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ABSTRACT. We show that up to isotopy there are exactly two oriented
non-loose Legendrian unknots in S3 with the same classical invariants
(only one overtwisted contact structure on S3 admits an unknot with
these properties).

This can be used to prove a result attributed to Y. Chekanov implying
that the contact mapping class group of an overtwisted contact structure
on S3 depends on the contact structure. In addition we show that the
identity component of the contactomorphism group of an overtwisted
contact structure on S3 does not always act transitively on the set of
boundaries of overtwisted discs.

1. INTRODUCTION

In 3-dimensional contact topology there is a fundamental dichotomy be-
tween tight and overtwisted contact structures pioneered by D. Bennequin
[Be] and developed further by Y. Eliashberg [El92].

Usually, the attention is restricted to tight contact structures. These con-
tact structures are characterized by the absence of so-called overtwisted
discs. This is because a theorem of Y. Eliashberg shows that the classifi-
cation of contact structures on a fixed closed 3-manifold up to diffeomor-
phism which contain an overtwisted disc up to isotopy coincides with the
classification of plane fields up to homotopy.

What is important in Eliashberg’s result is that one needs to fix and con-
trol an overtwisted disc. In particular, if one considers the isotopy problem
for Legendrian or transverse links, Eliashberg’s theorem can be applied ef-
fectively when the complement of the links is overtwisted.

This is not always the case. As K. Dymara noted in [Dy01] it may happen
that a Legendrian or transverse knot has a tight complement. In other words
it intersects all overtwisted discs. A knot with this property is called non-
loose. Also, it may happen that two Legendrian knots have the same classi-
cal invariants (the Thurston-Bennequin invariant and the rotation number),
each knot has an overtwisted complement but the complement of the union
of the two knots is tight. In these situations one cannot apply Eliashberg’s
theorem directly to construct for example Legendrian isotopies between two
non-loose Legendrian knots with the same classical invariants.

In her preprint [Dy04] K. Dymara gives several examples of such non-
loose Legendrian knots in S3 and J. Etnyre constructed more examples in
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[Et08]. He also found examples of pairs non-loose Legendrian knots whose
complements are not diffeomorphic.

Non-loose Legendrian knots are interesting because one can obtain in-
teresting tight contact structures from surgeries on non-loose Legendrian
knots. Furthermore, as shown in this paper, non-loose unknots can be used
to obtain non-trivial information about overtwisted contact structures and
not only about additional structures like for example Legendrian knots.

A coarse classification (i.e. up to diffeomorphism) of non-loose unknots
in S3 is due to Y. Eliashberg and M. Fraser in [ElF09] and independently to
J. Etnyre (see [Et13]). It turns out that on S3 there is a unique contact struc-
ture which admits a non-loose unknot, we denote it by ξ−1. In particular, it
turns out that a non-loose unknot has positive Thurston-Bennequin invari-
ant. A coarse classification of certain rationally null-homologous knots in
lens spaces was obtained by H. Geiges and S. Onaran [GeO].

One main result of this paper is the classification of non-loose Legendrian
unknots in S3 up to Legendrian isotopy.

Theorem. Let K,K ′ be two non-loose Legendrian unknots with tb(K) =
tb(K ′) = 1. Then K and K ′ are isotopic. When K is oriented, then there
is no Legendrian isotopy which reverses the orientation of K.

The first part of this statement follows from Theorem 3.7 while the sec-
ond part is the content of Theorem 3.9. The argument for the first part relies
on Eliashberg’s classification theorem and a study of the characteristic foli-
ation on a spheres containing the non-loose unknot as well as deformations
of the sphere which result in overtwisted discs. The proof of Theorem 3.7
uses a classic argument from differential topology.

We will also classify non-loose unknots with tb(K) = n up to isotopy.
Then n has to be positive and rot(K) = ±(n− 1) and K is isotopic to ex-
actly one of two standard unknots with the same classical invariants. Non-
loose unknots with Thurston-Bennequin invariant one are called minimal.

An important problem concerning the classification of non-loose unknots
in S3 that is left open in this article is the following problem.

Problem. LetK be a minimal non-loose oriented unknot in S3 with tb(K) =
1. Decide effectively whether another minimal non-loose oriented unknot
S3, which could be given in terms of a front projection for example, is iso-
topic to K or K (i.e. K with its orientation reversed).

More problems can be found in [Et13] and [BaO]. Etnyre’s article also
contains proofs of most of the known results on non-loose knots. In [BaO]
K. Baker and S. Onaran propose to quantify the degree of non-looseness
of Legendrian/transverse knots and suggest a number of problems related
to their invariants. Another reference is [LOSZ] where the authors give
an example of a pair of non-loose transverse knots with the same classical
invariants which are not isotopic.

We give two applications of the classification of non-loose Legendrian
unknots up to isotopy: First, we prove that there is a pair of boundaries
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of overtwisted discs in (S3, ξ−1) which are not Legendrian isotopic to each
other. More precisely, it is not always possible to find a contact isotopy in a
contact manifold which moves an overtwisted ball into another such ball.

The other application is the description of the contact mapping class
group π0 (Cont+(S3, ξ)) of contact structures on S3 which preserve the ori-
entation of the contact structure. The claim in the following theorem is
attributed to Y. Chekanov in [ElF98] without any indication of proof.

Theorem 4.5. Let ξ be an overtwisted contact structure on S3 and denote
by Diff+(S3, ξ) the group of diffeomorphisms of S3 which preserve ξ and
an orientation of this plane field. Then

π0

(
Diff+(S3, ξ)

)
=

{
Z2 ⊕ Z2 if ξ ' ξ−1

Z2 otherwise.

The additional Z2-summand in the case ξ ' ξ−1 is determined by consid-
ering the action of contactomorphisms on isotopy classes of oriented min-
imal non-loose Legendrian unknots. In [Dy01] K. Dymara introduced an
invariant which detects the other Z2-factor for all overtwisted contact struc-
tures on S3. Finally, recall that the group of diffeomorphisms preserving
the oriented tight contact structure on S3 is connected according to [El92].

Theorem 4.5 can hopefully be applied to obtain the classification of non-
loose links in overtwisted contact structures once the classification up to
contact diffeomorphism is known.

This paper is organized as follows: Section 2 contains the relevant def-
initions and examples of non-loose knots. In Section 3 we first review the
coarse classification using the approach taken in [ElF09]: The normal form
for the characteristic foliation on a disc bounding a non-loose unknot is used
heavily in the next sections. After the construction of examples of contact
diffeomorphisms preserving a particular non-loose unknot we prove that
every non-loose unknot is isotopic to a standard example K ⊂ (S3, ξ−1).
Then we show that K and K are not isotopic as oriented knots. Finally,
in Section 4 we discuss the connected components of the group of orien-
tation preserving contact diffeomorphisms on S3 for overtwisted contact
structures.
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2. PRELIMINARIES

In this section we review standard definitions, we review Giroux’s de-
scription of contact structures in terms of families of characteristic folia-
tions and we discuss basic facts about non-loose knots and some examples.
Finally, in Section 2.6 we discuss an invariant introduced by K. Dymara
in [Dy01] which can be used to show that the group of diffeomorphisms
preserving an oriented overtwisted contact structure on S3 is not connected.

2.1. Tight and overtwisted contact structures.

Definition 2.1. A contact structure is a smooth plane field ξ on a 3-manifold
which is locally defined by a 1-form α such that α ∧ dα never vanishes.

Manifolds admitting contact structures are necessarily oriented and we
will only consider cooriented contact structures which are positive (i.e. α∧
dα > 0. Throughout this paper, we assume that ξ is oriented as a plane
field.

An important fact about contact structures is Gray’s theorem which we
will use:

Theorem 2.2. Let ξt be a family of contact structures on a closed 3-manifold.
Then there is an isotopy ψt such that ψt∗(ξ0) = ξt.

Parametric and relative versions of this theorem also hold. One fact
which comes out of the proof of Theorem 2.2 by the Moser method is the
following: If K is a Legendrian knot which is tangent to ξt for all t, then ψt
can be chosen to preserve K (but not pointwise, of course). The details can
be found in Section 2.2 of [Ge], for example.

Definition 2.3. An embedded disc D −→ M in a contact manifold (M, ξ)
is overtwisted if TpD = ξ(p) for all points p ∈ ∂D. A contact structure is
tight if there is no overtwisted disc, otherwise it is overtwisted.

The following two theorems of Eliashberg highlight the fundamental dif-
ference between overtwisted contact structures (which are very flexible) and
tight ones (for which rigidity phenomena appear).

Theorem 2.4 (Eliashberg [El92]). Let ξ be the germ of a tight contact struc-
ture along ∂B3. Then the space of tight contact structures on the ball which
coincide with ξ near ∂B3 is weakly contractible.

In particular, the relative homotopy type of the plane field on (B3, ∂B3)
is completely determined be the boundary data and the requirement that ξ
is a tight contact structure.

Now let ξ∆ be a contact structure defined near a disc ∆ and on a neigh-
borhood of a compact setN so that ∆ is an overtwisted disc for ξ∆. We will
use the following notation:

Cont(M,N, ξ∆) = { contact structures equal to ξ∆ near ∆ ∪N}
Distr(M,N, ξ∆) = { plane fields which coincide with ξ∆ near ∆ ∪N}.
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Both spaces carry the Ck-topology with k ≥ 1. The proof of the following
theorem can be found in [El89]. It is discussed also in [Gi93] and [Ge].
Y. Huang proved a version not covering families of contact structures using
bypasses in [Hu13].

Theorem 2.5 (Eliashberg [El89]). Let ξ∆ be a contact structure as above
and N ⊂ M a compact set in the complement of ∆ such that M \ N is
connected. Then

Cont(M,N, ξ∆) ↪→ Distr(M,N, ξ∆)

is a weak homotopy equivalence.

The statement can be enhanced even further: Not only a relative version
with respect to compact subsets N of M holds, but also a relative version
with respect to compact subsets of the parameter space the parameter space.
More precisely, if ζs, s ∈ S, is a family of plane fields in Distr(M,N, ξ∆)
with compact parameter space S and S ′ ⊂ S is a compact set such that
ζs ∈ Cont(M,N, ξ∆) for s ∈ S ′ then one does not have to change ζs for
s ∈ S ′ when applying Theorem 2.5.

Combining these two relative versions one can for example obtain a fam-
ily of contact structure from a family ζs, s ∈ [0, 1], of plane fields with the
following properties:

• ζs is a contact structure near discs ∆1 respectively ∆2 for all s.
• ∆1 respectively ∆2 are overtwisted discs of ζs when s ∈ [0, 2/3]

respectively [1/3, 1].
• ∆1 and ∆2 are disjoint.

Also, if an overtwisted disc ∆ is moved by an isotopy, then Theorem 2.5
can be adapted to this situation.

Theorem 2.5 implies that to a large extent the study of overtwisted contact
structures reduces to the study of homotopy classes plane fields. Using triv-
ializations of the tangent bundle of the underlying manifold M , homotopy
classes of families of plane fields correspond to families of mapsM −→ S2

up to homotopy. Since all higher homotopy groups of S2 are non-trivial by
[IMW], the algebraic topology questions that arise here are difficult. We
will discuss this for M = S3 in Section 2.6.

Theorem 2.5 can be used to produce families of overtwisted contact struc-
tures on S3 with prescribed homotopy type as families of plane fields. The
following consequence of Theorem 2.5 which can be found [Dy01].

Lemma 2.6. Let ξ be a contact structure on a collar N of the boundary
of B3 which is overtwisted. For every homotopy class of families of plane
fields ζs, s ∈ K, where K is a compact manifold, which coincides with ξ on
N there is a family of contact structures ξs in the same homotopy class.

Proof. This is a direct application of Theorem 2.5: By assumption, there
is always a fixed overtwisted disc in N , so every family of plane fields
ζs, s ∈ K, as in the lemma on B3 can be homotoped to a family of contact
structures ξs, s ∈ K. �
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Before we discuss Legendrian and transverse knots we note one conse-
quence of Theorem 2.4.

Proposition 2.7 (V. Colin, [Co99]). Let B0, B1 ⊂ M be two closed balls
in a contact manifold such that B0 ⊂ B̊1 such that the contact structure is
tight on an open neighborhood V of B1. Then there is a contact isotopy of
M with support in V which moves B1 into the interior of B0. If there is a
pair of unknotted Legendrian arcs γ0, γ1 which are transverse to ∂B0 and
∂B1 each arc intersects ∂B0 and ∂B1 exactly once then one can choose the
isotopy so that it preserves γ0, γ1.

Definition 2.8. A Legendrian knot in a contact manifold (M, ξ) is an em-
bedding S1 −→ M so that the tangent space of the image is contained in
ξ. A knot K in (M, ξ) is transverse if its tangent space is transverse to
ξ(p) at every point p ∈ K, usually a transverse knot is oriented so that the
orientation coincides with the coorientation of ξ.

In addition to their isotopy type as embedded curves, null-homologous
Legendrian or transverse knots have the following classical invariants.

Definition 2.9. Let Σ be a connected Seifert surface for a Legendrian knot
K. Then the Thurston-Bennequin invariant tb(K) of K is the algebraic
intersection number of the push off of K along a vector field transverse to
ξ with Σ. The rotation number of K is the number of full turns the positive
tangent vector of K makes compared to an oriented framing of ξ

∣∣
Σ

(Σ is a
surface with boundary) as one moves along the oriented curve K.

The self-linking number sl(K) of a null-homologous transverse knot K
is the algebraic intersection number of a Seifert-surface Σ with K ′ where
K ′ is obtained from K by pushing K away from itself using a vectorfield
tangent to ξ which vanishes nowhere along Σ.

In general, these invariants depend on the choice of [Σ] ∈ H2(M,K;Z),
but if M = S3 then the Thurston-Bennequin invariant, the rotation number
and the self-linking number are independent of this choice. Note that tb
is independent of the orientation of the know while the rotation number
changes sign when the orientation of K is reversed.

For an oriented Legendrian knotK one obtains a transverse knot by push-
ing K away from itself using a vector field N tangent to ξ so that along the
knot the vectorfield N followed by the tangent direction of K is an oriented
basis of ξ. The resulting knot will be denoted by K+ and according to [Be]
the classical invariants of K and K+ are related as follows

(1) sl(K+) = tb(K)− rot(K).

