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Smoothed Particle Hydrodynamics

@ numerical method to simulate fluids (liquids, gases, plasmas)
@ idea: represent fluid by moving particles

@ first used in astrophysics

@ increasingly used in CGI for block-buster movies

@ upcoming technology for next-generation computer games

Figure: 1 million particles, rendered in Maya, by Frank Zimmer
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SPH approximation

@ p: RY — R mass-density of the fluid
@ A:RY — R some scalar-field the fluid (pressure, etc. ):

© Want to approximate A by particles at positions ry,
ke{l,...,N}.

© Note that A(r) = (Ax0)(r) = /A(r’)&(r —r')dr

© Approximate o(r — r") by Wy(r —r')
O Interpolated field:

Al(r) = / ;‘((r’,’)) Wi(r — )p(r')dr ~ A(r)

@ SPH approximation:

N

A =S m Wy — 1)
=P
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Importance of smoothing length

@ The summation in
[A]; = Z mJ Wh(r, )

only needs to range over particles with |r; — rj| < h.
@ Defining the neighbourhoud of particle i as

Ni:={1<j < Nl|r € By(r)}

one can write

A= mji Wh(ri — ;).

jen; P
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Spatial derivatives

Want to solve PDEs using SPH = need spatial derivatives...

@ Observe that in
[A](r ij JWh (r—r)

only the kernel depends on position r.
o Gradient:

(VIAD ( ij VW;, (r—r)

e Laplacian:

2

(A[A]) ( Z AWh (r—r)



Spatial derivatives

@ SPH Field approximation

~ [Ali = Z mj )
JEN; Pj
@ SPH Gradient approximation:
(VA)(r) = VA = > mJ L(VWa)(ri — rj)
JEN; P
@ SPH Laplacian approximation:

(AA)(r) ~ AAl = mJ L(AW,)(ri — ry)
JEN; Pj



Practical considerations

@ Smoothing length h proportional to average particle diameter:

1 N

, where (p) := — Zp,-

1
(p)? N

h ~

@ Different kernels suitable for different charge densities.

e Kernels not C* due to performance considerations (Splines!).
@ Golden rules of SPH (Monaghan):

e To find physical interpretation it's always best to assume
kernel is Gaussian.

e Rewrite formulas with mass density inside operators, by
making use of

_ V(AY)  A(VY)
VA=Y "

for positive smooth .



Improved gradients

e Consider A(r) = const. Then (VA)(r) =0, but

(VAR ~ V1AL = 3 m (@ W) (r - 1) £ 0.

JEN; 4
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Improved gradients

e Consider A(r) = const. Then (VA)(r) =0, but
A:
(VA)(ri) = VIA; = Y m=2 (VWh)(ri — 1) # 0.
jeni M
e Using VA = w leads to
~ VIAY] — AiVI[Y];
Vi

S AW - )~ o
" jEN; Pi

(VA)(r)

@ For example 1) = p:

(VA () ~ = 3 my(A; — AT Wa)(ri — 1)
Pi e



Equations of motion

@ Navier-Stokes equation:

p(Otv +v-Vv) =pg—Vp+ pulAv, where

v velocity
g gravity

p pressure
4 Viscosity



Equations of motion

@ Navier-Stokes equation:

p(Otv +v-Vv) =pg—Vp+ pulAv, where

v velocity
g gravity

p pressure
4 Viscosity

@ Mass continuity equation:

Oep+V-(pv)=0



Equations of motion

@ Navier-Stokes equation:

p(Otv +v-Vv) =pg—Vp+ pulAv, where

v velocity
g gravity

p pressure
4 Viscosity

@ Mass continuity equation:
Oep+V-(pv)=0

will be trivially satisfied: each particle has constant mass and
particles are neither created nor destroyed.
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Equations of motion

@ Navier-Stokes equation:
p(Orv+v-Vv)=pg —Vp+ ulAv

o Consider the total derivate of v(r, t) with respect to time:

d ;
3V 1) = (@ev)(r, ) + [7(2)] - (Vv)(r. t)

It depends on , where r(t) is a chosen path in space.

