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Abstract

Every 4–manifold with trivial tangent bundle admits an Engel structure. To cite this article: Thomas Vogel, C.
R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Toute variété de dimension 4 dont le fibré tangent est trivial admet une structure d’Engel. Pour citer cet article :
Thomas Vogel, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Version française abrégée

Une structure d’Engel est un champs des plans différentiable D sur une variété de dimension 4 qui
satisfait les conditions

rang[D,D] = 3 rang[D, [D,D]] = 4 .

Ici on note par [D,D] l’ensemble des vecteurs tangents de M qu’on peut obtenir comme commutateur
[X,Y ] pour des sections locales X,Y de D. Les structures d’Engel sont stables dans le sens de la théorie
des singularités. Il y a peu de types des distributions qui sont stables dans ce sens. Ce sont les champs des
lignes, les structures de contact sur les variétés de dimension impaire, les structures de contact paires sur
les variétés de dimension paire et les structures d’Engel en dimension 4, [6]. En particulier, les structures
d’Engel sont une peculiarité de la dimension 4. Ces faits sont une motivation pour l’étude des structures
d’Engel.

A chaque structure d’Engel D sur une variété M on peut associer des distributions

W ⊂ D ⊂ E ⊂ TM (1)
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où E = [D,D] est une structure de contact paire et W est un champs de lignes associé à E . Le feuilletage
induit est tangent à D et il est appelé le feuilletage caractéristique de D. Il ne dépend que de E . Sur une
hypersurface H qui est transverse à W on a une structure de contact TH ∩ E et un champs de lignes
TH ∩ D tangentes à la structure de contact sur H. Ces lignes sont appelées lignes d’intersection. Si M
est orientée on obtient une orientation de W et de TH ∩ E . Dans ce cas, une orientation de D induit une
orientation des lignes d’intersection sur H. En utilisant (1) on obtient la proposition suivante.
Proposition 0.1 Si M est une variété orientable qui admet une structure d’Engel orientable, le fibré
tangent de M est trivial.
Dans [5] cette proposition est attribuée à V. Gershkovich. Le résultat principal de [8] annoncé dans cette
note est la réciproque de la Proposition 0.1.
Théorème 0.2 Une variété de dimension quatre dont le fibré tangent est trivial admet une structure
d’Engel orientable.
La preuve du Théorème 0.2 utilise la décomposition d’une variété en anses rondes. Une anse ronde Rk de
dimension n et d’indice k ∈ {0, . . . , n− 1} est definie par Rk = Dk ×Dn−k−1 × S1. On attache Rk à une
variété M avec bord en utilisant un plongement de ∂−Rk = ∂Dk ×Dn−k−1 × S1 dans ∂M .

Soit M une variété fermée de dimension 4 dont le fibré tangent est trivial. On fixe une décomposition
en anses rondes de M . Une telle décomposition existe grâce au théorème suivant.
Théorème 0.3 (Asimov [1]) Si M est une variété fermée et connexe de dimension n 6= 3, il y a une
décomposition de M en anses rondes si et seulement si la caractéristique d’Euler de M est nulle.
Sur les anses rondes on fixe des structures d’Engel orientables qui serviront comme modèles. On choisit
les modèles tels que leurs feuilletages caractéristiques soient transverse à ∂−Rk et ∂+Rk = ∂Rk \ ∂−Rk.
Les feuilletages caractéstiques sont orientées tels qu’ils sortent de Rk par ∂+Rk et ils y rentrent par ∂−Rk.

Soit M ′ une variété munie d’une structure d’Engel dont le feuilletage caractéristique est transverse au
bord et sort le long de ∂M . On fixe une des structures d’Engel modèles sur Rk et un plongement ϕ :
∂−Rk −→ ∂M . Si ϕ préserve les structures de contact avec leurs orientations et les lignes d‘intersection
orientées on obtient une structure d’Engel différentiable sur M ′ ∪ϕ Rk.