Theorem 2.10 (Eliashberg [El92]). Let (M, ξ) be a contact 3-manifold.
Then ξ is tight if and only if

(2) −tb(K) + |rot(K)| ≤ −χ(Σ)

for every null-homologous Legendrian knot K and Seifert surface Σ.
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2.2. Surfaces in contact manifolds. Let Σ be an oriented surface embed-
ded in a contact manifold (M, ξ). If ∂Σ 6= ∅ we require that the boundary is
tangent to ξ. The following terminology will be used also when ξ is a plane
field (in this context we will use the notation ζ instead of ξ).

Definition 2.11. The characteristic foliation ξ(Σ) on Σ is defined by the
singular line field TΣ∩ξ. It determines the germ of ξ along Σ up to isotopy
preserving ξ(Σ). A point p ∈ Σ is called singular if TpΣ = ξ(p), when ξ
and Σ are oriented, a singular point is positive if the orientations coincide,
otherwise it is negative.

The characteristic foliation is oriented so that the orientation of ξ(Σ) fol-
lowed by the coorientation of ξ is the orientation of Σ. For singular points
there is a well defined notion of positive/negative divergence. Positive sin-
gularities have positive divergence while the divergence at negative singu-
larities is negative. The orientation convention turns positive/negative ellip-
tic singularities into sources/sinks.

Because of the contact condition, the characteristic foliation near an iso-
lated singular point has a particular form. For example, the index of such a
critical point can only be ±1 or 0 (a proof is in [V]).

Generically, the singular line field ξ(Σ) on Σ defines a Morse-Smale fo-
liation, i.e.

• all singularities are non-degenerate,
• all closed orbits are hyperbolic, and
• there are no connections between hyperbolic singularities.

Giroux [Gi91] has proved that these properties together imply that Σ is
there is a contact vector field which is transverse to Σ.

Definition 2.12. An embedded surface with Legendrian boundary in a con-
tact manifold is convex if there is a contact vector field transverse to Σ.

Of course, the characteristic foliation does not have to be Morse-Smale
to be convex. For example, connections between hyperbolic singularities of
the same sign never prevent convexity.

Giroux has found a topological property of the characteristic foliation on
Σ which determines whether or not Σ is convex.

Definition 2.13. A collection Γ of curves and arcs on a surface Σ with
∂Γ ⊂ ∂Σ divides a singular foliation if

(i) Γ is transverse to ξ(Σ) and Γ decomposes Σ into two subsurfaces
Σ+,Σ− (not necessarily connected), and

(ii) there is a vector fieldX and an area form ω on Σ such that LXω > 0
respectively LXω < 0 on the interior of Σ+ respectively Σ− point-
ing out of Σ+.

Theorem 2.14 (Giroux [Gi91]). An oriented compact surface Σ ⊂ (M, ξ)
with Legendrian boundary is convex if and only if ξ(Σ) admits a dividing
set. The dividing set is unique up to isotopy an isotopy through multicurves
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transverse to the characteristic foliation. A convex surface in a contact
manifold has a neighborhood where ξ is tight if and only if

Σ ' S2 and ξ(Σ) has a connected dividing set or
Σ 6' S2 and non component of a dividing set of ξ(Σ) bounds a disc.

If one of the last two conditions in the theorem are violated for a convex
surface, we will say that this surface contains an obvious overtwisted disc.

Because of the Poincaré-Bendixson theorem it is easier to describe the
necessary and sufficient conditions on ξ(Σ) for Σ to being convex when
Σ ' S2.

Lemma 2.15. An embedded sphere S2 in a contact manifold (M, ξ) whose
characteristic foliation has only isolated singularities is convex if and only
if

• each closed leaf of S2(ξ) is hyperbolic, and
• there is no connection from a negative singular point to a positive

singular point.

Proof. If Σ is convex and Γ is a dividing set, then all positive singularities
are contained in Σ+ while the negative singularities lie in Σ− Also, a closed
leaf is hyperbolic if and only if there is a couple (X,ω) as in Definition 2.13
on a neighborhood of the closed leaf. Thus in order to be convex, (i) and
(ii) have to be satisfied.

For the opposite direction, recall that by the Poincaré-Bendixson theorem
all limit sets of leaves of ξ(Σ) are either closed leaves or cycles formed by
finitely many leaves of ξ(Σ) which connect singular points. Therefore if a
characteristic foliation on S2 satisfies (i) and (ii) then one can construct a
triple (X,ω,Γ) as in the proof of Proposition 2.6 of [Gi91]. �

There are effective methods to manipulate the characteristic foliation on
surfaces, in particular for convex surfaces [Gi91, Gi00]. The following
lemma can be found in [Gi91] and does not require convexity.

Lemma 2.16 (Elimination Lemma). Let Σ ⊂ (M, ξ) be an embedded sur-
face such that the characteristic foliation has a leaf γ connecting two singu-
lar points with the same sign such that the index of one of the singularities
is 1 while the other has index −1.

Then Σ can be isotoped on a neighborhood of γ such that the these two
singular points have disappeared from the characteristic foliation on the
isotoped surface and γ remains Legendrian.

Conversely, one can also create a pair of singularities satisfying the con-
ditions of Lemma 2.16.

There is another possible modification which is particularly relevant when
considering surfaces with Legendrian boundary. The modification shown in
Figure 1 preserves the boundary of a surface(represented by the thickened
horizontal line). A reference for this modification is [ElF09]. Note that if
the hyperbolic singular point is positive respectively negative, then its un-
stable respectively its stable leaves have to be part of the boundary.
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++

+

FIGURE 1. Splitting hyperbolic singular points on a Legen-
drian boundary of a surface

Finally, we note that the rotation number of the a Legendrian knot K
with Seifert surface Σ can be computed from ξ(Σ) assuming all singular
points of ξ(Σ) are generic. Let e± respectively h± be the number of elliptic
respectively hyperbolic singular points with the sign ± in the interior of Σ.
Then

(3) rot(K) = e+ − e− − h+ + h−

when the singularities on the boundary are all either hyperbolic or all elliptic
(this can be deduced from [Et05]).

2.3. Tomographie.

2.3.1. Movies of characteristic foliations. Let Σ × (−δ, δ), δ > 0, be the
closure of a tubular neighborhood of an oriented surface in a contact mani-
fold (M, ξ). We assume that S is compact and ∂Σ × {t} is Legendrian for
all t ∈ (−δ, δ).

Definition 2.17. The movie of ξ on Σ×(−δ, δ) is the family of characteristic
foliations of ξ on Σ× {t} = Σt, t ∈ (−δ, δ).

According to [Gi00] (see also [Ge]) the movie determines the contact
structure up to isotopy. If the characteristic foliation on Σ × {0} violates
one of the conditions (i),(ii) of Lemma 2.15, then this has consequences for
the characteristic foliation on Σt for t close to 0. The following definitions
and lemmas are due to Giroux [Gi00]. As an application of these results,
Giroux gave a beautiful proof of Bennequin’s theorem:

Theorem 2.18 (Bennequin). A contact structure on S2 × [−1, 1] such that
every sphere of the product decomposition is convex and has connected
dividing set is tight.

Definition 2.19. A retrogradient connection is a leaf connecting a positive
singular point with a negative one such that the leaf is oriented towards the
positive singularity. A retrogradient connection is non-degenerate if both
endpoints are non-degenerate singular points.

The following two lemmas are key for the understanding of non-convex
spheres in contact manifolds:

Lemma 2.20 (Lemme de croisement, 2.14 in [Gi00]). Let ξ be an oriented
positive contact structure on Σ×(−1, 1) such that there is a non-degenerate
retrogradient connection in ξ(Σ0). For t > 0 respectively for t < 0, the
corresponding stable leaf in ξ(Σ0) lies over respectively under the corre-
sponding unstable leaf.
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Here and in the next lemma the words over and under refer to the coori-
entation of ξ.

Lemma 2.21 (Lemme de naissance-mort, 2.12 in [Gi00]). Let γ be a closed
leaf of the characteristic foliation on ξ(Σ0) which is attractive on one side
and repelling on the other. If the repelling side is above γ, then for t > 0
small enough ξ(Σt) has two non-degenerate closed orbits in a neighbor-
hood of γ while this neighborhood contains no closed leaves for t < 0. If
the repelling side is below γ, then it is the other way round.

The following lemma shows that a single retrogradient connection ap-
pearing in a movie of a contact structure on S2 × [−1, 1] which is not obvi-
ously overtwisted (i.e. an overtwisted disc is present on one of the leaves)
is tight.

Lemma 2.22. Let ξ be a contact structure on N ' S2 × [−1, 1] (with a
generic product decomposition) which is tight near the boundary such that
the characteristic foliation on S2

t is convex except when t = 0 and the
characteristic foliation on S2

0 has exactly one retrogradient connection.
Then ξ is isotopic to a family of contact structures on S2 × [−1, 1] such

that all spheres S2
t are convex and ξ is tight.

Proof. For t = 0 we eliminate all hyperbolic singularities which do not
take part in the retrogradient saddle-saddle connection: Let Γ−t be the graph
whose vertices are negative singularities and whose edges are unstable leaves
of negative singularities. For t 6= 0 this is a tree because it follows from the
assumptions that ξ is tight on S2 × [−1, 0) and S2 × (0, 1]. When t = 0,
then Γ−t consists of two connected components, one of these components is
not closed (the ω-limit set of the edge γ forming the retrogradient saddle-
saddle connection is a positive hyperbolic singularity p+ and does not lie in
Γ−0 ). By Lemma 2.20 both unstable leaves of p+ have their ω-limit set in
the closed component of Γ−0 , otherwise ξ(S2

t ) contains obvious overtwisted
discs for t > 0 or t < 0.

For t close to zero we can therefore eliminate those singular points which
belong to the non-closed component of Γ−0 . �

2.3.2. Movies on S2 × [−1, 1]. Let ξσ, σ ∈ [0, 1], be a smooth family of
contact structures on S2 × [−1, 1] where the product decomposition may
also vary smoothly and the contact structures and the product decomposi-
tion are constant near the boundary of S2 × [−1, 1].

We make the following genericity assumptions on the movie of ξσ on
S2 × [−1, 1] with respect to product decomposition associated to the pa-
rameter value σ:

• For all parameter values σ and all t ∈ [−1, 1], the characteristic fo-
liation on ξσ(S2

t ), t ∈ [−1, 1] has only finitely many singular points.
• The parameter values where ξσ(S2

t ) has a simply degenerate closed
orbit (i.e. the first derivative of the holonomy along the close leaf
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vanishes, the second derivative does not) is a union of finitely many
hypersurfaces in [−1, 1]× [0, 1] which intersect transversely.
• The parameter values where ξσ(S2

t ) has a doubly degenerate closed
orbit (i.e. the first and the second derivative of the holonomy along
the close leaf vanishes, the third derivative does not) is a union of
finitely many submanifolds of codimension 2 of [−1, 1]× [0, 1].

By Lemma 2.20 and Lemma 2.21 the submanifolds of [−1, 1]× [0, 1] as-
sociated to connections pointing from negative singularities to positive ones
(i.e. retrogradient connections) or to degenerate closed leaves are never tan-
gent to the foliation of [−1, 1]× [0, 1] given be the first factor. In particular,
if the stable leaf of a positive singularity coincides with the unstable leaf of
a negative singularity, then this coincidence is non degenerate.

In Section 2.I of [Gi00] Giroux gives a beautiful proof of Bennequin’s
theorem based in particular on Lemma 2.20 and Lemma 2.21.

The main step in his proof is the following claim: For a generic family
of contact structures on S2 × [−1, 1] configurations like the one shown in
Figure 2 do not occur. In this figure, the t-coordinate corresponds to the
horizontal direction, the vertical direction represents the parameter σ of the
family. The curved lines intersecting once transversely in the box represent
the locus where ξσ(S2

t ) is not convex (by Lemma 2.20 and Lemma 2.21
these lines are transverse to the horizontal direction). Finally, the numbers
on the complement of the non-convexity locus give the number of connected
components of the dividing set.

1

1

3

1

t

σ

FIGURE 2. Forbidden configuration according to Giroux’s
proof of Bennequin’s theorem

Let ξσ be a family of overtwisted contact structures on S2× [−1, 1] which
is tight near the boundary. We define

T± : S −→ [−1, 1]

T−(σ) = sup{t ∈ [−1, 1] such that ξσ is tight on S2 × [−1, t)}
T+(σ) = inf{t ∈ [−1, 1] such that ξσ is tight on S2 × (t, 1]}.

(4)

Since ξσ is overtwisted, these functions take values in (−1, 1).

Lemma 2.23. T± are continuous functions.
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Proof. If the characteristic foliation on ξσ(S2
t ) was convex for t = T±(σ)

then the region where ξσ is tight could be extended using the contact vector
field transverse to S2

t , so S2
t is not convex with respect to ξσ. The char-

acteristic foliation on this sphere must have a retrogradient connection or
a degenerate orbit by Lemma 2.15. Moreover, by Lemma 2.22 (and glu-
ing results from [Co97]) the dividing set on S2 × {T+(σ) − ε} cannot be
connected for small enough ε > 0, the same holds for S2 × {T−(σ) + ε}.

By our genericity assumptions (T±(σ), σ) lies on the closure of finitely
many smooth hypersurfaces transverse to the foliation on [−1, 1] × [0, 1]
given by the first factor. Therefore T± are continuous. �

The following lemma follows from Giroux’s proof of Bennequin’s theo-
rem.

Lemma 2.24. Let ξσ be a family of overtwisted contact structures on S2 ×
[−1, 1] such that ξσ is tight on a neighborhood S2 × {±1} for all σ. Then
T−(σ) ≤ T+(σ).

Proof. The proof of Bennequin’s theorem in [Gi00] shows that if the movie
of a generic contact structure on S2 × [−1, 1] contains no obvious Legen-
drian knot (i.e. a loop formed by leaves of the characteristic foliation on
a sphere S2 × {t}, t ∈ (−1, 1)) which violates the Thurston-Bennequin
inequality, then the contact structure is tight.

Then by definition, S2 × {T+(σ)} contains an obvious Legendrian knot
violating the Thurston-Bennequin inequality. Thus for all t > T+(σ), the
contact structure ξσ on S2× [−1, t) is overtwisted, i.e. T−(σ) ≤ T+(σ). �

2.4. Non-loose knots. We introduce non-loose knots and some of their
properties. This notion is motivated by the following theorem.

