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Contact topology

Please note: These notes summarize the content of the lecture. Many details and
examples are omitted. Sometimes, but not always, we provide a reference for proofs,
examples or further reading. We will not attempt to give the first reference where a
theorem appeared. Some proofs might take two lectures although they appear in a
single lecture in these notes. Changes to this script are made without further notice
at unpredictable times. If you find any typos or errors, please let us know.

1. Lecture on October 16 – Definition, examples, Gray

• We will be working in the smooth category unless noted otherwise.
• Definition: A contact structure on a manifold M of dimension 2n + 1 is a

smooth hyperplane field ξ such that every point has a neighborhood U so that
ker(α) = ξ|U so that

(1) α ∧ dαn 6= 0.

• Remark: If α′ is another with ker(α′) = ξ, then the condition (1) also holds for
α′. (1) can be rephrased as follows: dα is a non-degenerate 2-form on ker(α).

For all n this condition can be reformulated in terms of commutators of local
sections of ξ. When n = 1 this is very transparent: ξ is a contact structure if
and only if [X, Y ] 6= ξ whenever X, Y are linearly independent local sections of
ξ.
• Reminder: If ω is a non-degenerate 2-form on a vector space, then the vector

space has even dimension 2n and there is a symplectic basis Xi,Wi, i.e.

ω(Xi, Xj) = 0 ω(Yi, Yj) = 0 ω(Xi, Yj) = δij.

If ω is a two form on a vector space V of odd dimension, then the kernel of the
map

V −→ V ∗
X 7−→ (Y 7−→ ω(X, Y ))

is not empty, the image of this map has always even dimension.
• Example -1: If M has dimension 1, then M is has unique contact structure
• Example 0: M = R2n+1 and ξ = ker(α) with α = dz −

∑n
i=1 yidxi.

• Example 1: M = S2n+1 ⊂ Cn+1 and ξ = TS2n+1 ∩ iTS2n+1, i.e. ξ(p) is the
set of hyperplanes in TpS

2n+1 which are complex subspaces in TpCn+1 = Cn+1.
A 1-form defining ξ is

α(x0, y0, . . . , xn, yn) =
1

2

n∑
i=0

(xidyi − yidxi).

• Example 2: Let (X,ω = dλ) an exact symplectic manifold, i.e. ω is an exact,
non-degenerate symplectic form. Then R×X has a contact structure defined
by dt+ λ.
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• Example 3: There is an important class of flows which are called Anosov flows:
Let M be a 3-manifold and X a vector field such that the corresponding flow ϕt
is Anosov. This means that there is a ϕ-invariant splitting TM = RX⊕ζst⊕ζun
together with a Riemannian metric g on M and positive constants C, λ so that

‖Dϕt(Xst)‖ ≤ Ce−λt‖Xst‖ ‖Dϕt(Xun)‖ ≥ C−1eλt‖Xun‖.

We assume that ζst, ζun are orientable and pick unit vector fields Xst, Xun. If
ζstζun are smooth (this is a serious assumption which we make to simplify the
exposition), hen ξ± = span{X,Xst ±Xun} is a pair of contact structures such
that the induced orientation on M (with n = 1) are different. This situation
appears for example, when M is the unit tangent bundle of tangent vectors on
a hyperbolic surface and X defines the geodesic flow.
• Example 4: Let N be a smooth manifold and

pr : M = (TN∗ \N = {zero section})/ −→ N

where α ∼ α′ if and only if α = λα′ for λ ∈ R. Then the tautological distribu-
tion ξ with

