

f̃ (0) = 0.

Therefore
f̃ ∈F .

But
f̃ ′(0) = g′(0) · f ′(0)

implies
| f̃ ′(0)|> | f ′(0)|= M,

a contradiction to the maximality of | f ′(0)|, q.e.d.

8.3 Projective space and fractional linear transformation

Until now, all holomorphic functions under considerations were defined on open
subsets of the complex plane C. In the following, we extend the domain of defini-
tion and introduce the compactification Ĉ of C by adding one single point ∞. The
concept of holomorphy extends to Ĉ. As a benefit, meromorphic functions can be
considered as holomorphic maps to Ĉ.

The stereographic projection identifies Ĉ with the unit sphere S2 ⊂R3. Provided
with the complex structure of Ĉ the sphere is named the Riemann sphere. The Rie-
mann sphere is biholomorphic equivalent to the complex projective space P1, which
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is the most simple example of a compact Riemann surface. As a consequence, the
following different approaches lead to the same complex manifold:

• The extended plane Ĉ,

• the Riemann sphere S2 ⊂ R3, and

• the complex projective space P1.

The group of fractional linear transformations on Ĉ is isomorphic to the group of
holomorphic automorphisms of P1.

We start with the extended plane and the transformations from Theorem 8.8.

Definition 8.13 (Fractional linear transformation). A fractional linear transfor-
mation is a meromorphic function f on C of the form

f (z) =
a · z+b
c · z+d

with a matrix

A =

(
a b
c d

)
∈ GL(2,C).

We distinguish two cases of the matrix

A =

(
a b
c d

)
from Definition 8.13:

• If c = 0 then
a 6= 0 and d 6= 0.

Hence for all z ∈ C

f (z) =
a
d
· z+

b
d

and f is an entire function.

• If c 6= 0 then the denominator has a zero at

z0 =−
d
c

with numerator

a · z0 +b =−
ad
c
+b =−

1
c
· (ad−bc) 6= 0.

Hence f has a pole at z0 of order = 1, and z0 is the only pole of f .
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To handle meromorphic functions with a pole at a point z0, we will introduce a
new value

∞ = f (z0)

such that f becomes a holomorphic map into the extended plane, the one-point-
compactification of C ,

Ĉ := C∪{∞}.

Definition 8.14 (Topology of Ĉ).

1. The extended complex plane is the set

Ĉ := C∪{∞}.

2. If a ∈ Ĉ then a subset U ⊂ Ĉ is a neighbourhood of a if

• Case a 6= ∞: For suitable ε > 0

Dε(a)⊂U.

• Case a = ∞: For suitable ε > 0

{z ∈ C : |z|> 1/ε}∪{∞} ⊂U.

3. A subset U ⊂ Ĉ is open if U is a neighbourhood of each point a ∈U .

4. Consider a sequence (zν)ν∈N of points from Ĉ and a point a ∈ Ĉ. Then

lim
ν→∞

zν := a

if any neighbourhood of a contains for all but finitely many ν ∈ N the point zν .

5. Consider a subset M ⊂ Ĉ. A map

f : M −→ Ĉ

is continuous at a point a ∈M if any sequence (zν)ν∈N of points of M with

lim
ν→∞

zν = a

satisfies:
lim

ν→∞
f (zν) = f (a).

The map f is continuous if f is continuous at any point a ∈M.

Example 8.15 (Fractional linear transformations are continuous mappings). The
meromorphic function of a fractional linear transformation
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f (z) =
a · z+b
c · z+d

extends to a continuous map
f : Ĉ−→ Ĉ,

defined as follows:

• If c 6= 0 then

z 7→


f (z) z ∈ C\{−(d/c)}
∞ z =−(d/c)
a/c z = ∞

Continuity of f at z0 = −(d/c) follows from the characterization of a pole, see
Theorem 4.12. To show continuity at z0 = ∞ compute

lim
z→∞
z 6=∞

a · z+b
c · z+d

= lim
z→∞
z 6=∞

a+(b/z)
c+(d/z)

=
a
c
.

• If c = 0 then

z 7→

{
f (z) z ∈ C
∞ z = ∞

Continuity of f at z0 = ∞ follows from a 6= 0, d 6= 0, and

lim
z→∞
z6=∞

a · z+b
c · z+d

= lim
z→∞
z 6=∞

a
d
· z+

b
d
= ∞.

Definition 8.16 (The standard open covering of the extended plane). We con-
sider the two open subsets of the extended plane

D0 := Ĉ\{∞} and D1 := Ĉ\{0}

together with the two homeomorphism

p j : D j −→ C, j = 0,1,

defined respectively as

p0(z) := z and p1(z) :=

{
1/z z 6= ∞

0 z = ∞

Then (D j) j=0,1 is an open covering of Ĉ, named its standard covering.

The family
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p j : D j −→ C, j = 0,1,

is the basic means to define holomorphy of maps on open subsets of the extended
plane. For j = 0,1 the notation

p j : D j −→ C

will always refer to the standard covering from Definition 8.16.

Definition 8.17 (Holomorphic maps and the extended plane). Let U ⊂ Ĉ be an
open subset.