Theorem 2.25 (Dymara, [Dy01]). Let ξ be an overtwisted contact structure
on S3 and K0, K1 Legendrian knots which are smoothly isotopic, tb(K0) =
tb(K1) and rot(K1) = rot(K1). If there is an overtwisted disc D in the
complement ofK0∪K1, then there is a Legendrian isotopy betweenK0 and
K1, i.e. a family of Legendrian knots Kt, t ∈ [0, 1], interpolating between
K0 and K1.

It is therefore more interesting to study knots (or pairs of knots) which
do not satisfy the conditions stated in Theorem 2.25.

Definition 2.26. A Legendrian or transverse knot K in an overtwisted con-
tact manifold (M, ξ) is loose if ξ is overtwisted on the complement of K.
Otherwise it is non-loose.

The analogous terminology is used for Legendrian and transverse links.
In [ElF98] non-loose knots are called exceptional. It is relatively easy to
show that every overtwisted contact structure ξ on a closed manifold M
admits a non-loose transverse link. For example, the binding K of an open
book of M carrying ξ is a non-loose transverse knot. Also, it is well known
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that every closed contact manifold (M, ξ) can be obtained by Legendrian
surgery on a link in the standard tight contact structure in S3. The surgery
curves induce a non-loose Legendrian link in (M, ξ).

The following modified Thurston-Bennequin inequality is one of the few
general results on non-loose knots.

Theorem 2.27 (Swiatkowski [Et13]). Let K ⊂ M be a null-homologous
Legendrian non-loose knot. Then

(5) −|tb(K)|+ |rot(K)| ≤ −χ(Σ)

for every embedded surface Σ with ∂Σ = K.

Unlike the Thurston-Bennequin inequality (2) for Legendrian knots in
tight contact manifolds (5) does not yield an upper bound for the Thurston-
Bennequin invariant of a non-loose knot.

Lemma 2.28. Let K ⊂ (M, ξ) be a Legendrian knot in an overtwisted
contact structure. If a stabilization of K is non-loose, then so is K.

Proof. We argue by contradiction. Assume that K is loose and let K ′ be
a stabilization of K which is non-loose. The complement of K contains
an overtwisted disc DK . But every stabilization of a Legendrian knot is
isotopic to a knot contained in an arbitrarily small neighborhood ofK. Thus
we can assume that K ′ is contained in M \DK contradicting the tightness
of M \K ′. �

Finally, there is a further restriction on the Thurston-Bennequin invariant
of non-loose unknots.

Lemma 2.29. Let K be a non-loose Legendrian unknot in an overtwisted
contact manifold (M, ξ). Then tb(K) > 0.

Proof. Since K is an unknot it bounds a disc D. Obviously tb(K) 6= 0
since otherwise we could choose D to be a convex overtwisted disc and the
complement of K would not be tight. Also, if tb(K) < 0 we may choose
D to be convex, i.e. there is a tubular neighborhood D × [−ε, ε] such that
the contact structure on this neighborhood is tight (because ξ is tight on the
complement of K, the dividing set of D does not have a closed component.
Since the contact structure on M \ D = M \ (D × {0}) is also tight this
tubular neighborhood cannot contain an overtwisted disc. Rounding the
edges of D × [−ε, ε] we find a closed ball B such that

• the contact structure on B is tight,
• the contact structure on M \B is tight, and
• the boundary of B is a convex surface.

By [Co97] this implies that ξ is tight contradicting the assumption that ξ is
overtwisted. �

Definition 2.30. A non-loose unknot K with tb(K) = 1 is called minimal.
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2.5. Examples of non-loose knots. In this section we discuss examples of
non-loose Legendrian knots in S3. We will focus on the overtwisted contact
structure which we will denote by ξ−1 later (sometimes we will refer to it
as the standard overtwisted contact structure on S3).

According to By work of R. Lutz [Lu] S1-invariant contact structures on
S1-principal bundles M −→ Σ over oriented closed surfaces are classified
up to up to S1-equivariant isotopy by the projection Γ of

(6) {p ∈M | ξ(p) is tangent to the fiber through p}

to Σ. Because of the contact condition this is an embedded submanifold of
dimension 1 in the base surface. When Γ is a simple closed curve, then we
obtain ξ−1.

Let K be the fiber over a point of p ∈ Γ. A convenient way to establish
the tightness of ξ−1 on the complement ofK relies on techniques developed
by E. Giroux in [Gi91, Gi00] (see [Ge] for an exposition in English): One
studies the characteristic foliation of ξ−1 on T 2

t = π−1(S1
t ) where S1

t , t ∈
(0, 1), is a family of nested circles S1

t ⊂ S2 such that as t→ 0 respectively
t → 1 the circles S1

t converge to p respectively q where p 6= q ∈ Γ. We
choose the circles in such a way that each circle is transverse to Γ, the
intersection of Γ with S1

t consists of two points for all t ∈ [0, 1]. The fibers
above these points form a pair of Legendrian curves. Each curve is either
a non-singular leaf of the characteristic foliation ξ−1(T 2

t ) or it is a line of
singularities of ξ−1(T 2

t ). One of these lines is repulsive while the other one
is attractive. Therefore the sheet (this is our translation of the french word
feuille used in [Gi00]) of the movie of characteristic foliations on T 2

t is
connected after we add the Legendrian curve π−1(q) to T 2

t , t ∈ [0, 1] (thus
obtaining a solid torus).

According to [Gi00] (Section 4.B) up to isotopy there is a unique contact
structure on the solid torus formed by T 2

t with t ∈ [τ, 1) ∪ π−1(q) which
yields a movie with the properties described above. This contact structure
is universally tight for all τ ∈ (0, 1). Hence ξ−1 is universally tight on the
complement of K.

Alternatively, one can also show that ξ−1 is universally tight on S3 \ K
by embedding the universal cover of S3 \K into the R3 with the standard
contact structure. This is the approach taken by K. Dymara in [Dy01, Dy04]

From the above description of ξ and K one can read of tb(K) = 1. The
positive push-off of K has self-linking number +1 and therefore rot(K) =
0 by (1). Thus K is a minimal non-loose unknot.

In order to describe more examples of non-loose knots we use front pro-
jections. Front projections are commonly used to represent Legendrian
knots in the standard tight contact structure on R3, many facts commonly
known in that context generalize to the situation considered here with minor
modifications. We refer the reader to [Et05] for information about Legen-
drian knots in the standard contact structure on R3.
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A convenient way to describe the standard overtwisted contact structure
ξ−1 on S3 is to identify the complement of the Hopf link with T 2 × (0, 1).
The 3-sphere is then the result of the following operation: Compactify T 2×
(0, 1) to obtain T 2 × [0, 1] and collapse the second respectively first factor
in S1 × S1 × {i} to a point when i = 0 respectively i = 1. The image of
the boundary components of T 2 × [0, 1] under the quotient map to S3 is a
Hopf link H in S3.

The restriction of ξ−1 to T 2 × (0, 1) is defined by

(7) α = cos

(
3π

2
z

)
dx− sin

(
3π

2
z

)
dy.

When one replaces the factor 3 by 1 in this formula, one obtains the tight
contact structure. This is the contact structure ξ−1 containing the standard
non-loose unknot described above. The fibers of the Hopf fibration are
linear curves of slope −1 inside the tori T 2 × {t}, t ∈ (0, 1) and the com-
ponents of H .

Along the Hopf link H the contact planes of ξ−1 are tangent to the discs
formed by the images of S1 × {∗} × [1/3, 1] and {∗} × S1 × [0, 2/3]. All
discs in these two families are overtwisted, two such discs are shown in
Figure 3. The Hopf link H is transverse to ξ−1 and non-loose.

z
x

y

z=1

z=0

FIGURE 3. Two overtwisted discs in (S3, ξ−1)

For a Legendrian curve in S3 which is disjoint from the Hopf link H
we can consider its image under the front projection T 2 × [0, 1] −→ T 2.
Contrary to the case of the standard tight contact structure on S3, a vector
in the tangent space of T 2 does not have a unique preimage which is tangent
to ξ−1. More precisely, only lines whose slope is not positive with respect
to coordinates x, y on T 2 have a unique preimage.

Let K be a generic Legendrian knot in (S3, ξ−1) which is disjoint from
H . The front projection of K is a closed curve in T 2 whose homotopy class
is denoted by (a, b) ∈ Z2 ' π1(T 2). The only singularities of this curve are
transverse double points and cusps.

Front projections of isotopic Legendrian knots are related via isotopies,
Reidemeister moves (as described in [Dy04]) and modifications of the front
projection corresponding to the Legendrian knot crossing a component of
H . When a segment of a Legendrian knot passing through the image of
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{z = 0} the diagram changes as indicated in Figure 4, when the segment
passes through {z = 1} a similar (horizontal) modification of the front
appears.

FIGURE 4. A Legendrian segment passing through {z = 0}

According to [Dy04] the Thurston-Bennequin invariant of K is

(8) tb(K) = cross+(K)− cross−(K)− 1

2
cusp(K)− a · b.

Here cross+ respectively cross− denote the number of positive respectively
negative crossings and cusp(K) denotes the number of cusps of the front
projection. Because some lines in a tangent space of T 2 do not have unique
Legendrian preimage one has to indicate which strand passes above the
other strand at a double point.

By [Dy04] the rotation number of an oriented Legendrian knot can be
read of from the front diagram as follows:

(9) rot(K) =
1

2

(
cusp+(K)− cusp−(K)

)
− a− b.

A cusp is positive of the tangent space of the knot crosses ±∂z positively
with respect to the orientation of ξ given by α. For example, if a cusp has
z-coordinate in (0, π/3), then the cusp is positive if and only of the knot is
oriented downwards, upward cusps are negative in the region z < π/3.

The non-loose Legendrian knot described at the beginning of this section
is diffeomorphic to the knot K = {(t,−t, 1/2) | t ∈ [0, 1]}. There are more
non-loose Legendrian knots in (S3, ξ−1) which can be easily described in
terms of front projections.

For coprime integers m,n consider a linear curve in T 2 representing the
homology class (m,n) ∈ Z2 ' H1(T 2;Z). If mn ≤ 0, then this linear
curve has a uniquely determined Legendrian liftKm,n in (S3, ξ−1) andKm,n

is a torus knot with

tb(Km,n) = −mn rot(Km,n) = −m− n.

When n = 1 and m < −1 (or vice versa) we obtain non-loose Legendrian
unknots with positive Thurston-Bennequin invariant such that the rotation
number is ±(tb(Km,n)− 1).
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For m = 0, n = 1 or m = 1, n = 0 the curve Km,n lifts to a Legen-
drian unknot which bounds overtwisted discs, namely one of the two discs
appearing in Figure 3. Of course neither of these unknots is non-loose. Ac-
cording to Proposition 4.9 of [Dy04] complement of their union, a Hopf
link, is universally tight.

Finally, we show that a non-loose unknot Km,n can be stabilized to a
Legendrian knot isotopic to K = K−1,1 (with one of its two possible ori-
entations). In Figure 5 we illustrate this for the case m = 1, n = −2, the
general case is similar.

FIGURE 5. Stabilizing K1,−2 one obtains K1,−1

The first arrow indicates the stabilization, the third downward arrow in-
dicates the move depicted in Figure 4 and the fourth arrow indicates two
Reidemeister moves. The last and the second arrow correspond to isotopies.

Example 2.31. Consider the diffeomorphism ψ whose restriction on T 2 ×
(0, 1) (the complement of the Hopf link H) is

ψ
∣∣
S3\H : T 2 × (0, 1) = (R2/Z2)× (0, 1) −→ T 2 × (0, 1)

(x, y, z) 7−→ (y, x, 1− z).

This map extends to a contact diffeomorphism of S3 which preserves the
orientation of ξ and maps K = K1,−1 to itself but reverses the orientation
of this knot.

2.6. Homotopy theory of plane fields on S3. In this section we discuss
homotopical properties of families of contact structures. This leads to the
definition of a Z2-valued invariant d for contactomorphisms on the 3-sphere.
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Recall that the tangent bundle of S3 is trivial (this is true for every ori-
ented 3-manifold). One can use a fixed Riemannian metric and a trivializa-
tion to associate to each oriented plane field ξ on S3 a Gauß map

gξ : S3 −→ S2

p 7−→ unit vector othogonal to ξ.

By the Thom-Pontrjagin construction homotopy classes of maps from man-
ifolds to m-spheres are in one-to-one correspondence with framed subman-
ifolds of codimension m up to framed cobordisms (cf. [Mi]). Usually,
the Thom-Pontrjagin theorem is stated for manifolds without boundary, the
case when maps are fixed on the boundary of a manifold was considered
e.g. by Y. Huang [Hu14] in the context of plane fields on 3-manifolds.

Homotopy classes of plane fields on an oriented 3-manifold M corre-
spond to homotopy classes of maps to S2, when M = S3 these homo-
topy classes correspond to elements of π3(S2). The homotopy groups of
the 2-sphere that matter for us are well known (see for example Chapter
4 of [Ha01] or Chapter 5 of [DFN] for a discussion based on the Thom-
Pontrjagin construction)

π3(S2) ' Z π4(S3) ' Z2 π4(S2) ' Z2.

A generator of π3(S2) is the Hopf map

S3 ⊂ C2 −→ CP1 ' S2

(z0, z1) −→ [z0 : z1],

a generator of π4(S3) is the suspension of the Hopf map and a generator of
π4(S2) is represented by the composition of the Hopf map with its suspen-
sion.

Recall that M = S3 ' SU(2) and consider the SU(2)-invariant framing
to define the Gauß map. Homotopy classes of plane fields on S3 are distin-
guished by an integer h(ξ) ∈ Z, the Hopf invariant of its Gauß map defined
in [H]. We recall one possible definition of the Hopf invariant.

Given a smooth map f : S3 −→ S2, its Hopf invariant can be determined
as follows. Let p ∈ S2 be a regular value of f and fix an oriented basis of
TpS

2. Then f−1(p) is a submanifold of codimension 2 in S3 with normal
bundle f

∣∣
f−1(p)

(TpS
2). This normal bundle is framed using the preimage of

the basis of TpS2 under f . The Hopf invariant H(f) is the linking number
of f−1(p) and a push-off of f−1(p) in the direction of the first vector of the
framing. This number is independent of choices other than the homotopy
class of the framing and determines f up to homotopy.