@ Velocity v; of particle moving with the fluid, i.e. i} = v;:

d
dr i =0 +vi- Vv,
tV tV Vv Vv,

i.e. Navier-Stokes can be seen as Newton's second law in
disguise.
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Equations of motion

@ Navier-Stokes equation:

%v—g—prntMAv

e Equations of motion:

d 1 7

P L Eooav).
=8, (VP)’+p;( v);
i P‘
o (VOhx Y m ( ;) (VWh)(rs — 1)
JEN; i pj



Equations of motion

@ Navier-Stokes equation:

%v—g—prntMAv

e Equations of motion:

i =g - pll (Vp); + p 2 (av),
° *(Vp ~ > m <p p.> (VWp)(ri — 1)
JEN; Pi J
L .
; ~ j% mj )(ri — ;)



Pressure term
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lv[p],- =y m (T Wa)(ri — 1),

Pi JEN; i
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Pressure term

@ Naive SPH-approximation of Vp would yield
pj
*V[P] =D m——(VW,)(ri — 1),
pi JGN iPj

B = mim P (T W) (1 — 1) Fiy
PiPj

e Using %Vp =V (%) + %Vp yields

e~V |2 Al

—ij<p p)(vvvh)( )

JEN; ! J

Pi

= Fi=mim; | 5+ 2 (VW) — ) = —Fi .
Pi Pj



Viscosity term

@ Naive SPH-approximation of Av yields

MA[V] Ll Z mj AWh ri —rj)
Pi JEN Pj
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Viscosity term

@ Naive SPH-approximation of Av yields

MA[V] Ll Z mj AWh ri —rj)
Pi JEN Pj

(AWh)(ri = 17)# = Fij-

= Fi_;=pumim;
J—i Jp,pj

@ Using Vv = % — @ with ¢ =1 yields
M
E(av), ~ ’ (Alv]; = vA[L];)

MZVJ {AW,)(ri — 1)

JEN Pj

Pi

Vi — V;
= Fjoi = pmimi=——(AW)(ri — 1;) = —Fi.

PiPj
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Equation of state

Still need to compute pressure!

o ldeal gas law:

N
p= kBV T, where

N number of molecules
V' volume

T (absolute) temperature
kg Boltzmann constant

@ Modelled as

pi = k(pi — peq), where

e k constant depending on temperature
o peq equilibrium density (set to zero for ideal gas)



Algorithm

For each timestep:
© For each particle: compute density and pressure

pi — lpl; = Z m; Wi (ri — ;)
JEN;
pi — k(pi — peq)
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Algorithm

For each timestep:
© For each particle: compute density and pressure

— ol = Y mWa(ri — 1)

JEN;
pi — k(pi — peq)

@ For each particle: compute acceleration:

Vi
“Z S AW (r - 1)

JEN Pj
S m (p’ )(vvvh)( —n)
JEN; Pi 'OJ

aj < apjtauit+g

© For each particle: integrate position and velocity with
symplectic Euler scheme.
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Boundary conditions

@ Modelling of boundary conditions is an active area of research
in SPH: the support of the kernel overlapping with boundaries
leads to all sorts of problems.

@ Different types of boundaries:

Noslip-condition solid boundaries

Slip-condition solid boundaries

Mixtures of Slip/Noslip

Pressure boundaries

Flux boundaries

Reflective boundaries

@ Different methods to model boundaries:

Boundary particles
Ghost particles
Virtual forces
Analytical methods



Advanced topics

Active areas of research in SPH include:
e Boundary modelling
@ Adaptivity
@ Surface tension

@ Solid adhesion



Demo

@ 64k particles, interactive frame-rates

@ Graphics running against DirectX 11 (Windows only)

@ Simulation running against OpenCL (Windows, Linux,
Android, Supercomputers...)

@ Surface tension and solid adhesion modelled according to
Akinci, Akinci and Teschner (2013), Freiburg




Thanks for your attention!

Please do not hesitate to ask questions!



