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Abstract

1 Introduction

Errett Bishop, the founder of neutral constructive mathematics (or Bishop’s
constructive mathematics), wrote in his book as follows [6, Appendix A: Metriz-

ability and Separability].

The situation is easily summarized: Nonmetric spaces and nonsepa-
rable metric spaces play no significant role in those parts of analysis
with which this book is concerned. To illustrate this point, consider
the concept of a uniform space, as developed in Probs. 17 to 21 of
Chap. 4. A uniform space at first sight appears to be a natural and
fruitful concept for constructive mathematics, a promising substitute
for the concept of a topological space. In fact, this is not the case.

Bishop introduced the notion of a uniform space using a family of pseudometrics
in [6, Problem 17 of Chapter 4], and adopted a rather unsatisfactory notion of a
complete uniform space: a uniform space is complete if it is uniformly equivalent
to a complete metric space. Although classically,

e the topology on the space [, of bounded sequences of real numbers is
given by the norm

[(@n)nenll = sup{|zn| | n € N};

e the strong topology on the dual space (the set of bounded linear function-
als) E* of a normed space E is given by the norm

[fIl = sup{[f(2)[ | = € B, ||=[| <1},

constructively, they are uniform topologies but are not given by any family of
pseudometrics. We need a more general framework than a family of pseudomet-
rics for defining the notion of a uniform space.



Here, as an application of a general framework for uniform spaces, we con-
sider integration theory. One of the motivations Lebesgue developed his inte-
gration theory was to make integration and limit commute:

n—oo n—oo

lim [ f, :/ lim f,,

which does not hold for the Riemann integral. The Lebesgue integral is based
on the Lebesgue measure which is a generalisation of the notions of a length, an
area and a volume. Since a measure is defined on a o-algebra which is closed
under the complementation, the lack of law of excluded middle in constructive
mathematics brings us a difficulty to define an appropriate domain of a measure.
Bishop overcame the difficulty by introducing the notion of a complemented set,
and developed a constructive measure and integration theory. However, the
original motivation of Lebesgue is concerned with the topological notion of a
limit. Classicaly, the notion of a convergence induces a closure operation; hence
defines a topology. As far as we are concerned with convergence theorems such
as the monotone and dominated convergence theorems of Lebesgue, we may
be able to constructively deal with them topologically without invoking the
notion of a measure and the notion of a complemented set. Spitters [17] took
an approach using Bishop’s notion of a uniform space, and following Bishop’s
advice [6, Preface].

2 Preliminaries

2.1 Intuitionistic logic

In natural deduction, minimal logic is formalised by introduction (I) and elim-
ination (E) rules corresponding to each logical connective A (conjunction), V
(disjunction), — (implication), = (negation), V and 3 (universal and existential



quantifiers) as follows.
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where L denotes an absurdity (or a contradiction); there are some variable
conditions for VI, VE 3I and JE.

Intuitionistic logic is obtained by adding the following left rule, called EFQ
(ex falso quodlibet), to minimal logic, and classical logic is obtained by adding
the right rule, called RAA (reductio ad absurdum) to intuitionistic logic.
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By using RAA, we can prove double negation elimination (DNE : =—¢ — )
and law of excluded middle (LEM : ¢ V =) as follows.
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Conversely, using DNE and LEM, we can simulate RAA in minimal logic and
intuitionistic logic, respectively, as follows.
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Note that —I is a rule showing —p by deducing a contradiction from ¢, and
RAA is a rule showing ¢ by deducing a contradiction from —¢. For example,
we learn, say in high school mathematics, a proof D 5 deducing a contradiction

from an assumption “v/2 is rational”.

V/2 is rational

D3
1

The following left deduction is a proof of “y/2 is irrational” by using —I (without
using RAA), and the right deduction is a proof of “y/2 is irrational” by using
RAA, if “\/2 is irrational” is defined to be =(1/2 is rational).

[-(v/2 is irrational)]? [v/2 is irrational]!
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Intuitionistic logic, just lacking RAA, is consistent with, and has less de-
ducible formulae than classical logic used in usual mathematical practice. How-
ever, as BHK-interpretation and Curry-Howard isomorphism show, intuitionis-
tic logic has an affinity for computation.

2.2 Constructive set theory
In general, the language of a set theory contains variables for sets and the binary
predicates = and €. We use the following notations:
Vo € ap(x) =Vr(x € a— ¢(x)); Jr €ap(z)=3x(z € anp(x));
aCb=Ve(xr ca—xeb); a(b=3x(r €anzed)
0=0; r+1l=zU{z}
note that n = {0,...,n — 1}.

Definition 2.1. The axioms and rules of iZF are those of intuitionistic predicate
logic with equality. In addition, iZF has the set theoretic axioms of the classical
Zermelo-Fraenkel set theory ZF:

Extensionality: VaVbVz(x € a<>z €b) —a =1];
Pairing: VaVb3acVe(z € c<»x=aVz =D);
Emptyset: JaVz(z € a);

Union: Ya3bVz[z € b« 3y € a(z € y));

Separation:
YadbVz[x € bz € a A p(x)]

for all formula ¢(x);



Replacement:
ValVx € alyp(x,y) — IVy(y € b+ Tz € ap(z,y))]
for all formulae p(z,y), where b is not free in ¢(x,y);
Powerset: VaIVa[z € b+ x C al;
Infinity: Ja[0 e a AVz(x €a—x+ 1€ a);

e-Induction:
VYa(Vz € ap(x) = p(a)) — Yayp(a),

for all formula ¢(a).

Remark 2.2. The intuitionistic Zermelo-Fraenkel set theory IZF, introduced by
Friedman [?] and Myhill [?], adopts the following axiom of collection instead of
the axiom of replacement.

Collection:
VaVz € aJyp(z,y) = IVz € aTy € bp(z,y)]

for all formulae p(z,y), where b is not free in ¢(x,y).

Classically, they are equivalent, but, constructively, Replacement is weaker than
Collection; hence iZF' is weaker than IZF.

The classical Zermelo-Fraenkel set theory ZF adopts, instead of €-Induction,
the following classically equivalent axiom of foundation.

Foundation:
Jzp(r) = Az[p(r) AVyY(y € = —p(y))]

for every formula o(z).
However, constructively, it implies DNE, but €-Induction not; see [?].
Proposition 2.3. The axiom of foundation implies DNE.

Proof. Consider a foumula ¢ such that =—¢, and a set a given by
a={ye{0,1}[y=1V (=0}
Note that 1 € a and 0 € a if and only if ¢. Then, since
Jz(x €a) = x[r €anVy(y € x — —(y € a))],

by Foundation, there exists € a such that —=(y € a) forally e . f z =1 =
{0}, then —(0 € a); hence -, a contradiction. Therefore x = 0, and so p. O

The aziom of choice may be used freely in the practice of classical mathe-
matics. However, constructively, it implies DNE. Here we consider the following
form of the axiom of choice:

ValVz € aTy(y € z) —» 3f € (Ua)*Vz € a(f(z) € z)].

Proposition 2.4. The axiom of choice implies DNE.



Proof. For each formula ¢ with ——¢, define sets zy and x; as follows:
zo={y €{0,1} [y =0V ¢}, r1={y €{0,1} [y =1V ¢},
and let @ = {xg,z1}. Then, since 0 € 2y and 1 € z1, we have
Vo € ady(y € x).

Hence, by the axiom of choice, there exists a function f: a — (Ja = {0,1} such
that
Vo € a(f(z) € x).

Note that if ¢, then, since zg = 1, we have f(zg) = f(z1). If f(zo) = 0 and
f(x1) = 1, then —¢p, a contradiction. Therefore either f(xg) =1 or f(x1) =0,
and so 1 € xg or 0 € z1. Thus ¢. O

The set Pow(1) is considered as the set of truth values; note that 1 = {0} =
{0}. For a formula ¢, a subset [¢] of 1 given by

el ={uel]|e},

whrere u is not free in ¢, is considerd as a truth value of . Note that {0,1} C
Pow(1), but not Pow(1) C {0, 1}, constructively; Pow(1) C {0,1} implies DNE
(Exercise). In iZF, we can show that Pow(1) is a subobject classifier in the
category of sets and functions.

In constructive set theory, predicativity is considered very often. The follow-
ing is an example of impredicative definition of a set:

S={zeN|VaePow(N)(z€a—- )}
={rzeN|Va(aCNAz€a—--)}.

The set S is a subset of N, that is, S € Pow(N); the variable a ranges over
Pow(N); hence we may take the set S being defined as a. A predicative set
theory does not allow this kind of circular argument (vicious circle) in defining
sets; does allow only constructions of sets from sets already constructed. As
the above example shows, we have to give up the axioms (full) Separation and
Powerset to make a set theory predicative.

The elementary constructive (and predicative) set theory ECST was intro-
duced by Aczel and Rathjen and is a subsystem of CZF; see their book draft
[3] written by extending their research report [2].

Definition 2.5. The axioms and rules of ECST are those of intuitionistic
predicate logic with equality. In addition, ECST has the set theoretic axioms
Extensionality, Pairing, Emptyset, Union, Replacement and

Bounded Separation:
VadbVe(x € bz € a A p(x))

for all bounded formulae ¢(x), where b is not free in p(z); here a formula
o(x) is bounded, or Ay, if all its quantifiers are bounded, i.e. of the form
Vx € cor dzr € c.



Strong Infinity:

Jal0 e aAVz(z €a—z+1€aq)
AVYy(0 eyAVz(z ey—az+1€y)—aly).

Remark 2.6. With (full) Separation, Infinity implies Strong Infinity: for, since
there exists a set Ny such that 0 € Ng AVa(z € Ny =z + 1 € Ny), by Infinity,
there exists a set N given by

N={ze Ny |Vy(0eyAVz(zey—xz+1€y)—>2cvy)}

by (full) Separation; hence N is a unique set such that

0eNAVz(zeN—ax+1€N)
AVy(0eyAVz(zey—az+1€y) > NCy).

For a set theory without (full) Separation, like ECST, we have to adopt Strong
Infinity instead of Infinity.

In ECST, we are able to perform basic set constructions in mathematical
practice. First note that a set A is inhabited if Jz(x € A), or A § A, and
nonempty if -Vz—(z € A), or =(A = 0); “A is nonempty” is the double negation
of “A is inhabited”. Using Pairing, the ordered pair

(z,y) = {{z}, {z, y}}

of z and y, and, using Replacement and Union, the cartesian product A x B of
sets A and B consisting of the ordered pairs (x,y) with z € A and y € B can
be introduced in ECST.

A relation R between sets A and B is a subset of A x B, and we then
write z R y for (z,y) € R; the inverse relation R~' C B x A of R is given by
yR 'z xRyforall z € Aandy € B. We write R’ o R for the composition
of relations R C A x B and R’ C B x C, and A4 for the diagonal subset of
A x A.

