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Abstract. We study Thurston geometries (X,G) with contact structures and

Engel structures which are compatible with the action of the isometry group
G. We classify geometric contact structures and geometric Engel structures

up to equivalence and we compare the geometric Engel structures with other
constructions of Engel manifolds.

1. Introduction

In this article we investigate Thurston geometries with adapted Engel structures
and contact structures. In [Wa1, Wa2] Wall carries out a similar study for complex
structures in dimension 4. The motivation for the consideration of geometric Engel
structures compatible with Thurston geometries comes from the fact that Engel
manifolds obtained from Thurston geometries have particular properties not present
in general.

For example the geometric Engel structure on the Thurston geometry Nil4 leads
to closed Engel manifolds such that all leaves of the characteristic foliation are rigid
in the sense of [BrH]. Moreover the contact structures compatible with Thurston
geometries lead to tight contact manifolds. It is unknown whether or not there is
an analogue of the tight/overtwisted dichotomy for Engel structures, but if there
is, then one may hope that geometric Engel structures lead to examples belonging
to the analogue of tight contact structures.

Let us discuss the relevant definitions. We start with Thurston geometries and
their classification in low dimensions.

Definition 1. Let X be a simply connected complete Riemannian manifold and
G a Lie group acting on X. The pair (X,G) is a Thurston geometry if

(i) G acts transitively on X,
(ii) the stabilizer Stab(x) = {g ∈ G | gx = x} of a point x ∈ X is compact,

(iii) G contains a discrete subgroup Γ acting freely on X such that Γ\X has
finite volume (with respect to a G–invariant metric).

Note that condition (ii) ensures that there is a G–invariant Riemannian metric.
Moreover it implies that whenever Γ\X is a compact manifold for Γ ⊂ G, then
Γ\G is also compact.

The quotient manifolds Γ\X are said to have X–geometry. Two Thurston ge-
ometries (X,G), (X ′, G′) are equivalent if there is a diffeomorphism ψ : X → X ′

such that ψ ◦ g ◦ ψ−1 ∈ G′ for all g in G. Diffeomorphisms with this property are
called automorphisms of the Thurston geometry. If there is a diffeomorphism ψ of
X such that ψ ◦G ◦ ψ−1 ⊂ G′, then (X,G) is a subgeometry of (X ′, G′).
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We deviate from the notion of equivalence of Thurston geometries used for ex-
ample in [Thu] where it coincides with our notion of subgeometry (which is not an
equivalence relation). Notice that if (X,H) is a subgeometry of (X,G), there is no
a priori relation between the groups of automorphisms. The most obvious examples
of automorphisms of a Thurston geometry (X,G) are the elements of G itself. In
the following example we give another class of automorphisms.

Example 2. Let G be a Lie group acting freely and transitively on X such that
(X,G) is a Thurston geometry and ψ is a group automorphism of G. After choosing

a base point x0 ∈ X we obtain a diffeomorphism ψ̃ with ψ̃(gx0) = ψ(g)x0. Conju-

gating elements of G with ψ̃ we get ψ again. Hence ψ induces an automorphism of
the Thurston geometry (X,G).

Automorphisms of G are easy to construct: Since X ' G is simply connected
there is a one–to–one correspondence between automorphism of G and automor-
phisms of the Lie algebra g.

Usually one considers maximal Thurston geometries (X,G) where G is maxi-
mal among those groups having the properties in Definition 1. When additional
geometric structures like contact structures, Engel structures, complex structures
or Kähler structures (as in [Wa1, Wa2]) are present, then it is natural to consider
non–maximal Thurston geometries.

A Thurston geometry in dimension 2 is equivalent to a subgeometry of S2,H2 or
R2. For dim(X) = 3 Thurston obtained a classification discussed e.g. in [Thu]. In
the following table the 3–dimensional Thurston geometries are grouped according
to the isomorphism type of point stabilizers.

Isomorphism type of Stab0(x) Isometry class of X
SO(3) S3,H3,R3

SO(2)
S2 × R,H2 × R

Nil3, S̃l(2)

{1} Sol3

Filipkiewicz (cf. [Fil]) obtained the analogous result in dimension 4. The following
list can be found in [Wa1].

Isomorphism type of Stab0(x) Isometry class of X
SO(4) S4,H4,R4

U(2) CP2,H2(C)

SO(2)× SO(2)
S2 × S2, S2 × R2, S2 ×H2

H2 × R2,H2 ×H2

SO(3) S3 × R,H3 × R
SO(2) Nil3×R, S̃l(2)× R,Sol40, F

4

1 Nil4,Sol4(m,n),Sol41

We will give more details about many of the geometries later. More information
can be found in [Fil, Hil, Sc, Thu, Wa1, Wa2]. We will use the classification of
non–maximal Thurston geometries up to equivalence from [Wa2].

Theorem 3 (Wall). The non–maximal Thurston geometries with connected isom-
etry group in dimension ≤ 4 are
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dim non–maximal geometries
2 (R2,R2)

3

(S3,U(2)) (S3,SU(2))
(R3,R3 n SO(2)) (R3,R3)

(Nil3,Nil3) (S̃l(2,R), S̃l(2,R))

4

(S2 × R2,SO(3)× R2) (H2 × R2,PSL(2,R)× R2)

(Nil3×R,Nil3×R) (Nil3×R,Nil3 nR)
(S3 × R,U(2)× R) (S3 × R,SU(2)× R)

(S̃l(2,R)× R, S̃l(2,R)× R) (Sol40,Sol4(λ))

(R4,K) with K ∈
{

U(2),SU(2),SO(3),
SO(2)× SO(2), S1, S1

p,q, {1}

}
Here S1

p,q denotes the image of S1 in SO(2)×SO(2) under the map z 7−→ (zp, zq)

with coprime integers (p, q). The geometries (Sol40,Sol4(λ)) will be discussed below.
The geometry (Nil3×R,Nil3 nR) does appear in [Wa1], but in [Wa2], Wall claims
that this geometry does not admit a cocompact lattice. We shall exhibit such a
lattice in Section 3.2.

Next we recall the definitions of contact structures and Engel structures and after
that we finally give the definition of geometric contact structures and geometric
Engel structures.

Definition 4. A contact structure on a manifold of dimension 2k + 1 is a smooth
hyperplane field C which can be defined locally by a 1–form α with the property
α ∧ dαk 6= 0.

We will only consider contact structures in dimension 3. In this case the sign of
the form α∧dα appearing in Definition 4 is independent from the choice of α. Thus
a contact structure induces an orientation of the underlying 3–manifold. Martinet
showed that a 3–manifold admits a contact structure if and only if it is orientable
[Mar].

Definition 5. An Engel structure is a smooth subbundle D of rank 2 of the tangent
bundle of a 4–manifold such that

rank([D,D]) = 3

rank([D, [D,D]]) = 4 .

The hyperplane field E = [D,D] is an even contact structure (in dimension four
a hyperplane field E is an even contact structure if and only if [E , E ] = TM) and
W is defined to be the unique line field tangent to E with the property [W, E ] ⊂ E .
The foliation induced by W is the characteristic foliation of E . By definition every
flow tangent toW preserves E and it is easy to show thatW ⊂ D if E is induced by
an Engel structure [Mo]. Thus an Engel structure D on a 4–manifold M induces a
flag of distributions

(1) W ⊂ D ⊂ E = [D,D] ⊂ TM .