ξ([α]) = {X ∈ T[α]M |α(pr∗(X)) = 0}
is a contact structure.
• Convention: We will usually assume that a contact structure is coorienable,

i.e. there is a global 1-form α, so called contact forms, whose kernel is ξ.
• Definition: Let α be a contact form on M . Then there is a unique vector field
Rα so that α(Rα) ≡ 1 and dα(Rα, ·) ≡ 0. Then Rα is the Reeb vector field.
• Fact: The contact condition on a hyperplane field is open in the (fine) C1-

topology.
• Definition: Let (M, ξ) and (M ′, ξ′) be two contact manifolds of equal di-

mension. A contact diffeomorphism/contact transformation f : M −→ M ′ is
a diffeomorphism such that Df(ξ) ⊂ ξ′. Contact transformations preserving
fixed contact forms are sometimes called strict.
• Remark: Since LRαα = 0, the flow of Rα consists of strict contact transfor-

mations.
• Example: Let M = R3 and α0 = dz − ydx. Using polar coordinates one

defines α1 = dz + ρ2dϑ. The diffeomorphism

f : R3 −→ R3

(x, y, z) 7−→ (x, 2y, (z + xy))

satisfies f ∗α0 = α1 since

α1 = dz + ρ2dϑ = dz + xdy − ydx
= d(z + xy)− (2y)dx.

In this example, even the contact forms are isomorphic. In particular, Df maps
the Reeb vector field of α1 to the Reeb vector fields of α0.
• Example: There is no strict contact transformation between the contact forms

(polar coordinates on R3)

α0 = dz + ρ2dϑ

α1 =
1

(1 + z2 + ρ2)2
α0
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for the same contact structure on R3. This can be seen using properties of the
Reeb vector field: The Reeb vectorfield R0 of α0 is ∂z, so no orbit is closed.
Tangent vectors to curves with

ϑ̇ = 1 ż =
1 + z2 − ρ2

2
ρ̇ = ρz

are contained in the kernel of dα1. In particular, the circle {z = 0, ρ = 1} is a
closed flow line of the Reeb vector field of α1.
• Example: In the situation of example 4, let f : N −→ N be a diffeomorphism.

Then

F : M −→M

[α] 7−→ [f−1∗α].

transformation
• The following Theorem is an application of the so-called Moser method. This is

first used in [6] to prove that two volume forms with the same sign and volume
are diffeomorphic.
• Theorem(Gray): Let αt, t ∈ [0, 1], be a smooth family of contact structures

on M such that ξt is constant outside of a compact set (in the interior of M if M
has boundary). Then there is a 1-parameter family of contact transformations
ϕt, i.e. there is a family of functions ft on M such that

ϕ∗tαt = ftα0.

• Proof: The key idea is to construct a time dependent vector field whose flow
ϕt has the desired property. Let Xt be a smooth, compactly supported vector
field with flow ϕt. Then according to the chain rule

d

dt
ϕ∗tαt = ϕ∗t

(
dαt
dt

+ iXtdαt + d(iXtαt)

)
.

We seek Xt so that there are positive functions ft such that ϕtαt = ftα0. This
means

dft
dt
α0 =

d log(ft)

dt
ϕ∗tαt

= ϕ∗t

((
d log(ft)

dt
◦ ϕ−1∗

)
αt

)
.

Combining the two identities we get

dαt
dt

+ iXtdαt + d(iXtαt) =

(
d log(ft)

dt
◦ ϕ−1∗

)
︸ ︷︷ ︸

=:gt

αt.

We try to solve this equality with Xt ∈ ξt = ker(αt) and a function gt. If the
one forms are evaluated on Rt, the Reeb vector field of αt, then one gets

gt =
dαt
dt

+ d(iXtαt).

This means that if we find a vector field Xt so that dαt
dt

+ iXtdαt + d(iXtαt) is
a multiple of αt, then the factor gt can be determined from Xt and αt.
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By the contact condition (dαt is non-degenerate on ξt) there is a unique
vector field Xt tangent to ξt so that

dαt
dt

+ iXtdαt = 0

when evaluated on tangent vectors to ξt. But this means that dαt
dt

+ iXtdαt +
d(iXtαt) is a multiple of αt. The flow of Xt is a vector field whose flow has
the desired properties. (The flow exists since Xt, just like α̇t, has compact
support.)
• Consequence: Contact structures on closed manifolds are therefore stable in

the sense that C1-small perturbations of contact structures yield isomorphic
contact structures. Actually, in dimension 3 the following, stronger statement
holds [3]: Every contact structure on a closed 3-manifold has a C0-neighborhood
in the space of hyperplane fields such that all contact structures in that neigh-
borhood are isomorphic to the original one.