Example 2.32. The standard contact structure TS3∩ iTS3 is SU(2)-invari-
ant, just like the framing. Therefore the Gauß map is constant in this case
and the Hopf invariant vanishes.

A construction which is frequently used to change the homotopy class as
plane field of a contact structure is the Lutz-twist. In order to describe it,
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recall that a transverse knot K in a contact manifold has a tubular neigh-
borhood N(K) ' S1 × D2(ρ) such that the contact structure on N(K) is
isomorphic to the contact structure defined by dz + r2dϑ, where D2(ρ) is a
disc of radius ρ and (r, ϑ) are polar coordinates on D2(ρ).

For two smooth functions f, g on [0, ρ] such that

f(0) = −1 g(r) = −r2 near r = 0

f(r) = 1 g(r) = r2 near r = ρ

and fg′ − g′f > 0. Let ξ′ be the contact structure defined by

ξ′ =

{
ker(f(r)dz + g(r)dϑ) on S1 ×D2(ρ)
ξ on the complement of N(K).

Definition 2.33. We say that ξ′ is the result of a π-Lutz twist along K.

The contact structure ξ′ is well defined up to isotopy. When one reverses
the orientation of K it is positively transverse to ξ′.

In general, ξ′ is not homotopic to ξ even as a plane field. How to deter-
mine the difference between the homotopy classes of ξ and ξ′ is explained
in Chapter 4.3 of [Ge]. What is relevant for us is that applying a π-Lutz
twist along a null-homologous transverse knot K in S3 changes the Hopf
invariant by sl(K). The usual Lutz twist (or 2π-Lutz twist) corresponds two
consecutive π-Lutz twists applied to the same knot, it does not change the
homotopy type of the plane field.

Remark 2.34. The contact structure obtained by a π-Lutz twist along a
transverse knot is always overtwisted since the discs {z}×D2(ρ0) are over-
twisted for the value ρ0 ∈ (0, ρ) for which (f(ρ0), g(ρ0)) lies on the positive
part of the x-axis (ρ0 is uniquely determined because of fg′ − f ′g > 0).

Example 2.35. Let ξ = TS3 ∩ iTS3 be the standard contact structure on
S3 ⊂ C2. This contact structure is SU(2)-invariant. The fibers of the Hopf
fibration are transverse curves, each of them has self-linking number −1.
After a π-Lutz twist along k distinct fibers one obtains a contact structure
with Hopf invariant −k2.

For k = 1 we obtain the contact structure which we are interested in most
in this article.

When the plane field varies continuously the same is true for the Gauß
map. Therefore homotopy classes of 1-parameter families ξt, t ∈ [0, 1], of
coorientable plane fields on S3 are in one-to-one correspondence with the
set of homotopy classes of maps g : S3×[0, 1] −→ S2 (with fixed boundary
conditions). This set is isomorphic to π4(S2) ' Z2. If M = S3, then we
choose the framing so that g(·, 0) = g(·, 1) are constant maps.

Following §23.4 in [DFN] we now review how to determine to which
element of π4(S2) a given map g : S4 −→ S2 corresponds.

We may assume that g is smooth and pick a regular value p. Then Σ =
g−1(p) ⊂ S4 is a framed submanifold of codimension 2. For each oriented
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simple closed curve γ in Σ consider its normal vector field in Σ. Then γ can
be viewed as framed submanifold of S4 of codimension 3, so it represents an
element φ(γ) in π4(S3) ' Z2. This element depends only on the homology
class γ ∈ H1(Σ;Z2) and we have defined a map

(10) φ : H1(Σ;Z2) −→ Z2.

Given two simple closed curves γ, γ′ in Σ which intersect transversely we
can replace γ ∪ γ′ by a collection of simple closed curves representing the
homology class γ + γ′ by smoothing the intersection points. One then has

φg(γ + γ′) = φg(γ) + φg(γ
′) + γ · γ′ mod 2

where γ · γ′ is the intersection pairing.
Thus φg : H1(Σ;Z2) −→ Z2 is a non-degenerate quadratic form. Recall

that the Arf invariant of a Z2-valued quadratic form on H1(Σ;Z2) takes val-
ues in Z2 and is non-trivial if and only if more than one half of the elements
γ ∈ H1(Σ;Z2) have φg(γ) = 1. One can show that the Arf invariant of φg
depends only on the homotopy class of g : S4 −→ S2.

K. Dymara [Dy01] used the fact π4(S2) ' Z2 to define a continuous
group homomorphism

d : Diff+(S3, ξ) −→ Z2

on the group of orientation preserving contactomorphisms. This homomor-
phism can be used to show that the groups of coorientation preserving con-
tactomorphisms Diff+(S3, ξ) is not connected when ξ is overtwisted.

We recall the definition from [Dy01]. For ψ ∈ Diff+(S3, ξ) choose a
family of diffeomorphisms ψt such that ψ0 = id and ψ1 = ψ. Such a family
exists because ψ is orientation preserving and the group of orientation pre-
serving diffeomorphisms of S3 is connected according to Cerf’s theorem
[Ce].

We consider the loop ψt∗(ξ) in the space of oriented plane fields on S3.
(This is even a loop in the space of contact structures on S3 but we ignore
this fact.) Since the Euler class of ξ in H2(S3;Z) = 0 vanishes we can pick
a trivialization of ξ and extend it to a framing of S3.

Applying the Gauß map we obtain a loop in the space of maps from
S3 to S2 based at the constant map, i.e. this loop can be viewed as map
S4 −→ S2. We define

d : Diff+(S3, ξ) −→ π4(S2) ' Z2 = {0, 1}

ψ 7−→
[
(ψt∗(ξ))t∈[0,1]

]
.

It is proved in [Dy01] that this is a well defined homomorphism on the
group of connected components of Diff+(S3, ξ). The proof in [Dy01] that
d is well defined contains a minor gap since in the author assumes that every
contact structure on S3 is contactomorphic to a contact structure which is
invariant under the standard S1-action on S3. However the proof idea still
works. In order to see this construct a contact structure with Hopf invariant
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k using π-Lutz twists along a collection of knots transverse to the standard
contact structure with self linking number −1 which are invariant under the
contact diffeomorphism (w, z) 7−→ (w,−z) of S3 ⊂ C2.

The following diagram shows the various groups involved in the con-
struction of the invariant d.

π1(Diff(S3, or)) = Z2
// π1(Cont(S3, ξ))

δ
//

��

π0(Diff+(S3, ξ))
rr

π1(Distr(S3, ξ))
Gauß-map

+ collapse
// π4(S2) = Z2

Here Distr(S3, ξ) respectively Cont(S3, ξ) denotes the plane fields homo-
topic to ξ respectively the contact structures isotopic to ξ and Diff(S3, or)
is the group of orientation preserving diffeomorphisms of S3. This group is
homotopy equivalent to SO(4) by [Ha83].

The upper line is part of the long exact homotopy sequence of the fi-
bration Diff(S3, or) −→ Cont(S3, ξ) given by ϕ 7−→ ϕ∗(ξ), the vertical
arrow is induced by the inclusion and the map from π0(Diff+(S3, ξ)) −→
π1(Cont(S3, ξ)) is the section of δ chosen above.

Remark 2.36. When ξ is overtwisted it follows from Lemma 2.6 that there
is a family of contact structures ξt, t ∈ [0, 1] with ξ = ξ0 = ξ1 which
represents a non-trivial loop in the space of pane fields on S3. By Gray’s
theorem there is a family ψt of diffeomorphisms of S3 such that ψt∗ξ = ξt.
Then d(ψ1) = 1, i.e. d is surjective.

Later we will use the fact that the resulting contactomophism ψ1 can be
chosen to have support in a ball containing a fixed overtwisted disc ∆.

3. THE CLASSIFICATION OF NON-LOOSE UNKNOTS IN (S3, ξ)

In this section we prove the main result of this paper, i.e. we classify
minimal non-loose Legendrian unknots in S3 up to Legendrian isotopy. For
this, we first review the classification of non-loose unknots up to contact
diffeomorphism from [ElF09, Et13] where it is shown that every non-loose
unknotK with tb(K) = 1 in S3 carrying an overtwisted contact structure is
diffeomorphic to the exampleKst discussed at the beginning of Section 2.5.
Using

• the coarse classification,
• some particular contact diffeomorphisms constructed in Section 3.2,
• Eliashberg’s theorem on overtwisted contact structures

we prove in Section 3.3 that K is isotopic to the standard non-loose unknot.
However this isotopy does not respect orientations of these knots. The proof
that Kst and Kst are not isotopic as oriented Legendrian can be found in
Section 3.4.

Except for the coarse classification we will consider only non-loose Leg-
endrian unknots K with tb(K) = 1 in this section. Non-loose Legendrian
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unknots with higher Thurston-Bennequin number will be classified in Sec-
tion 4.2.

3.1. The coarse classification. In this section we recall the coarse classifi-
cation of non-loose unknots in S3, i.e. the classification up to contactomor-
phism from [ElF09] and [Et13]. This classification is a corollary of the clas-
sification of tight contact structures on the solid torus by E. Giroux [Gi00]
and K. Honda [Ho]. The following theorem summarizes the information
which is needed to put a Seifert disc of a non-loose Legendrian unknot in a
standard form which will then imply that (S3, ξ,K) is diffeomorphic to the
standard model described in Section 2.5.

Proposition 3.1. Let ξ be a contact structure on S3 and K ⊂ S3 a non-
loose unknot with tb(K) = n > 0. Then rot(K) = ±(n− 1).

From this proposition we now deduce the coarse classification of non-
loose unknots in S3, the definition of Km,n can be found in Section 2.5.

Theorem 3.2. Let ξ be an overtwisted contact structure on S3 andK a non-
loose Legendrian unknot with tb(K) = n > 0 and rot(K) = ±(n − 1).
Then (S3, ξ,K) is diffeomorphic to (S3, ξ−1, K±1,∓n).

We give the proof of this because it yields a normal form for the charac-
teristic foliation on the Seifert surface of a non-loose unknot which will be
used later.

Proof. Let ξ be an overtwisted contact structure on S3 and K a non-loose
oriented Legendrian unknot. We assume tb(K) = n > 0 because of
Lemma 2.29. Choose an oriented spanning disc forK. We will simplify the
characteristic foliation on D to bring it in a standard form. For this we as-
sume that D is generic so that the singular points of ξ(D) are either elliptic
or hyperbolic.

We first consider the singular points of ξ(D) on the boundary of D and
simplify the characteristic foliation on the surface as follows.

• Positive hyperbolic singular points on ∂D whose unstable leaves lie
on ∂D are replaced by positive elliptic points (cf. Figure 1).
• Negative hyperbolic singular points on ∂D whose stable leaves lie

on ∂D are replaced by negative elliptic points.
After this, a negative (positive) elliptic singularity is connected to either

a negative (positive) singularity or to a negative hyperbolic (positive) hy-
perbolic singularity. The second case can be further simplified using the
elimination lemma which provides us with a deformation of D which can-
cels a hyperbolic singular point with a elliptic singularity of the same sign
while keeping the boundary of D Legendrian throughout the deformation.

From now on we assume that on ∂D there are no canceling pairs of sin-
gularities left. But then, if there an elliptic singularity left at all, then all
singular points on ∂D are elliptic and they alternate between negative and
positive along ∂D and the Thurston-Bennequin invariant of K is negative.
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If ∂D contains no singular points, then tb(K) = 0 which is impossible for a
non-loose Legendrian unknot in an overtwisted contact manifold. Therefore
ξ(D) has only hyperbolic singular points on the boundary which alternate
between positive and negative.

The interior of D can now be simplified further. By genericity we may
assume that there are no connections between hyperbolic singular points
such the connecting separatrix lies in the interior of D. Then every unstable
leaf of a negative hyperbolic singularity has a negative elliptic singularity as
its ω-limit set since ξ is tight on M \K. Therefore all negative hyperbolic
singular points of ξ(D) in the interior of D can be eliminated and the same
is true for the positive singular points in the interior of D.

From now on we assume rot(K) ≥ 0. Since there are stable and unstable
leaves of singular points on the boundary ofD, ξ(D) must have positive and
negative singular points in the interior. According to (3)

rot(K) = e+ − e− = n− 1.

Hence there are at least n positive elliptic singularities. But there cannot be
more since one the boundary, there are exactly n singular points whose un-
stable leaves can come from positive elliptic singularities. If no leaf coming
from an elliptic singular point ends at a hyperbolic singular point, then the
basin of this elliptic singularity is either a sphere (which is impossible since
the Seifert surface is a surface with boundary) or there is an overtwisted
disc inside of D.

Hence e+ = n (and e− = 1) and every positive elliptic singular point
is connected to a negative hyperbolic point in ∂D. All unstable leaves of
positive hyperbolic on ∂D end at the same negative elliptic singular point in
the interior. This determines the characteristic foliation on D up to homeo-
morphism. For n = 1 and n = 3 it is shown in Figure 6. �
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FIGURE 6. Disc bounding a minimal non-loose unknot and
an unknot K with tb(K) = 3 and rot(K) = 2

Notice that the characteristic foliation shown in Figure 6 is very similar
to the one shown in Figure 22 of [ElF98], but there is a crucial difference:
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The picture in [ElF98] contains no retrogradient singular points and actu-
ally depicts a convex surface while discs bounding non-loose unknots are
never convex, there are always two retrogradient connection in K. In view
of Lemma 2.20 the appearance of a minimal non-loose unknot as union of
leaves of the characteristic foliation on a sphere is a phenomenon of codi-
mension 2.

Remark 3.3. In Section 2.5 we have shown that the positive/negative sta-
bilization of a non-loose Legendrian unknot K with tb(K) > 1 results in a
non-loose Legendrian unknot K ′ with tb(K ′) = tb(K)− 1 and rot(K ′) =
rot(K)± 1.

We have shown before that the negative stabilization of K1,−n is non-
loose when n > 1. By Theorem 3.2 the positive stabilization of K1,−n is
loose.