1. A function
f : U −→ C

is holomorphic, if for j = 0,1 and

Ũ j := p j(U ∩D j)⊂ C

the composition
f ◦ (p−1

j |Ũ j) : Ũ j −→ C, j = 0,1,

is holomorphic in the sense of Definition 3.9. Note that Ũ j is an open subset of C.

2. A continuous map
f : U −→ Ĉ

is holomorphic if for j = 0,1, and

U j :=U ∩ f−1(D j)

the composition
p j ◦ ( f |U j) : U j −→ C

is holomorphic in the sense of part 1). Note that U j is an open subset of Ĉ.

Of course, the important point in Definition 8.17, part 1) is the holomorphy
on U ∩D1: One considers the reciprocal of the arguments of f

Ũ1 −→ C, z 7→
1
z

And part 2) uses in addition the reciprocal of the values of f . Both cases rely on the
idea, to investigate the point at infinity and its small neighbourhoods by reflecting
the point ∞ ∈ Ĉ to the origin 0 ∈ C, and then to consider neighbourhoods of zero.
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Fig. 8.3 Holomorphic maps and the extended plane

Proposition 8.18 (Meromorphic functions are holomorphic maps). Any mero-
morphic function f on an open subset U ⊂ C defines a holomorphic map in the
sense of Definition 8.17

f̂ : U −→ Ĉ, z 7→

{
f (z) f is holomorphic at z
∞ f has a pole at z

Proof. Consider a pole a ∈U of f . Theorem 4.12 implies

lim
z→a
z 6=a

f (z) = ∞.

Hence f̂ is continuous. For j = 0,1, consider the open set

U j :=U ∩ f̂−1(D j)⊂U.

The set U0 ⊂U does not contain any pole of f . Hence
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[p0 ◦ ( f̂ |U0) : U0 −→ C] = [ f |U0 : U0 −→ C]

is holomorphic. The other set U1 does not contain any zero of f . The function

p1 ◦ ( f̂ |U1) : U1 −→ C,z 7→


1

f (z)
f is holomorphic at z

0 f has a pole at z

has a removable singularity at any pole of f , hence is holomorphic, q.e.d.

In the sequel, we will skip the notation f̂ and denote by f also the extended
holomorphic map to the Riemann sphere.

Corollary 8.19 (Fractional linear transformations are holomorphic maps on
the extended plane). Any fractional linear map

f (z) =
a · z+b
c · z+d

,

(
a b
c d

)
∈ GL(2,C),

is a holomorphic map

f : Ĉ−→ Ĉ with f (∞) :=

{
a/c c 6= 0
∞ c = 0

Proof. If c = 0 then
f (∞) = ∞.

For Dr(0) with suitable r > 0 we check

p1 ◦ f ◦ p−1
1 : Dr(0)−→ C, z 7→ 1/ f (1/z).

The function

1/ f (1/z) =
d

a · (1/z)+b
=

d · z
a+b · z

is holomorphic on Dr(0) because a 6= 0.

For c 6= 0 we have
f (∞) ∈U0.

For Dr(0) with suitable r > 0 we check

p0 ◦ f ◦ p−1
1 : Dr(0)−→ C, z 7→ f (1/z).

The function
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f (1/z) =
a · (1/z)+b
c · (1/z)+d

=
a+b · z
c+d · z

is holomorphic on Dr(0) because c 6= 0, q.e.d.

Proposition 8.20 explains how the extended plane Ĉ relates to a sphere.

Proposition 8.20 (Stereographic projection). Denote by

S2 := {ξ ∈ R3 : ‖ξ‖= 1}

the unit sphere in R3 with respect to the Euclidean norm

‖(ξ1,ξ2,ξ3)‖ :=
√

ξ 2
1 +ξ 2

2 +ξ 2
3 .

The stereographic projection

ϕ : S2 −→ Ĉ, ξ = (ξ1,ξ2,ξ3) 7→


ξ1 + iξ2

1−ξ3
if ξ3 6= 1

∞ if ξ3 = 1

is a continuous map, when S2 ⊂R3 is provided with the subspace topology induced
by the Euclidean space R3. The stereographic projection has the continuous inverse

ψ : Ĉ−→ S2,z 7→


1

x2 + y2 +1
· (2x,2y,x2 + y2−1) if z = x+ iy ∈ C

(0,0,1) if z = ∞
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Fig. 8.4 Stereographic projection ϕ of the unit sphere, from [4, Bild 29]

Figure 8.4 shows the stereographic projection ϕ from the north pole of the sphere
bijectively onto the extended plane. Because ϕ has the continuous inverse ψ the map

ϕ : S2 '−→ Ĉ

is a homeomorphism between the unit sphere and the extended plane.

The homeomorphic stereographic projection from Proposition 8.20 allows to
transfer the concept of a holomorphic map to the sphere, obtaining the Riemann
sphere.

Definition 8.21 (The Riemann sphere). Consider the stereographic projection

φ : S2 −→ Ĉ

and its inverse
ψ : Ĉ−→ S2.