2. Lecture on October 23 – Consequences of Gray’s theorem, Lutz
twist

• Theorem (Darboux): Let (M, ξ) be a contact manifold of dimension 2n+ 1.
Then every point has a neighborhood with coordinates (z, x1, y1, . . . , xn, yn) so
that ξ = ker (dz −

∑
i yidxi).

• Remark: This means that locally, in the neighborhood of a point, all contact
structures are equivalent to one fixed model (depending only on the dimension).
• Proof: Let p ∈ M . We choose a contact form α′ and a coordinate system

(z′, x′i, y
′
i) so that ξ(p) = ker(dz′). Multiplying z′ with a suitable constant and

adding a suitable vector from ξ(p) we may assume that dz′ = α′ at p and
the Reeb vector field of α at p is ∂z′ . Moreover, we can choose a symplectic
basis X ′i, Y

′
i of ξ(p) with respect to dα′(p). Then, after changing the coordinate

system, we may assume that the constant vector fields X ′i, Y
′
i (in terms of the

old coordinate system) correspond to coordinate vector fields ∂x′i , ∂y′i . This
implies α′(p) = α(p) and dα(p) = dα′(p) where α = dz′ −

∑
i y
′
idx
′
i.

Applying the procedure from the previous proof to αt = tα+ (1− t)α′ yields
a family of vector fields Xt which vanish on at p so that ϕ∗tαt is a multiple of
α. Here ϕt is the local flow of Xt at p and this is defined since Xt(p) ≡ 0. Thus
ϕ1 defines a contact transformation from (U, ker(α0)) to (U, ker(α1)).
• Let (M, ξ) be a contact manifold of dimension 2n+1 with coorientable contact

structure and assume that L ⊂ M is a submanifold with TL ⊂ ξ. Then α, dα
both have to vanish when restricted to L. As dα is a non-degenerate two
form on ξ(p) for all p, linear algebra implies that dim(L) ≤ dimR(ξ(p))/2. If
dim(L) = n, then L is called Legendrian. In this case, one can show that there
is a neighborhood of L is diffeomorphic to the contact structure on the space
of 1-jets of real functions on L, i.e.

J1(L,R) = {fp : Op(p) −→ R | p ∈M, fp smooth}/ ∼ −→ R× L
[fp] 7−→ (f(p), p).

with fp ∼ gq if and only if p = q, fp(p) = gq(q) and dfp(p) = dqp(p). This space
has a canonical contact form

α(X) = dfp(pr2(X))− dz(pr1∗(X))
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for X ∈ T[fp]J
1(L,R). This might be reminiscent from symplectic geometry

(Weinsteins theorem on tubular neighborhoods of Lagrangian submanifolds as-
serts that a neighborhood is symplectomorphic to a neighborhood of the zero
section in T ∗L with its tautological symplectic structure.)
• Another type of submanifold which is useful in dimension 3 are curves trans-

verse to given contact structure ξ. It is relatively easy to show that every simple
closed loop K which is transverse to a contact structure has a tubular neigh-
borhood U so that (U,K, ξ) is contactomorphic to (S1×, D2, S1×{0}, ker(α0 =
dz + r2dϑ)).
• The previous normal form allows to perform the following operation on a con-

tact structure, it is called a 2π-Lutz twist. For ε > 0 let f, g : [0, ε] −→ R be
smooth functions so that

1. f(t) = 1 and g(t) = t2 near the boundary of the interval
2. fg′ − gf ′ > 0 (for example, f, g have no common zero, so α1 defines a

plane field)
3. g has exactly one zero in the interior of the interval

These conditions do the following
1. ensures that α1 = f(r)dz + g(r)dϑ is smooth and coincides with α0 near

the boundary of the solid torus {r ≤ ε},
2. α1 is a contact form,
3. fixes the path (f, g) in the (punctured) plane up to homotopy relative to

the boundary.
Thus one can replace the contact structure ξ with a contact structure ξ′ which
coincides with ker(α′) inside of {r ≤ ε} and with ξ outside of this domain.

One important property of this operation is that it is well defined, i.e. up to
isotopy the resulting contact structure depends only on the transverse isotopy
type of K. Clearly, Gray’s theorem is useful for this. Also, it is important to
note that ξ′ is homotopic to ξ as a plane field.