The existence of an Engel structure on a closed manifold M leads to strong re-
strictions on the topology of the underlying manifold: If both M and D are are
orientable, then TM is trivial. In [Vo] it is shown that the converse is also true.
Two other constructions of Engel manifolds can be found in the literature. Since
geometric Engel structures will often turn out to be similar to Engel structures
obtained by these constructions, we explain them briefly.
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Example 6. The first of the two constructions is called prolongation and was
introduced by E. Cartan. The starting point is a contact structure C on a 3–manifold
N . We consider the projectivization PC of C with the projection π : PC −→ N .
The plane field

D = {v ∈ TlPC | π∗(v) ∈ l}
is an Engel structure on PC. The distributions in (1) can be described explicitly:
The leaves of W correspond to the fibers of π and E = π−1∗ C.

Example 7. The second construction is due to H.-J. Geiges, [Gei]. Let ϕ be a
diffeomorphism of a closed 3–manifold N such that the mapping torus

Mϕ = N × [0, 2π]
/
∼ with (ϕ(p), 0) ∼ (p, 2π)

has trivial tangent bundle. Let t be the coordinate on the second factor of N×[0, 2π]
and ∂t the corresponding vector field on Mϕ. Since TMϕ is trivial we can choose
an almost quaternionic structure (I, J,K) on Mϕ. In this way we obtain a framing
∂t, V1 = I∂t, V2 = J∂t, V3 = K∂t of TMϕ whose first component is ∂t. If k ∈ N is
large enough, then the plane field spanned by ∂t and

(2) X =
1

k

(
cos(k2t)V1 + sin(k2t)V2

)
+ V3

is an Engel structure. This construction has the disadvantage that one can not
determine the characteristic foliation or the even contact structure associated to D.

Definition 8. A geometric contact structure is a triple (X, C, H) where (X,H)
is a Thurston geometry and C is an H-invariant contact structure on X. Two
geometric contact structures (X, C, H) and (X, C′, H ′) are equivalent if there is a
diffeomorphism ψ : X −→ X ′ such that ψ ◦H ◦ ψ−1 = H ′ and ψ∗C = C′.

A geometric Engel structure is a triple (X,D, H) such that the isometries of the
Thurston geometry (X,H) preserve the Engel structure D on X. Equivalence of
geometric Engel structures is defined as for geometric contact structures.

We shall classify maximal geometric contact structures respectively Engel struc-
ture where H is maximal among the groups having the properties in Definition 8.

If (X, C, G) is a geometric contact structure and Γ ⊂ G is a cocompact lattice
acting freely on X, then we obtain a contact structure on Γ\X and the analogous
statement for Engel structures is also true. By the Gray stability theorem [Gr]
the diffeomorphism class of the induced contact structure on Γ\X depends only on
the isotopy class of the embedding Γ ↪→ H. The induced Engel structure on the
quotient Γ\X of a geometric Engel structure depends on the realization of Γ as
subgroup of H since Gray’s theorem does not generalize to Engel structures [Gol].
As mentioned above these Engel manifolds have special geometric properties.

This article is organized as follows. In Section 2 we discuss geometric con-
tact structures in dimension 3. We shall see that only the Thurston geometries

X = S3,Nil3, S̃l(2),Sol3 admit geometric contact structures and for these Thurston
geometries all geometric contact structures are equivalent.

We continue with geometric Engel structures in Section 3. With the exception
of H3 × R all Thurston geometries with Stab0(x) ' SO(3),SO(2), {1} admit a
geometric Engel structure and again the geometric Engel structures supported by a
particular Thurston geometry are all equivalent. We also compare geometric Engel
structures with the Engel structures obtained in Example 6 and Example 7. In the



MAXIMALLY NON–INTEGRABLE PLANE FIELDS ON THURSTON GEOMETRIES 5

last section we discuss the rigidity of curves tangent to Engel structures and discuss
the geometric Engel structures.

Finally, let us fix some notations. If G is a Lie group, then we write G0 for the
connected component of the identity. The Lie algebra of a Lie group G,H,Nil3, . . .
is denoted by g, h, nil3, . . ..

2. Geometric contact structures

In this section we classify geometric contact structures in dimension 3. First
recall that a contact structure on a 3-manifold induces an orientation. Therefore
it makes sense to refine the notion of equivalence and ask for the existence of an
orientation preserving diffeomorphism ψ with the properties in Definition 8.

Theorem 9. The Thurston geometries H3,R3, S2 × R and H2 × R do not admit
geometric contact structures. The geometric contact structures on the remaining
Thurston geometries are all equivalent:

Thurston geometry
# of equivalence

classes
with oriented
equivalence

S3 1 2

Nil3 1 1

S̃l(2) 1 2

Sol3 1 2

In order to prove this we consider each Thurston geometry individually. Before
doing so, we first make two observations which we will also use in the classification
of geometric Engel structures.

Remark 10. If (X, C, H) is a geometric contact structure, then (X,H) is a sub-
geometry of a maximal Thurston geometry and X is connected and diffeomorphic
to H/StabH(x) for x ∈ X. Now StabH(x) is compact by definition and therefore
H has only finitely many connected components. If Γ is a lattice in H such that
Γ\X is compact, then the same is true for Γ ∩ H0 ⊂ H0. Hence if (X, C, H) is a
geometric contact structure, then the same is true for (X, C, H0).

The second observation is that if (X, C, H) is a geometric contact structure,
then H acts transitively on X. Therefore the stabilizer StabH(x) ⊂ H of x ∈ X
is trivial or acts by rotations/reflections on the contact plane C(x). Thus H has
either dimension 3 or 4.

Whenever a geometric contact structure exists on the Thurston geometry (X,H)
it turns out to be tight. Essentially this can be shown by relating geometric contact
structures with the contact structure ker(dz− x dy) on R3 which is tight according
to [Be]. We will give only brief arguments and refer the reader to [Be, El, Gi] for
definitions and background.

2.1. X = S3. The Riemannian manifold is S3 ⊂ C2 with its round metric. The full
isometry group is G = O(4). Let Cst be the plane field consisting of the complex
subspaces of TS3 ⊂ TC2. A possible defining form is α = x1 dy1−y1 dx1 +x2 dy2−
y2 dx2 where x1, y1, x2, y2 are the usual coordinates on R2 ⊕ R2 ' C2. A short
calculation shows α ∧ dα 6= 0 on S3.

By definition, Cst is preserved by C–linear isometries, i.e. by all elements of U(2)
and by complex conjugation κ of C2. Conversely, let ϕ ∈ O(4) satisfy ϕ∗Cst = Cst.
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Then ϕ preserves the orthogonal complement of C, i.e. the fibers of the Hopf
fibration. Hence ϕ is an isometry of C2 which preserves complex subspaces and the
complex orientation. Composing ϕ with suitable elements of

H = U(2) ∪ κU(2)

we can achieve that the resulting map fixes both C⊕0 and 0⊕C pointwise. Because
the map is linear we obtained the identity. This shows ϕ ∈ H and that (S3, Cst, H)
is a maximal geometric contact structure.

Now let (S3, C′, H ′) be a geometric contact structure. By Remark 10 and The-
orem 3 we may assume that H ′ is connected and contains SU(2). Moreover the
action of SU(2) by conjugation on the tangent planes in TeS

3 is transitive (here
we identify SU(2) with S3). Hence we can assume that Cst(e) = C′(e). But this
implies Cst = C′ because these contact structures are both SU(2)–invariant.

Thus all maximal geometric contact structures on S3 are equivalent to subge-
ometries of (S3, Cst,U(2) ∪ κU(2)). If one allows only orientation preserving dif-
feomorphisms of S3, then there are two equivalence classes of geometric contact
structures. Note that according to [Sc] all spherical 3–manifolds admit a geometric
contact structures since every discrete subgroup of SO(4) acting freely on S3 is
conjugate to a subgroup of U(2). Furthermore, it is well know that Cst is tight.