A function
f : U −→ Ĉ, U ⊂ S2 open,

is holomorphic if the composition

f ◦ψ : φ(U)−→ Ĉ

is holomorphic in the sense of Definition 8.17. The Riemann sphere is S2 provided
with the transferred concept of holomorphy.

Eventually, we define the projective space P1 as a compact complex manifold.
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Definition 8.22 (Projective space, homogeneous coordinates). On the set

C2 \{0}=
{(

z1
z0

)
: z1,z0 ∈ C and (z1,z0) 6= (0,0)

}
we introduce the equivalence relation(

z1
z0

)
∼
(

w1
w0

)
⇐⇒ ∃λ ∈ C∗ with z j = λ ·w j, j = 0,1.

The set of equivalence classes

(C2 \{0})/∼

provided with the quotient topology with respect to the canonical projection

π : C2 \{0} −→ P1

is the projective space. The class of a point

z =
(

z1
z0

)
∈ C2 \{0}

is denoted
(z1 : z0) := π(z) ∈ P1,

named the homogeneous coordinates of the class. By definition,

(z1 : z0) = (w1 : w0) ⇐⇒ ∃λ ∈ C∗ with z1 = λ ·w1 and z0 = λ ·w0.

Note. A given class (z1 : z0) ∈ P1 represents the inverse image

q−1((z1 : z0)) = C ·
(

z1
z0

)
,

i.e. the line passing through the origin and the point(
z1
z0

)
∈ C2.

Accordingly, the projective space P1 is sometimes named the parameter set of
all lines in C2 passing through the origin. Figure 8.5 shows: The subset U0 ⊂ P1

parametrizes all lines except the line {z0 = 0}, while U1 ⊂ P1 parametrizes all lines
except the line {z1 = 0}.
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Fig. 8.5 Parametrizing lines in C2 \{0}

Proposition 8.23 (Projective space and extended plane). The canonical map

q : P1 −→ Ĉ, (z1 : z0) 7→


z1

z0
if z0 6= 0

∞ if z0 = 0

is a homeomorphism. For j = 0,1

U j := q−1(D j) = {(z1 : z0) ∈ P1 : z j 6= 0}.

In particular,
j : C ↪→ P1, j(z) := (z : 1),

is a holomorphic embedding, and

P1 \ j(C) = {(1 : 0)}= q−1(∞).

Remark 8.24 (The Riemann surface P1).

1. By definition of the quotient topology on P1 a subset U ⊂ P1 is open iff

π
−1(U)⊂ C2 \{0}

is open. The quotient topology is Hausdorff. For j = 0,1 the maps



8.3 Projective space and fractional linear transformation 197

φ j : U j −→ C,(z1 : z0) 7→


z1

z0
j = 0

z0

z1
j = 1

are homeomorphisms. They are called complex charts of P1. On the intersection

U01 :=U10 :=U1∩U0 = {(z1 : z0) ∈ P1 : z0,z1 6= 0}

one switches between the two complex charts by means of two transition func-
tions. The first transition function is

g01 := φ0 ◦φ
−1
1 : φ1(U01)−→ φ0(U01).

U01

φ1(U01) φ0(U01)

φ1 φ0

g01

Because
φ0(U01) = φ1(U01) = C∗

the transition function
g01 : C∗ −→ C∗, z 7→ 1/z,

is holomorphic in the sense of Definition 3.9. Its inverse is the holomorphic sec-
ond transition function

g10 := φ1 ◦φ
−1
0 : φ0(U10)−→ φ1(U10),z 7→ 1/z.

The family of charts
A := (φ j : U j −→ C) j=0,1

is a named a complex atlas. The atlas provides the topological space P1 with the
structure of a Riemann surface.

2. Holomorphy is a local property. One defines: A function

f : U −→ C

defined on an open set U ⊂ P1 is holomorphic if for j = 0,1 the restrictions f |U j
are holomorphic; and f |U j is holomorphic if the composition with the chart

f ◦ (φ j|U ∩U j)
−1
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is holomorphic in the sense of Definition 3.9. In case

U ⊂ (U0∩U1)

the definition is independent from the choice of j ∈ {0,1} because the transition
functions g01 and g10 are holomorphic.

As a consequence, the function

f : U −→ C

is holomorphic iff
f ◦q−1 : q(U)−→ C

is holomorphic in the sense of Definition 8.17 .

8.4 Outlook

The complex projective space P1 is the most simple compact Riemann surface. The
theory of Riemann surfaces generalizes complex analysis of one variable from the
plane C to complex manifolds of complex dimension = 1, see [9].
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Rouché’s theorem (Theor. 6.17)

Inverse function theorem (Theor. 6.20)

Chapter 7. Homotopy

Path-independence of integration in simply connected domains (Theor. 7.5)

Global primitive in simply connected domains (Theor. 7.12)

Existence of logarithm and root in simply connected domains (Cor. 7.13)

Chapter 8. Holomorphic Maps

Montel’s theorem (Theor. 8.3)

Lemma of Schwarz (Theor. 8.4)

The group Aut(D) (Theor. 8.8)

Riemann mapping theorem (Theor. 8.12)

Meromorphic functions are holomorphic maps to Ĉ (Prop. 8.18)
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