We take the opportunity to introduce a schematic way to depict essential
information on the characteristic foliation on sphere in the tubular neigh-
bourhoood containing a (piecewise smooth) non-loose unknot which is min-
imal. The dashed lines in the following figure represent unstable leaves of
negative singularities which take part in a retrogradient connection before
and after the retrogradient connection occurs. The solid straight lines repre-
sent the remaining part of the graph formed by negative singular points and
unstable leaves of negative singularities. This graph is a tree and there are
non closed leaves since the knot is supposed to be non-loose.

FIGURE 7. Schmeatic representation of the movie on the
spheres in a product neighborhood of a sphere carrying a
minimal non-loose Legendrian unknot

3.2. Contact diffeomorphisms preserving non-loose unknots. For the
proof of our classification results we need to construct a contact diffeo-
morphism

ψ : (S3, ξ−1) −→ (S3, ξ−1)

which preserves K, the orientation of the plane field and has d(ψ) = 1.
This will be the content of the second example in this section, the first is
a preparation for the second. We will use the consequences of the Thom-
Pontrjagin construction which were outlined in Section 2.6.

Before explaining the construction we note that although this section does
not refer directly to bypasses some of the material presented here could be
rephrased using the methods developed by Y. Huang in [Hu13, Hu14].
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First, we consider how a particular operation on a given contact struc-
ture affects the Hopf invariant. This construction will yield an alternative
construction of a non-loose unknot in S3.

Example 3.4. Start with the standard contact structure ξst = TS3∩iTS3. It
is SU(2)-invariant and we use it to orient S3. We choose an SU(2)-invariant
framing to define the Gauß maps (the Gauß map of ξst is constant).

Consider the transverse unknot H = S1 × {0} together with a tubular
neighborhood N(H) ' S1 × D2 such that the contact structure on this
neighborhood is invariant under translations in the S1-direction and under
rotations of the disc.

We fix a round 2-sphere S0 ⊂ S3 which is orthogonal to C × {0} ⊂ C2

such that S0 ∩ N(H) ⊃ {1} × D2 (here 1 = (1, 0) ∈ H ⊂ C2 is a point
on H) and we orient S0 so that ξst(S0) has a positive singular point in the
midpoint of the disc {1} × D2. Then S0 is convex and ξst(S0) has exactly
two singular points (both elliptic), these are the intersection points of S0

with H .
We isotope ξst to a new contact structure ξ with the following properties:
• ξ is S1-invariant on N(H) ' S1 ×D2, and
• the characteristic foliation of ξ on {1} ×D2 is diffeomorphic to the

one shown in Figure 8.
S2 contains a disc D where the characteristic foliation is homeomorphic to
the singular foliation shown in the smaller disc D in Figure 8.

D
D

in

FIGURE 8. Characteristic foliation on D and Din

To obtain a new plane field ζ1 we consider a product neighborhood S2 ×
(−∞,∞) around the convex sphere S2 = S2 × {0} oriented so that the
product orientation is positive and the contact structure is translation invari-
ant. By assumption, there is a disc Din ⊂ D such that the characteristic
foliation is transverse to D and ξ(D) has three singular points, two of them
are elliptic and positive, the remaining one is negative and hyperbolic.

Because the boundary of Din is transverse to the characteristic foliation
there is an isotopy ρs, s ∈ (−1, 1), of Din such that

• ρs = id for s close to −1,



26 T. VOGEL

• ρs is constant and preserves the characteristic foliation for s close to
1,
• ρs preserves the characteristic foliation near ∂Din for all s,
• the hyperbolic singularity p is a fixed point of ρs for all s,
• the unstable leaves of p are interchanged by ρs for s close to 1, and
• as s varies from−1 to 1, the unstable leaves of p rotate by a counter

clockwise half turn.

A new plane field ζ1 is determined (up to homotopy) by the requirement
that ζ1 = ξ outside of D2

in× (−1, 1) and the characteristic foliation of ζ1 on
D2
in × {s} is the image of the characteristic foliation of ξ under ρs.
For k ∈ N the plane field ζk is defined by applying the above operation k

times. For negative k one uses |k|-times the isotopy σ−1
s instead of σs.

When one passes from ξ to ζk the homotopy type of the plane field
changes. In order to determine how the Hopf invariant changes we choose
a framing of the tangent bundle so that TD is tangent to the span of the first
two components of the framing and so that the framing is vertically invari-
ant on the ball D × (−1, 1) ⊂ D × (−∞,∞) (recall that ζk = ξ outside of
this ball). We consider the Gauß maps g, gk of ξ, ζk.

Because all singular points of the characteristic foliation on D are non-
degenerate we may assume that g(−TD2(p, 0)) is a regular value of g and
gk. By construction the Thom-Pontrjagin submanifolds of g and gk co-
incide, but their framings are different along the component H . A direct
computation in terms of local coordinates near the negative hyperbolic sin-
gularity coordinates shows that H(gk) = H(g) + k.

For k > 0, the plane field constructed above is not a contact structure be-
cause the resulting movie violates Lemma 2.20. If k ≤ 0, then one obtains
a contact structure with Hopf invariant k because the movie one constructs
is the not only the movie of a plane field but the movie of a contact structure
(see Section 2.3.1).

We now specialize to k = −1. In this case one can choose the char-
acteristic foliation and ρs so that there is exactly one positive hyperbolic
singularity q in D and its stable leaves both come from Din. One has to
choose ρs so that for each stable leaf of q there is exactly one coincidence
with an unstable leaf of q of ρ−1

s for exactly one s ∈ (−1, 1).
When this parameter is the same for both coincidences (say for s = 0)

the union of the pair of stable/unstable leaves on the sphere S2 × {s = 0}
is a non-loose unknot K: The characteristic foliation on the sphere carry-
ing this knot can be deformed so that on both discs bounding the knot the
characteristic foliation has the normal form discussed in Section 3.1. Also,
the balls in the complement of a neighborhood of this sphere are tight by
construction. Therefore the unknot constructed starting from Example 3.4
is contactomorphic to the standard non-loose unknot in S3.

Using this description of the non-loose unknot we next construct an ex-
ample of a family of contact structures on S3 which is not homotopic to the
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constant family. From this family of contact structures we obtain a contact
diffeomorphism ψ1 with non-trivial Dymara invariant. In later applications
it will be important to ensure that ψ1 maps K to itself (it will turn out that
in this example ψ1 reverses the orientation of the knot).

Example 3.5. We continue to consider the situation from Example 3.4 for
k = −1. Our goal to obtain a non-trivial loop of contact structures on S3

which preserves K as a set.
For τ ∈ [0, 2π] let ψτ : S3 −→ S3 be the composition of two rotations:

The first rotation is a rotation around a plane orthogonal toH by the angle τ
while the second one is a rotation by −τ/2 around the plane containing H .
The family of contact structures ψτ (ξst) is constant because these rotations
preserve the complex structure on C2. As above deform ξst to a new contact
structure so that on the second factor of N(H) = S1×D2 the characteristic
foliation of ξ is diffeomorphic to the one shown in Figure 8. This can be
done relative to a neighborhood of {0} × S1 and ξ can be chosen so that it
is invariant under ψ2π. Then the loop of contact structures ξ(τ) = ψτ∗(ξ) is
contractible in the space of plane fields by Theorem 2.4.

Let R be the unit vector tangent to the fibers of the Hopf fibration. This
vectorfield is positively transverse to ξst everywhere. We may assume that
R is a component of the framing and that−R is a regular value of the Gauß
map of ξ. Since the loop ξτ , τ ∈ [0, 2π], is null homotopic the associated
Thom-Pontrjagin manifold of S3 × S1 (carrying the family of plane fields
tangent to S3 induced by ξτ ) is framed cobordant to the empty manifold.
In particular, the sum of the Arf invariants of all components of the Thom-
Pontrjagin submanifold is zero.

We now modify the family ξτ so that the framing of one component of
the Thom-Pontrjagin submanifold changes so the associated Arf invariant
changes while we do not modify the framing of other components.

For this we consider the family of thickened spheres ψτ (S2× (−δ, δ)) ⊂
S3 and apply to each such family the modification discussed in Example 3.4.
We obtain a closed loop of contact structures ξ−1(τ). The only part of the
Thom-Pontrjagin submanifold affected by this construction is the compo-
nent containing H . The framing of this submanifold changes so that the
framing makes a full turn (compared to a SU(2)-invariant framing) as one
moves along H and also as one moves along p× [0, 2π] for p ∈ H .

We identify S3×{0}with S3×{2π} and consider the situation in S3×S1.
The Thom-Pontrjagin submanifold associated to the constant family ξ is the
same as the Thom-Pontrjagin submanifold of ψ(τ) but the framing of the
component containing H has changed in such a way that the Arf invariant
also changes. Hence ξ−1(τ) is a homotopically non-trivial loop of plane
fields on S3.

Note that by construction, we also obtain a family Kτ of Legendrian
knots (with respect to ξ−1(τ)) so that K2π = K0 but the orientation is re-
versed. Thus ψ2π is a contact diffeomorphism of ξ−1 which reverses the
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orientation of K, preserves the orientation of ξ−1 and has d(ψ2π) 6= 0 ∈
π4(S2).

The following lemma summarizes the result of the construction given in
Example 3.5 with ψ = ψ2π.

Lemma 3.6. Let K ⊂ S3 be the standard Legendrian unknot in (S3, ξ−1).
Then there is ψ ∈ Diff+(S3, ξ−1) which

• preserves the orientation of ξ−1 and d(ψ) = 1,
• ψ(K) = K and the orientation of K is reversed.

3.3. The classification up to isotopy for non-oriented unknots. In this
section we classify non-oriented non-loose unknots in S3 up to isotopy.
This classification makes heavy use of Eliashberg’s classification theorem.
The overtwisted disc one has to control in the application of that theorem is
obtained from the non-loose unknot viewed as subset of a sphere such that
the unknot is the union of two retrogradient connections of the characteristic
foliation.

In the following we denote the minimal non-loose unknot described at
the beginning of Section 2.5 by L.

Theorem 3.7. Let ξ−1 be the overtwisted contact structure with Hopf in-
variant −1 on S3. Then every minimal non-loose Legendrian unknot K is
isotopic to L or L.

The following theorem will prove a slightly stronger statement: A smooth
isotopy ψt such that ψ1 preserves the contact structure and has d(ψ1) = 1
can be deformed to a contact isotopy relative to the endpoints. It should be
noted that the existence of such an isotopy does not imply anything about
the orientations of K and L.

Proof. Let K be a non-loose unknot. For convenience we remove two open
Darboux balls from the complement of L ∪ K such that the characteristic
foliation on the boundary of each of these balls is convex. We thus view L
as non-loose knot in S2 × [−1, 1]. The contact isotopy moving L to K will
have support inside this smaller space.

By the coarse classification of non-loose unknots we already know that
there is a contact diffeomorphism ψ with ψ(L) = K. In particular, ψ
preserves the orientation of S3 and by Cerf’s theorem there is an isotopy
ψs, s ∈ [0, 1], of S3 connecting ψ to the identity. By Lemma 3.6 we may
assume that d(ψ) = 0. Let ψσ be an isotopy with ψ0 = id and ψ1 = ψ.

Because the space of 3-balls in R3 is simply connected (p.5 in [Ce]) we
can choose ψs so that it preserves the two balls we have removed from S3.

In order to construct the contact isotopy we will apply Gray’s theorem to
a family of contact structures on M = S2 × [−1, 1]. The parameter space
will be I2 = [0, 1]× [0, 1]. We will now describe

• the contact structures ξσ,τ on M
• and restrictions on the product decomposition M ' S2 × [−1, 1]



Non-loose unknots and overtwisted discs in S3 29

for parameter values (σ, τ) contained in a neighborhood of ∂I2 and near the
boundary of M .

t close to ±1
ξσ,τ = ξ−1 independent from σ and τ
The product decomposition near ∂M is
independent from σ, τ .

τ close to 0

ξσ,τ = ξ−1 independent from σ and τ
The product decomposition of M is the image
of the original product decomposition
under ψσ.

τ close to 1

ξσ,τ = ψσ∗ξ−1, but independent from τ
The product decomposition of M is the image
of the original product decomposition
under ψσ.

σ close to 0
ξσ,τ = ξ−1 independent from σ and τ
M ' S2 × [−1, 1] so that L ⊂ S2 × {0}
is in normal form.

σ close to 1
ξσ,τ = ξ−1 independent from σ and τ
M ' ψ1(S2 × [−1, 1]) so that K ⊂ ψ1(S2 × {0})
is in normal form.

Figure 9 illustrates the situation. Each point in the box represents a
sphere, horizontal lines represent the manifold S2 × [−1, 1]. Some of the
vertices are labeled with coordinates. On the front face {τ = 1}, there is
an obvious family (parametrized by σ) of Legendrian knots interpolating
between K and L but the contact structure is not constant. This is indicated
by the curved line on the front face of the box. The straight lines on the top
respectively bottom face correspond to the knots L respectively K. On the
back face {τ = 0} the contact structure is constant.

σ

K

t=1σ=1, τ=0, 

σ=0, τ=0, t=1

t

L

t=−1

τ

σ=1, τ=1, 

FIGURE 9. The setup for the construction of an isotopy
from L to K

For τ = 1, the knot ψσ(L) is contained in a sphere of the product decom-
position. Because tb(L) > 0, this sphere can’t be convex. Thus the line on
front of the box is also a subset of{

(σ, τ, t) | ξσ,τ
(
S2
σ,t

)
is not convex

}
.
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The same is true for the curved lines on the back face {τ = 0}.
The strategy of the proof is now to extend the family of contact structures

near the boundary of S2 × [−1, 1] to the entire manifold for all parameter
values. By Gray’s theorem this then induces a family ϕσ,τ of contact iso-
topies such that ϕσ,τ∗(ξσ,0) = ξσ,τ . Then

(11) ϕ−1
σ,1(ψσ(L))

is a family of Legendrian knots (parametrized by σ) in (S2 × [−1, 1], ξ).
Because the contact structure is independent of τ when σ = 0 or σ = 1, it
follows that ϕ0,τ = idM = ϕ1,τ . Therefore the family of Legendrian knots
in (11) interpolates between L and K.

