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Exercise 1. In this exercise we expand on the ’regularizing effects’ of the group (eit∆)t∈R.
To this end, for any t ∈ R, we define the auxiliary operators

Γj := xj + 2it∂xj
, j = 1, ..., d,

acting on functions f = f(x, t) with (x, t) ∈ Rd×R. Moreover, for any multiindex α ∈ Nd
0

we define (notice that ΓjΓk = ΓkΓj for all j, k)

Γα :=
d∏
j=1

Γαj

j .

(i) Prove: For all f ∈ S(Rd × R), all α ∈ Nd
0 and all t 6= 0,

Γαf = ei
|x|2
4t (2it)|α|∂αx e−i

|x|2
4t f = eit∆xαe−it∆f.

(ii) Prove that Γj commutes with ∂t − i∆.

(iii) Assume u0 ∈ L2(Rd) and xαu0 ∈ L2(Rd). Prove that t 7→ (Γα(eit∆u0))(t, ·) is in
C(R : L2(Rd) and therefore(

t 7→ ∂αx (e−i
|x|2
4t eit∆u0)

)
∈ C(R \ {0} ; L2(Rd)).

Deduce that, in particular, ∂αx eit∆u0 ∈ L2
loc(Rd) for all t 6= 0.

(iv) Let u0 ∈ S(Rd). Prove that eit∆u0 ∈ S(Rd) for all t ∈ R.

(Compare Exercise 4.4 on p. 89 in [LP]. )

Exercise 2. Let r ∈ [2,∞) and let r′ be such that 1
r

+ 1
r′ = 1. Prove that there is C > 0

such that (ˆ
R

ˆ
R
|eit∆u0(x)|3rdxdt

) 1
3r

≤ C‖û0‖r′ for all u0 ∈ S(R).

(Compare Exercise 4.11 on p. 91 in [LP].)
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Exercise 3. (i) Prove that if f ∈ L2(R), then eit∆ ∈ C(R) for almost every t ∈ R.
Hint: Use the Strichartz estimate (4.14) in [LP] with (p,q) = (∞, 4) together with
a density argument.

(ii) Prove that inequality (4.14) in [LP] cannot hold with a constant c > 0 independent
of f if the exponents p, q do not satisfy the condition 2

q
= d

2 −
d
p
.

Hint: For u(x, t) = (eit∆f)(x) and any λ > 0, consider uλ(x, t) := u(λx, λ2t).

(Compare Exercise 4.9 on p. 90 in [LP]. )

Exercise 4. Let u0 ∈ S(Rd) and let t 7→ u(·, t) ∈ C(R ; S(Rd)) be a solution to the
inhomogeneous IVP∂tu(x, t) = i∆u(x, t) + F (x, t), (x, t) ∈ Rd × R,

u(x, 0) = u0(x), x ∈ Rd,

wth the inhomogeneity (t 7→ F (·, t)) ∈ C(R ; S(Rd)). Prove that u is given by Duhamel’s
formula:

u(x, t) = eit∆u0(x) +
ˆ t

0
ei(t−s)∆F (x, s)ds , for all (x, t) ∈ Rd × R.

Hint: Consider v = v(x, t) defined by u(x, t) = (eit∆v)(x, t).

(Compare Exercise 4.15 on p. 91 in [LP].)
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online.

2

https://uniworx.ifi.lmu.de/?action=uniworxLogin