2.2. X = Nil3. The nilpotent Lie group Nil3 has the matrix representation

Nil3 =

 [x, y, z] :=

 1 x z
0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ R

 .

The metric on Nil3 is defined such that the left–invariant vector fields X,Y, Z ∈ nil3

form an orthonormal frame. For the usual flat metric on R2, the fibration

pr : Nil3 −→ R2

[x, y, z] 7−→ (x, y)

is a Riemannian submersion. The maximal isometry group G of Nil3 is generated by
left–translations and by lifts of isometries of the plane with respect to the horizontal
distribution ker(αst) for αst = dz − x dy. Hence G ' Nil3 nO(2). If κ denotes the
reflection of R2 along the y-axis, then O(2) acts on nil3 by rotations around Z while
κ∗ is a reflection of the X,Y plane and maps Z to −Z. Thus g is generated by
X,Y, Z ∈ nil3 and T satisfying

[X,Y ] = Z [X,Z] = 0 [Y,Z] = 0(3)

[T,X] = Y [T, Y ] = −X [T,Z] = 0 .(4)

The lane left–invariant plane field spanned by X,Y is a contact structure Cst which
preserved by G. Obviously this is the only plane field with this property and the
corresponding contact structure is tight since according to [Be].

Now let (Nil3, C, H) be a geometric contact structure with H ⊂ G connected
and dim(H) = 3. From Theorem 3 it would follow that (Nil3, H) is equivalent to
(Nil3,Nil3). We now show that actually (Nil3, H ′) = (Nil3,Nil3): Either h = nil3

or h is transverse to nil3. In the second case it follows from (3) and dim(H) = 3
that Z ∈ h and h intersects Cst in a line. Because the adjoint action of T does not
preserve any one dimensional subspace of the X,Y -plane, only the case h = nil3 can
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occur. Therefore C is invariant under Nil3. Note that we did not use any orientation
reversing diffeomorphism of the manifold Nil3.

Now since C is a contact structure it has to be transverse to Z. After conjugation
with a suitable element of Nil3, the plane C(e) is identified with Cst(e). Since both
C and Cst are Nil3-invariant these contact structure coincide everywhere on Nil3.
Thus every geometric contact structures (Nil3, C, H) is equivalent to a subgeometry
of (Nil3, Cst, G). Since we used only orientation preserving automorphisms, only
one orientation of the Thurston geometry (Nil3,Nil3) is represented by a geometric
contact structure.

2.3. X = S̃l(2). Recall that PSl(2,R) acts freely and transitively on the manifold
S1TH2 of unit tangent vectors of the hyperbolic plane H2. We identify PSl(2,R)
with S1TH2 and we use the Riemannian metric induced by the hyperbolic metric
on H2. Then the projection of S1TH2 onto H2 is a Riemannian submersion. The

Thurston geometry S̃l(2,R) is obtained by taking the universal covering of S1TH2.
The plane field C orthogonal to the fibers is the horizontal plane field of the

connection on H2. Because the curvature of H2 is vanishing nowhere, C is a contact
structure.

The maximal isometry group G of S̃l(2,R) is generated by the group S̃l(2,R)
acting by left–multiplication together with horizontal lifts of isometries such that

the resulting map fixes the fiber of S̃l(2,R) over a base point in H2. The latter
isometries form the stabilizer of points in that fiber. The plane field C is preserved

by all isometries of (S̃l(2,R), G). Hence C is a maximal geometric contact structure.
Let A,B,C be a basis of sl(2,R) such that

[A,B] = C [C,A] = −B [C,B] = A(5)

The plane field spanned by A,B is a geometric contact structure on S̃l(2,R) which
is invariant under the SO(2)–action given by

[W,A] = −B [W,B] = A [W,C] = 0(6)

where W is the generator of the Lie algebra of SO(2). Since S̃l(2,R) is simply

connected, this defines an action of SO(2) on S̃l(2,R). Thus the identity component

of the maximal isometry group of S̃l(2,R) is the semidirect product G0 = S̃l(2,R)n
SO(2) (cf. the geometries S3 and Nil3).

Next we want to show that every geometric contact structure (S̃l(2,R), C, H)

with connected isometry group is equivalent to a subgeometry of (S̃l(2,R), Cst, G0).
If H is four–dimensional, then H = G0 and the only G0–invariant plane field is Cst.

If dim(H) = 3, then by Theorem 3 we may assume H = S̃l(2,R). In order to
classify left–invariant contact structures up to equivalence, we consider the coad-
joint action on sl∗(2). A defining form α ∈ sl∗(2,R) for a left–invariant contact
structure is well defined up to multiplication with a real number. According to the
description of the coadjoint orbits of sl∗(2,R) in [MaRa] the multiple of the contact
form α belongs to one of two equivalence classes. Forms in these two conjugacy

classes induce different contact orientations of S̃l(2,R). Thus up to orientation

preserving equivalence (S̃l(2,R), S̃l(2,R) admits two geometric contact structures

(S̃l(2,R), C, S̃l(2,R)) and (S̃l(2,R), C′, S̃l(2,R)).
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It remains to show that (S̃l(2), Cst, S̃l(2)) and (S̃l(2), C′, S̃l(2)) are equivalent. For

this consider the diffeomorphism ψ of S̃l(2,R) which is obtained by lifting the map

Sl(2,R) −→ Sl(2,R)(
a b
c d

)
7−→

(
−a b
c −d

)
to the universal covering. Obviously, ψ is orientation reversing. Moreover, conjuga-

tion with ψ maps elements of S̃l(2,R) to S̃l(2,R). Hence ψ is really an automorphism

of the Thurston geometry (S̃l(2,R), S̃l(2,R)). The contact structures ψ∗(Cst) and

Cst induce different orientations. Thus all geometric contact structures on S̃l(2) are

equivalent to subgeometries of (S̃l(2), Cst, G).

In order to prove that the geometric contact structure Cst on S̃l(2,R) is equivalent
to the tight (cf. [Be]) contact structure C′ = ker(dz′− x′ dy′) on R3 we first exhibit

a convex surface Σ̃ in S̃l(2,R) such that the line field T Σ̃ ∩ Cst is equivalent to the
line field on Σ′ = {x′ > 0, z′ = 0} ⊂ R3 induced by C′. In addition we find a Reeb

vector field R transverse to Σ̃ whose flow is conjugate to the flow of the Reeb vector

field ∂z′ of α′ such that each flow line of R intersects Σ̃ exactly once.
Now consider the contact vector field induced by horizontal lifts of rotations of

H2 around a point in the interior of H2. By definition the lifts of these rotations
preserve the contact structure and the corresponding vector field are transverse to

Cst. Each orbit of the flow of R intersects Σ̃ exactly once (note that the rotation

of H2 by 2π yields a deck transformation of S̃l(2,R)).

For Σ̃ we take the lift of the surface Σ whose points in Sl(2,R) are represented by
the speed vector field of geodesics starting at a chosen point on the ideal boundary
of H2. It is easy to show that the leaves of the foliation on Σ induced by the contact
structure correspond to these geodesics. This foliation is hence equivalent to the
foliation on Σ′ induced by C′.

According to [Gi] the foliation on Σ̃ determines the contact structure on a neigh-

bourhood of Σ̃. Because one can cover S̃l(2,R) using translates of neighbourhoods

of Σ̃ this determines the contact structure on S̃l(2,R) up to isotopy. Since the flows

of ∂z′ and R are conjugate this implies that the contact structure on S̃l(2,R) is
equivalent to the standard tight contact structure on R3.

