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Exercise Sheet 12

Exercise 1. Let d > 2, α > 1
2 and f ∈ L2(Rd). Using the estimate (4.24) from [LP],

prove that (1 + |x|)−αD1/2
x eit∆f ∈ L2(Rd) for a.e. t ∈ R.

Hint: Argue similarly to the proof of Corollary 4.2 in [LP].

(Compare Exercise 4.20 on p. 92 in [LP].)

Exercise 2. Let α ∈ (1, 1 + 4
d
) and consider the solution u ∈ C((−T, T ) : L2(Rd)), given

by Theorem 5.2, to the IVP

u(t) = eit∆u0 + iλ

ˆ t

0
ei(t−s)∆(|u|α−1u)(s) ds, (1)

with λ ∈ R and initial datum u0 ∈ L2(R). In this exercise, we shall prove that there is
c > 0 only depending on α, λ and d such that the lifespan T = T (u0) of u can be taken
to satisfy

T ≥ c‖u0‖−β2 , with β = 4(α− 1)
4− n(α− 1) . (2)

(i) Prove that if u is a solution to (1) with initial datum u0, then for any µ >

0, uµ(x, t) = µ
2

α−1u(µx, µ2t) is a solution to (1) with initial datum uµ,0(x) =
µ

2
α−1u(µx, 0). Use this to heuristically deduce the correct value of the power β

appearing in (2).

(ii) Rigorously prove (2) by reviewing the proof of Theorem 5.2.

(Compare Exercise 5.4 on p. 122 in [LP].)
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Exercise 3. For f, g ∈ C∞c (Rd), let w be a solution to the IVP of the wave equation
∂2
tw = ∆w on Rd × (0,∞),
w(x, 0) = f(x) on Rd,

∂tw(x, 0) = g(x) on Rd.

(3)

Recall from Exercise Sheet 6, Exercise 3, that the solution to the IVP (3) is given by
w(·, t) = cos(Dt)f+ sin(Dt)

D
g, whereD is the Fourier multiplier given by D̂h(ξ) = 2π|ξ|ĥ(ξ).

(i) Let d = 3 and f = 0. Prove that

w(x, t) = 1
4πt

ˆ
{|y|=t}

g(x+ y) dS(y), (4)

where dS(y) denote the surface measure on the sphere {|y| = t} ⊂ R3 induced by
the standard scalar product on R3.
Hint: Derive and apply the identityˆ

{|y|=t}
e2πiξ·y dS(y) = 4πtsin(2π|ξ|t)

2π|ξ| , for all ξ ∈ R3, t > 0. (5)

(ii) Let d = 3 and g = 0. Prove that

w(x, t) = 1
4πt2

ˆ
{|y|=t}

(f(x+ y) +∇f(x+ y) · y) dS(y). (6)

Hint: Try to express w in terms of the solution from (i).

(Compare Exercise 1.18 (iii), (iv) on p. 23 in [LP].)

Exercise 4. (i) Let d = 3. Prove that for every t ∈ R \ {0} and every p ∈ [1,∞] \ {2},
the function cos(2π|ξ|t) is not an Lp(R3)-multiplier, i.e. there is no C > 0 such that

‖(cos(2π| · |t)f̂ )̌ ‖p ≤ C‖f‖p for all f ∈ C∞c (R3).
Hint: Let f = f(|x|) = h(|x|)/|x| be radial and supported in a suitable annulus
{0 < a < |x| < b}. Using Sheet 7, Exercise 2, prove the identity (cos(2π| · |t)f̂ )̌ =
h(r+t)−h(r−t)

2r .

(ii) Let d = 3. Prove that there is C > 0 such that for every t 6= 0,

‖(cos(2π| · |t)f̂ )̌ ‖∞ ≤ Ct−1

∑
i,j

‖∂xi∂xjf‖1

 for all f ∈ C∞c (R3).

Hint: Use formula (6).

(iii) Let d = 1. Prove that for every t ∈ R and every p ∈ [1,∞], the function cos(2π|ξ|t)
is an Lp(R)-multiplier.

(Compare Exercise 2.16 on p. 43 in [LP].)
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