
Smoothed Particle Hydrodynamics

Roland Tomasi

Ludwig Maximilians Universität München

February 2015

Smoothed Particle Hydrodynamics

numerical method to simulate fluids (liquids, gases, plasmas)
idea: represent fluid by moving particles
first used in astrophysics
increasingly used in CGI for block-buster movies
upcoming technology for next-generation computer games

Figure: 1 million particles, rendered in Maya, by Frank Zimmer

SPH approximation

1 ρ : Rd → R mass-density of the fluid

2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.
4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):

3 Want to approximate A by particles at positions rk ,
k ∈ {1, . . . ,N}.

4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.

4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.
4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.

4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′), where∫
Wh(r ′)dr ′ = 1

Wh
∗
⇀ δ for h→ 0

Wh radially symmetric
Wh ∈ C∞0
supp Wh ⊂ Bh(0)

6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.

4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)Wh(r − r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.
4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.
4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) :=
N∑

j=1

mj
A(rj)

ρ(rj)
Wh(r − rj)

SPH approximation

1 ρ : Rd → R mass-density of the fluid
2 A : Rd → R some scalar-field the fluid (pressure, etc.):
3 Want to approximate A by particles at positions rk ,

k ∈ {1, . . . ,N}.
4 Note that A(r) = (A ∗ δ)(r) =

∫
A(r ′)δ(r − r ′)dr ′

5 Approximate δ(r − r ′) by Wh(r − r ′)
6 Interpolated field:

AI (r) =

∫
A(r ′)

ρ(r ′)
Wh(r − r ′)ρ(r ′)dr ′ ≈ A(r)

7 SPH approximation:

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

Importance of smoothing length

The summation in

[A]i =
N∑

j=1

mj
Aj

ρj
Wh(ri − rj)

only needs to range over particles with |ri − rj | < h.

Defining the neighbourhoud of particle i as

Ni := {1 ≤ j ≤ N|rj ∈ Bh(ri)}

one can write

[A]i =
∑
j∈Ni

mj
Aj

ρj
Wh(ri − rj).

Importance of smoothing length

The summation in

[A]i =
N∑

j=1

mj
Aj

ρj
Wh(ri − rj)

only needs to range over particles with |ri − rj | < h.

Defining the neighbourhoud of particle i as

Ni := {1 ≤ j ≤ N|rj ∈ Bh(ri)}

one can write

[A]i =
∑
j∈Ni

mj
Aj

ρj
Wh(ri − rj).

Spatial derivatives

Want to solve PDEs using SPH ⇒ need spatial derivatives...

Observe that in

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

only the kernel depends on position r .

Gradient:

(∇[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∇Wh)(r − rj)

Laplacian:

(∆[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∆Wh)(r − rj)

Spatial derivatives

Want to solve PDEs using SPH ⇒ need spatial derivatives...

Observe that in

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

only the kernel depends on position r .

Gradient:

(∇[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∇Wh)(r − rj)

Laplacian:

(∆[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∆Wh)(r − rj)

Spatial derivatives

Want to solve PDEs using SPH ⇒ need spatial derivatives...

Observe that in

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

only the kernel depends on position r .

Gradient:

(∇[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∇Wh)(r − rj)

Laplacian:

(∆[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∆Wh)(r − rj)

Spatial derivatives

Want to solve PDEs using SPH ⇒ need spatial derivatives...

Observe that in

[A](r) =
N∑

j=1

mj
Aj

ρj
Wh(r − rj)

only the kernel depends on position r .

Gradient:

(∇[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∇Wh)(r − rj)

Laplacian:

(∆[A]) (r) =
N∑

j=1

mj
Aj

ρj
(∆Wh)(r − rj)

Spatial derivatives

SPH Field approximation

A(ri) ≈ [A]i :=
∑
j∈Ni

mj
Aj

ρj
Wh(ri − rj)

SPH Gradient approximation:

(∇A)(ri) ≈ ∇[A]i =
∑
j∈Ni

mj
Aj

ρj
(∇Wh)(ri − rj)

SPH Laplacian approximation:

(∆A)(ri) ≈ ∆[A]i =
∑
j∈Ni

mj
Aj

ρj
(∆Wh)(ri − rj)

Practical considerations

Smoothing length h proportional to average particle diameter:

h ∼ 1

〈ρ〉
1
d

, where 〈ρ〉 :=
1

n

N∑
i=1

ρi

Different kernels suitable for different charge densities.

Kernels not C∞ due to performance considerations (Splines!).

Golden rules of SPH (Monaghan):

To find physical interpretation it’s always best to assume
kernel is Gaussian.
Rewrite formulas with mass density inside operators, by
making use of

∇A =
∇(Aψ)

ψ
− A(∇ψ)

ψ

for positive smooth ψ.