Consider the functions T± defined in (4) on the part of the parameter
space I2 where the contact structure ξσ,τ is already defined. By Lemma 2.23
these functions are continuous and ξσ,τ is overtwisted on every neighbor-
hood of S2×[−1, T−(σ, τ)] and S2×[T+(σ, τ), 1]. According to Lemma 2.24
T−(σ, τ) ≤ T+(σ, τ). First, we reduce to the case that T−(σ, 0) < T+(σ, 0)
for all σ ∈ (0, 1). The equality T−(σ, 0) = T+(σ, 0) means that there is a
non-unknot of ξ−1 on the leaf S2×{T±(σ, 0)} of the product decomposition
of N × {σ, 0} contains a non-loose unknots. Generically, this happens for
finitely many σ ∈ [0, 1] and all non-loose unknots appearing in this way are
minimal.

Assume that for σ0 ∈ (0, 1) the equality T+(σ0, 0) = T−(σ0, 0) holds. (In
Figure 9 there is exactly value for σ with these properties.) Then there is an
orientation preserving contact diffeomorphism Fσ0 such Fσ0 ◦ ψσ0 maps L
to the non-loose unknot in S2×{T−(σ0, 0)} ⊂ N×{σ0, 0}. By Lemma 3.6
we may assume that d(Fσ0 ◦ ψσ0) = 0 so we can use an isotopy connecting
ψσ0 to Fσ0 ◦ ψσ0 define a family of contact structures on {σ = σ0} ⊂ N ×
[0, 1]2 together with a family of non-loose Legendrian unknots interpolating
between ψσ0(L) and the non-loose unknot in N × {σ0, 0}.

After finitely many steps we may assume that T−(σ, 0) = T+(σ, 0) if and
only if σ = 0 or σ = 1.

The construction of ξσ,τ is done in several steps. All applications of
Eliashberg’s theorem (Theorem 2.5) will be relative to neighborhoods of
the boundary of S2 × [−1, 1] (i.e. the subset N appearing in that theorem
will contact a neighborhood of the boundary). Also we will no longer men-
tion the dependence of the product decomposition on σ systematically (nor
will this be reflected in the notation). In applications of Eliashberg’s theo-
rem the overtwisted disc we use are either isotopic and sometime we have
two disjoint overtwisted discs.

This will be obvious except for one configuration: Assume that near
(σ0, τ0) (with τ0 fixed) the neighborhood of the sphere with t = T−(σ0, τ0)
is equivalent to the one shown in Figure 10. The characteristic foliation on
the sphere S2×{T−(σ0, τ0)} contains a knot which is non-loose in a tubular
neighborhood of the sphere. However it is not globally non-loose because
there is another overtwisted disc in sphere close to S2×{T+(σ0, τ0)}. Hence
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one can eliminate the intersection point in the left hand part of Figure 10 in
Figure 10 as indicated in the right hand side of Figure 10. This makes use
of T−(σ, τ0) < T+(σ, τ0) for σ ∈ (0, 1).

T
−
(σ ,τ )

0 0

1

1

3

1

1

t t

σσ

σ

3

0 3

FIGURE 10. Removing a locally (but not globally) non-
loose unknot

τ ∈ [4/5, 1] : We start with {τ = 1}. Here, the characteristic foliation
on S2 × {0} is non-generic because for each σ, the characteristic foliation
on S2 × {0} has two simultaneous connections between two saddles (the
union of the corresponding pair of stable/unstable leaves is the non-loose
unknot ψσ(L)). This is represented by the thickened curve in the right hand
part of Figure 11.

We perturb this family of contact structures such that for σ 6∈ {0, 1}
there no such coincidence of retrogradient saddle-saddle connection by a
perturbation of the product structure (this author finds it easier to think in
these terms), by Gray’s theorem this is equivalent to a perturbation of ξσ,1.

In order to carry out this perturbation we on uses a slight generalization
of Lemma 2.20: We perturb the spheres S2 × {0} so that one retrogradient
saddle-saddle connections occur for t = 0 while the other such connections
occurs for t > 0 unless σ = 0 or σ = 1.

L

Kτ=4/5

σ

L

K

σ

τ=1

FIGURE 11. The simplification of ξσ,τ between {τ = 4/5}
and {τ = 1}

τ ∈ [0, 1/5] : We apply Eliashberg’s theorem to the family of contact
structures ξσ,0 on S2× [−1, 1]. As neighborhood of the overtwisted disc we
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take an open neighborhood of S2 × [−1, T−(σ, 0)]. The contact structures
ξσ,1/5 satisfy the following properties:

(i) ξσ,1/5 = ξσ,0 on a neighborhood of S2 × [−1, T−(σ, 0)]
(ii) The characteristic foliation of ξσ,1/5 on S2 × {T+(σ, 1/5)} has ex-

actly one retrogradient connection and no other degeneracies. For t
slightly smaller respectively bigger than T+(σ, 1/5) the dividing set
on S2 × {t} has one respectively three connected components.

This is shown schematically in Figure 12. The neighborhood of S2 ×
[−1, T−(σ, 0)] is the region to the left from the dashed curve. We ignore
what is going on in the shaded area between the dashed and the rightmost
almost vertical curve representing the curve (σ, T+(σ, 1/5)). Using Theo-
rem 2.5 one can construct such a family of contact structures. Moreover, by
Lemma 2.6 one can also arrange that ξσ,1/5 is homotopic to ξσ,0 as a family
of plane fields (rel. to S2× [−1, T−(σ, 0)]). Then according to Theorem 2.5
there is a family of contact structures ξσ,τ , τ ∈ [0, 1/5], interpolating be-
tween ξσ,0 and ξσ,τ .

L

K K

L

σ

τ=0 τ=1/5

σ

FIGURE 12. The simplification of ξσ,τ between {τ = 0}
and {τ = 1/5}

τ ∈ [1/5, 2/5] : In this step, we merely isotope the contact structures
such that

T+(σ, 2/5) = T+(σ, 4/5).

τ ∈ [2/5, 3/5] : We apply Eliashberg’s theorem to the contact struc-
tures ξσ,2/5 on S2 × [−1, 1]. As neighborhood of the overtwisted disc we
take and open neighbourhhood of S2 × [T+(σ, 2/5), 1]. The contact struc-
tures ξσ,3/5 satisfy the following properties:

(i) ξσ,τ = ξσ,2/5 on a neighborhood of S2 × [T+(σ, 2/5), 1] for τ ∈
[2/5, 3/5].

(ii) T−(σ, 3/5) = T−(σ, 4/5)
(iii) ξσ,3/5 = ξσ,4/5 on a neighborhood of S2 × [−1, T−(σ, 3/5)].

By Theorem 2.5 there is such a family of contact structures. Moreover, by
Lemma 2.6 one can also arrange that ξσ,3/5 is homotopic to ξσ,2/5 as a family
of plane fields (rel. to S2 × [T+(σ, 2/5), 1], in Figure 13 this corresponds
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to the region to the right of the thickened dashed curve). Then according
to Theorem 2.5 there is a family of contact structures ξσ,τ , τ ∈ [2/5, 3/5],
interpolating between ξσ,2/5 and ξσ,3/5. Again we do control the contact
structure in the open set corresponding to the shaded region in Figure 13.

L

K

σ

L

K

σ

τ=2/5 τ=3/5

FIGURE 13. The simplification of ξσ,τ between {τ = 2/5}
and {τ = 3/5}

τ ∈ [3/5, 4/5] : We use Eliashberg’s theorem (Theorem 2.5) one last
time. This time we use an open neighborhood of S2 × [−1, T−(σ, 3/5)]
where ξσ,3/5 = ξσ,4/5 already (this has been arranged in the previous step).
Because d(ψ) = 0, the family of plane fields ξσ,3/5 is homotopic to ξσ,4/5
relative to S2 × [−1, T−(σ, 3/5)]. According to Eliashberg’s theorem these
two families of contact structures are homotopic through contact structures.

Thus have defined a family of contact structures ξσ,τ , σ, τ ∈ [0, 1] on
S2× [−1, 1]. Gray’s theorem yields a family of isotopies ϕσ,τ which in turn
yield the desired family of Legendrian knots. Since we do not keep track of
the orientation of the Legendrian knot, this only proves (as claimed) that K
is isotopic to L or L as Legendrian knot. �

Remark 3.8. For τ ∈ [4/5, 1] we perturbed a family of non-loose Legen-
drian unknots to obtain overtwisted discs. The choice involved is the choice
of the retrogradient connection which occurs first in the movie associated
to a perturbation of the original family of spheres and the orientation of the
knot.

By comparing the perturbation in the proof above with how a stabiliza-
tion changes the characteristic foliation on a Seifert surface of the knot (see
Figure 6) one sees that the overtwisted discs could also have been obtained
by stabilizing the non-loose unknot. Here one has to choose an orientation
and the sign of the stabilization. The Legendrian unknots obtained in this
way are K1,0, K0,1 or the same knots with different orientations (cf. Sec-
tion 2.5).

3.4. The classification up to isotopy for oriented unknots. In this section
we prove the main result of this article.
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Theorem 3.9. Let K be a minimal non-loose unknot in S3. Then K and K
are not isotopic as oriented Legendrian knots.

Applications including the classification of non-loose unknots with arbi-
trary (positive) Thurston-Bennequin number can be can be found in Sec-
tion 4.

In order to prove Theorem 3.9 we will use two results. The first concerns
the space of foliations by spheres of S2 × [0, 1] and is based on Hatcher’s
theorem [Ha81] on the space of diffeomorphisms of S2 × S1. The sec-
ond result is more technical and uses standard theorems on transversality to
establish that certain degenerate configurations of characteristic foliations
on leaves foliations by spheres occur on topologically tame subsets of the
product of the leaf space with the parameter space.

3.4.1. Foliations on S2 × S1 and spheres containing a non-loose unknot.
We recall Hatcher’s theorem on the homotopy type of Diff(S2 × S1) and
apply this result to show that the space of foliations on S2 × [0, 1] which
coincide with the product foliation near the boundary.

Theorem 3.10 (Hatcher, [Ha81]). The map

O(2)×O(3)× ΩSO(3) −→ Diff(S2 × S1)

(A,B, γt) 7−→
(
(p, τ) 7−→ (B ◦ γτ (p), Aτ)

)
is a weak homotopy equivalence.

Let Diff∂(S
2×[0, 1]) be the group of diffeomorphisms of S2×[0, 1] which

coincide with the identity near the boundary and Diff∂(S
2 × [0, 1],F) the

subgroup of those diffeomorphisms which preserve the product foliation. It
is a corollary of Theorem 3.10 that

Diff(S2 × [0, 1],F) −→ Diff(S2 × [0, 1])

is a weak homotopy equivalence. Now let FOL(S2 × [0, 1]) be the space
of foliations on S2 × [0, 1] which coincide with the product foliation near
the boundary (we view foliations as plane fields to define the Ck-topology
on FOL(S2 × [0, 1])). The map

Diff(S2 × [0, 1]) −→ FOL(S2 × [0, 1])

f 7−→
(
f(S2 × {t})

)
t∈[0,1]

is a Serre fibration. From Theorem 3.10 we therefore obtain the following
corollary.

Corollary 3.11. The space FOL(S2 × [0, 1]) is weakly contractible.

3.4.2. Retrogradient connections on spheres. The second ingredient is a
result on retrogradient connections present in the characteristic foliation
on leaves of foliations or families of such foliations by spheres on (S2 ×
[−1, 1], ξ). When we consider families of foliations we still can parame-
trize each leaf space by [−1, 1].
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Let F be a foliation from FOL(S2 × [0, 1]) and assume that the leaf
St0(ξ) contains a non-degenerate retrogradient connection γ. We parame-
trize a foliated neighborhood of this leaf by S2× (t0− ε, t0 + ε) so that the
foliation by the first factor coincides with the given foliation and fix a fiber
T of S2 × (t0 − ε, t0 + ε) −→ S2 = St0 .

Next, we will construct 1-parameter families of perturbations Fx, x ∈
(−δ, δ), with compact support in S2 × (t0 − ε, t0 + ε) \ T and δ > 0.

For p ∈ γ choose a compactly supported Legendrian vector field X van-
ishing near T and outside of S2 × [t0 − ε, t0 + ε] such that X is transverse
to the leaves of F whenever it does not vanish.

Then the flow ϕx of X is well defined and by Lemma 2.20 there is still a
retrogradient connection close to γ on nearby spheres SΓ(x) intersecting T
in Γ(x) if |x| < δ is small enough. Let

Γ : (−δ, δ) −→ (t0 − ε, t0 + ε) = T

x 7−→ Γ(x).

The contact property of ξ ensures that t0 is a regular value of Γ.
We have described the perturbation for a fixed foliation F but the con-

struction can be carried out in the same way for finite dimensional families
of characteristic foliations.

This type of perturbation can be applied simultaneously to different ret-
rogradient connections and because all characteristic foliation have only
finitely many singular points there are only finitely many retrogradient con-
nections. Therefore standard transversality theory (e.g. Theorem 2.7 in
Chapter 3.2 of [Hi]) implies the following proposition:

Proposition 3.12. Let (N = S2 × [−1, 1], ξ) be a contact manifold with
convex boundary and Fσ,τ , σ, τ ∈ (0, 1) a 2-parameter family of foliations
on N which is constant near ∂N . Assume that the following conditions are
satisfied for (t, σ, τ) outside of a compact set in P = (−1, 1)×(0, 1)×(0, 1):

(i) The set (t, σ, τ) ∈ P for which there are
– two retrogradient connections and one simply degenerate sin-

gular point,
– three retrogradient connections, or
– one retrogradient connection and two degenerate singularities

is discrete and there aren’t any more degenerate configurations.
(ii) The submanifolds of P corresponding to non-degenerate retrogra-

dient connections intersect each other transversely.
(iii) The collection of points where there is a retrogradient connection

and a degenerate singular point intersects the submanifolds of P
corresponding to other retrogradient connections transversely.

After a Cr-small perturbation of Fσ,τ relative to the complement of a small
open neighborhood of the compact set one may assume that these conditions
are satisfied everywhere in P .
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One should note that the fact that there are only finitely many singular
points implies only that there are finitely many leaves of the characteristic
foliations taking part in retrogradient connections. It does not mean that the
space of instances, where a retrogradient connection occurs is compact. For
example, assume that ξ(St0) a closed leaf such that the holonomy is attrac-
tive on one side while it is repelling on the other. When a stable leaf of a
positive hyperbolic singularity and an unstable leaf of a negative hyperbolic
singularity accumulate on the degenerate closed leaf, then the set of leaves
of a foliation containing St0 as a leaf which contain a retrogradient connec-
tion is non-compact. By the Poincaré-Bendixson theorem this phenomenon
does not occur when the characteristic foliations have no closed leaves, for
example when ξ is tight.