It is relatively easy to obtain a homotopy αt of nowhere vanishing 1-forms αt
interpolating between α0 and α1. For this add a small 1-form h(r)dr so that h
vanishes close to the boundary of the interval where f, g are fixed, and h > 0
where α and α′ do not coincide. Now one consider tα1 + (1 + t)α0 + h(r)dr
with t ∈ [0, 1]. This is not a family of contact forms.
• Fundamental question: Is ξ′ a new contact structure (i.e. not isotopic to ξ),

or not.
• Definition: Let ξ be a contact structure on a connected 3-manifold. Then ξ

is overtwisted, if there is an embedded disc D2 so that ξ is tangent to D2 along
the boundary, D is an overtwisted disc. If ξ is not overtwisted, then it is tight.
• Answer to the above question: ξ′ ' ξ if and only if ξ is overtwisted.
• Proving this is a bit too much, it is difficult already interesting to prove that

some contact structure is tight.
• Clearly, after Lutz twist is applied to a contact structure the result is over-

twisted.
• Notice that for ξ = ker(dz − ydx)

ψ : R3 −→ R3

(x, y, z) 7−→ (tx, ty, t2z)
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is a contact transformation for all t > 0. Thus if R3 is overtwisted, then
every neighborhood of the origin contains an overtwisted disc. Therefore, if
(R3, ker(dz − ydx)) is not tight, then no contact structure is.
• Theorem (Bennequin, 1983 [1]): (R3, ker(dz − ydx)) is tight.
• The original proof of this theorem is rather involved.

Lecture on October 30 – Tightness criterion, Isotopy extension,
transverse knots and braids Bennequin theorem preliminaries

• The following theorem is the most frequently used criterion to ensure that a
given contact structure is tight.
• Definition: Let (M, ξ) be a closed 3-manifold with a contact structure ξ. A

compact symplectic 4-manifold (X,ω) is a weak symplectic filling if
1. (M, ξ) with the contact orientation is one component of ∂X with its

orientation as boundary (outward normal first convention),
2. ω|ξ is non-degenerate.

• Theorem (Eliashberg): If (M, ξ) is symplectically fillable, then it is tight.
• Notice that (B4, ωst) is a symplectic filling of (S3 ⊂ C2, ξ = TS3∩iTS3). There

for this contact structure is tight and so is the standard contact structure on
R3.
• Let (M, ξ) be a contact manifold, α a contact form, and consider vector field
X with compact support whose flow preserves ξ (i.e. LXα is a multiple of α)
Then

{contact vector fields on M} −→ C∞cpt(M)

X 7−→ α(X)

is a linear map which has in inverse: Let Rα be the Reeb vector field of α.
Again, this is a consequence of the fact that dα is non-degenerate on ξ. For
f ∈ C∞cpt(M) we seek a vector field Xf tangent to ξ so that fRα+X is a contact
vector field, i.e. we seek X Legendrian so that

LfRα+Xα = df + iXdα

vanishes on ξ. Thus, we want to solve iXdα|ξ = −df |ξ, but this has a unique
solution.
• A consequence of this is the isotopy extension property: Let ϕt : Op(N) −→M

be a contact isotopy defined on the neighborhood of a submanifold N . Then
there is a contact isotopy ψt : M −→ M of M which coincides with ϕt on
a smaller neighborhood of N . To see this, not that ϕt gives rise to a time
dependent velocity vector field near N which is a contact vector field. Using the
correspondence between smooth, compactly supported functions and contact
vector fields we obtain a family ft of smooth functions near ϕt(N). Use cut-
off functions to obtain a family of globally defined, smooth functions (with
compact support) gt so that gt ≡ ft near ϕt(N). The flow of the resulting
family of global contact vector fields is the desired isotopy ψt.
• Corollary: Let n > 0 and (M, ξ) a path connected contact manifold of dimen-

sion 2n+ 1. For each pair of k-tuples (p1, . . . , pk), (p
′
1, . . . , p

′
k) there is a contact

transformation ϕ of M so that ϕ(pj) = p′j.
• Proof: One chooses k pairwise disjoint paths in M connecting pi to p′i. These