Improved gradients

Consider A(r) = const. Then (∇A)(r) = 0, but

(∇A)(ri) ≈ ∇[A]i =
∑
j∈Ni

mj
Aj

ρj
(∇Wh)(ri − rj) 6= 0.

Using ∇A = ∇(Aψ)−A(∇ψ)
ψ leads to

(∇A)(ri) ≈
∇[Aψ]i − Ai∇[ψ]i

ψi

=
1

ψi

∑
j∈Ni

mj
(Aj − Ai)ψj

ρj
(∇Wh)(ri − rj) = 0.

For example ψ = ρ:

(∇A)(ri) ≈
1

ρi

∑
j∈Ni

mj(Aj − Ai)(∇Wh)(ri − rj)

Improved gradients

Consider A(r) = const. Then (∇A)(r) = 0, but

(∇A)(ri) ≈ ∇[A]i =
∑
j∈Ni

mj
Aj

ρj
(∇Wh)(ri − rj) 6= 0.

Using ∇A = ∇(Aψ)−A(∇ψ)
ψ leads to

(∇A)(ri) ≈
∇[Aψ]i − Ai∇[ψ]i

ψi

=
1

ψi

∑
j∈Ni

mj
(Aj − Ai)ψj

ρj
(∇Wh)(ri − rj) = 0.

For example ψ = ρ:

(∇A)(ri) ≈
1

ρi

∑
j∈Ni

mj(Aj − Ai)(∇Wh)(ri − rj)

Improved gradients

Consider A(r) = const. Then (∇A)(r) = 0, but

(∇A)(ri) ≈ ∇[A]i =
∑
j∈Ni

mj
Aj

ρj
(∇Wh)(ri − rj) 6= 0.

Using ∇A = ∇(Aψ)−A(∇ψ)
ψ leads to

(∇A)(ri) ≈
∇[Aψ]i − Ai∇[ψ]i

ψi

=
1

ψi

∑
j∈Ni

mj
(Aj − Ai)ψj

ρj
(∇Wh)(ri − rj) = 0.

For example ψ = ρ:

(∇A)(ri) ≈
1

ρi

∑
j∈Ni

mj(Aj − Ai)(∇Wh)(ri − rj)

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v , where

v velocity
g gravity
p pressure
µ viscosity

Mass continuity equation:

∂tρ+∇ · (ρv) = 0

will be trivially satisfied: each particle has constant mass and
particles are neither created nor destroyed.

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v , where

v velocity
g gravity
p pressure
µ viscosity

Mass continuity equation:

∂tρ+∇ · (ρv) = 0

will be trivially satisfied: each particle has constant mass and
particles are neither created nor destroyed.

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v , where

v velocity
g gravity
p pressure
µ viscosity

Mass continuity equation:

∂tρ+∇ · (ρv) = 0

will be trivially satisfied: each particle has constant mass and
particles are neither created nor destroyed.

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v

Consider the total derivate of v(r , t) with respect to time:

d
dt

v(r , t) = (∂tv)(r , t) + [ṙ(t)] · (∇v)(r , t)

It depends on ṙ , where r(t) is a chosen path in space.

Velocity vi of particle moving with the fluid, i.e. ṙi = vi :

d
dt

vi = ∂tvi + vi · ∇vi ,

i.e. Navier-Stokes can be seen as Newton’s second law in
disguise.

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v

Consider the total derivate of v(r , t) with respect to time:

d
dt

v(r , t) = (∂tv)(r , t) + [ṙ(t)] · (∇v)(r , t)

It depends on ṙ , where r(t) is a chosen path in space.

Velocity vi of particle moving with the fluid, i.e. ṙi = vi :

d
dt

vi = ∂tvi + vi · ∇vi ,

i.e. Navier-Stokes can be seen as Newton’s second law in
disguise.

Equations of motion

Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v

Consider the total derivate of v(r , t) with respect to time:

d
dt

v(r , t) = (∂tv)(r , t) + [ṙ(t)] · (∇v)(r , t)

It depends on ṙ , where r(t) is a chosen path in space.

Velocity vi of particle moving with the fluid, i.e. ṙi = vi :

d
dt

vi = ∂tvi + vi · ∇vi ,

i.e. Navier-Stokes can be seen as Newton’s second law in
disguise.