A relation R C A X B is total (or is a multivalued function) if for every © € A
there exists y € B such that x R y; single valued if for every z € A there exists
at most one y € B such that R y. The class of total relations between sets A
and B is denoted by mv(A, B), or more formally

Remv(A,B)& RCAXxBAVYx e Adye B(z Ry).

A function from a set A into a set B is a total and single valued relation
f € Ax B, that is, for every x € A there is exactly one y € B, denoted by f(x),
with z f y; we then write f : A — B. The class of functions from a set A to a
set B is denoted by B#, or more formally

feBYe femv(A,B)AVz € AVy,2€ B(x fyAa fz—y=2).

A function f : A — B is a surjection if for each y € B, there exists z € A
such that y = f(x); an injection if for all z,y € A, f(z) = f(y) implies z = y;
a bijection if it is a surjection and an injection; we write A = B if there is a
bijection between A and B. The composition g o f of functions f : A — B



and g : B — C is a function from A into C, and the diagonal subset A4 is a
bijection between A and A, called the identity function on A and denoted by
ida.

Let A and B be sets. Then the projections 75" : A x B — A and B
A x B — B, given by

AB |

A,B
7o (myy) = o, el

H(@y) ey

for all (z,y) € A x B, are surjective whenever A and B are inhabited; the
superscripts of 71'64 B and ﬂ'f’B will be mostly omitted. The cartesian product
A x B of sets A and B is the product of A and B in the category of sets and
functions: for each set C' and each pair of functions f: C — A and g: C' — B,
there exists a unique function (f,g) : C' — A x B such that 7y o (f,g) = f and

mo(f,9) =g
C

(f.9)

A AxB

B

For functions f: A - C and g : B — D, we write f x g for <fo7r64’B,go7rf’B> :

Ax B — CxD.

In ECST, the structure (N,0,5), where 0 = () and S : N — N is given by
S(z) = x4+ 1 for all z € N, satisfies the Dedekind-Peano axioms:

1. 0# S(x) for all z € N;
2. S is an injection;

3. if A is a subset of N such that 0 € A and S(z) € A for all x € A, then
A=N.

By mathematical induction which is a consequence of (3) above, we are able to
show, without invoking LEM, that the equality = on N is decidable, that is,

r=yV-(z=y)
for all z,y € N.

In this paper, we assume, in addition to the axioms of ECST, Exponentiation
Aziom asserting that the class B4 of functions from a set A into a set B, called
the exponential of A and B, forms a set:

Exponentiation: Yavb3cVf(f € c+ f € b*).

The exponential B4 of a set A and B is the exponential object of A and B
in the category of sets and functions with a function ev*? : B4 x A — B, given
by

v (f2) = f()
for all f € B4 and x € A; the superscripts of ev4? will be mostly omitted: for

each set C' and each function h : €' x A — B, there exists a unique function
h:C — B# such that ev® o (h x id4) = h.
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Note that for all sets A, B and C,

BOXA o (BA)C

with a bijection (:) . h > h between BE*4 and (B4)°, and
AY x BY = (A x B)“

with a bijection (-,-) : (f,g) = (f,g) between A x B¢ and (A x B)°.

In the presence of Exponentiation, functions on N are defined by primitive
recursion.

Proposition 2.7. Let A and B be sets, andlet f : B — A andg: BXNxA — A
be functions. Then there exists a unique function h: B x N — A such that

h(z,0) = f(=), h(z,y+1) = g(z,y, h(z,y))
forallx € B and y € N.

Proof. Note that Exponentiation implies small iteration aziom SIA, and see [3,
Theorem 6.4.3]. O

Therefore we can define addition, multiplication, predecessor and truncated
subtraction funcitons on N by primitive recursion as follows.

r+0=2, z+(y+)=(@@+y)+1; 20=0, z(y+1)=(zy)+az;
prd(0) =0, prdy+1)=y; x=0=2z, z=-y+1=prd(z—-y);

hence the maximun function is given by max(z,y) = (x ~ y) + y.

A binary relation R C A X A on a set A is a preorder if it is reflexive and
transitive; an equivalence relation if it is reflexive, symmetric and transitive. A
preordered set is a pair I = (I, =) of a set I and a preorder <; on I. Let
I=(I,=;)and I' = (I', <) be preordered sets. Then a function f: I — I is
monotone if

<1y = f(2) <0 f(y)

for all z,y € I; we write hom(I,I") for the set of monotone functions between
I and I'. The product of preordered sets I = (I,=;) and I’ = (I', <) is given
by I x I' = (I x I',=<1x1), where

(z,2") 2rxr (y,y) &z 2ryand 2’ <py
for all (z,2'), (y,y") € I x I'. We denote the constant function i — i, where

i'el, from [ into I' by '; the diagonal function i+ (i,4) from I into I x I by
dr; then ¢/ € hom(I,I’) and 6y € hom(I, I x I). A preordered set I = (I, <r) is



directed if I is inhabited, and there exists ub; € hom(I x I,T), called an upper
bound function, such that for each z,y € I, x <y ubs(z,y) and y <7 ubs(z,y). It
is straigtforward to see that the product of directed preordered sets is directed.

Let A be a set, and let R be an equivalence relation on A. Then the quotient
set
A/R ={[z]r | z € A},

where [z]g = {y € A | z R y} is an equivalence class of « € A, is constructed by
Replacement. However, we have to be careful with using quotient sets, because
to pick up each representative of equivalence classes by a function f : A/R — A,
we have to invoke the axiom of choice which is not acceptable in constructive
set theory. Therefore, we cannot uniformly refer structure and data of each
representative, constructively.

2.3 Setoids

A setoid (or Bishop set) X is a pair (X,=x) of a set X and an equivalence
relation =x on X it is discrete if x =x y or —=(z =x y) for all z,y € X; stable
if -—(z =x y) implies z =x y for all z,y € X. If X is discrete, then it is stable.
We may consider a set X together with the equality = on sets as a setoid (X, =).

Let X = (X,=x) and Y = (Y, =y) be setoids. Then a function f: X - Y
is a setoid mapping (or simply, mapping) of X into Y if

r=xy=f(r) =y f(y)

for all z,y € X, and we then write f : X — Y; for each pair of functions
f,g: X —- Y, fis a setoid mapping if and only if g is a setoid mapping,
whenever f = g. Two setoid mappings f,g : X — Y are identical, denoted by
f~ug,if
r=xy=f(z) =y g(y)

for all z,y € X, or equivalently f(z) =y g(z) for all x € X; hence, if f = g,
then f ~ g. A setoid mapping f : X — Y is a setoid surjection if for every
y €Y there exists € X such that y =y f(2); a setoid injection if

fx)=y fly) =2r=xy

for all z,y € X; a setoid bijection if it is a surjection and an injection; we write
X 2Y if there is a setoid bijection between X and Y.

The composition g o f of setoid mappings f : X - Y andg:Y — Z is
a setoid mapping of X into Z, and for all setoid mappings f' : X — Y and
g:Y = Z if f~ f and g ~ ¢, then go f ~ ¢’ o f’; the identity function
idy : X = X is a setoid bijection, denoted by idx; for all setoid mappings
f+X=>Y g:Y>Zandh:Z W,

ho(gof)~ (hog)of and idyof~ foidy ~ f.

It is straightforward to show in ECST, by virtue of the following lemma, that
for each setoid mapping f : X — Y, f is a setoid surjection if and only if
f is an epimorphism (that is, for each pair of setoid mapping g,h : ¥ — Z,
if gof ~ hof, then g ~ h), and f is a setoid injection if and only if f is
a monomorphism (that is, for each pair of setoid mapping g,h : Z7 — X, if
fog~ foh,then g ~ h), in the category of setoids and setoid mappings.

10



Lemma 2.8. Let X and Y be setoids, and let f : X — 'Y be a setoid mapping.
Then f is a setoid surjection whenever f is an epimorphism in the category of
setois and setoid mappings.

Proof. Let X = (X,=x) and Y = (Y, =y), and suppose that for all g,h: Y —
Z,if gof~hof, then g~ h. Foreachy €Y, let ¢, = [Fr € X (y =y f(x))].
Then, since Vy € Y 3lz(z = ¢,),

C={z13ye¥(z=¢)}

is a set by Replacement. Consider a setoid Z = (Z,=) where Z = C U {1} and
= is the equality = on sets, and define g,h : Y — Z by g(y) = ¢, and h(y) =1
for all y € Y. Then g,h : Y — Z are setoid mappings, and

(9o f)@) = g(f(2)) = ¢r@) =1 =h(f(x)) = (ho f)(z)

for all z € X; hence go f ~ ho f. Therefore g ~ h, and so ¢, = g(y) = h(y) =1
forally €Y. Thus Vy € Y 3z € X (y =y f(z)), that is, f is surjective. O

Remark 2.9. For each pair of setoid mappings f: X — Y and g : Y — Z, if
f and g are setoid surjections, then so is g o f; if g o f is a setoid surjection,
then so is g; if f and g are setoid injections, then so is g o f; if g o f is a setoid
injection, then so is f.

A subsetoid S of asetoid X = (X, =x) isa pair (S, ¢) of aset S and a function
t: 8 — X; in which case, (S, =g) is a setoid, where =g is an equivalence relation
on S given by

r =5y ur) =x t(y)

for all z,y € S, and ¢ : S — X is a setoid injection. We may consider a subset
S of X together with the inclusion function ¢ : S — X as a subsetoid S = (S, )
of X.