We close this section with a preparatory lemma which yields a normal-
ization of the characteristic foliation on a sphere containing a non-loose
unknot.

Lemma 3.13. Let Kσ ⊂ S3 be a family of non-loose Legendrian unknots
with tb(Kσ) = 1. Then there are two balls B0, B1 ⊂ S3 and a family of
foliations Fσ of S3 \ (B0 ∪B1) by spheres such that

• F0 = F1,
• Kσ is contained in a leaf Sσ of Fσ, and
• the characteristic foliation on Sσ has exactly two singularities along
Kσ.

Proof. The family of knots Kσ, σ ∈ [0, 1], misses two small balls B0, B1

which we assume to be Darboux balls with convex boundary. We choose
a sphere F0 with the desired properties such that S0 is a leaf carrying K0

such that the characteristic foliation is in normal form
By Gray’s theorem we can choose a contact isotopy ψσ of S3 with support

on the complement of B0 ∪ B1 so that ψσ(K0) = Kσ and we consider
F ′σ = ψσ(F0). This is a family of foliations with all desired properties
except that F0 = F ′0 6= F ′1 in general.

Let S1 = ψ1(S0) and consider one of the discsD1 in S ′1 which boundK1.
As in the proof of the Roussarie-Thurston normal form [Ro] for surfaces in
3-manifolds carrying a Reebless foliation one can show that this disc is
isotopic to one of the discs in S0 relative to K0 = K1 in the complement of
B0∪B1. This can be done in such a way that the characteristic foliation has
two singularities along K1 throughout the deformation. Doing this for both
discs in S ′1 which bound K1 we apply Corollary 3.11 to obtain the desired
family of foliations Fσ. �

3.4.3. Proof that K and K are not isotopic. We will finally prove the main
theorem of this paper. It is based on the following idea: We argue by
contradiction. From a Legendrian isotopy from K to K we construct a
2-parameter family (parametrized by (σ, τ) ∈ [0, 1]2) of foliations Fσ,τ by
spheres on S2 × [−1, 1] (each leaf space is parametrized by t ∈ [−1, 1])
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such that the collection L of parameters (t, σ, τ) ∈ [−1, 1] × [0, 1]2 such
that the leaf S2 × {t} of Fσ,τ contains a minimal non-loose unknot has the
following properties:

• L is a piecewise smooth submanifold of [−1, 1] × [0, 1]2 of codi-
mension 2.
• L is properly embedded in (−1, 1]× [0, 1]2 and ∂([−1, 1]× [0, 1]2)

contains exactly one boundary point of L.
Since compact 1-manifolds with boundary have an even number of bound-
ary points this is a contradiction.

Proof of Theorem 3.9. Assume that Kσ, σ ∈ [0, 1], is a family of oriented
Legendrian knots in (S3, ξ) such that K0 = K and K1 = K. This isotopy
avoids two points of S3. In the following we can therefore consider S3 with
two small open balls removed, this space N is of course diffeomorphic to
S2 × [−1, 1].

We will consider the space (S2 × [−1, 1])× [0, 1]2 and as in the proof of
Theorem 3.7 the product decomposition of N will vary.

• For τ = 0 we choose an identification of N with S2 × [−1, 1] such
that S = S2 × {0} contains K. We require that the characteristic
foliation of ξ on S is in standard form (c.f. Theorem 3.2).
• For σ = 0 and σ = 1 we consider the same identification of N with
S2 × [−1, 1].
• When τ = 1 we choose a family of spheres Sσ such that

– Kσ ⊂ Sσ, and
– S0 and S1 coincide with the sphere S2 × {0} from the identifi-

cations chosen above.
• Now we extend Sσ to a family of smooth foliations by spheres on
N such that Sσ is a leaf on the foliation N × {(σ, τ = 1)}. By
Lemma 3.13 we may assume that the characteristic foliation of ξ on
Sσ has exactly two singular points along Kσ.

This fixes the boundary conditions. The vertical dashed thickened line in
Figure 14 corresponds to a constant family of Legendrian knots K(when
τ = 0) while the thickened curve on the front face represents the family
Kσ.

In the next step we perturb the family of spheres in a particular way from
S2 × ∂ ([−1, 1]× [0, 1]2) to a neighborhood of this set. On each sphere of
S2 × [−1, 1]× {(σ, τ)} with (σ, τ) ∈ ∂I2 containing the non-loose unknot
Kσ, starting with τ = 1 and σ = 1/2, we consider the retrogradient connec-
tion γσ,τ whose orientations coincides with the orientation of the Legendrian
knot as one moves along ∂I2.

Because the isotopy Kσ reverses the orientation of K, the retrogradient
connection one obtains after returning to τ = 1, σ = 1/2 for the first time
is opposite to the one we have started with.

For each point of ∂[0, 1]2 we choose a small deformation of the family of
spheres as follows:
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• For the point (σ = 1/2, t = 1) the family of spheres is unchanged.
• For all other points the deformation is constructed as follows. Fix

a small disc Dσ,τ intersecting the retrogradient connection chosen
above (but not the other) such that the characteristic foliation of ξ
on Dσ,τ has no singular points. To obtain the deformation we push
the interior of the small discs slightly into the direction given by
the coorientation of the spheres (and extending this deformation to
nearby spheres).

As (σ, τ) approaches (σ = 1/2, τ = 1), the size of the deforma-
tion converges to zero (with respect to every Cr-norm, 1 ≤ r ∈ Z,)
so that we obtain a family of deformations depending smoothly on
(σ, τ).

Sufficiently small deformations as above do not introduce new singular
points of the characteristic foliation on the deformed spheres and the retro-
gradient connections which formed the non-loose unknot before the defor-
mation now appear on two different spheres: The retrogradient connection
in the part of the spheres which was not deformed occurs later than the ret-
rogradient connection intersecting the small disc used for the construction
of the deformation.

We use this family of deformations to extend the family of spheres from
∂I2 to a neighborhood of ∂I2 in I2. By construction the retrogradient con-
nection in the interior of I2 occur on different spheres except for the con-
stant deformation chosen for (σ = 1/2, τ = 1). These are represented by
the thickened dashed lines in Figure 14.

τ

σ

t

?

σ=0, τ=1, t=1σ=0, τ=1, t=−1

σ=1, τ=0, t=1

FIGURE 14. Germ of a 1-manifold obtained from an orien-
tation reversing isotopy of K

According to Theorem 3.10 and its consequences we can extend the fam-
ily of foliations by spheres on N we have constructed for parameter values
in a neighborhood of I2 to the entire parameter space I2. The spheres are
parametrized by three parameters: t ∈ [−1, 1] and (σ, τ) ∈ [0, 1]2. More-
over, we can assume that on each of these spheres the characteristic foliation
of ξ has only finitely many singular points.
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We now consider the spaceL of those parameter values (t, σ, τ) for which
the corresponding sphere contains a non-loose piecewise smooth Legen-
drian unknot with minimal Thurston-Bennequin invariant.

Claim: L is a piecewise smooth properly embedded submanifold of codi-
mension 2 whose boundary is contained in ∂([−1, 1]× [0, 1]2).

Before proving the claim note that it implies the theorem since each sub-
manifold component contributes an even number of boundary points. This
contradicts the fact that there is only one boundary point in [−1, 1]× [0, 1]2.

For the proof of the claim we may assume by Proposition 3.12 that the
points in (−1, 1) × (0, 1)2 where the corresponding characteristic foliation
has exactly two retrogradient connections is a codimension 2-submanifold.
Also, three simultaneous retrogradient connections respectively any config-
urations which are more degenerate occur at isolated points respectively not
at all.

In particular, a generic point in L has a neighborhood in (−1, 1)× (0, 1)2

where L is a smooth submanifold of codimension 2. Points where L is not
smooth arise at points where three retrogradient connections occur simulta-
neously. One example of such a configuration is shown schematically (as
in Figure 7 on 24) in Figure 15.

The top row depicts schematically a characteristic foliation with three
retrogradient connections corresponding to a point (t0, σ0, τ0) = p ∈ P .
The union of the solid and the dashed lines in the left part correspond to
Γ− (recall that this is the graph formed by negative singular points and
unstable leaves) before the retrogradient connection (before refers to the
second factor of S2 × [−1, 1]) while Γ− after the retrogradient connection
is shown in the right part of the top row in Figure 15. The dotted line on the
left correspond to the shape of Γ− after the retrogradient connections occur.
In the figure, we denoted the unstable leaves taking part in a retrogradient
connection by A,B,C.

All three retrogradient connections are present in all characteristic folia-
tions for parameter values in a small neighborhood U of p and any pair of
them corresponds to a submanifold of codimension 2 in U . Some of these
configurations correspond to a sphere St0 ⊂ N × {(σ0, τ0)} such that ξσ0,τ0
has a tight neighborhood in N while others don’t.

The threefold retrogradient connection in the top part of Figure 15 can
be resolved in six different ways to a pair of retrogradient connections oc-
curring simultaneously while the third connection appears before or after
the simultaneous connections. In the configuration shown in the top row
of Figure 15 exactly two such resolutions correspond to a sphere St ⊂
N × {(σ, τ)} such that ξσ,τ is tight on a neighborhood of St. These con-
figurations are labeled with a filled triangle . The letter and the sign in the
six resolutions below indicates which retrogradient connection is fixed in a
state it is in before the triple point (indicated by a minus) or after the triple
point (indicated by a plus).
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A,−
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B,−

C,−

▲

▲

FIGURE 15. Three retrogradient connections - a non-
smooth point of L

There are configurations of three retrogradient connections which corre-
spond to smooth points of L, like for example the one shown in Figure 16.

FIGURE 16. Three retrogradient connections - a smooth
point of L

All configurations of three retrogradient connections which correspond to
spheres in N whose complement is tight lead to a situation as the previous
two examples.

In order to finish the proof of the claim it remains to show that L is a
compact piecewise smooth submanifold.



Non-loose unknots and overtwisted discs in S3 41

Let Sn be a sequence of leaves of Fσn,τn containing a non-loose Legen-
drian knot Kn with tb(Kn) = 1. We may assume that

• Sn converges to a sphere S∞ (we denote the corresponding param-
eter values by t∞, σ∞, τ∞) of Fσ∞,τ∞ .
• Kn converges to a union K of leaves of ξ(S∞) which is a closed

subset of S∞.

We require that the limit point (t∞, σ∞, τ∞) lies in the interior of [−1, 1]×
[0, 1]2.
K cannot contain a non-degenerate closed leaf since every sphere close

to enough to S∞ contains closed leaf contradicting the fact that Kn is non-
loose. For degenerate closed leaves Lemma 2.21 asserts that for t > t∞
or t < t∞ the sphere S(t, σ∞, τ∞) contains an attractive closed leaf. This
prevents the existence of non-loose unknots in spheres close to S∞. Thus
we may assume that ξ(S∞) has no closed leaf.

If S∞ contains a cycle (made from stable and unstable leaves of hyper-
bolic singularities) with one sided holonomy, then after an isotopy of S∞
which moves S∞ into its complement the characteristic foliation on the iso-
toped sphere contains an overtwisted disc. This contradicts the assumption
on (t∞, σ∞, τ∞) being the limit set of parameter values corresponding to
spheres containing non-loose unknots. Therefore S∞ does not contain any
limit cycles with one sided holonomy. All leaves of ξ(S∞) have singular
points as limit sets.

By construction, S∞ contains at least two retrogradient connections and
the complement N \ S∞ is tight. Assume that S∞ contains exactly two ret-
rogradient connections. Then the graph Γ− consisting of negative singular
points and their unstable leaves has three connected components. All these
components have to be trees but not all of them are closed subsets of S∞.
If each of these components takes part in at most one retrogradient connec-
tion, then the one can eliminate all hyperbolic singularities on S∞ by an
isotopy preserving S∞.

Then S∞ has a tight neighborhood and ξ itself would be tight. Therefore
there is one component of Γ− which takes part in both retrogradient con-
nections and the same is true for Γ+ (consisting of positive singular points
and their stable leaves). The union of these two components contains a
non-loose Legendrian unknot whose Thurston-Bennequin invariant is one.

Assume now that the limit sphere contains three retrogradient connec-
tions. All such configurations correspond to contact structures which are
not tight on a neighborhood of S∞, or the configuration is a smooth/non-
smooth point of L (some examples are depicted in Figure 15 and 16).

Since we have assumed that we are in a generic case, we have discussed
all the cases that can occur. Thus L is a piecewise smooth submanifold
of codimension 2 in [−1, 1] × [0, 1]2 which is also compact and properly
embedded. �
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The argument used in this proof also proves the following, very similar,
result. Let K be a non-loose unknot in (S3, ξ−1) with some orientation.
Then we denote the unknot obtained as positive stabilization of K by ∆,
K with reversed orientation is K and the positive stabilization of K is ∆.
Note that ∆,∆ are unknots with vanishing Thurston-Bennequin invariant
and rot(∆) = rot(∆) = 1.

Theorem 3.14. ∆ is not isotopic to ∆.

Proof. Assume that there is an isotopy ϕσ of S3 which moves ∆ to ∆.
As in in the previous proof ϕσ(∆), σ ∈ [0, 1], misses two balls which we
assume to be so small that they are contained in Darboux domains and have
convex boundary. The complement of these balls is N ' S2 × [−1, 1].
We reconsider the setting of the proof of Theorem 3.9. On N × [0, 1]2 we
consider the restriction of ξ−1 to N on all N × {σ, τ}. We fix a family of
foliations Fσ,τ , σ, τ ∈ [0, 1] by spheres on N so that

• Fσ,τ is constant near ∂N ,
• a sphere of Fσ=0,τ=1 contains ∆,
• Fσ,1 = ϕσ(F0,1),
• F0,τ ,F1,τ is independent of τ ,
• on N × {σ, τ = 0} we pick a family of foliations interpolating be-

tween Fσ=0,0 and Fσ=1,0 (already fixed) as follows: a leaf of F1/2,0

contains a non-loose unknot K. To obtain Fσ,0 for σ ≤ 1/2 and
σ ≥ 1/2 first deform F1/2,0 to make overtwisted discs appear which
are isotopic to ∆ respectively ∆ for σ < 1/2 respectively σ > 1/2
and use the use the isotopy to extend the given family of foliations
to a family of foliations for (σ, τ) ∈ ∂([0, 1]2) such that precisely
one leaf of one foliation contains a non-loose unknot (namely K on
a leaf of F1/2,0).