2.4. X = Sol3. The group Sol3 is the semidirect product R2 n R: We write x, y
for the coordinates on R2 and t for the coordinate on R. The action of R on R2 is
given by t · (x, y) = (etx, e−ty). The isometry group of Sol3 is generated by Sol3

and the isometries

r1 : (x, y, t) 7−→ (−x, y, t) r2 : (x, y, t) 7−→ (x,−y, t)
τ : (x, y, t) 7−→ (y, x,−t) .

The maximal isometry group of Sol3 has eight connected components. Four of them
contain orientation preserving isometries. The Lie algebra sol3 is generated by the
left-invariant vector fields X,Y, T with the relations

[X,Y ] = 0 [T,X] = X [T, Y ] = −Y .(7)
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¿From this one can easily check that C± = span{R,X ± Y } are geometric contact
structure inducing different orientations. Both are preserved by Sol3 and τ, r1 ◦ r2.
Moreover r1∗C+ = C− implies that C+ and C− are equivalent.

Now we want to show that all geometric contact structures on Sol3 are equivalent.
Let (Sol3, C, H) be a geometric contact structure with connected isometry group.
Since G is 3–dimensional we may assume that H = Sol3. Because of (7), the plane
field spanned by X,Y must be transverse to C. Hence there are x1, y1, x2, y2 ∈ R
such that C = span{x1X+y1Y, T +x2X+y2Y }. Without loss of generality assume
x1 ≥ 0.

Since C is a contact structure x1, y1 6= 0 and we may assume in addition that
x2 = 0. Conjugating with a suitable element of exp(RY ) we can achieve that y2 also
vanishes and using elements of {0}n R ⊂ Sol3 we can achieve that 1 = x1 = ±y1.
Thus all geometric contact structures on Sol3 are equivalent and both orientations
of Sol3 are induced by geometric contact structures.

In order to show that C+ is equivalent to the standard tight contact structure
on R3, we consider the Sol3–invariant defining form α = 1/2 (e−tdx− etdy). The
Reeb vector field of α (characterized by iRdα = 0 and α(R) = 1) is R = X − Y .
The corresponding flow has a transversal {x = 0} intersecting every flow line of
R exactly once and the induced foliation on {x = 0} consists of horizontal lines
parallel to the t–axis.

The standard contact form dz′ − x′ dy′ on R3 (with coordinates x′, y′, z′) has
analogous features on {x′ > 0, z′ = 0}. This shows that C+ is isomorphic to the
usual tight contact structure on R3 (cf. Section 2.3).

2.5. X = R3. The metric is the flat metric and the maximal group of isometries
is G = R3 n O(3) acting in the obvious way on R3. In particular, every subgroup
H ⊂ G acting transitively on R3 must contain the translations R3, cf. Theorem 3.
But every plane field which is invariant under translations is integrable. Thus there
is no geometric contact structure on R3.

2.6. X = H3. The metric on X = H3 has constant sectional curvature and the
maximal isometry group is G ' PSl(2,C) n Z2 where the generator of Z2 is the
reflection of H3 along the plane H2 ⊂ H3.

By Theorem 3, (H3,PSL(2,C)) does not have any proper subgeometries. Since
the stabilizer of a point in H3 is isomorphic to SO(3), there is no plane field invariant
under all elements of PSL(2,R). Thus there is no geometric contact structure on
H3.

2.7. X = S2 × R. This is the obvious product geometry. The full isometry group
is the product of the isometry groups of S2 and R.

Suppose that C is a geometric contact structure on X. Since G acts transitively,
C is either everywhere tangent to the fibers of the projection S2×R onto the second
factor or everywhere transverse to the fibers. On the one hand contact structures
have no integral surfaces and on the other hand S2 does not admit a non–singular
line field. Thus there is no geometric contact structure on S2 ×R.

2.8. X = H2×R. Again, this is the obvious product geometry. The isometry group
G is the product of the isometry groups of the factors. The dimension of G is four
and G0 = PSl(2,R)× R.
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By Theorem 3, this geometry has no proper subgeometry of dimension 3. The
only plane field which is invariant under the action of PSl(2,R) is tangent to the
first factor of H2×R. Thus there is no geometric contact structure on this geometry.

3. Geometric Engel structures

Now we come to the main part of this article, the classification of geometric
Engel structures up to equivalence. Let us first make some general remarks about
the isometry group of a maximal geometric Engel structure (X,D, G).

Every isometry preserving an Engel structure D has to preserve the subbundles

(8) W ⊂ D ⊂ E = [D,D] ⊂ TM .

Hence the identity component of the stabilizer of a point x ∈ X in the group of
isometries H preserving an Engel structure D acts trivially on TxX. This implies
that H has dimension four. Since X is simply connected, G acts freely on X. Thus
we can find automorphisms of Thurston geometries as in Example 2.

The other connected components of the stabilizer of x act by isometries on TxX
and they preserve (8). For every local framing X,Y of D we obtain the local framing
X,Y, [X,Y ] of E . Note that the orientation of E = [D,D] defined by X,Y, [X,Y ] is
actually independent from X,Y . Thus E is canonically oriented and every isometry
preserving D must also preserve this orientation of E . Therefore the stabilizer of
x in G can have at most four components. The following theorem summarizes the
classification of geometric Engel structures.

Theorem 11. The following Thurston geometries admit a geometric Engel struc-
ture which is unique up to equivalence:

(S3 × R,SU(2)× R) (Nil3×R,Nil3 nR) (S̃l(2)× R, S̃l(2)× R)

(Sol4(m,n),Sol4(m,n)) (Sol40,Sol4(λ)) (Sol41,Sol41)

(Nil4,Nil4)

No subgeometry of the following Thurston geometries admits a geometric Engel
structure:

S4 R4 H4 CP2 HC2

S2 × S2 S2 × R2 S2 ×H2 H2 ×H2 H2 × R2

F 4 H3 × R (Nil3×R,Nil3×R)

For the proof we consider the individual cases where we also discuss the non–
maximal Thurston geometries like for example (Sol40,Sol4(λ)). We start with those
geometries which do not admit geometric Engel structures for topological reasons.

Then we discuss S3 ×R,Nil3×R, S̃l(2,R)×R using prolongation. Finally we treat
the remaining geometries.

3.1. Topological obstructions. Every Engel manifold has vanishing Euler char-
acteristic and signature. Since the underlying space of each Thurston geometry X
is simply connected it follows also that the tangent bundle of X is trivial if there
is a geometric Engel structure on X.

Therefore S4,CP2, S2×S2, S2×R2, S2×H2 do not carry geometric Engel struc-
tures. Moreover, compact quotients of H4,H2 × H2,H2(C) have positive Euler
characteristic, cf. [Wa2, Ko]. Therefore these geometries do not admit geometric
Engel structures either.
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3.2. Prolongation of geometric contact structures. Three Thurston geome-
tries of dimension 4 can be treated using a construction similar to prolongation,
cf. Example 6. Recall that the 3–dimensional Thurston geometriesX = S3,Nil3 and

S̃l(2) admit geometric contact structures (X, C, H) such that H is 4–dimensional,
connected and the stabilizer of points in X acts by rotations on the contact plane at
that point. The action of H is free and transitive on the manifold S1C of unit vec-
tors of the contact structure. The action is isometric for the induced Riemannian
metric on S1C.