The cartesian product of setoids X = (X,=x) and Y = (Y, =x), denoted
by X x Y, is a pair of the set X x Y and an equivalence relation =x«y on
X x Y given by

(z,y) =xxy (&',y) &z =x 2" and y =y ¥/
for all (x,y),(z',y') € X x Y. Tt is straightforward to see that the projections
WOX’X : XxY — X and 71'1&’! : X XY — Y are setoid mappings ﬂg(’y X XY —
X and ﬂf(’y : X xY — Y, respectively. The product X x Y is the product
of X and Y in the category of setoids and setoid mappings: for each setoid Z

and each pair of setoid mappings f : Z — X and g : Z — Y, there exists a
unique setoid mapping (f,g) : Z — X x Y such that ﬂg(’y o(f,g9) ~ f and

o (fig) ~ g
Let X = (X,=x) be a setoid. Then an apartness #x on X is a binary

relation on X which is irreflezive: =z =x y = —(z #x y) for all z,y € X,
symmetric: T #x y=1y #x x for all z,y € X, and cotransitive:

THxYy=>THxz0r 2 H#xY

for all x,y,z € X; it is tight if ~(x #x y) = x =x y for all z,y € X. Note that
an apartness #x is a binary relation on the setoid X in the sense that

t#xy, e=xa andy=xy =2 #xy

11



for all z,2',y,y € X: forif x #x y, x =x 2’ and y =x ¥, then, since
—(z #x ') and ~(y #x y) by irreflexivity and symmetry, we have 2’ #x v,
by cotransitivity; hence =’ #x ¥, by cotransitivity. If X is a stable setoid, then
the denial inequality # x, given by

z#x Yy o(r=xy)

for all x,y € X, is a tight apartness.
Let X = (X,=x) and Y = (Y, =x) be setoids with apartesses #x and #v,
respectively. Then a setoid mapping f : X — Y is strongly extensional if

f(@) #y fly) =z #xy

for all z,y € X; an apartness # x xy on the product X x Y is given by

(z,y) #xxy (@' y) e x#x a ory #y

for all (x,y), (2',y') € X x Y. It is straightforward to see that the projections
W())(’Y : X XY — X and ﬂi}(’Y : X XY — Y are strongly extensional.
A partial order <x on X is a binary relation on X which is reflexive:

T=xYyY=T<x Yy

for all z,y € X, antisymmetric: t <x yandy<xz=>z=xyforalz,yec X
and transitive: x <x y and y <x z =1z <x z for all x,y,z € X; it is total (or
linear) order if ¢ <x y or y <x z for all z,y € X; quasi-total (or quasi-linear)
orderif —(z <x y)=y <x x forall z,y € X; if <x is total, then it is quasi-total.

A (join) semilattice is a setoid X = (X, =x) equipped with a setoid mapping
(z,y) = xVyof X x X into X, called a join, such that

xV(yVz)=x (zVy)Vz zVy=xyVuz, zVr=x=T

for all z,y,z € X. Let X = (X,=x) be a semilattice. Then the (canonical)
partial order <x on X is given by

c<xy&rVy=x1y

for all z,y € X, and x V y is the least upper bound of {z,y} for all z,y € X.
For an apartness #x and a quasi-total order <y on X, a binary relation
<x on X is given by

r<xy<er<xyand x#Hxy

for all z,y € X.

Proposition 2.10. Let X = (X,=x) be a semilattice with an apartness #x
such that the canonical partial order <x is quasi-total. Then

1. ifx <x y, then =(y <x x);
2. x#x yifand only if x <x y ory <x x;
3. ifx <xy, then ~(y <x ), and if =(y <x x), then x <x y whenever #x

is tight
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for all x,y € X. Forthermore, suppose that the join V : X x X — X is strongly
extensional. Then

4. ifx <xy andy <x z, then x <x z;
S ifr<xuy,thenx <x zorz<xy
forall z,y,z € X.

Proof. (1): Consider z,y € X with  <x y. If y <x z, then, since x <x y and
y <x x, we have x =x y which contradicts  #x y. Hence —(y <x ).

(2): Consider x,y € X. Then it is trivial that © <x y or y <x « implies
x #x y. Assume that © #x y. Then either z #x (xVy) or (zVy) #x y. In the
first case, since —(y <x x) by irreflexivity, we have  <x y, by quasi-totality;
hence x <x y. In the second case, similarly, we have y <x x.

(3): Consider z,y € X with z <x y. If y <x z, then, since y <x z and
y #x x, we have x =x y, a contradiction. Hnece —(y <x z).

Suppose that #x is tight, and consider x,y € X such that =(y <x z) and
xVy #x y. Then, since —(z <x y) by irreflexivity, we have y <x z, by quasi-
totality; hence = #x y as ¢ Vy =x x. Therefore y <x z, a contradiction, and
so x Vy =x y, by tightness. Thus z <x y.

(4): Consider z,y,z € X such that  <x y and y <x 2. Then, since z <x y
and y <x z, we have z <x 2. Since x Vy =x vy, 2Vy =x z and y #x 2z, we
have (z V y) #x (2 V y); hence either x #x z or y #x y. Therefore, since the
former must be the case, we have z <x z.

(5): Consider z,y,z € X with  <x y. Then, since x #x y, either z #x z
or z #x y. In the first case, either x <x z or z <x x, by (2); since z <x y in
the latter case by (4), we have x <x z or z <x y. In the second case, similarly,
we have x <x z or z <x ¥. O

2.4 Number systems and their algebraic structures

A ring is a setoid X = (X, =x) equipped with a setoid mapping (z,y) — = +y
of X x X into X, called addition, a setoid mapping = — —x of X into X, called
inverse, a setoid mapping (z,y) — xy of X x X into X, called multiplication,
and an element 0 of X, called the zero element, such that

(x+y)+z=xac+y+2), z+y=xy+z, z+0=xz, x4+ (—z)=x0,
(zy)z =x x(yz), xz(y+2)=xay+zz, (y+2)r=x yx+ 2z

for all x,y, z € X; it is unitary if there exists an element 1 of X, called the unity
element, such that 1z =x =1 =x x for all z € X; commutative if zy =x yx for
all z,y € X.

The setoid of integers is given as follows. Let Z = N x N, and let =z be an
equivalence relation on Z given by

a=zbem+n =m'+n

foralla = (m,n),b= (m',n’) € Z. Then Z = (Z,=z) is a discrete setoid of inte-
gers. Define the addition (a,b) — a + b, the inverse a — —a, the multiplication
(a,b) — ab and the join (a,b) — maxz(a,b) by

a+b=(m+m' n+n’), —a = (n,m),

ab = (mm’ +nn',;mn’ +nm’), maxz(a,b) = (max(m +n',m +n),n+n'),
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respectively, for all a = (m,n),b = (m/,n’) € Z. Then they are setoid mappings,
and Z is a unitary commutative ring with the zero element 0 = (0,0) and the
unity element 1 = (1,0), and Z is a semilattice such that the canonical partial
order <y is total, and

1. maxy(a,b) + ¢ =z maxz(a + ¢, b + ¢);
2. if 0 <z ¢, then maxz/(a, b)c =z maxy(ac, be)
for all a,b,c € Z. The set N of natural numbers is a subsetoid of Z with a
function ¢y : N — Z given by ¢y : n+— (n,0) for all n € N, and then
m=n<in(m) =z in(n), in(m 4+ n) =z in(m) + tn(n),
in(m - n) =z in(m)en(n), ty(max(m, n)) =z maxyz(tn(m), ty(n))

for all m,n € N.

A field is a unitary commutative ring X = (X, =x) with the unity element
1 and a tight apartness #x on X such that for each z € X, if x #x 0, then
there exists y € X such that zy =x 1. An ordered field is a field X = (X, =x)
equipped with a quasi-total order <x such that

l.ife<xy,thenx+ 2z <x y+ 2
2. ifx <x yand 0 <x z, then zz <x yz

for all z,y, z € X; it is Archimedean if for all z,y € X with 0 <x z and 0 <x y,
there exists n € N such that x <x ny.

The setoid of rationals is given as follows. Let Q =Z x {a € Z | ~(a =z 0)},
and let =g be an equivalence relation on Q given by

p=qq&ba=zbd
for all p = (a,b),q = (a’,0') € Q. Then Q = (Q,=q) is a discrete setoid

of rationals. Define the addition (p,q) — p + ¢, the inverse p — —p, the
multiplication (p,q) — pg and the join (p, q) — maxg(p, q) by

p+q = (b/a+ba/abb/)a —PpP= (_aab)a
pq = (ad’,bb’), maxq(p, ¢) = (maxz(b'a, ba’),bd’),

respectively, for all p = (a,b),q = (a’,0’) € Q. Then they are setoid mappings,
and Q is a unitary commutative ring with the zero element 0 = (0,1) and the
unity element 1 = (1,1), and Q is a semilattice such that the canonical partial
order <g is total, and

1. maxq(p, q) + r =g maxg(p + r,q +1);
2. if 0 <g r, then maxq(p, ¢)r =z maxg(pr, gr)

for all p,q,r € Z. The setoid Z of integers is a subsetoid of Q with a function
7 Z — Q given by 1z : a — (a,1) for all a € Z, and then

a=zbsz(a) =g iz(b), wz(a+0b) =g z(a)+tz(b), z(—a)=q —z(a),
1z(ab) =g tz(a)iz(b), iz(maxz(a,bd)) =g maxg(tz(a),tz(d))
for all a,b € Z. The denial inequality #q is a tight apartness on Q such that
1. if p #g ¢, then p+r #g g+ r;

2. if p #g q and r #q 0, then pr #g gr
for all p, q,7 € Q. The setoid Q is an Archimedean ordered field.
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3 Uniform spaces

3.1 Fundamental definitions

Definition 3.1. A uniform structure on a setoid X = (X,=x) is a triple con-
sisting of a directed preordered set Ix = (I y, =<7y ), a function px € hom(Ix, Ix),
and a relation IFx between X x X and Iy such that

1. for all z,y € X, x =x y if and only if (z,y) IFx a for all a € I ;

2. forall a € Iy and z,y,2’,y € X, ifx =x o/, y =x ¥ and (z,y) IFx a,
then (2/,y') IFx a;

3. foralla eIy and z,y € X, if (z,y) Fx a, then (y,z) Fx a;
4. foralla,be Iy andz,y € X, ifa <1, band (x,y) IFx b, then (z,y) Fx a;

5. forall a € Iy and z,y,2z € X, if (z,y) Fx px(a) and (y, 2) IFx px(a),
then (z, 2) IFx a.

A uniform space is a setoid equipped with a uniform structure.

Example 3.2. Let X be a set, and let d : X x X — R be a pseudometric on
X. Then a binary relation =x on X, given by

r=x y<dzy) =0

for all 2,y € X, is an equivalence relation; hence X = (X,=x) is a setoid.
Let px and IF x be a monotone function from N into N and a relation between
X x X and N defined by

px(n)=n+1,
(z,y) IFx ned(z,y) <277

foralln € Nand z,y € X, respectively. Then (N, px,IFx) is a uniform structure
on the setoid X.

Lemma 3.3. Let (Ix,px,!Fx) be a uniform structure on a setoid X. Then for
each n € N,

1. for alla € Iy and z,y € X, if (z,y) IFx p%(a), then (z,y) IFx a;

2. foralla € Iy and xo,...Tpt1 € X, if (xp, Tp41) IFx p%(a) for all k € N
with 0 < k < n, then (xo,Znt1) IFx a.

Proof. (1): We proceed by induction on n. For n = 0, it is trivial. Given
a€lyand 2,y € X, if (z,y) IFx p'¥"'(a), then, since (y,y) IFx p¥ ' (a), we
have (z,y) lFx p%(a); hence (z,y) IFx a, by the induction hypothesis.