Pour la preuve du Théorème 0.2 on attache les anses rondes dans la décomposition de M en anses
rondes l’une après l’autre. On montre qu’à chaque étape on peut modifier les fonctions de recollement des
anses rondes et qu’il est possible de choisir une structure d’Engel sur l’anse ronde telle que les conditions
sur la fonction de recollement soient satisfaites. Une difficulté importante est de construire un ensemble
assez grand des structures d’Engel modèles sur les anses rondes.

Une démonstration detaillée du Théorème 0.2 sera publiée ultérieurement.

1. Introduction

An Engel structure is a smooth maximally non–integrable plane field on a 4–manifold. Engel structures
are stable under C2–small perturbations. Around every point of a manifold with an Engel structure D,
there are coordinates x, y, z, w such that D is the intersection of the kernels of dz − x dy and dx− w dy.
This normal form for Engel structures is due to F. Engel [3]. Engel structures arise for example as generic
germs of distributions of planes at a point in R4. In particular Engel structures are stable in the sense of
singularity theory.

There are only a few types of distributions with this stability property. In dimension n the stable
germs of distributions arise for distributions of rank k = 1 or k = n − 1 for arbitrary n or if k = 2 and
n = 4, c.f. [6]. The case k = 1 corresponds to foliations of rank 1 while the case k = n − 1 is realized
by contact structures if n is odd and by even contact structures if n is even. If k = 2 and n = 4, the
stable distribution germ is an Engel structure. Even among the distributions with stable germs, Engel
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structures appear to be special due to their exceptional appearance in dimension 4. This motivates the
study of Engel structures.

As we explain in Section 2, an Engel structure D on a 4–manifold M induces a flag of distributions

W ⊂ D ⊂ E ⊂ TM (2)

where each distribution has corank 1 in the distribution to its right. The distribution E is an even contact
structure and it carries a distinguished orientation. The line field W depends only on E . An orientation
of W induces an orientation of TM and vice versa. From this one obtains the following proposition.
Proposition 1.1 An orientable 4–manifold which admits an orientable Engel structure has trivial tan-
gent bundle.
This proposition can be found in [5], where it is attributed to V. Gershkovich. Up to now one can find
only few examples of closed Engel manifolds in the literature (cf. [6,4]). The main result of [8] announced
in this note is the converse of Proposition 1.1.
Theorem 1.2 Every 4–manifold M with trivial tangent bundle admits an orientable Engel structure.
In Section 3 we discuss Theorem 1.2 and another result from [8]. Detailed proofs will be published
elsewhere.

2. Properties of Engel structures

In this section we give the definition of Engel structures and we explain some properties which will be
used in the discussion of our results in Section 3. When D,D′ are distributions on M , then [D,D′] at
p ∈ M consists of those tangent vectors of M which can be obtained by evaluation of the commutator
[X,X ′] of local sections X of D and X ′ of D′ at p.
Definition 2.1 A plane field D on a 4–manifold M is an Engel structure if

rank[D,D] = 3 and rank[D, [D,D]] = 4 .

In our discussion we shall also encounter contact structures and even contact structures. Let us recall the
definitions.
Definition 2.2 A distribution C of hyperplanes on a manifold of odd dimension 2k + 1 is a contact
structure if it is locally defined by a 1–form α with the property α ∧ dαk 6= 0.

A field E of hyperplanes on a manifold of even dimension 2k is an even contact structure if it is locally
defined by a 1–form α such that the restriction of dα to E = ker(α) has maximal rank.
The definitions of contact structures and of even contact structures are very similar. Still there is a
significant difference. If α is a defining form for a contact structure, then the restriction of dα to ker(α) is
non–degenerate by definition. On the other hand if α defines an even contact structure, then the 2–form
dα has even rank while the rank of E is odd. Thus the restriction of dα to E has a kernel of dimension
one since the rank of the restriction of dα to E is assumed to be maximal. This kernel is independent of
the choice of α. The resulting foliation W of rank one is called the characteristic foliation of E . From the
definition ofW it follows that the local flow of every vector field tangent toW preserves E , i.e. [W, E ] ⊂ E .