Lifting all data to the universal coverings we obtain an isometric group action

of H̃ on S̃1C which is free and transitive. In particular, the preimage in H̃ of

a cocompact lattice Γ ⊂ H is a cocompact lattice Γ̃ in H̃. Thus (S1C, H̃) is a
Thurston geometry. Similarly to Example 6, there is a natural geometric contact

structure on (S̃1C, H̃).

Let pr : S1C −→ X be the projection and Λ : S̃1C −→ S1C be the universal
covering map. The plane field

D =
{
v ∈ TlS̃1C

∣∣∣ (Λ ◦ pr)∗(v) a multiple of Λ(l) ∈ C
}

is H̃–invariant by definition. Moreover D is an Engel structure. It is simply the lift
of the prolonged Engel structure to the universal covering. Thus we have shown
the following proposition.

Proposition 12. Let (X, C, H) be a geometric contact structure with connected
isometry group H such that the stabilizer in H of a point x ∈ X acts by rotations
of the contact plane C(x). Using the notation from above, the plane field D defined
by

D =
{
v ∈ TlS̃1C

∣∣∣ (Λ ◦ pr)∗(v) a multiple of Λ(l) ∈ C
}

is a geometric Engel structure on (S̃1C, H̃).

It remains to classify all geometric Engel structures on S3×R,Nil3×R, S̃l(2,R)×
R. It will turn out that for these Thurston geometries there is a unique geometric
Engel structure up to equivalence. Observe that by Theorem 3, all subgeometries

of S3 × R and S̃l(2,R) × R with connected four–dimensional isometry group are
equivalent. In the case of Nil3×R there are two non–equivalent subgeometries with
these properties. As we will see in Section 3.2.2 only one class of these subgeometries
caries a geometric Engel structure.

In all three cases, the isometry group H̃ used in Proposition 12 can be decom-

posed into a semidirect product where R acts on one of the groups SU(2), S̃l(2,R)

and Nil3 by automorphisms. Because SU(2) and S̃l(2, R) are semisimple Lie groups,
all automorphisms are inner, thus group elements can be used to obtain an action

similar to the action of R if X = S3 or X = S̃l(2, R). In contrast to this, if
X = Nil3 not all automorphisms are inner. This explains why Nil3×R has not a
unique subgeometry with four–dimensional connected isometry group.

The argument in [Wa2] that (Nil3×R,Nil3×R) is the only minimal subgeometry
of (Nil3×R, G×R) appears incomplete because it does not justify why the fact that
Γ∩ (Nil3×R) is a lattice for all lattices Γ ⊂ H implies that Nil3×R is contained in
H where H is the isometry group of a minimal Thurston geometry.
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In the next three section we consider the case X = S3,Nil3, S̃l(2,R) and show
that all geometric Engel structures on X × R are equivalent to D from Proposi-
tion 12.

3.2.1. X = S3. Let (S3 × R,D, H) be a geometric Engel structure such that H ⊂
SO(4)×R is connected. By Theorem 3 every subgeometry of S3×S1 with connected
isometry group of dimension 4 is equivalent to (S3 × S1,SU(2)×R). It remains to
show that all geometric Engel structures on (S3 × R,D,SU(2)× R) are equivalent
to each other.

We identify S3 × R with SU(2) × R. The Lie algebra su(2) has a basis A,B,C
satisfying the relations

(9) [A,B] = 2C [B,C] = 2A [C,A] = 2B

Assume first that the characteristic foliation W of D is tangent to SU(2). Then
E(e) ∩ su(2) induces a left–invariant plane field which is invariant under W. This
would mean that E(e)∩ su(2) is a left–invariant foliation on SU(2). It follows from
(9) that such a foliation does not exist. Hence W is transverse to SU(2). Then
T SU(2) ∩ E is a geometric contact structure on S3 and by Section 2.1 we may
assume that it is spanned by A,B ∈ su(2).

Using suitable isometries from SU(2) we can achieve thatD∩T (S3× 0) is mapped
to the left–invariant line field RA. Then D is spanned by A and ∂t + λB + µC. If
both λ and µ are zero, then D is not an Engel structure. Conjugating with elements
of the 1–parameter subgroup corresponding to A we can achieve that λ > 0 and
µ = 0. Finally,

S3 × R −→ S3 × R
(x, t) 7−→ (x, λ · t)

(10)

is an equivalence of the geometric Engel structures D = span{A, ∂t + λB} and
Dst = span{A, ∂t + B}. The maximal isometry group preserving Dst is generated
by SU(2)× R and two reflections of S3 × R. Thus the maximal isometry group of
a geometric Engel structure on S3 × R has four connected components.

3.2.2. X = Nil3. We use the notation from Section 2.2. We want to show that
all geometric Engel structures (Nil3×R,D, H) with connected isometry group are
equivalent to the one exhibited in Proposition 12. The Lie algebra of the maxi-
mal connected isometry group G of Nil3 is generated by X,Y, Z,W satisfying the
relations

(11)
[X,Y ] = Z [X,Z] = 0 [Y, Z] = 0
[W,X] = −Y [W,Y ] = X [W,Z] = 0

and the identity component of the maximal isometry group of the geometry Nil3×R
is G×R. As in Section 3.2.1 one can show that the even contact structure E = [D,D]
induces a geometric contact structure on (Nil3, H ∩ (G × 0)). By Section 2.2 we
may assume that this is the standard contact structure span{X,Y } on Nil3 and
that Nil3 = H ∩ (G× 0).

Thus h is spanned by nil3 and ∂t+λZ for λ ∈ R. If λ = 0, then H = Nil3×R. It
is clear from (11) that there is no geometric Engel structure on (Nil3×R,Nil3×R).
Hence we may assume that λ 6= 0. Applying an equivalence analogous to (10) we
can achieve h = nil3 +R(∂t+W ). The Thurston geometries (Nil3×R,Nil3×R) and



MAXIMALLY NON–INTEGRABLE PLANE FIELDS ON THURSTON GEOMETRIES 13

(Nil3×R, H = Nil3 nR) are not equivalent because Nil3×R is nilpotent while H is
only solvable.

We identify the manifolds Nil3×R and H. Then D is spanned by λX + µY 6= 0
and ∂t + W + S with S ∈ nil3. After conjugation with a suitable element of
exp(R(∂t + W )) we may assume λ = 1, µ = 0 and that S is a linear combination
of Y and Z (recall that conjugation with exp(RW ) corresponds to rotations of the
contact plane at the unit element of Nil3). But since adding a multiple of Z to
∂t +W +S induces an isomorphism of H we can even assume S = νY with ν ∈ R.
The following equivalence of the Thurston geometry (Nil3, H)

∂t +W 7−→ ∂t +W + νY X 7−→ X

Y 7−→ Y − νZ Z 7−→ Z

finally shows that all Engel structures Dν = span{∂t +W + νY,X} are equivalent.
The maximal group of isometries preserving Dst = D0 is generated by H and

the isometries acting on h as follows

ψ1 : X 7−→ −X Y 7−→ −Y Z 7−→ Z W 7−→ −W
ψ2 : X 7−→ −X Y 7−→ Y Z 7−→ −Z W 7−→W .

3.2.3. X = S̃l(2). For a description of the Thurston geometry S̃l(2,R) as well as for

the classification of geometric contact structures on S̃l(2,R) we refer to Section 2.3.
In that section we also described the Lie algebra g of the maximal isometry group

of S̃l(2,R)–geometry by generators and relations, cf. (5) and (6).