(2): We proceed by induction on n. For n = 0 and zg,2; € X, it is
trivial. Given a € Iy and g, ..., Tpi1,Tnio € X, if (zp, 241) Fx p%(a)
for all k € N with 0 < k < n + 1, then, since (zg,zr11) IFx p%(px(a)) for all
ke Nwith 0 <k <nand (zpr1,Zns2) IFx p}“(a), we have (zg,Zn41) IFx
px(a) and (2,41, 2n12) IFx px(a), by the induction hypothesis and (1); hence

(xo,anrQ) “_X a. D
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Definition 3.4. Let X be a setoid, and let J = (J, <s) be a directed preordered
set. Then a function @ : j — x; from J into X is called a net (or Moore-Smith
sequence) in X on J, and is denoted by (x;)jes; a net (z,)nen on the linearly
ordered set (N, <) is called a sequence in X; we write X7 for the set X7 of nets
in X on J.

Let (Ix, px,IFx) be a uniform structure on X. Thenanet x = (z;);cs € X7
converges to an element x of X in X if there exists 8 € hom(Ix,J), called a
modulus (of convergence), such that for each a € Iy,

(.Z‘j,.%‘) H—X a

for all j € J with 8(a) < j. We then write x — z, and « is called a limit of x.
A net (z;)jes € X7 is a Cauchy net in X if there exists o € hom(Ix,.J),
called a (Cauchy) modulus, such that for each a € Iy,

(:L‘j,(Ej/) ”_X a

for all j, 5" € J with a(a) < j,j'. For each x € X, the constant function j — x
from J into X, denoted by (x);es, is a Cauchy net in X with any modulus
a € hom(Ix, J).

Lemma 3.5. Let X = (X,=x) and Y = (Y, =y) be a uniform space, and let
J be a directed preordered set. Then for each pair of nets @ = (z;)jes, Yy =
(Yj)jes € X7 such that x; =x y; for all j € J and each pair of setoid mappings
f,9: X =Y with f ~g,

1. forallz,2’ € X, if ¢ =z and y — 2/, then v =x z';
2. forally,y €Y, if fox —y and goy — v, then y =y v/'.

Proof. Let (Ix,px,Fx) be a uniform structure on X, and let = (2;)jes,y =
(yj)jes € X7 be such that z; =y y; for all j € J.

(1): For each pair of elements z,2’ € X, if * — z and y — 2/ with moduli
B8 € hom(Ix,J) and 8’ € hom(Ix,J), respectively, then for all a € Iy, since
(25, 7) IFx px(a) and (y;,2") IFx px(a) for j = uby(8'(px(a)), B(px(a))), we
have (z,2’) IFx a as ©; =x y;; hence x =x v.

(2) For each pair of setoid mappings f,g: X - Y of X into Y = (Y, =y)
and each pair of elements y,3’ € Y such that f ~g, fox — y and goy — ¢/,
since f(x;) =y g(y;) for all j € J, we have y =y ¢/, by (1). O

Lemma 3.6. Fvery convergent net in a uniform space is a Cauchy net.

Proof. Let X be a uniform space with a uniform structure (Ix,px,|Fx) and
let J = (J,<) be a directed preordered set. Consider x = (z;)jes € X’
and z € X such that  — =z with a modulus § € hom(Ix,J). Then for
each a € Iy, since (z;,2) IFx px(a) and (z;/,z) IFx px(a) for all j, ;' € J with
B(px(a)) <7 4, j', we have (z;,2;/) IFx afor all j, j' € J with B(px(a)) <7 4, J"
Therefore x is a Cauchy net with a modulus o px € hom(Ix, J). O

Definition 3.7. Let X and Y be uniform spaces with uniform structures
(Ix,px,lFx) and (Iy,py,lFy), respectively. Then a function f : X — Y is
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uniformly continuous if there exists v € hom(Iy, Ix), called a modulus (of uni-
form continuity), such that for each b € I,

(#,y) Fx () = (f(x), f(y)) IFy b

for all z,y € X.

A uniformly continuous mapping f : X — Y is a uniform isomorphism if
there exists a uniformly continuous mapping g : Y — X, called an inverse of
f, such that go f ~idx and fog ~idy; X and Y are uniformly equivalent if
there exists a uniform isomorphism between X and Y'; we then write X ~ Y.

Lemma 3.8. Let X andY be uniform spaces. Then every uniformly continuous
function f: X =Y is a setoid mapping.

Proof. Let (Ix,px,Fx) and (Iy, py,IFy) be uniform structureson X = (X, =x
) and Y = (Y,=y), respectively, and let v € hom(Iy,Ix) be a modulus of
uniform continuity of f, and consider z,y € X with x =x y. Then for each b €
Iy, since (z,y) IFx v(b), we have (f(z), f(y)) IFy b; hence f(x) =y f(y). O

Remark 3.9. For each pair of setoid mappings f,g : X — Y between uniform
spaces X and Y with f ~ g, f is uniformly continuous if and only if g is uni-
formly continuous. Let X, Y and Z be uniform spaces with uniform structures
(Ix,px,lFx), (Iy,py,lky) and (Iz,pz,IFz), respectively. Then the composi-
tion go f : X — Z of uniformly continuous mappings f: X - Y andg:Y — Z
with moduli v/ € hom(Iy, Ix) and 49 € hom(Iz, Iy ), respectively, is uniformly
continuous with a modulus v/ 0 49 € hom(Iz, Ix), and the identity mapping
idx : X — X is a uniform isomorphism.

Lemma 3.10. Let X andY be uniform spaces with uniform structures (Ix, px,IFx
) and (Iy, py, by ), respectively, let J be a directed preordered set. Then for each
uniformly continuous function f: X — Y with a modulus v € hom(Iy,Ix) and
each net x € X’

1. forallze X, ife >ax€ X in X, then fox — f(z) inY;

2. if x is a Cauchy net in X with a modulus o € hom(Ix,J), then fox is
a Cauchy net in' Y with a modulus a o~y € hom(Iy, J).

Proof. Let J = (J, <), and consider a net © = (z;);es € X’.

(1): For each element z € X, if ¢ — x € X with a modulus 8 € hom(Ix, J),
then for all b € Iy and j € J with 5(v(b)) < J, since (z;,x) IFx v(b), we have
(f(zj), f(x)) IFy b; hence fox — f(x) with a modulus 5o+ € hom(Iy,J).

(2): If ¢ is a Cauchy net with a modulus o € hom(Ix,.J), then for all
b e Iy and j,j' € J with a(y(b)) < j,j, since (zj,z;/) IFx ~(b), we have
(f(zj), f(z;)) Fy b; hence f oa is a Cauchy net in Y with a modulus a0y €
hom(Iy, J). O

Definition 3.11. Let X be a uniform space. Then a uniform space S is a
uniform subspace of X if there exists a uniformly continuous setoid injection
15— X.
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Proposition 3.12. Let X be a uniform space with a uniform structure (Ix, px,IFx
), let S = (S,t) be a subsetoid of X, and define a relation I between S x S
and Ix by

(z,y) IFs a< (v(x),(y) IFx a
foralla € Iy and z,y € S. Then (Ix,px,lFs) is a uniform structure on S,
and g : S — X is a uniformly continuous setoid injection; the uniform space S
is called a uniform subspace induced by a subsetoid S = (S,¢) of X.

Proof. Tt is straightforward to see that (Ix,px,|Fs) is a uniform structure on
S, and ¢ : S — X is a uniformly continuous setoid injection with a modulus
idlx EhOm(Ix,Ix). O

Lemma 3.13. Let X be a uniform space with a uniform structure (Ix, px,IFx),
and let S be the uniform subspace induced by a subsetoid S = (S,¢) of X. Then
for each uniform space Z,

1. for all function f : Z — S, [ is uniformly continuous if and only if Lo f
s uniformly continuous,

and for each directed preordered set J,
2. forallx € 8" andx € S, x — x in S if and only if Lox — 1(z) in X;

3. forallx € 87 and o € hom(Ix,J), x is a Cauchy net in S with a modulus
a if and only if 1o x is a Cauchy net in X with a modulus .

Proof. Straightforward. O

Proposition 3.14. Let X and Y be uniform spaces with uniform structures
(Ix,px,lFx) and (Iy,py,lky), respectively, and define pxxy € hom(Ix X
Iy, Ix x Iy) and a relation |k x xy between (X X Y) x (X xY) and Iy x I by

PXxY = PX X Py,
((z,y), (2,9) IFxxy (a,b) & (2,2") IFx a and (y,y') IFy b

forall (a,b) € Iy xIy and (z,y), (z',y") € XxXY. Then (Ix xIy,pxxy,Fxxy)
is a uniform structure on the product setoid X XY A uniform space X XY with
the uniform structure is called the product of uniform spaces X and Y.

Proof. (1): For all (z,y),(z',y) € X x Y, if (z,y) =xxy (¢/,y'), then, since
x =x ¢’ and y =y ¢/, we have (z,2') IFx a and (y,y’) Iy b for all (a,b) €
Iy xIy; hence ((x,y), (2',y")) IFxxy (a,b) for all (a,b) € Iy x Iy. Conversely,
if ((z,y),(2',y")) Fxxy (a,b) for all (a,b) € Iy x Iy, then, since (z,2’) IFx a
and (y,y’) IFy bforalla € Iy and b € Iy, we have z =x ' and y =y ¢'; hence
(xay) =XxXY (l'/,y/)~

(2) and (3): Straightforward.

(4): Consider (a,b),(a',V') € Ix x Iy and (z,y), (¢',y') € X x Y such that

(a’a b) <IxxIy (a’lv b,) and ((xvy)v (xlvy,)) IFx %y ((L/, bl)

Then (z,2') IFx o' and (y,y’') IFy b'. Since a <7, o’ and b <, V', we have
(z,2") Fx a and (y,y’) IFy b; hence ((z,y), (¢',y")) Fxxy (a,b).
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(5): Consider (a,b) € Iy x I, and (z,y),(2',y'), (2",y") € X x Y such
that ((xay)7 ('T/7y/)) “_XXY PXxY(a7b) and ((:E/ay/)a x/lay//)) ”_XXY PXxY(a>b)~
Then, since (z,2") IFx px(a), (y,¥') IFy py (D), (¢',2") IFx px(a) and (y',y") IFy
py (b), we have (z,2") IFx a and (y,y”) IFy b; hence

((l‘,y), (,’L‘H,y//)) IFxxy (a’ b)' O

Theorem 3.15. Let X and Y be uniform spaces. Then the projections m :
X XY = X and 1 : X XY —= Y are uniformly continuous, and for each
uniform space Z and each pair of uniformly continuous mappings f : Z — X
and g : Z =Y, there exists a unique uniformly continuous mapping (f,g) :
Z — X XY such that mo o (f,g) ~ f and w1 0 {f,g) ~ g.