Notice that a hyperplane distribution E on a 4–dimensional manifold M is an even contact structure
if and only if [E , E ] = TM . In particular if D is an Engel structure, then [D,D] = E is an even contact
structure and one can associate the characteristic foliationW of E to D. In order to establish the existence
of the flag of distributions (2) it remains to show W ⊂ D.
Lemma 2.3 Let D be an Engel structure. The characteristic foliation W of E = [D,D] is tangent to D.
Proof : Assume that Wp is not contained in Dp at p ∈ M . Let α be a local defining form for E on a
neighbourhood of p. If X,Y are two linearly independent local sections of D around p, then dα(Xp, Yp) 6= 0
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by the assumption on W. On the other hand dα(X,Y ) = −α([X,Y ]) = 0 since [X,Y ] is a local section
of E = [D,D]. Thus the assumption Wp 6⊂ Dp leads to a contradiction. 2

Let D be an Engel structure on M and H a hypersurface transversal to the characteristic foliation W.
Then TH ∩E is a distribution of rank 2. Since H is transversal to the characteristic foliation TH ∩E is a
contact structure. It follows from transversality and Lemma 2.3 that TH ∩ D is a Legendrian line field.
We refer to TH ∩D as the intersection line field on H. An orientation ofW and D induces an orientation
of the intersection line field.

Contact structures in dimension 3 induce an orientation of the underlying manifold. Therefore an
orientation ofW induces an orientation of M using the contact orientation on hypersurfaces transversal to
W. If X,Y is a local frame for D, then X,Y, [X,Y ] is a local frame for E and the orientation defined by this
frame is independent of the choice of X,Y . Proposition 1.1 follows immediately from these observations
and (2).

Let H,H ′ be hypersurfaces transversal to W and assume that p ∈ H lies on the same leaf of W as p′ ∈
H ′. Then the holonomy of W induces a diffeomorphism between neighbourhoods of p in H respectively
p′ in H ′ which preserves contact structures since every flow tangent to W preserves the even contact
structure. This allows us to give the following geometric interpretation of the condition [D,D] = E .

Suppose that the hypersurface H is transversal to W and let W be a vector field tangent to W which
does not vanish along H. Consider the image Ht of H under the local flow ϕt of W at time t. Then the
image of the intersection line field on Ht under ϕ−t is a Legendrian line field on H which rotates without
stopping as t increases.

A classical construction of Engel structures is called prolongation. It is described in the following
example.
Example 1 Let N be a 3–dimensional manifold with contact structure C. Consider the projectivization PC
of C consisting of 1–dimensional subspaces of C. Thus PC is a fiber bundle over M with fiber RP1. We
denote the bundle projection by pr and Legendrian lines by λ. The distribution on PC

DC =
{
v ∈ TλPC

∣∣ pr∗(v) ∈ λ for λ ∈ PC
}

is an Engel structure. The induced even contact structure is pr−1∗ (C) and the characteristic foliation of
DC corresponds to the fibers of PC.
Another construction due to H. J. Geiges [4] yields an Engel structure on the mapping torus of a diffeo-
morphisms of a 3–manifold if the mapping torus has trivial tangent bundle.

3. Discussion of the main results

Here we make only a few remarks concerning the proof of Theorem 1.2. Detailed proofs of the results
presented in this note will be published elsewhere.

For open 4–manifolds with trivial tangent bundle one can use Gromov’s h–principle for open differential
relations which are invariant under the action of the group of diffeomorphisms of M , c.f. [2]. This yields
Engel structures on open 4–manifolds with trivial tangent bundle. Therefore we assume that M is 4–
dimensional, closed, connected with trivial tangent bundle.