We want to show that all geometric Engel structures (S̃l(2,R) × R,D, H) are
equivalent to the geometric Engel structure from Proposition 12. By Theorem 3 we

may assume that H = S̃l(2,R)×R. The generator of the Lie algebra of the second
factor will be denoted by ∂t.

Now assume that D′ is a geometric geometric Engel structures on (S̃l(2,R) ×
R, S̃l(2,R)×R) such that the characteristic foliationW ′ of E ′ = [D′,D′] is transverse

to the first factor. Then E ′ induces a geometric contact structure C′ on S̃l(2,R) and
by Section 2.3 we may assume that C′ is spanned by A,B. The characteristic
foliation of E ′ is left invariant. But the only left invariant vector field W which
preserves E is ∂t. This vector field is contained in the center of sl(2,R) ⊕ R and
this contradicts that D′ ⊃ W ′ is an Engel structure.

The characteristic foliation of each geometric Engel structure D′ on S̃l(2,R) ×
R is tangent to the first factor. This implies that E ′ = [D′,D] induces a left–
invariant foliation on the first factor. From the description of the coadjoint orbits

in sl∗(2,R) in Section 2.3 one can read of that all left–invariant foliations on S̃l(2,R)
are conjugate to each other.

Hence we may assume that E ′ ∩ S̃l(2,R) is spanned by A,C and that ∂t + µB
extends this to a framing of E ′ with µ ∈ R. If µ = 0, then E ′ is a foliation and no
even contact structure. After applying an automorphism of the Thurston geometry

(S̃l(2,R)× R, S̃l(2,R)× R) similar to (10) we may assume µ = 1. In this case, the
characteristic foliation of E ′ is spanned by A.

So there is ν ∈ R such that the Engel structure is spanned by A and ∂t + B +
νC. Finally, conjugation with elements of exp(RA) shows that all geometric Engel
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structures on (S̃l(2,R)×R, S̃l(2,R)×R) are equivalent to D0 with ν = 0.The maps

S̃l(2)× R −→ S̃l(2)× R((
a11 a12
a21 a22

)
, t

)
7−→

((
a11 −a12
−a21 a22

)
,−t
)

(A, t) 7−→
(
(AT )−1, t

)
are isomorphisms of S̃l(2)×R. Thus the maximal group of Engel preserving isome-
tries has four components, we have seen before that there cannot be more of them.

3.3. Solvable Geometries. In this section we show that each of the solvable ge-
ometries Sol4(m,n),Sol41 and all subgeometries of Sol40 admit a geometric Engel
structure which is unique up to equivalence. Then we compare theses Engel struc-
tures with the construction of Geiges described in Example 7.

3.3.1. X = Sol4(m,n). Let m,n be positive integers such that the zeroes of

(12) P (m,n) = −λ3 +mλ2 − nλ+ 1

are pairwise different real numbers eα, eβ , eγ with α + β + γ = 0 and α > β > γ.
Other possible configurations of the zeroes of P (m,n) will be discussed below. The
Lie group Sol4(m,n) is the semidirect product R3 nR with R acting on R3 by

(13) t 7−→ ψ(t) = exp

 αt 0 0
0 βt 0
0 0 γt


of R on R3. In order to find a cocompact lattice in Sol4(m,n) consider A ∈ sl(3,R)
such that

(14) exp(A) =

 0 1 0
0 0 1
1 −n m

 .

The group obtained by replacing the R–action from (13) by exp(tA) is isomorphic
to Sol4(m,n) and since all coefficients of exp(A) are integers, Sol4(m,n) contains a
cocompact lattice isomorphic to Z3 n Z where 1 ∈ Z acts on Z3 by exp(A).

Two couples (m,n) and (m′, n′) of integers as above yield isomorphic Lie groups
if and only if the corresponding triples (α, β, γ) and (α′, β′, γ′) are proportional.
A particular instance is m = n ≥ 4. Because of β = 0 and α = −γ ∈ R this
corresponds to the Thurston geometry Sol3×R.

The Lie algebra sol4(m,n) is generated by X1, X2, X3, T with the relations

[T,X1] = αX1 [T,X2] = βX2 [T,X3] = γX3(15)

while the remaining commutators vanish. Ifm 6= n, the isometry group of Sol4(m,n)
is generated by Sol4(m,n) and

X1 7−→ λ1X1 X2 7−→ λ2X2 X3 7−→ λ3X3(16)

T 7−→ T

where λ1, λ2, λ3 = ±1. If m = n ≥ 4, then there is an additional generator ψ=

interchanging X1 with X3 and reverses T .
The left–invariant plane field D0 = span(T,X1 +X2 +X3) is a geometric Engel

structure since α, β, γ are pairwise different. The characteristic foliation is spanned
by X1 +X2 +X3.
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If m 6= n, the only two components of the maximal isometry group H preserving
Dst contain the maps from (16) for λ1 = λ2 = λ3 = ±1. In the case m = n ≥ 4, the
isometry ψ= also preserves Dst. So in this case the maximal group of isometries
preserving the Engel structure has four connected components.

Next we show that all geometric Engel structures on Sol4(m,n) are equivalent.
Assume that D is a geometric Engel structure on Sol4(m,n). Then D has to be
left–invariant and transverse to the first factor of R3 n R ' Sol4(m,n). Since
[Xi, Xj ] = 0, i, j = 1, 2, 3, there is an automorphism of Sol4(m,n) mapping a given
V 6∈ R3 n {0} to a non zero multiple of T . Thus we may assume that D is spanned
by T and x1X1 + x2X2 + x3X3 for suitable x1, x2, x3 ∈ R.

By (15) this plane field is and Engel structure if and only if xi 6= 0 for all
i = 1, 2, 3. Thus the automorphism of Sol4(m,n) defined in (16) with λi = x−1i , i =
1, 2, 3 (instead of λi = ±1) and fixing T maps D to Dst. This shows that all
geometric Engel structures on Sol4(m,n) are equivalent.

3.3.2. X = Sol40. Now we consider the case when m,n are such that (12) has two

different complex solutions eλ, eλ and a real solution e−2<(λ). The Lie group Sol4(λ)
is R3 nR = (C⊕ R) nR with the R–action

R −→ Gl(C⊕ R)

t 7−→
(

(u, x) 7−→
(
etλu, e−2t<(λ)x

))
.

(17)

In order to obtain a Thurston geometry we equip Sol4(λ) with a left invariant
metric and cocompact lattices are obtained using the matrix A(m,n) from (14) in
the previous section. This shows that Sol4(λ) acting on itself by left translations is
a Thurston geometry. However it is not maximal: for all possible values of λ ∈ C
the Thurston geometry (Sol4(λ),Sol4(λ)) is a subgeometry of the same maximal
Thurston geometry (Sol40, G) which we describe next.

The Lie group Sol40 is the semidirect product (C ⊕ R) n R where R acts on
C⊕ R = R2 ⊕ R by

(18) t 7−→ exp

 t 0 0
0 t 0
0 0 −2t

 .

This Lie group does not contain a lattice, cf. [Hil] on p. 137, so (Sol40,Sol40) is not
a Thurston geometry. However for the left–invariant Riemannian metric

g = e−2t(dx2 + dy2) + e4tdz2 + dt2

rotations of the complex plane in (C ⊕ R) n R are also isometries. Therefore the
identity component of the maximal isometry group G of Sol40 is the semidirect
product

(19) G0 = Sol40 nSO(2) ' (C⊕ R) n (R× S1)

where S1 acts on Sol40 by rotations of the complex plane in (C⊕ R) n R. In order
to realize Sol4(λ) as a subgeometry of (Sol40, G) we use the embedding

Sol4(λ) = (C⊕ R) nR −→ Isom(Sol40)

((u, x), t) 7−→
(
(u, x),

(
<(λ)t, exp(i=(λ)t)

))
.