Proof. Let (Ix, px,lFx) and (Iy, py,IFy) be uniform structure on X = (X, =x)
and Y = (Y, =y), respectively, and define v™ € hom(Ix,Ix X Iy) by

~™ :a > (a,bp)

for all a € Iy, where by is an inhabitant of Iy-. Then for all a € Iy and
(x,y), (@',y") e X xY,if ((x,y), (¢',y)) Fxxy ¥™(a), then, since (z,z’) IFx a,
we have (mo(z,y),m0(2’,y’)) Fx a. Hence mg : X x Y — X is a uniformly
continuous mapping with a modulus ™. Similarly, 74 : X XY — Y is a
uniformly continuous mapping with a modulus v™ € hom(Iy,Ix x Iy) given
by 4™ : b~ (ao, b) for all b € Iy, where ag is an inhabitant of I .

Consider a uniform space Z = (Z, =) with a uniform structure (Iz, pz,IFz)
and uniformly continuous mappings f: Z — X and g : Z — Y. Then it suffices
to show that the unique function (f,g) : Z — X x Y such that mgo (f,g9) = f
and 71 o (f, g) = g, is uniformly continuous. To this end, assume that f and g
are uniformly continuous with moduli 7/ € hom(Ix, Iz) and 79 € hom(Iy, Iz),
respectively, and define v¢9) € hom(Ix x Iy, I;) by

A9 = ubp, o (47 x 49).
Then for all (a,b) € Iy x I and z,2’ € Z with
(z,2') Iz 49 (a,b),

since v/ (a) <1, v/9 (a,b) and 9(b) <1, Y9 (a,b), we have (z,2') IFz v/ (a)
and (z,2") IFz v9(b). Therefore

(f(2), f(2) IFx a and (9(2),9(2)) IFy b,
and so ((f,9)(2), (f,9)(z") Fxxy (a,b). Thus (f,g) : Z — X x Y is uniformly
continuous with a modulus *y<f’9> € hom(Ix x Iy, Iz). O

Corollary 3.16. Let X, X', Y and Y’ be uniform spaces. Then each pair of

uniformly continuous mappings f: X - X andg:Y = Y', fxg: X xY —
X' <Y’ is a uniformly continuous mapping such that 7T())( Yo(fxg)~ fOﬂ'é(’Y

! ’
and 7Y o (fx g)~gom.

Proof. Straightforward by Theorem 3.15. O
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Remark 3.17. & Theorem 3.15 shows that the product uniform space X x Y
is the product of X and Y in the category of uniform spaces and uniformly
continuous mappings. For each pair of uniform isomorphisms f : X — Y
between uniform spaces X and Y and g : X’ — Y’ between uniform spaces X'
and Y/, since f x g : X x X’ - Y x Y’ is a uniform isomorphism, we have
X XY ~X' xY" whenever X ~ X’ and Y ~ Y.

3.2 Completeness

Lemma 3.18. Let X = (X,=x) be a uniform space with a uniform structure
(Ix,px,lFx), and let J = (J, <) be a directed preordered set. Then a binary
relation =y on X’ given by

r=xsyeVaclydjeIVie J(j<ri=(2;,y)Fx a)

for all ® = (:)ict, ¥y = (Yi)ies € X7, is an equivalence relation on X7 ; hence
X7 =(X7,=x) is a setoid.

Proof. Consider & = (z;)icg € X’. Then for each a € Iy, since (z;,2;) lFx a
for all ¢ € J, we have x =xs x.

Consider @ = (z;)ics, ¥y = (¥i)icg € X’ such that & =y, y. Then for each
a € Iy, there exists j € J such that for all ¢ € J with j <7 4, (z;,4;) Fx q;
hence (y;, ;) IFx a. Therefore y =x. x.

Consider = (2;)ict, ¥ = (Yi)ics, 2 = (2i)ics € X7 such that & =y y and
Yy =x z. Then given an a € Iy, there exists j € J such that (z;,y;) IFx px(a)
for all ¢ € J with j < 4, and there exists j° € J such that (y;,2;) IFx px(a)
for all ¢ € J with j <; i. Therefore, since J is directed, there exists j” € J
such that j < 7" and j' <s j”, and so for each i € J, if j” < 4, then, since
j =gy iand j %; i, we have (x;,y;) Fx px(a) and (y;,2) IFx px(a); hence
(z4,2:) IFx a. Thus ¢ =xs z. O

Proposition 3.19. Let X = (X,=x) be a uniform space with a uniform struc-
ture (Ix,px,Fx), and let J = (J,<) be a directed preordered set. Then a
relation - x s between X'J X X‘] and Iy given by

(,y) IFysae Ty e X [w=x, ' Ny=xs 9
ANFjeIVie(j=<si= (z),y)) IFx a)]

forall a € Iy and ,y € X7 where ' = (2})ics and y' = (¥))ics, gives a
uniform structure (Ix, p%,lFxs) on X7 = (X!, =x1); hence X7 is a uniform
space.

Proof. (1): Consider = (;)ics, ¥ = (Yi)icy. € X’. If ¢ =x; y, then for
each a € Iy, since *x =xs x, y =xs y and there exists j € J such that
(zi,9:) Fx a for all i € J with j <, i, we have (x,y) IFxs a. Conversely,
suppose that (z,y) IFxs a for all a € Iy. Then given an a € Iy, there exist
& = (2))ics, ¥ = (¥))ics € X7 and j' € J such that x =xs ', y =xs ¥’ and
(@}, y}) IFx p%(a) for all i € J with j' < 4. Therefore there exist j”, ;" € J
such that (2, z;) IFx p%(a) for all i € J with j” < i and (v}, ;) IFx p%(a) for
all i € J with j”” < 4. Since J is directed, there exists j € J such that j' < 7,
7" <y jand j” Zj j; hence (z;,y;) lFx a for all ¢ € J with j < 4, by Lemma
3.3 (2). Therefore x =x. y.
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(2): Consider a € Iy and x,y, 2,y € X’ such that € =y, @', y =xs y
and (z,y) IFxs a. Then there exist " = (2/)ics, y" = (¥} )icg € X’ and j € J
such that € =xs 2", y =xv y” and (z/,y)) IFx a for all i € J with j < 1.
Therefore, since ' =xs &” and y' =xs y”, we have (x’,y") IFxs a.

(3): Consider a € Iy and @,y € X’ such that (x,y) IFxs a. Then there
exist © = (2))ics, ¥ = (¥))icg € X’ and j € J such that x =xs @', y =x ¥’
and (z},y}) lFx a for all i € J with j < 4; hence (yj,z}) lFx a for all ¢ € J with
j < i. Therefore (y,x) IFxs a.

(4): Consider a,b € I and x,y € X7 such that a <1y band (z,y) lFxs b.
Then there exist ®' = (2})ics, ¥’ = (¥})ics € X’ and j € J such that & =y, @/,
y=xs Yy and (z,y}) IFx b for all i € J with j < é; hence (y},z}) IFx a for all
1 € J with j < ¢. Therefore (x,y) IFxJ a.

(5): Consider a € Iy and z,y,z € X’ such that (z,y) IFxs p%(a) and
(y,2) IFxs p%(a). Then there exist ' = (2})ics, ¥’ = (y))ics € X’ and j' € J
such that € =xs @', y =xs y' and (z},y}) IFx p%k(a) for all i € J with j' < i,
and there exist y” = (y/)ics, 2’ = (2})icy € X and j” € J such that y =xs y”,
z =xs 2" and (y/,2]) Fx p%(a) for all i € J with j” <; i. Since y' =xs y”,
there exists j” € J such that (y},y/) IFx p%(a) for all i € J with j < i.
Therefore, since J is directed, there exists j € J such that 7' <; j, 5/ < j and
j"" <7 j, and so for each i € J, if j < i, then (2, z}) IFx a, by Lemma 3.3 (2).
Thus (x, 2) IFxv a. O

Lemma 3.20. Let X = (X,=x) be a uniform space with a uniform structure
(Ix,px,lFx), and let J = (J, <) be a directed preordered set. Then for all
a€ly andx = (2:)ics,y = (yi)ies € X7,

1. if (z,y) IFxs p%(a), then there exists j € J such that (z;,v;) IFx a for all
i€ J with j < i;

2. if there exists j € J such that (z;,y;) lFx a for all i € J with j < i, then
(z,y) Fx7 a.

Proof. (1): Consider a € Iy and © = (2;)ics, Y = (Yi)ics € X7, and suppose
that (z,y) IFxs p%(a). Then there exist &' = (2})ics, ¥’ = (y)ics € X’ and
j' € J such that * =xs @', y =xs ¥’ and (z,y) IFx p%(a) for all i € J
with j/ < 4. Since © =xs ' and y =xs y’, there exist j”, 5" € J such that
(wi,2}) IFx p%k(a) for all i € J with j” < 4, and (y;,v}) IFx p%k(a) for all
i € J with j”” < i. Therefore, since J is directed, there exists j € J such that
J'<53,3" <5 jand j” < j, and so

(z},97) Fx pX(a), (2}, ;) Fx px(a), (Wi, i) IFx px(a)

for all ¢ € J with j <; 4. Thus (z;,y;) IFx a for all i € J with j < 4, by
Lemma 3.3 (2).

(2): Consider a € Iy and © = (2;)ics, Y = (Yi)icg € X7, and suppose that
there exists j € J such that (z;,y;) IFx a for all i € J with j < ¢. Then, since
x =xs x and y =xs y, we have (z,y) IFxs a. O

Definition 3.21. Let X and Y be setoids, and let J and J’ be directed pre-
ordered sets. Then a function 7% : X — X 7 is defined by

nx v (0)jes
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for all € X; for each function f : X — Y, a function f7 : X7 = Y7 is defined
by
flixm forx

for all z € X’; for each o € hom(J’,.J), a function ox : X’ — X7 is defined
by
Ox:T+>xTOoC0

for all € X7; in which case
flonx =nyof and ox onk =% -

Lemma 3.22. Let X be a uniform space, and let J be a directed preordered set.
Then ng : X — X7 is a uniformly continuous setoid injection such that

17‘)](0:8%:13

in X7 for all Cauchy net © € X’ ; hence X is a uniform subspace of X”.

Proof. Let (Ix,px,Fx) be a uniform structure on X. For all a € Iy and
x,y € X, if (z,y) Fx a, then, since (z,y) IFx a for all i € J with jo < @
where jo is an inhabitant of J, we have (n%(z),n%(y)) IFxs a, by Lemma
3.20 (2). Therefore n% : X — X’ is uniformly continuous with a modulus
idlx S hOIIl(Ix,Ix).