A round handle of dimension n and index k ∈ {0, . . . , n− 1} is defined to be Rk = Dk ×Dn−k−1×S1.
Round handles are attached to manifolds with boundary using embeddings of ∂−Rk = ∂Dk×Dn−k−1×S1

into ∂M . We say that M admits a round handle decomposition if M can be obtained from the disjoint
union of several round handles of index 0 by successively attaching round handles.
Theorem 3.1 (Asimov [1]) A closed connected manifold of dimension n 6= 3 admits a decomposition
into round handles if and only if its Euler characteristic vanishes.
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The analogous statement in dimension 3 is wrong [7]. One can assume that the round handles are ordered
according to their index.

For the proof of Theorem 1.2 we fix model Engel structures on round handles of dimension 4 such that
the characteristic foliation is transversal to ∂−Rk and ∂+Rk = ∂Rk \ ∂−Rk. The characteristic foliations
are oriented such that they point outwards along ∂+Rk and inwards along ∂−Rk for k = 0, 1, 2, 3.

Since M has trivial tangent bundle, the Euler characteristic of M vanishes. By Theorem 3.1 we can
fix a round handle decomposition of M . We attach the round handles successively. Suppose that we
have constructed an Engel structure on M ′ ⊂ M with oriented characteristic foliation such that the
characteristic foliation is transversal to the boundary of M ′ and points outwards.

Let ϕ be an attaching map for Rk and equip Rk with a model Engel structure. If ϕ preserves oriented
contact structures and oriented intersection line fields, then Rk can be attached to M ′ such that the
model Engel structure on Rk extends the Engel structure on M ′ to a smooth oriented Engel structure on
M ′ ∪ϕ Rk. The characteristic foliation of the resulting Engel structure is oriented and transversal to the
boundary of M ′ ∪ϕ Rk.

Given an arbitrary attaching map ϕ for Rk we isotope ϕ such that the condition on the attaching map
we have explained above is satisfied for a suitable choice of the model Engel structure on Rk. In this
process we also modify the Engel structure on M ′ slightly. One of the main difficulties of the proof is to
construct sufficiently many model Engel structures on round handles.

We finish this note with the discussion of another theorem from [8].
Theorem 3.2 Let (M1,D1) and (M2,D2) be Engel manifolds such that the characteristic foliations of
both Engel structures have closed transversals H1 respectively H2. Then M1#M2#(S2 × S2) admits an
Engel structure D which coincides with D1 and D2 away from tubular neighbourhoods of H1 and H2. The
characteristic foliation of D also admits a closed transversal.
In order to prove Theorem 3.2 we cut M1 along H1 and M2 along H2. Then we attach two round handles
of index 1 and 2 with model Engel structures such that we obtain a closed manifold with an Engel
structure. Then we show that the resulting manifold is diffeomorphic to M1#M2#(S2 × S2).

Notice that in Theorem 3.2 we make no orientability assumption and that the construction can be
iterated. The condition that the characteristic foliation of Di, i = 1, 2 admits a closed transversal can be
replaced by an assumption concerning the number of full twists of Di around a leaf of Wi in Ei, c.f. the
interpretation of the condition [D,D] = E in Section 2.

When M1 and M2 are parallelizable, then so is M1#M2#(S2 × S2). In this situation Theorem 1.2
guarantees the existence of an Engel structure on M1#M2#(S2 × S2). The advantage of Theorem 3.2 is
that we obtain an Engel structure which is closely related to the original Engel structures on M1 and M2.

If C is a contact structure on a 3–manifold which is trivial as a bundle, then the Engel structure DC
on PC from Example 1 satisfies the hypothesis in Theorem 3.2. For example if C is the standard contact
structure on S3, then the application of Theorem 3.2 yields an Engel structure on

Mk = (k + 1)(S3 × S1)#k(S2 × S2)

for all k ≥ 1. One can prove that Mk is not the total space of a fibration over S1 and that Mk is not
the projectivization of a subbundle of rank two of the tangent bundle of an orientable 3–manifold. In
particular it is impossible to apply the construction of Geiges (c.f. [4]) or the prolongation construction
(c.f. Example 1) to obtain an Engel structure on Mk.
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