(20)
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This embedding is compatible with the action on the manifold R3nR ' Sol40. This
also implies that (Sol40, G) is a Thurston geometry because we obtained cocompact
lattices in G from the subgroups Sol4(λ) whose action on the manifold Sol40 is free
and transitive.

¿From the realization of Sol4(λ) as subgroup of the maximal isometry group of
Sol40 one can find a basis U1, U2, V, T of sol4(λ) satisfying the commutator relations

[T,U1] = <(λ)U1 + =(λ)U2 [T,U2] = −=(λ)U1 + <(λ)U2

[T, V ] = −2<(λ)V

while the remaining commutators vanish. Here T corresponds the rotations of the
complex plane in Sol40 = (C⊕R)nR. We consider the Sol4(λ)–invariant plane field
D(λ) spanned by T,U1 + V . From the commutator relations of sol4(λ) it follows

D2 = D ⊕ R (<(λ)U1 + =(λ)U2 − 2<(λ)V )

D3 = D2 ⊕ R
((
<2(λ)−=2(λ)

)
U1 + 2<(λ) · =(λ)U2 + 4<2(λ)V

)
.

(21)

Since U1+V and the two vectors appearing in (21) are linearly independentD(λ) is a
geometric Engel structure on (Sol40,Sol4(λ)) which depends on λ. The characteristic
foliation is spanned by U1 + V .

Next we want to show that every geometric Engel structure (Sol40,D, H) with
connected isometry group is equivalent to one of the geometric Engel structures
we have described in this section. By Theorem 3 it is enough to prove that every
geometric Engel structure D on (Sol40,Sol4(λ)) is equivalent to D(λ).

Obviously, D must be transverse to R3 ⊂ Sol4(λ) in order to be an Engel struc-
ture. Furthermore since adding an element of R3 to T induces an inner automor-
phism of Sol4(λ), we may assume that T is tangent to D.

It follows from the commutator relations of Sol4(λ) that D ∩R3 is transverse to
the plane C ⊕ 0 ⊂ R3 and that D cannot be tangent to V . Now we obtain more
automorphisms of the Thurston geometry (Sol40,Sol4(λ)) by

• rotations of the plane C⊕ {0} ⊂ R3,
• multiplying U1, U2 by the same real constant,
• multiplying V with a number.

Using these automorphisms we obtain an equivalence between (Sol40,D,Sol4(λ)) and
(Sol40,D(λ),Sol4(λ)). The maximal isometry group of the geometric Engel structure
is generated by Sol4(λ) and the automorphism ψ of Sol4(λ) with ψ((u, x), t) =
((−u,−x), t).

3.3.3. X = Sol41. In the last two sections we considered semidirect products of R
with R3. Now we turn to Sol41 which is the semidirect product Nil3 nR with the
R–action

(22) t · [x, y, z] 7−→
[
e−tx, ety, z

]
.

We write T ∈ sol41 for the generator of the Lie algebra of R and X,Y, Z for the
usual basis of nil3. Then the non vanishing commutators are

[T,X] = −X [T, Y ] = Y [X,Y ] = Z .(23)

On Sol41 we choose a left–invariant metric such that ‖X‖ = ‖Y ‖. According to
[Wa2] the maximal isometry group is generated by Sol41 together with the following
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isometries of sol41

(24)
X 7−→ λ1X, Y 7−→ λ2Y, Z 7−→ λ1λ2Z,
T 7−→ T

where λ1, λ2 ∈ {±1} together with ψ such that ψ(X) = Y, ψ(Y ) = X,ψ(Z) =
−Z and ψ(T ) = −T . The maximal isometry group of Sol41 has eight connected
components.

It follows from (23) that the span of T and X+Y is a geometric Engel structure
on (Sol41,Sol41). We now show that every geometric Engel structure is equivalent to
this one. Let (Sol41,D,Sol41) be a geometric Engel structure. By (23) D has to be
transverse to nil3 ⊂ sol41 since it is an Engel structure.

After conjugation with suitable elements of Nil3 ⊂ Sol31 we may assume that D
contains T + αZ and some vector in nil3. Adding a multiple of Z to T induces an
isomorphism of the Lie algebra sol41 and therefore there is an automorphism of Sol41
such that T is tangent to the image of D under this automorphism.

Similarly we can arrange that D ∩ nil3 is tangent to the X,Y plane. By (23)
neither X or Y can be tangent to D ∩ nil3. Conjugating with (0, t) ∈ R3 n R we
can finally achieve that either X + Y or X − Y spans D ∩ nil3. The geometric
Engel structures D± = span{T,X ± Y } induce the same even contact structure
with different orientations. Both D+ and D− are preserved by ψ and the isometries
from (24) with λ1 = λ2. For λ1 = −λ2 the isometries from (24) interchange D− and
D+. This shows that all geometric Engel structures on (Sol40,Sol40) are equivalent
to each other.

3.3.4. Relation to Geiges’s construction. The Engel structures we have obtained in
this section are similar to those arising from Geiges’s construction. More pre-
cisely, for certain lattices Γ in the isometry groups of the solvable geometries
X = Sol4(m,n),Sol41 and (X,G) = (Sol40,Sol4(λ)) the Engel structures on the
manifold Γ\X are slight modifications of the Engel structures obtained in Exam-
ple 7.

First, we consider the cases X = Sol4(m,n) or X = Sol40. Let Γ be a lattice
obtained as described in Section 3.3.1. Then the manifold Γ\X is the suspension
of a diffeomorphism of the 3–torus.

For X = Sol4(m,n) = R3 n R (the action of R depends on m,n) let X1, X2, X3

be the standard framing of R3 and X0 be tangent to the second factor. Consider
the span of

(25) X0 and Yk = (X1 +X2) +X3 .

This is the expression arising in (2) when one removes the factor 1/k from (2) in
Example 7 and applies the resulting formula to the framing X0, X1 + X2, X1 −
X2, X3. The characteristic foliation is spanned by X1 +X2 +X3 and it is tangent
to the leaves of the fibers of the mapping torus.

The case X = Sol40 is similar. Let Γ ⊂ Sol4(λ) be a lattice described in Sec-
tion 3.3.1 and consider the framing U1, U2, V, T of Sol4(λ). Then the span of T
and

Yk = cos(kt)U1 + sin(kt)U2 + V

is the geometric Engel structure Dst from Section 3.3.2. This is again a small
modification of (2) for k = =(λ).
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Finally consider Sol41. Choosing a lattice Γ′ in Nil3 which is invariant under the
action of (e, 1) ∈ Nil3 nR one obtains a lattice Γ = Γ′ n Z in Sol41. The resulting
manifolds Γ\ Sol41 are mapping tori of diffeomorphisms a Nil3–manifold, i.e. the
fibers are non–trivial circle bundles over T 2. These manifolds carry geometric
contact structures, cf. Section 2.2.

The geometric Engel structures on Γ\ Sol40 are obtained by suspending a diffeo-
morphism preserving the geometric contact structure on Γ′\Nil3. As can be read of
from (22) this diffeomorphism acts on the contact planes expanding one direction
and contracting its orthogonal complement. In contrast to the other to solvable
geometries, the characteristic foliation corresponds to the vector field induced by
the suspension of an diffeomorphism of the fiber Γ′\Nil3.