paths can be covered by Darboux charts. In this charts one can push points
around and extend the isotopy using the isotopy extension property.
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• Corollary: Let K,K ′ be two closed curves in R3 transverse to a contact struc-
ture ξ which are isotopic through transverse knots. Then K,K ′ are contact
isotopic.
• Definition: Let ξ be a cooriented contact structure. Then a linkK is positively

transverse of α|K represents the orientation of K for a defining form of a contact
structure ξ representing the coorientation of ξ.
• The proof of Bennequin’s theorem uses various notions like knots which are

adapted to the plane field and other structures. We first review these notions
• Reminder: A knot is an embedding of an oriented circle in R3. We usually

consider oriented knots. Knots are often considered equivalent is they are
isotopic. An (oriented) link is a disjoint union of (oriented), two links are
equivalent if they are isotopic. For every oriented knot/link there is a compact
oriented surface with boundary whose oriented boundary is the link/knot. Such
a surface is called Seifert surface (and closed components are usually discarded.)

The genus of a knot/link is the minimal genus of a Seifert surface. In the
case of a link, it is easier to consider the Euler characteristic of a surface rather
than the genus.
• Reminder: Let Σ be a surface. The genus g of Σ is the maximal number of

pairwise disjoint simple closed curves such that removing these loops does not
increase the number of connected components. If Σ is compact with boundary,
l is the number of boundary components and c is the number of connected
components, then the Euler characteristic χ(Σ) of Σ is defined and satisfies

χ(Σ) = 2c− 2g − l.
• Reminder: A knot/link is a closed braid if it is disjoint from the z-axis and

positively transverse to the half-planes {ϑ = ϑ0} ⊂ R3 \ {(0, 0, z) | z ∈ R} for
ϑ0 ∈ [0, 2π] (cooriented by ∂ϑ). The equivalence relation for closed braids is
isotopy through closed braids. According to a theorem of Alexander, every link
is isotopic to a closed braid. Moreover, according to a theorem of Markov, if
two braids are isotopic as links, then the two braids are isotopic as braids after
stabilization.
• Theorem: Let K ⊂ R3 be a link positively transverse to ξ = ker(dz + ρ2dϑ)

Then K is isotopic as a transverse knot to a closed braid.
• Proof: After small isotopy, we may assume that K is disjoint from the z-axis.

Let ż, ρ̇, ϑ̇ denote the components of the positive unit tangent vector to K. Now
K can be decomposed into the good part, where ϑ̇ > 0, and the complement
(which is bad).

Note that ż + ρ2ϑ̇ > 0 along K since K is positively transverse. If γ ⊂ K
is a bad piece, then dz > 0 along γ, i.e. the z-coordinate increases along γ. In
particular, K cannot be entirely bad because it is closed.

The following standard perturbation of a bad piece will be used frequently:
On an interval in a bad segment keep the z- and ρ-components fixed but replace

the ϑ component (which is monotonically decreasing originally) by a function ϑ̂
which coincides with ϑ and is increasing near a specified point of the segment.

If ϑ̂ is chosen carefully enough (with a lower bound on
˙̂
ϑ−ϑ̇), then the resulting

curve is still transverse and isotopic through transverse curves.
After applying the standard perturbation sufficiently often, one may assume

that the variation of ϑ along a bad piece is smaller than 2π. If there is now
other piece of γ lying between the z-axis and a bad piece along a radial line,
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then we hope to isotope the bad piece along radial lines through transverse
curves so that the result contains fewer bad arcs.

We want to arrange that no segment of K lies between a bad arcs and
the z-axis along a radial line. By transversality, we may assume that there
are only finitely many points of K lying between a bad segment and the z-
axis. Moreover, we require ϑ̇ 6= 0 at those points. This leads to four possible
configurations (a crossing of oriented arcs in the ϑ, z-plane). One of these
configuration is excluded for transverse knots. The other three can be modified
be standard modifications along a bad arc so that for the resulting curve no
radial segment between a point on a bad arc and the z-axis meets the transverse
link in its interior.

References
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