Equations of motion

Navier-Stokes equation:

d
dt

v = g − 1

ρ
∇p +

µ

ρ
∆v

Equations of motion:

d
dt

vi = g − 1

ρi
(∇p)i +

µ

ρi
(∆v)i

1

ρi
(∇p)i ≈

∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

µ

ρi
(∆v)i ≈

µ

ρi

∑
j∈Ni

mj
vj − vi

ρj
(∆Wh)(ri − rj)

Equations of motion

Navier-Stokes equation:

d
dt

v = g − 1

ρ
∇p +

µ

ρ
∆v

Equations of motion:

d
dt

vi = g − 1

ρi
(∇p)i +

µ

ρi
(∆v)i

1

ρi
(∇p)i ≈

∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

µ

ρi
(∆v)i ≈

µ

ρi

∑
j∈Ni

mj
vj − vi

ρj
(∆Wh)(ri − rj)

Equations of motion

Navier-Stokes equation:

d
dt

v = g − 1

ρ
∇p +

µ

ρ
∆v

Equations of motion:

d
dt

vi = g − 1

ρi
(∇p)i +

µ

ρi
(∆v)i

1

ρi
(∇p)i ≈

∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

µ

ρi
(∆v)i ≈

µ

ρi

∑
j∈Ni

mj
vj − vi

ρj
(∆Wh)(ri − rj)

Equations of motion

Navier-Stokes equation:

d
dt

v = g − 1

ρ
∇p +

µ

ρ
∆v

Equations of motion:

d
dt

vi = g − 1

ρi
(∇p)i +

µ

ρi
(∆v)i

1

ρi
(∇p)i ≈

∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

µ

ρi
(∆v)i ≈

µ

ρi

∑
j∈Ni

mj
vj − vi

ρj
(∆Wh)(ri − rj)

Pressure term

Naive SPH-approximation of ∇p would yield

1

ρi
∇[p]i =

∑
j∈Ni

mj
pj

ρiρj
(∇Wh)(ri − rj),

⇒ Fj→i = mimj
pj

ρiρj
(∇Wh)(ri − rj) 6= −Fi→j .

Using 1
ρ∇p = ∇

(
p
ρ

)
+ p

ρ2∇ρ yields

1

ρi
(∇p)i ≈ ∇

[
p

ρ

]
i

+
pi

ρ2
i

∇[ρ]i

=
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

⇒ Fj→i = mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj) = −Fi→j .

Pressure term

Naive SPH-approximation of ∇p would yield

1

ρi
∇[p]i =

∑
j∈Ni

mj
pj

ρiρj
(∇Wh)(ri − rj),

⇒ Fj→i = mimj
pj

ρiρj
(∇Wh)(ri − rj) 6=− Fi→j .

Using 1
ρ∇p = ∇

(
p
ρ

)
+ p

ρ2∇ρ yields

1

ρi
(∇p)i ≈ ∇

[
p

ρ

]
i

+
pi

ρ2
i

∇[ρ]i

=
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

⇒ Fj→i = mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj) = −Fi→j .

Pressure term

Naive SPH-approximation of ∇p would yield

1

ρi
∇[p]i =

∑
j∈Ni

mj
pj

ρiρj
(∇Wh)(ri − rj),

⇒ Fj→i = mimj
pj

ρiρj
(∇Wh)(ri − rj) 6=− Fi→j .

Using 1
ρ∇p = ∇

(
p
ρ

)
+ p

ρ2∇ρ yields

1

ρi
(∇p)i ≈ ∇

[
p

ρ

]
i

+
pi

ρ2
i

∇[ρ]i

=
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

⇒ Fj→i = mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj) = −Fi→j .

Pressure term

Naive SPH-approximation of ∇p would yield

1

ρi
∇[p]i =

∑
j∈Ni

mj
pj

ρiρj
(∇Wh)(ri − rj),

⇒ Fj→i = mimj
pj

ρiρj
(∇Wh)(ri − rj) 6=− Fi→j .

Using 1
ρ∇p = ∇

(
p
ρ

)
+ p

ρ2∇ρ yields

1

ρi
(∇p)i ≈ ∇

[
p

ρ

]
i

+
pi

ρ2
i

∇[ρ]i

=
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

⇒ Fj→i = mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj) = −Fi→j .

Viscosity term

Naive SPH-approximation of ∆v yields

µ

ρi
∆[v]i =

µ

ρi

∑
j∈Ni

mj
vj

ρj
(∆Wh)(ri − rj)

⇒ Fj→i = µmimj
vj

ρiρj
(∆Wh)(ri − rj)6=− Fi→j .

Using ∇v = ∇(vψ)
ψ − v(∇ψ)

ψ with ψ = 1 yields

µ

ρi
(∆v)i ≈

µ

ρi
(∆[v]i − v∆[1]i)

=
µ

ρi

∑
j∈Ni

vj − vi

ρj
(∆Wh)(ri − rj)

⇒ Fj→i = µmimj
vj − vi

ρiρj
(∆Wh)(ri − rj) = −Fi→j .

Viscosity term

Naive SPH-approximation of ∆v yields

µ

ρi
∆[v]i =

µ

ρi

∑
j∈Ni

mj
vj

ρj
(∆Wh)(ri − rj)

⇒ Fj→i = µmimj
vj

ρiρj
(∆Wh)(ri − rj)6=− Fi→j .