3.4. X = Nil4. The group Nil4 can be written as semidirect product R3 nR where
t ∈ R acts on R3 by

(26) ϕ(t) = exp

 0 t 0
0 0 t
0 0 0


and T is tangent to the second factor of R3 nR while Z, Y,W (in this order) corre-
spond to the standard basis of R3. The Lie algebra nil4 is generated by W,T, Y, Z
with

[T,W ] = Y [T, Y ] = Z(27)

and the remaining commutators vanish. The maximal isometry group G is gen-
erated by Nil4 acting by left translations on itself and by those automorphisms of
Nil4 which act on nil4 by

W 7−→ λ1W T 7−→ λ2T

Y 7−→ λ1λ2Y Z 7−→ λ1Z

for λ1, λ2 = ±1. The left invariant plane field Dst spanned by W,T is a geometric
Engel structure whose characteristic foliation is spanned by W . Since Dst is pre-
served by all automorphisms from (26), Dst is invariant under the maximal isometry
group of Nil4.

Now let D be a geometric Engel structure on Nil4. By (27) D has to be transverse
to foliation [nil4, nil4] = span{Y, Z}. Thus for suitable constants α1, α2, β1, β2 ∈ R

W + α1Y + β1Z and T + α2Y + β2Z

span D. Adding a multiple of Z to T or W is induces an automorphism of Nil4.
Thus we may assume β1 = β2 = 0. Using the adjoint action of ((0, 0,R), 0) ⊂ Nil4

one can achieve α1 = 0 and α2 = 0. This implies that all geometric Engel structures
on Nil4 are equivalent to Dst.

Before we proceed with the remaining geometries, let us compare the Engel
manifolds obtained as quotients of Nil4 by certain lattices Γ ⊂ Nil4: For given
α, γ ∈ N and β ∈ Z the lattice Γ ⊂ Nil4

a = ((0, 0, 0), 1) b = ((0, αγ/2− β, αγ), 0)

c = ((0,−γ, 0), 0) d = ((1, 0, 0), 0)
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acts freely on Nil4 such that the quotient manifold is compact. With these genera-
tors the group Γ has the following presentation

(28) Γ =
〈
a, b, c, d

∣∣[b, a] = cαdβ , [c, a] = dγ , [c, b] = [a, d] = [b, d] = [c, d] = 1
〉
.

According to [Dek] every lattice in Nil4 has such a presentation. The manifold
Γ\Nil4 is a suspension of the diffeomorphism

T 3 ' R3/〈b, c, d〉 −→ R3/〈b, c, d〉 ' T 3 x
y
z

 7−→
 1 1 1/2

0 1 1
0 0 1

 x
y
z

 .
(29)

For this lattice the Engel structure is similar to Engel structures obtained by the
construction in Example 7. The Engel structure on Γ\Nil4 is transverse the fibers
of

pr : Γ\Nil4 −→ T 2

((a1, a2, a3), t) 7−→ (a3, t) .

and tangent to the suspension vector field T . The characteristic foliation is tangent
to the fibers of the suspension described in (29). Thus the geometric Engel structure
on Γ\Nil4 a modification of the construction of Geiges with k = 0.

3.5. X = R4. All subgroups of the isometry group of R4 which act transitively on
R4 must contain the translations of R4. The only translation invariant plane fields
on R4 are foliations. Thus there is no geometric Engel structure on R4.

3.6. X = H3 × R. The maximal isometry group G is the product of the maxi-
mal isometry groups of each factor. It is 7–dimensional and has four connected
components. According to Theorem 3 there is no subgeometry with 4–dimensional
isometry group. Therefore H3 × R does not admit a geometric Engel structure.

3.7. X = R2 ×H2. The maximal isometry group G is the product of the maximal
isometry groups of the factors, it has dimension 6 and four connected component.
Like in the case of H3 × R there is no geometric Engel structure because there is
no Thurston geometry with 4–dimensional isometry group which is equivalent to
H2 × R2, cf. Theorem 3

3.8. X = F 4. This is the only Thurston geometry in dimension 4 who does not
admit compact models, cf. [Wa2]. The manifold underlying this geometry is again
R2×H2 where we use the upper half plane model for H2. The group is R2nSl(2,R)
with the standard action of Sl(2,R) on R2. This group acts on R2 ×H2 by(

(u, v),

(
a b
c d

))
· ((x, y), z) =

(
(ax+ by, cx+ dy),

az + b

cz + d

)
.

This group has no 4–dimensional subgroup acting transitively on X. Therefore
there is no geometric Engel structure on F 4.
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4. Rigidity of integral curves

In this final section we consider integral curves of an Engel structure D on M ,
i.e. we consider curves γ : [a, b] −→ M such that γ̇(t) ∈ D. We denote the space
of all integral curves of D starting at p and ending at q by ΩD(p, q) and we use the
C1–topology on ΩD(p, q).

Definition 13. An integral curve γ : [a, b] −→ M of D is rigid if there is a
neighbourhood U of γ in ΩD(γ(a), γ(b)) such that every curve in U is a reparame-
terization of γ.

In [BrH] R. Bryant and L. Hsu have obtained a complete characterization of rigid
integral curves. In order to state it we need to define the development map of a leaf
of the characteristic foliation of D. Let p in M and W(p) the leaf of W through
p. We fix a plane C ∈ E(p) such that E(p) = C ⊕ W(p). For q in W(p) let ϕq be
germ of the holonomy of W mapping a neighbourhood of q to a neighbourhood of
p. Recall that the holonomy ofW preserves bothW and E . Therefore the following
definition of the development map δp makes sense

δp :W(p) −→ PC ' RP1

q 7−→ (ϕq∗D(q)) ∩ C .

The condition that [D,D] = E has rank 3 everywhere ensures that the development
map is an immersion. Rigid integral curves can be characterized as follows.

Theorem 14 ([BrH]). A curve γ : [a, b] −→ M in ΩD(γ(a), γ(b)) is rigid if and
only if

(i) the image of γ is contained in a leaf of W and
(ii) the map δp◦γ : [a, b] −→ RP1 is one–to–one except possibly at the endpoints.

Using this theorem we can show that some geometric Engel structures have the
property that every path whose image is tangent to any leaf of the characteristic
foliation is rigid. Compact quotients of these geometric Engel structures are prob-
ably the first known examples of closed Engel manifolds with this rigidity property.
Note that the leaves of the characteristic foliation of Engel structures obtained by
prolongation never have this rigidity property since one can choose paths covering
the leaves of the characteristic foliation very often. These paths then violate the
second condition inTheorem 14. This means that the leaves of the characteris-
tic foliation of the geometric Engel structures on S3 × R,Nil3×R, S̃l(2,R) contain
non–rigid segments. Next we consider the solvable geometries and Nil4.

Proposition 15. All segments of the characteristic foliation of the geometric Engel
structures on Sol4(m,n),Sol4(λ),Sol41 and Nil4 are rigid.

Proof. We consider first the Thurston geometries Sol4(m,n) ' R3 n R where the
action of R on R3 is determined by a matrix depending on m,n, cf. Section 3.3.1 for
the description of Sol4(m,n). As we have shown every geometric Engel structure
on Sol4(m,n) is equivalent to

Dm,n = span{X1 +X2 +X3, T}

and the characteristic foliation is spanned by X1 + X2 + X3. In particular the
holonomy of the characteristic foliation preserves the foliation of Sol4(m,n) ' R3n
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R given by the first factor. Because D is never tangent to this foliation all segments
of leaves of the characteristic foliation satisfy the second condition in Theorem 14.

The other cases Sol4(λ),Sol41 and Nil4 can be treated in the same way. �
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