Consider z,y € X with nf () =xs 7% (y). Then for all a € Iy, since there
exists j € J such that (z,y) IFx a for all i € J with j < 4, we have (z,y) IFx a;
hence z =x y. Therefore ¥ : X — X7 is a setoid injection; see Lemma 3.8.

Consider a Cauchy net = (z;);es € X’ with a modulus o € hom(Iy,J).
Then for each a € Iy, since (zj,z;) IFx a for all 4,7 € J with a(a) <7 7,7,
we have (n%(z;),) IFxs a for all j € J with a(a) < j, by Lemma 3.20 (2).
Therefore % o & converges to « in X7 with a modulus a. O

Lemma 3.23. Let X andY be uniform spaces, and let J be a directed preordered
set. Then for each uniformly continuous function f: X —Y, f7: X7 -y’
is uniformly continuous.

Proof. Let (Ix, px,lFx) and (Iy, py,IFy) be uniform structures on X and Y,
respeetively, let J = (J, <), and suppose that f : X — Y is uniformly continu-
ous with a modulus v € hom(Iy,Ix). Then for all b € Iy and = (2;)jecs, Yy =

(yj)jes € X7, if ,
then, since there exists j € J such that (x;,y;) IFx y(b) for all i € J with j < 1,
by Lemma 3.20 (1) , we have (f(x;), f(y;)) IFy b for all ¢ € J with j < 4; hence

(fox,foy)lrys b, or
(f7 (@), 17 () Iy b,

by Lemma 3.20 (2) . Therefore f7 : X’/ — Y’ is uniformly continuous with a
modulus p% o~ € hom(Iy, Ix). O

Lemma 3.24. Let X be a uniform space, and let J = (J, <) and J' = (J',<1/)

be directed preordered sets. Then for each o € hom(J',J), ox : X7 — X7 is
uniformly continuous whenever for each j € J there exists ' € J' such that

j=<so(f).
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Proof. Let (Ix,px,lFx) be a uniform structure on X, let ¢ € hom(J’,J) be
such that for each j € J there exists j/ € J' with j < o(j'), and consider
a €Ly and & = (2;)jes.y = (yj)jes € X7 with

(@,y) kx5 pX(a).

Then there exists j € J such that (x;,y;) Fx a for all ¢ € J with j < 1,
by Lemma 3.20 (1) ; hence there exists j' € J' such that j <y o(j’). There-
fore for each i’ € J', if j/ < i/, then, since j <7 o(j') <s o(i'), we ahve
(To(ir), Yo(iy) IFx a; hence (xoo,yoo) -5, a, or

(ox(®),0x(y)) IFxs a,

by Lemma 3.20 (2) . Thus ox : X7 — X7 is uniformly continuous with a
modulus p% € hom(Iy, Ix). O

Recall that for all setoids X = (X,=x), ¥ = (Y,=y) and all directed
preordered sets J and J’,
xIxI (XJ’)J
. / ' J
with the bijection (-) : X7*/" — (X7)", and
X' xy’ = (X xY)’

with the bijection (-,-) : X’ x Y/ — (X x Y)’;

() onx = ng onx and (=) 0 (1% X 1) = Ny
Proposition 3.25. Let X = (X,=x) be a uniform space with a uniform

structure (Ix,px,lFx), and let J and J' be directed preordered sets. Then

. , ;T
() : X7 5 (X7 is a uniformly continuous mapping such that for each
a € lX7

(&,9) I )7 Pk (@) = (2, y) IFxaxs a

for all pair of Cauchy nets ¢,y € X‘]X‘I/.
Proof. Let J = (J,<y) and J' = (J',<), and consider a € Iy and & =
(5.0 Ganeaxs ¥ = Wig)Ganeaxs € X7 with

(2,9) I xanor P ().

Then there exists (j, j') € J xJ' such that (x;;,v:) IFx aforall (i,i') € Jx.J'
with (4,7") <ux.Js (i,7'), by Lemma 3.20 (1). Consider ¢ € J with j < i. Then
for all i’ € J' with j' <. i, since (4, ') <y (i,7'), we have (z;.,yi.:) IFx a;
hence (&(i),9(i)) IFys a, by Lemma 3.20 (2). Therefore

(Z,79) I (xory7 @
. , ' J
by Lemma 3.20 (2). Thus (-) : X’*7 — (X7)" is a uniformly continuous

mapping with a modulus p% € hom(Ix,Ix); see Lemma 3.8.
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Consider a € Iy and Cauchy nets = () (jj)esxs» Y = Yjj1) (i) edxs €
X7 with moduli o € hom(Ix,Jx J') and o/ € hom(Ix,J x J'), respcetively,
with

(ii‘,@) H_XwJ p%{(a)a
and note that py, = p%; see Proposition 3.19. Then, since (Z,9) by, v
P> 5 (Px (a)), there exits j € J such that ((zij)jes, (Yij)ies) Fxr px(a)
foralli € J with j < i. Choose k € J such that j < k, mo(a(p% (a))) < k and
mo(a/(p% (a))) < k. Then, since ((xxj/)jrers (Ukj)ires) Fxr px(a), there
exists j' € J' such that (vyir, yk,i) IFx p% (a) for all i’ € J with j' <7 i’. Choose
k' € J' suchthat j' < k', mi(a(p%(a))) < k' and 71 (o/ (p% (a))) < k'. Then
for all (i,i') € J x J' with (k, k') <yxs (i,7'), since (xpp,ykr) Fx p%(a),
a(p%(a)) Ssxg (k, k') and o' (p%(a)) <sxs (k, k'), we have (z;.,zpp) IFx
p%(a) and (yi i, ykr) IFx p%(a); hence (z;4,y; ) IFx a, by Lemma 3.3 (2).
Therefore
(may) |FXJ><J’ a,

by Lemma 3.20 (2). O

Proposition 3.26. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then (-,-) : X x Y/ — (X x Y)L is a uniform isomorphism;
hence

X xy? ~ (X xY)’.

Proof. Let (Ix,px,lFx) and (Iy, py,IFy) be uniform structures on X and Y,
respectively, let J = (J, <), and consider (a,b) € Ix x Iy and (z,y), (2',y’) €
X7 x Y7 with

(), (@",y") Fxsxys (p% % p3)((a,b)),

where @ = (2;)jes, @' = (¢})jes € X7 and y = (y;)jes, ¥ = (V))jes € Y.

Then, since (z,2’) IFxs p%(a) and (y,y’) IFys p3-(b), there exist j, i/ € J such
that (z;,2}) IFx a for all i € J with j <y 7 and (yir,y},) Fy b for all i/ € J
with j/ < ¢/, by Lemma 3.20 (1). Therefore for each i € J, if ub;(j,5') <7 1,
then, since (z;,z}) IFx a and (y;,y;) IFy b, we have ((x;,v:), («}, y}) Fx <y (a,b);
hence

(<33, y>7 <$13/, y>) ‘F(XXY)J (a7 b)

Thus (-,-) : X’ x Y7 — (X x Y)Z is a uniformly continuous mapping with a
modulus p3 x p? € hom(Ix x Iy, Ix x Iy); see Lemma 3.8.

Let mp: X XY — X and 71 : X XY — Y be the projections. Then, since
7o and 7 are uniformly continuous, by Theorem 3.15, mf : (X x V)7 — X/
and 7{ : (X xY)? — Y/ are uniformly continuous, by Lemma 3.23; hence
(md,7{) + (X x V) = X7 x Y7 is uniformly continuous, by Theorem 3.15.

Furthermore, since

(mi,mi) (@, ) = (mg ((, ), 7 (2. 9))
= (oo (z,y),m o (z,y)) = (=,9)

forall z € X7 and y € Y7, (nf,n{) : (X xY)! = X7 x Y’ is an inverse of
) : XTI xY) = (X xY)7. O
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Definition 3.27. For each uniform space X = (X,=x) with a uniform struc-

ture (Ix,px,Fx) and each directed preordered set J = (J, <), let XJ be a
subset of X7 x hom(Ix,.J) given by

=
X" ={(z,a) € X’ x hom(Ix,J) | « is a Cauchy net with a modulus a},
an let 7% : XJ — X’ be a function given by
% (z,a)—x

for all (z,a) € X J. Then a uniform space X7 is a uniform subspace induced
- = J

by a subsetoid X7/ = (X",i%) of X7; see Proposition 3.12. Note that for all

(df, a)a (y7 O/) € XJ and a € lX’

(:B,Oz) =XxJ (y,o/) < T =x7Y, ((:L',Oz), (y7a’)) ”_XJ a4 < (w,y) IFxos a.

Lemma 3.28. Let X be a uniform space, and let J be a directed preordered
set. Then there exists a uniformly continuous setoid injection % : X — X7
which makes the following diagram commute, that is, i% o3 ~ n%; hence X is
a subspace of X7

Proof. Let (Ix,px,lFx) be a uniform structure on X = (X,=x). Then for
each r € X, n{(z) is a Cauchy net with a modulus jo € hom(Ix,J), where jo

~J
is an inhabitant of J. Define a function 7j% : X — X~ by

ix s @ = (1% (2), jo)

for all x € X. Then, since i% o fj% = n¥%, we have i% o fj% ~ n¥%, and, since
n% : X — X7 is uniformly continuous, by Lemma 3.22, 7% : X — X7 is
a uniformly continuous mapping, by Lemma 3.13 (1) and Lemma 3.8. Since
% o 7% is a setoid injection, so is 7%; see Remark 2.9. O

Lemma 3.29. Let X andY be uniform spaces, and let J be a directed preordered
set. Then for each pair of uniformly continuous mappings f,q : X — Y, if
fof% ~ gofi%, then f ~ g; that is, 7% is an epimorphism in the category of
uniform spaces and uniformly continuous mappings.