Using ∇v = ∇(vψ)
ψ − v(∇ψ)

ψ with ψ = 1 yields

µ

ρi
(∆v)i ≈

µ

ρi
(∆[v]i − v∆[1]i)

=
µ

ρi

∑
j∈Ni

vj − vi

ρj
(∆Wh)(ri − rj)

⇒ Fj→i = µmimj
vj − vi

ρiρj
(∆Wh)(ri − rj) = −Fi→j .

Equation of state

Still need to compute pressure!

Ideal gas law:

p = kB
N

V
T , where

N number of molecules
V volume
T (absolute) temperature
kB Boltzmann constant

Modelled as
pi = k(ρi − ρeq), where

k constant depending on temperature
ρeq equilibrium density (set to zero for ideal gas)

Equation of state

Still need to compute pressure!

Ideal gas law:

p = kB
N

V
T , where

N number of molecules
V volume
T (absolute) temperature
kB Boltzmann constant

Modelled as
pi = k(ρi − ρeq), where

k constant depending on temperature
ρeq equilibrium density (set to zero for ideal gas)

Equation of state

Still need to compute pressure!

Ideal gas law:

p = kB
N

V
T , where

N number of molecules
V volume
T (absolute) temperature
kB Boltzmann constant

Modelled as
pi = k(ρi − ρeq), where

k constant depending on temperature
ρeq equilibrium density (set to zero for ideal gas)

Algorithm

For each timestep:
1 For each particle: compute density and pressure

ρi ← [ρ]i =
∑
j∈Ni

mjWh(ri − rj)

pi ← k(ρi − ρeq)

2 For each particle: compute acceleration:

aµ,i ←
µ

ρi

∑
j∈Ni

vj − vi

ρj
(∆Wh)(ri − rj)

ap,i ← −
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

ai ← ap,i + aµ,i + g

3 For each particle: integrate position and velocity with
symplectic Euler scheme.

Algorithm

For each timestep:
1 For each particle: compute density and pressure

ρi ← [ρ]i =
∑
j∈Ni

mjWh(ri − rj)

pi ← k(ρi − ρeq)

2 For each particle: compute acceleration:

aµ,i ←
µ

ρi

∑
j∈Ni

vj − vi

ρj
(∆Wh)(ri − rj)

ap,i ← −
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

ai ← ap,i + aµ,i + g

3 For each particle: integrate position and velocity with
symplectic Euler scheme.

Algorithm

For each timestep:
1 For each particle: compute density and pressure

ρi ← [ρ]i =
∑
j∈Ni

mjWh(ri − rj)

pi ← k(ρi − ρeq)

2 For each particle: compute acceleration:

aµ,i ←
µ

ρi

∑
j∈Ni

vj − vi

ρj
(∆Wh)(ri − rj)

ap,i ← −
∑
j∈Ni

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
(∇Wh)(ri − rj)

ai ← ap,i + aµ,i + g

3 For each particle: integrate position and velocity with
symplectic Euler scheme.

Boundary conditions

Modelling of boundary conditions is an active area of research
in SPH: the support of the kernel overlapping with boundaries
leads to all sorts of problems.

Different types of boundaries:

Noslip-condition solid boundaries
Slip-condition solid boundaries
Mixtures of Slip/Noslip
Pressure boundaries
Flux boundaries
Reflective boundaries

Different methods to model boundaries:

Boundary particles
Ghost particles
Virtual forces
Analytical methods

Boundary conditions

Modelling of boundary conditions is an active area of research
in SPH: the support of the kernel overlapping with boundaries
leads to all sorts of problems.

Different types of boundaries:

Noslip-condition solid boundaries
Slip-condition solid boundaries
Mixtures of Slip/Noslip
Pressure boundaries
Flux boundaries
Reflective boundaries

Different methods to model boundaries:

Boundary particles
Ghost particles
Virtual forces
Analytical methods

Boundary conditions

Modelling of boundary conditions is an active area of research
in SPH: the support of the kernel overlapping with boundaries
leads to all sorts of problems.

Different types of boundaries:

Noslip-condition solid boundaries
Slip-condition solid boundaries
Mixtures of Slip/Noslip
Pressure boundaries
Flux boundaries
Reflective boundaries

Different methods to model boundaries:

Boundary particles
Ghost particles
Virtual forces
Analytical methods

Advanced topics

Active areas of research in SPH include:

Boundary modelling

Adaptivity

Surface tension

Solid adhesion

Demo

64k particles, interactive frame-rates

Graphics running against DirectX 11 (Windows only)

Simulation running against OpenCL (Windows, Linux,
Android, Supercomputers...)

Surface tension and solid adhesion modelled according to
Akinci, Akinci and Teschner (2013), Freiburg

Thanks for your attention!

Please do not hesitate to ask questions!

