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Exercise 1. Let d ≥ 3 and let f ∈ C∞0 (Rd) be a radial function, i.e. f(x) = f(y) whenever
|x| = |y|. Prove that f satisfies

|f(x)| ≤ C|x|(2−d)/2‖∇f‖2 for all x ∈ Rd \ {0}, (1)

for some constant C > 0, independent of f .

(Compare Exercise 3.12 on p. 59 in [LP].)

Exercise 2. In this exercise we study compact and non-compact embeddings of Sobolev
spaces into Lp-spaces. Recall that a linear operator T : X → Y between Banach spaces
X and Y is compact if and only if for every bounded sequence (xn)n∈N in X, the sequence
(Txn)n∈N has a subsequence which converges in Y .

(i) Prove that, for every p ∈ [2, 2d
d−2 ], the embedding H1(Rd) ↪→ Lp(Rd) is well-defined

and continuous.

(ii) Prove that the embedding H1(Rd) ↪→ Lp(Rd) is not compact.

We denote by

H1
rad(Rd) := {f ∈ H1(Rd) : For every rotation R ∈ SO(d), f(y) = f(Ry) for a.e. y ∈ Rd}

the subspace of H1(Rd) consisting of radial functions.

(iii) Use Exercise 1 to prove that, for p ∈ (2, 2d
d−2), the embedding H1

rad(Rd) ↪→ Lp(Rd) is
compact.
Hint: You may use without proof that the space of radial C∞0 (Rd)-functions is dense
in H1

rad(Rd). Moreover, you may use without proof the Rellich-Kondrachov theorem
which states the following: Let p ∈ [1, 2d

d−2) and let Ω ⊂ Rd be a bounded domain
with smooth boundary. If for a sequence of functions (uk : Ω → R)k∈N, the se-
quence

(´
Ω(u2

k + |∇uk|2)
)
k∈N

is bounded, then there is a function u ∈ Lp(Ω) and a
subsequence (ukl

)l∈N such that ukl
→ u in Lp(Ω). (In other words, the embedding

H1(Ω) ↪→ Lp(Ω) is compact.)

(iv) Prove that the embedding H1
rad(Rd) ↪→ L

2d
d−2 (Rd) is not compact.
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Exercise 3. Prove that for s ∈ N, there exists C > 0 such that

‖fg‖s,2 ≤ C (‖f‖s,2‖g‖∞ + ‖f‖∞‖g‖s,2)

for all f, g ∈ Hs(Rd) ∩ L∞(Rd).

Hint: Combine the Leibniz rule with the Gagliardo-Nirenberg inequality from the previous
exercise sheets: ‖∂αx f‖p ≤ C

∑
|β|=m ‖∂βxf‖θq‖f‖1−θ

r for parameters p, q, r ∈ [1,∞] and
θ ∈ [j/m, 1] related by 1

p
− |α|

d
= θ(1

q
− m

d
) + (1− θ)1

r
.

(Compare equation (3.13) on p. 52 in [LP].)

Exercise 4. The Poisson kernel is defined by P (x) := cd(1 + |x|2)− d+1
2 , where cd > 0

is such that ‖P‖L1(Rd) = 1. Setting Pt(x) = t−dP (x/t), we define, for any function f ∈
L1

loc(Rd), the Poisson maximal function MPf(x) := supt>0 |(Pt ∗ f)(x)|. Finally, for 1 ≤
p <∞, we define the Hardy space Hp(Rd) := {f ∈ L1

loc(Rd) : MPf ∈ Lp(Rd)}, equipped
with the norm ‖f‖Hp := ‖MPf‖p.

(i) For 1 < p <∞, prove that Hp(Rd) = Lp(Rd) and that there exists C > 0 such that
‖f‖p ≤ ‖f‖Hp ≤ C‖f‖p for all f ∈ Lp(Rd).
Hint: By Proposition 2.4 in [LP], one has MPf(x) ≤Mf(x) for every x ∈ Rd and
every f ∈ L1

loc(Rd), where Mf is the Hardy-Littlewood maximal function.

(ii) For p = 1, prove that H1(Rd) ⊂ L1(Rd). Moreover, prove that if f ∈ H1(Rd) with
f ≥ 0, then f ≡ 0. In particular, H1(Rd) 6= L1(Rd).
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