

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Thomas Vogel Daniel Räde

Symplectic geometry

Exercise sheet 5

a) Let f be a symplectomorphism of (M, ω) and H a Hamiltonian function. Compute Exercise 1. the Hamiltonian vector field of f^*H in terms of f and the Hamiltonian vector field of H.

b) For ϕ_t, ψ_t be Hamiltonian diffeomorphism generated by the Hamiltonian functions F_t, G_t . Show that

$$\frac{d}{dt}(\phi_t \circ \psi_t) = X_{F_t} + \phi_{t*}X_{G_t}$$

c) Show that if f is Hamiltonian, then the same is true for f^{-1} .

Exercise 2. Let f_t, g_t be Hamiltonian flows generated by time independent normalized Hamiltonian functions. Show that $f_t \circ g_t = g_t \circ f_t$ if and only if $\{F, G\} = 0$.

Exercise 3. Let $h: A \longrightarrow A = \{a^2 \le u^2 + v^2 \le b^2\}$ be an area preserving homeomorphism which satisfies the monotone twist condition, i.e. if a lift $\tilde{h} = (f, g)$ of h to the universal cover $\tilde{A} = \{a \leq y \leq b\}$ (as in the lecture) satisfies

$$f(x,a) < x$$
 and $f(x,b) > x$ for all x , and
 $y < y' \Rightarrow f(x,y) < f(x,y')$

- a) Show that there is a 2π -periodic function $w : \mathbb{R} \longrightarrow \mathbb{R}$ so that f(x, w(x)) = x.
- b) Conclude that the curve $\widetilde{\Gamma} = \{(x, w(x)) | x \in \mathbb{R}\}$ projects to a closed curve Γ in A.
- c) Consider $\Gamma \cap h(\Gamma)$ to show that $\widetilde{\Gamma}$ and $\widetilde{h}(\Gamma)$ intersect in at least two points which project to different points in A.
- d) Prove that h has at least two fixed points.

Exercise 4. Prove that the Maslov index of a smooth closed embedded loop $\gamma: [0, L] \longrightarrow \mathbb{R}^2$ is ± 2 (i.e. $\gamma(0) = \gamma(L)$ and $\dot{\gamma}(0) = \dot{\gamma}(L)$).

Proceed as follows: Pick a straight line in \mathbb{R}^2 tangent to γ so that the image of γ lies in one half space bounded by the straight line. Assume that $\gamma(0) = \gamma(L)$ is on the line, that the straight line is the x-axis and that $\dot{\gamma}(0) / = \|\dot{\gamma}(0)\|\partial_x$.

Consider the following map $d: [0, L] \times [0, L] \longrightarrow \Lambda_1$ to compute the Maslov index of γ

$$d(s,t) = \begin{cases} \dot{\gamma}(t) & \text{if } s = t \notin \{0,L\} \\ \partial_x & \text{if } (s,t) \in \{(0,0), (L,L), (L,0), (0,L)\} \\ \gamma(s) - \gamma(t) & \text{otherwise.} \end{cases}$$

Hand in on Wednesday November, 21 during the exercise class.