Proof. Consider uniformly continuous mappings f,g : X’ — Y with fo % ~

g o fi%. Then for each (z,a) € XJ, since % ox — x in X7, by Lemma 3.22,
we have n% o i% (@, a) = % (x,®); hence i% o % o i%(x,0) — % (2, a), by
Lemma 3.28. Therefore 7j% o i% (z, @) — (z,a) in X7, by Lemma 3.13 (2), and

so fong oi%(x,a) = f(z,a) and goff oi%(x,a) — g(x,a) in Y, by Lemma

3.10 (1). Thus f(x,a) =y g(x, o), by Lemma 3.5 (2), and so, since (x,a) € XJ
is arbitrary, we have f ~ g. O
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Lemma 3.30. Let X = (X,=x) and Y = (Y,=y) be uniform spaces with
uniformly structures (Ix, px,IFx) and (Iy, py,Fy), respcetively, and let J and
J' be directed preordered sets. Then for each pair of functions F : X7 — Z‘I/
and G : XJ — hom(Iy,J’) such that for all (x,a) € XJ, F(x) is a Cauchy
net with a modulus G(x,a), there exists a function F : XJ — XJ, such that

~ ~ 7! - . . . . = . .
Foi% ~ iy oF. Furthermore, if F is uniformly continuous, then F is uniformly
continuous.

be

<

Proof. Define a function F : XJ —

F:(x,a) = (F(x),G(z,q))

~J ~ 7/ ~ ~ ~ 7/ ~ -~
for all (z,a) € X . Then, since iy- o F = F o i, we have i{- o F ~ F o i%.
If F: X/ - Y7 is uniformly continuous, then, since F o i X/ 5 v/ is
uniformly continuous, by Proposition 3.12, Z{// oF : X7 5 v is uniformly

o | ~J’
continuous; hence F' : X — Y is uniformly continuous, by Lemma 3.13

(1). O

Proposition 3.31. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then for each uniformly continuous function f : X — Y, there
exists a uniformly continuous mapping f‘] : X7 = Y7 which makes the following
diagram commute, that is, f’ o if ~ 13 o f7 and f7 o 0% ~ 73 o f.

~J ~J

X Nx XJ lx XJ
f f7 i
Y v J J

iy Y iy Y

Proof. Let (Ix,px,IFx) and (Iy, py,lFy) be uniform structures on X and Y,
respeetively, let J = (J,<), and suppose that f : X — Y is uniformly con-
tinuous with a modulus v € hom(Iy, Ix). Then for each Cauchy net & € X~/
with a modulus @ € hom(Ix,J), f/(x), or f oz, is a Cauchy net in Y with
a modulus « oy € hom(Iy,J), by Lemma 3.10 (2). Apply Lemma 3.30 with
F:xw f/(x)and G : (x,a) — ao~y. Then there exists a uniformly continuous
mapping f7 : X7/ — Y7 such that ij o 7~ flo i%. Since f7onf =mni o f,
we have

of ok~ flotk ok~ fTonk ~nfof~ilodiof;
hence f7 o7 ~ 7i{ o f, as i3 is a monomorphism. O
Proposition 3.32. Let X be a uniform space, and let J = (J, <) and J' =
(J', <) be directed preordered sets. Then for each pair of o € hom(J’,J) and

7 € hom(J, J') such that j <; o(7(j)) for all j € J, there exists a uniformly
continuous mapping 6x : X7 — X7 which makes the following diagram com-

’

. - - - - - ~ T/
mute, that is, ox o Li( ~ ng oox and ox o 77)J( ~ 77}](-
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~J ~J
nx tx

oXx ogx
Nx

Proof. Let (Ix,px,Fx) be a uniform structure on X = (X, =x), and consider
o € hom(J',J) and T € hom(J, J) such that j <; o(7(j)) for all j € J. Then
for each Cauchy net 2 € X’ with amodulus o € hom(Ix,.J), ox(x), or zoo, is a
Cauchy net on J’ with a modulus Toa € hom(Ix, J') : in fact, for alla € Iy and
i',j" € J, if T(a(a)) <y ', j', then, since a(a) s o(t(a(a))) <5 o(i'),0(5"),
we have (z(o(i)),z(c(5"))) Fx a, or ((x o o)(¥),(x o 0)(j')) IFx a. Apply
Lemma 3.30 with F : © = ¢”/(x) and G : (x,a) + 7 o a. Then there exists a
uniformly continuous mapping 6x : X7 — X7' such that ox o %~ Zg; 00x.
Since ox 0% = 1%, we have

s s ol PV J Y S
lx ©0XOMNx ~OXOlxOllx ~OXOMNx ~MNx ~Ilx °MNx;
~ ~ ~ 7 ~7" . .
hence Gx o 7% ~ %, as i% is a monomorphism. O

Theorem 3.33. Let X and Y be uniform spaces, and let J be a directed pre-
ordered set. Then there exists a uniform isomorphism (i) : XJ X XJ —
(@)J which makes the following diagram commute, that is, (:3 o (7% %
) ~ ey and (=)o (% x 1) ~ Ty © ()3 hence

—~—

X' xv/~ (X xY)’.

=J ~J ~J ~J
Nx XNy - - Iy XTy
X xY X7 xy’ X7 xy’
i -~ ()
n)J(xY

Proof. Let (Ix,px,lFx) and (Iy,py,lFy) be uniform structures on X and
Y, respectively, and let J = (J, <) with an upper bound function ub; €
hom(J x J,J). Then for each pair of Cauchy nets ¢ = (r;)jes € X’ and
y = (yj)jes € Y7 with moduli @ € hom(Ix,J) and o/ € hom(Iy,J), re-
spectively, (x,y) = ((zj,v;))jes € X x Y’ is a Cauchy net with a modulus
ubyo (axa') € hom(Ix x Iy, J) : in fact, for all (a,b) € Iy x Iy and i,j € J,
if uby(a(a),a’(b)) < 4,7, then, since a(a) < 4,5 and &/(b) < 4,7, we have
(xi,25) Fx a and (y;,y;) IFy b; hence ((z4,%:), (z5,95)) lFxxy (a,b). Define a
function (-,-) :XJ X XJ — ()?ZJY)J by

() ((z,0), (y,0")) = (@, ), uby o (a x o))
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for all (z,a) € XJ and (y,a') € XJ. Then, since (-,-)o (i% X i§) = iy © <-T>,
we have (-,-) o (I X i{,) ~ i%«y © (—,A—J>, and, since (-,-) o (i% x i{) is uniformly
continuous, by Proposition 3.12 and Proposition 3.26, ~37(XY o (-,/v-> . G
Y7 — (X x Y)? is uniformly continuous; hence <—7fv—> : XJ X XJ — (X/;Z?)J
is a uniformly continuous mapping, by Lemma 3.13 (1) and Lemma 3.8. Since
(--) o (% X n5) = Ny we have
Py © () 0 (% ¥ g) ~ (-) 0 (% X i) o (7% X 77
~ () o (% X M) ~ My ~ Dxxy O X xys

hence (-,-) o (7% X 7y-) ~ %y, a8 %y is a monomorphism.

For each Cauchy net (x,y) = ((z;,9;))jes € X x Y’ with a modulus o €
hom(Ix x Iy, J), € = (2;)jey € X’ and y = (y;)jes € Y’ are Cauchy nets
with moduli ao (idy, xbg) € hom(Ix,J) and avo(ag xid;, ) € hom(Iy,J) where
ap and by are inhabitants of Iy and Iy, respectively: in fact, for all @ € Iy
and Z?j € lv if Ol(a,bo) <J iaja thena since ((xuyz)v (xjayj)) IFxxy (a,b()), we
have (z;,z;) IFx a; similarly, for all b € Iy and 4,5 € J, if a(ao,b) <7 i, j, then
(xi,xj) Fx 0. Let mp: X XY — X and m; : X XY — Y be the projections,

and define a function (77, 7{) : (X/;/Y)J S X7 xy’ by

(mg i)« ((2,9),0) = (a0 (idr, x b)), (y, 0 (@5 x idy, )))

e~

for all ({x,y),a) € X XY ; see the proof of Proposition 3.26. Then, since
Zg(xY °© <7Tb],71"1]> = <7T(‘)],7T‘1]> 0 (Zg( x Z{/)a we have Z§(><Y o <770Jv7T1J> ~ <7TOJ77Ti]> °
(id x i{), and, since (7, 7)o (1% x 7{.) is uniformly continuous, by Proposition

3.12 and Proposition 3.26, i% .y o (7], /) : (X x )7 — X7 x Y/ is uniformly

continuous; hence (7, 7{) : (X xY)? — X" x Y" is a uniformly continuous
mapping, by Lemma 3.13 (1) and Lemma 3.8.
&

(m, 7y (X X V)7 — X7 xY7 isan inverse of (,-) : X xV7 — (X x Y)”.
O

Definition 3.34. Let X = (X,=x) be a uniform space with a uniform struc-
ture (Ix, px,lFx). Then a regular net in X is a Cauchy net on the directed
preordered set Ix with a modulus id; = € hom(Ix, Ix).

Let X be a subset of XX given by
X = {x € X'* | x is a regular net},
and let Ix : X — XIX be a function given by
ix i@ (x,idr )

for all € X. Then a uniform space X , called a completion of X, is a uniform
subspace induced by a subsetoid X = (X,ix) of X'x; see Proposition 3.12.
Note that for all z,y € X and a € Iy,

T=; YL T=xI1x Y, (x,y) kg ae (x,y) Fxix a.
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Since ngfx(x) € X for all z € X, we denote ng(x X 5 XX by ny X — X;
note that, since Zﬁ? olx o ng(x ~ ng(x, we have Zﬁ? olx onx ~ Z{,f‘ o ﬁg(x, by

Lemma 3.22; hence tx onx ~ ﬁg(x as Zﬁ? is a monomorphism.

nx ~
X—X
Ix
I
77XX
$ix

Lemma 3.35. Let X be a uniform space with a uniform structure (Ix, px,IFx),
and let J be a directed preordered set. Then

1. if e € X7 is a Cauchy net with a modulus oo € hom(Ix,J), then € oa €
XX is a reqular net;

2. ifx,y € X7 are Cauchy nets with moduli a, o' € hom(Ix, J), respectively,
then for each a € Iy,

(x,y) Fxs px(a) = (xoa,yod’) Fyiy a;

3. ifa,y € X7 are Cauchy nets with moduli o, o' € hom(Ix,J), respectively,
then for each a € I,

(xoa,yod)lFyix pila)= (x,y) Fxs a;

4. ifx,y € X7 are Cauchy nets with moduli o, o/ € hom(Ix,J), respectively,
then
T=xsYSTOQA=yix Yoo

5. if & € X' is a Cauchy net with a modulus o € hom(Ix,Ix), then

Toa =xix .

Proof. Let Ix = (Ix,<1y) with an upper bound function uby, € hom(Ix X
Ix,Ix), and let J = (J,<J)-

(1): Consider a Cauchy net = = (z;)je; € X’ with a modulus a €
hom(Ix,J) and a € Iy. Then for all ¢,¢ € Iy with a <1, ¢, since
a(a) <7 afc),a(d), we have (zq4(c), Ta(ey) IFx a. Therefore x o a € X'x s
a regular net.