As in the proof of Theorem 3.9 one shows that such a configuration is not
possible contradicting the assumption that ∆ is isotopic to ∆. �

The above theorem implies that the identity component of Diff+(S3, ξ−1)
does not act transitively on the set of boundaries of overtwisted discs. We
will continue to study related phenomena in the next section.

4. APPLICATIONS

As an application of Theorem 3.9 we give the proof of a statement of
Y. Chekanov. The proof of that theorem also requires further results on the
action of the contactomorphism group on boundaries of overtwisted discs,
these will be discussed first.

4.1. The action of contactomorphisms on the set of boundaries of over-
twisted discs. It is an easy corollary of Eliashberg’s classification result
that the group of all contactomorphisms of an overtwisted contact structure
ξ acts transitively on the set U0(ξ) of Legendrian unknots with vanishing
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Thurston-Bennequin invariant and rotation number one. In this section we
will show that the connected component of the identity of Diff+(S3, ξ−1)
does act transitively on U0(ξk), k 6= −1. We have seen above that this is not
the case when k = −1.

For this we use a couple of lemmas which will be used in the second
application, too.

Lemma 4.1. Let (M, ξ) be a contact manifold and ∆ ∈ U0. Then there is a
Lutz tube along a transverse unknot with self-linking number−1 containing
∆ such that the Lutz tube is contained in a ball whose boundary is convex
and has a tight neighborhood. If the π-Lutz twist is undone, then the contact
structure becomes tight on the ball.

π-Lutz twists as in this lemma will be called simple.

Proof. First of all, note that one can choose a convex disc D bounding ∆
such the dividing set on D is connected. In order to see this consider any
convex disc D bounding ∆, fix an overtwisted disc D′ in the complement
of D and construct a contact structure with the desired properties using
Theorem 2.5. For this one uses assumption that rot(∆) = 1.

Then consider a plane field ζ on M which is homotopic to ξ satisfying
the following conditions.

• ζ = ξ near ∆.
• ζ = ξ near D′.
• ζ is a contact structure on a closed ball B3 such that

– B3 is disjoint from D′ and contains D in its interior,
– the boundary of B3 is convex with respect to ζ and the dividing

set on ∂B3 is connected, and
– ζ
∣∣
B3 is obtained from the tight contact structure determined by

ζ(∂B3) by a single π-Lutz twist along a transverse unknot and
D is one of the obvious overtwisted discs obtained from a π-
Lutz twist.

• ζ is homotopic to ξ as a plane field.
According to Theorem 2.5 ζ is homotopic to a contact structure and ζ is
isotopic to ξ relative to a neighborhood of ∆ (one uses the overtwisted disc
D′ for the application of Theorem 2.5), so we can assume that ζ itself is a
contact structure. The ball with the desired properties is obtained from B3

and the contact structure ζ using the fact that ξ and ζ are isotopic contact
structures. �

The last lemma allows us to establish a contact topological (rather than
homotopy theoretic) criterion, which distinguishes ξ−1 from those positive
overtwisted contact structures on S3 which are not diffeomorphic to ξ−1.

Proposition 4.2. Let ξ be an overtwisted contact structure on S3. Then ξ is
isotopic to ξ−1 if and only if there is a closed ball B3 ⊂M

• which contains a simple Lutz tube, and



44 T. VOGEL

• ∂B3 has a tight neighborhood

such that the complement S3 \B3 is tight.

Proof. First, note that according to the description of ξ−1 outlined in Exam-
ple 2.35 this contact structure is obtained from the tight contact structure on
S3 by a single Lutz twist along a transverse unknot with self-lining number
−1. Thus there is a ball containing that Lutz twist whose complement is
tight.

Conversely, if there is ball with tight complement and convex boundary
who contains a simple Lutz twist in its interior, then undoing the Lutz twist
on B3 we obtain a tight contact structure on B3. By Colin’s gluing theorem
[Co97] undoing the Lutz twist yields a tight contact structure on S3. In
other words, ξ is obtained from the tight contact structure on S3 by a single
π Lutz twist. Then ξ is homotopic to (and hence isotopic) to ξ−1. �

This has the following consequence.

Theorem 4.3. Let ξ be an overtwisted contact structure on S3 which is not
isotopic to ξ−1. Then for every pair ∆1,∆2 ∈ U0(ξ) there is an overtwisted
disc ∆ which is disjoint from ∆1 ∪∆2.

Proof. According to Lemma 4.1 we may assume that ∆1 is obtained by a π-
Lutz twist along a transverse unknot in a tight ball B3. By Proposition 4.2,
the complement of this ball is overtwisted.

We will attempt to isotope ∆2 without moving ∆1 so that the result lies
inside a small neighborhood V of B3 such that V \ B̊3 is tight. The process
described below either works or we find an overtwisted disc in the comple-
ment of ∆1 ∪∆2. Because the complement of V is overtwisted by [Co97]
the proves the desired result.

LetD,D′ be discs bounding ∆2 such thatD∪D′ is an embedded sphere.
Without loss of generality we assume that ∆2 and S = D∪D′ are transverse
to ∂B3. Let x, x′ ∈ ∂B3∩∆2 be two intersection points such that there is an
arc δ1 ⊂ ∆2∩(S3\B3) whose interior of δ2 does not meet ∂B3. Together, δ2

and an arc from S ∩ ∂B3 bound a disc in S whose interior does not contain
segments of ∆2.

Pick a Legendrian arc δ′2 connecting x and x′ in a tight neighborhood of
S such that δ2∩δ′2 is a Legendrian unknot bounded by D̂ in the complement
of B3 which is disjoint from other pieces of ∆2.

We may assume that D̂ is convex since we may stabilize δ′2. Either the
dividing set on D̂ contains a closed component or not. In the first case one
finds an overtwisted disc in the complement of ∆1 ∪∆2, in the second case
D̂ has a tight neighborhood and by Proposition 2.7 we can push the segment
δ2 of ∆2 into a tight neighborhood of ∂B3.

After finitely many steps we either found an overtwisted disc in the com-
plement of ∆1 ∪∆2 or we have isotoped ∆2 into a neighborhood of B3. In
the latter case we are done. In the first case, note that if the complement
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of the neighborhood of ∂B3 containing the isotoped knot ∆2 is a tight ball,
then the contact structure is isotopic to ξ−1 contrary to our assumption. �

This theorem has a corollary using Theorem 2.25.

Corollary 4.4. Let (S3, ξ) be an overtwisted contact structure which is not
isotopic to ξ−1, then for every pair ∆1,∆2 of Legendrian unknots with ro-
tation number one and vanishing Thurston-Bennequin-invariant, there is a
contact isotopy moving ∆1 to ∆2.

For oriented knots the same is true provided that the rotation numbers of
the two knots coincide.

This is contrasted by Theorem 3.14 for the contact structure ξ−1 on S3.

4.2. Chekanov’s theorem on π0(Diff+(S3, ξ)) for overtwisted contact
structures ξ. The following theorem is stated in Remark 4.15 of [ElF98]
where it is attributed to Y. Chekanov without an indication of a proof.

Theorem 4.5 (Chekanov). Let ξ be an overtwisted oriented contact struc-
ture on S3 and Diff+(S3, ξ) the diffeomorphisms of S3 which preserve ξ
and its orientation. Then

π0

(
Diff+(S3, ξ)

)
=

{
Z2 ⊕ Z2 if ξ ' ξ−1

Z2 otherwise.

Proof. According to [Dy01] the homomorphism

d : Diff+(S3, ξ) −→ Z2

which was described at the end of Section 2.6 is onto for all overtwisted
contact structures on S3. We first assume ξ ' ξ−1. Let K ⊂ S3 be a non-
loose Legendrian unknot with tb(K) = 1. According to Theorem 3.7 and
Theorem 3.9 there is a well defined group homomorphism

κ : Diff+(S3, ξ) −→ Z2

ψ 7−→
{

0 if ψ(K) is Legendrian isotopic to K
1 if ψ(K) is Legendrian isotopic to K.

(12)

By Lemma 3.6, there is an orientation preserving contact diffeomorphism
ψ such that d(ψ) 6= 0 which maps K to itself but reverses its orienta-
tion. Moreover, when one applies the proof of surjectivity of d to the ball
around one of the overtwisted discs shown in Figure 3 (as in indicated in
Remark 2.36), then the resulting contact diffeomorphisms has non-trivial
Dymara invariant and it preserves the overtwisted disc up to isotopy. As we
have shown above a contact diffeomorphism of ξ′ which reverses to orien-
tation of the non-loose unknot interchanges (up to contact isotopy) the two
overtwisted discs in Figure 3. This is true because the positive stabilization
of the standard non-loose Legendrian unknot yields one of the overtwisted
discs in Figure 3 while the negative stabilization (i.e. the positive stabiliza-
tion when the orientation ofK is reversed) yields the other overtwisted disc.
Since ψ preserves one of the two overtwisted discs in Figure 3 and these two
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overtwisted discs are not isotopic ψ(K) is isotopic to K as oriented knot.
Thus (d, κ) is a surjective homomorphism

(d, κ) : Diff+(S3, ξ−1) −→ Z2 ⊕ Z2.

It remains to show that all orientation preserving contact diffeomorphisms
in the kernel of this map are isotopic to the identity inside of Diff+(S3, ξ).
In order to show this we apply the proof of Theorem 3.7 with a few modifi-
cations.

First of all, we may assume thatψ preserves two Darboux balls pointwise.
We denote the complement of their interior by N ' S2 × [−1, 1]. Now the
restriction map

π1

(
Diff+(D3, ξDarboux)

)
−→ π1

(
Diff+(S2)

)
' π1 (SO(3)) = Z2

induced by the restriction map is surjective. From the Smale conjecture (see
item 8 in the Appendix of [Ha83]) it follows that there is family of diffeo-
morphisms ψσ, σ ∈ [0, 1], of N (such that ψσ = id on a neighborhood of
∂N ) with ψ = ψ1. We may assume in addition that ψ1(K) = K pointwise.

We now use the proof of Theorem 3.7 to find a family of diffeomor-
phisms ϕσ with ϕ0 = ϕ1 = id so that ϕσ ◦ ψσ is a contact diffeomorphism.
The overall strategy is the same but slightly simpler, and one applies the
modification performed for τ ∈ [4/5, 1] in the proof above twice: Once to
the constant family of Legendrian knots in {τ = 0} and once more to the
family ψσ(K) in {τ = 1}.

The hypothesis that d(ψ1) = 0 ensures that the 2-parameter family of
plane fields/contact structures used in the proof of Theorem 3.7 exists, the
fact that κ(ψ) = 0 implies that one does not need to introduce double points
as in shown in the front part (close to {τ = 1} in Figure 14) when one
separates the simultaneous retrogradient connections by a perturbation of
the sphere carrying the knot.

This finishes the proof of the theorem in the case when ξ ' ξ−1. Finally,
we consider the case ξ 6' ξ−1.

Let ψ be a contact diffeomorphism of (S3, ξ) which preserves the orien-
tation of ξ and d(ψ) = 0 and choose an overtwisted discB. By Theorem 4.3
the complement of ∂B ∪ ψ(∂B) is overtwisted. Therefore we may assume
that ψ preserves an overtwisted disc and since d(ψ) is trivial we can apply
Theorem 2.5 to obtain an isotopy connecting ψ to the identity. �

The following consequence is immediate. We denote connected compo-
nent of the space of contact structure on S3 which are isotopic to a particular
contact structure ξ by Cont(S3, ξ).

Corollary 4.6. Let ξ be an overtwisted contact structure on S3. Then

π1

(
Cont(S3), ξ

)
'
{

Z2 ⊕ Z2 if ξ ' ξ−1

Z2 otherwise.

Proof. This follows from the long exact sequence of the fibration

Diff+(S3, ξ) −→ Diff(S3, or) −→ Cont(S3, ξ)
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and the fact that one can choose ξ to be invariant under rotations along
around one particular complex plane in C2 ⊃ S3. �

As final application of the classification of minimal non-loose unknots
and of Theorem 4.5 we complete the classification of non-loose unknots in
S3. We already know the coarse classification: If K ⊂ (S3, ξ) is a non-
loose unknot, then

tb(K) = n > 0 rot(K) = ±(n− 1)

and there is an orientation preserving contact diffeomorphism mapping K
to K−n,1 respectively Kn,−1 if rot(K) = n − 1 respectively rot(K) =
−(n− 1). We will consider the first case. We know two examples of knots
with the same classical invariants as K, namely K−n,1 and K−1,n.

We have furthermore explained (Figure 5) that after n − 1 negative sta-
bilizations of K1,−n respectively K−n,1 we end up with L1,−1 respectively
K−1,1. These two knots are not Legendrian isotopic by Theorem 3.9. There-
fore K1,−n is not isotopic to K−1,n.

Theorem 4.7. LetK ⊂ S3 be a non-loose Legendrian unknot with tb(K) =
n and rot(K) = n− 1. Then K is isotopic to either K−n,1 or K1,−n.

Proof. By Chekanov’s theorem it is sufficient to show that if d(ψ) = 1 and
κ(ψ) = 0, then ψ(K−n,1) is isotopic to K−n,1.

We may assume that ψ preserves K−1,1 together with a tubular neighbor-
hood N0 of K−1,1 pointwise. The claim follows if we show that K−n,1 is
isotopic to a knot contained in N0.

NowK−n,1 can be obtained fromK−1,1 by a (n−1)-fold band connected
sum with K−1,0. The (n − 1) copies of K−1,0 are unlinked copies of the
boundary of an overtwisted disc (as in Figure 17).

FIGURE 17. Obtaining K−4,1 from K−1,1 and three copies
of L−1,0

This collection of n − 1 unknots is Legendrian isotopic (in the comple-
ment of K−1,1 and relative to the region where the band connected sum is
formed) to a Legendrian link contained in N0. But this is clear since a neg-
ative stabilization of K−1,1 (the stabilization is contained N0) is isotopic to
K−1,0. We have seen in Figure 5 that this isotopy can be chosen so that it
does not move K−1,1 nor the region were the band connected sum is per-
formed. �
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