(2): Consider Cauchy nets = (z;)jes, ¥ = (y;)jes € X’ with moduli
a,a’ € hom(Iy,J), respectively, and a € Iy such that (z,y) IFxs pk(a).
Then there exists j € J such that (x;,y;) IFx p%(a) for all i € J with j < i,
by Lemma 3.20 (1). Choose i € J such that j < i, a(p%(a)) < i and
a'(p%(a)) < 4. Then for all ¢ € Iy with p%(a) <1, ¢, since a(p%(a)) <s alc),i
and o (p% (a)) <7 a(c), i, we have (z,y;) Fx p%(a), (Ta(e), i) IFx pX(a) and
(Yar(¢),¥i) IFx p% (a); hence we have (Za(c):Yar(e)) IFx a, by Lemma 3.3 (2) .
Therefore (x o o,y o ') Ik y1x a, by Lemma 3.20 (2).

(3): Consider Cauchy nets z = (7;)jes, ¥ = (y;)jes € X’ with moduli
a,a’ € hom(Iy,J), respectively, and a € Iy such that (x o o,y o ') IFyiy
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px(a). Then there exists b € Iy such that (za(),Yar(e) IFx pk(a) for all
¢ € Iy with b <y, ¢, by Lemma 3.20 (1). Choose ¢ € Iy such that b <1, ¢,
and p% (a) <1y ¢ Then for all i € J with uby(a(p%(a)), o (p%(a)) < i, since
(0% (@) < a(c).i and o’ (& (a)) <1 @’(c), i, we have (za(o) Jov(ey) x £ (a),
(Za(e) i) IFx px(a) and (Yar (o), ¥i) IFx p% (a); hence we have (z;,y;) IFx a, by
Lemma 3.3 (2) . Therefore (x,vy) IFxs a, by Lemma 3.20 (2).

(4): Tt follows from (2) and (3).

(5): Consider a Cauchy net ¢ = (v;)jes € X’ with a modulus o €
hom(Ix,J) and a € Iy. Then for all ¢ € Iy with uby, (a,a(a)) <1, ¢, since
a(a) g c and a(a) <5 afc), we have (24(c), zc) IFx a. Therefore, since a € Iy
is arbitrary, we have T o @ =x1x . O

Proposition 3.36. Let X be a uniform space with a uniform structure (Ix, px,IFx
), and let J be a directed preordered set. Then there exists a uniformly continu-
ous setoid injection u}I( : X7 — X which makes the following diagram commute,
that is, V)J( oﬁ‘)]( ~ nx; hence X7 is a subspace of)N(. Especially, Vg(x cXIx 5 X

is a uniform isomorphism with an inverse ix : X — X!X: hence

X ~ X'x,

~J

Nx ~
X — XJ
v
nx h X
X

Proof. Note that for each (x,«a) € XJ, xoa € X, by Lemma 3.35 (1), and
define a function 1/37( : XJ - X by

vy (x,0) = o

for all (z,a) € XJ. For all (z, a), (y,a’) € XJ anda € Iy, if ((x,a), (y,)) IF5,
p% (@), then, since (z,y) IFxs p%(a), we have (zoa,yod’) IF iy a, by Lemma

3.35 (2); hence (z o a,y o «’) Ik a. Therefore v : XJ — X is uniformly

continuous with a modulus p% € hom(Ix, Ix). It is straightforward to see that

v{ + X7 — X is a setoid injection, by Lemma 3.35 (4), and, since v¥ ofj% = 1x,

we have v o % ~ nx.

SIx .
For each (z, ) € X 7, since & o« =x1x @, we have

(ZX © V.{(X)(wa a) =gix X (ngx (z, a)) —XIx ZX(J" © a)

=xix (wo O‘vidlx) =xx (T, ),
and for each & € X, since x oid;, = @, we have

(V)I(X oix)(x) =% V)I(X(Zx(w)) =% V)I(X(ac,idlx) =z xoid;, =3 .

Therefore ix : X — XX is an inverse of V)']( X7 > X. O]
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Lemma 3.37. Let X andY be uniform spaces. Then for each pair of uniformly
continuous mappings f,g: X — Y, if fonx ~ gonx, then f ~ g; that is, nx
is an epimorphism in the category of uniform spaces and uniformly continuous
mappings.

Proof. Consider uniformly continuoub mappingb f.g: X — Y with fo 7]X ~
gonx. Then, since foz/X °77X Ngoz/)I( 077X , we have fouﬁ( NgOI/X , by
Lemma 3.29; hence f ~ fOVX olx ~ goux olx ~ g, by Proposition 3.36. [

Proposition 3.38. Let X be a uniform space with a uniform structure (Ix, px,IFx
), and let J be a directed preordered set. Then Vg(XXJ : XIx<) 5 X and

1/3](“" : XIXIx 5 X are uniform isomorphisms; hence

XIxxJ ~ x and XIxIx ~ X

Proof. Let mg : Iy x J — Iy be the projection, and let 79 € hom(Ix,Ix x J)
be given by
To: G+ (a'a jO)

for all @ € Iy, where jg is an inhabitant of J. Then my € hom(Ix x J, Ix) and
a <15 o (’7’0( )) for all @ € I ; hence there exist uniformly continuous mapping
(To)x : XTx — XIxxJ such that (7o)x o 715X ~ 17, by Proposition 3.32.

Therefore, since tx onx ~ nX and VIX X‘]ong{x *I 1x, by Proposition 3.36, we

have I/g(x J o(To) xolxonx ~ nx and (WO)XOLXOI&,XXJO%(XXJ ng(xx‘] and so
viX* o (W) x oix ~idg and (mo)x oix ovi¥*? ~idgiy«s, by Lemma ?? (??)
and (??). Thus (7o) x oix : X — X'x*7 is an inverse of viX*/ . XIx*J 4 X,
Similarly, for the projection 7y : J x Iy — Iy and 7y € hom(Ix,J x Ix)
given by 71 : a = (jo,a) for all a € Iy, (m1)x olx : X — X7*IX ig an inverse
of v Ix . XIxIx 5 X 0

Proposition 3.39. Let X be a uniform space with a uniform structure (Ix, px,IFx
), and let J be a directed preordered set. Then there exists a uniformly continu-

~J -
ous mapping 9‘] : X — X7XIX which makes the following diagram commute,
that is, 0% o 775( onx ~ny X,

_IxIx

nx 0%

o8
S

Proof. Let X = (X, =x) be a uniform space with a uniform structure (Ix, px,IFx
), and let J = (J, <s) be a directed preordered set.

We show that for each ® € X7*X if & € XJ is a Cauchy net with
a modulus o € hom(Ix,J), then « is a Cauchy net with a modulus (a o
%, p%) € hom(Ix,J x Ix). To this end, consider a € Iy and (j,c), (j',c) €

T Ty with (a(px(a)), £ (a)) <swrx (:c), (7). Then, since (s (a)) <
4.4’ we have ((z;p)ver, . (€5 p)ver, ) kg pk(a); hence there exists b € Iy
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such that (z;p,zj 1)) IFx p%(a) for all ¥ € Iy with b <7, b. Set V/ =
uby, (b, p% (a)). Then, since p%(a) <1y ¢, c,b', we have (zjc,zjp) lFx p%k(a)
and (1, 7)) IFx p%(a); hence (2,2 ) IFx a, by Lemma 3.3 (2). O

Definition 3.40. A uniform space X is complete if nx : X — X is a uniform
isomorphism.

Proposition 3.41. Every Cauchy net in a complete uniform space X converges.

Proof. Let (Ix,px,lFx) be a uniform structure on X, let g : X > X be a
uniformly continuous inverse of nx : X — X, and consider a Cauchy net x
in X on a directed preordered set J with a modulus a € hom(Ix,J), that

is, (z,a) € XJ. Then, since n% oz — x in X7, by Lemma 3.22, we have

i off ox — if(x,a) in X7/, by Lemma 3.28; hence 7j% o & — (z, ) in X7,
by Lemma 3.13 (2). Therefore, since v o 7j% o @ — v¥ (z, @) in X, by Lemma
3.10 (1), we have nx o — v (z,a) in X, and so gonx ox — g(v{(x,a)) in

X, by Lemma 3.10 (1). Thus  — g(v¥(z,a)) in X.
Theorem 3.42. The completion X of a uniform space X is complete.

Proof. Let (Ix,px,lFx) be a uniform structure on X, and note that V){(X :
~Ix =
X — X is a uniform isomorphism, by Proposition 3.36. Define a uniformly

continuous mapping g : XX by
g=v X ol o (v) .

Then, since gong ony ~ V)I(XXIX o@ﬁ(x 077§(X 01X ~ V&XXIX onﬁ?XXIX ~ nx and
Ng0gongonx ~ Ng onx, we have gong ~idg and ngogong ~ g by
Lemma 3.37; hence g o g ~ id):<, by Lemma 3.37. Therefore g : X—>Xisa

uniform isomorphism with an inverse g : X — X.

nx
IX><IX lnd
X X xIx X olx X JIx X
X X
IxxIx Ix
nx N % ng
nx

Theorem 3.43. Let X and Y be uniform spaces. Then

)N(xf/:XxY,

and X XY is complete whenever so are X and Y.
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Proof. Let (Ix,px,IFx) and (Iy,py,IFy) be uniform structures on X and Y,
respectively. Then, since v : XIxxIy 5 X and p¥ >0y . yiIxxIy oy
are uniform isomorphisms, by Proposition 3.38, we have viX ™1 x p[x*Iv .

YixxIv x XIxxIyv 4 X x Y is a uniform isomorphism. Therefore, since
—~—— IxxIy ——— IxxIy

V)I(XXXYIY:XXY %ﬁ/}/andm:)zlxx[yx?]xX[Y—)XxY
are uniform isomorphisms, by Proposition 3.36 and Theorem 3.33, a mapping
g:XXf/—>X><Ygivenby

is a uniform isomorphism. If X and Y are complete, then, since nx : X — X
and ny : Y — Y are uniform isomorphisms, nxy xny : X XY - X xY is a

uniform isomorphism; hence so is nxxy ~go(nx Xxny): X xY = X xY.

~ ~ (=) I I
IxxI IxxI xxly
IxxIy  IxxIy XXy x yix YT XY IxxIy
vx Xl’y/ VXxy
X»v_ ~ —_
X IxxIy o IxxXTy Ix xIy X xY
nx y X xy
nNx XNy NXxY
XxY

O

Definition 3.44. Let X and Y be uniform spaces with uniform structures
(Ix,px,lFx) and (Iy,py,lFy), respectively. Then a function f : X — Y is
locally uniformly continuous if there exists a function z — 7, from X into
hom(ly, Ix), called a family of local moduli, such that for each b € I,

(z,nx(x)) IF g 72(b) and (2, nx(y)) k3 7=(0) = (f(y), f(2)) IFy b
forall ze X and z,y € X

Lemma 3.45. Let X and Y be uniform spaces. Then every locally uniformly
continuous function f: X — Y is a setoid mapping.

Proof. Let (Ix,px,lFx) and (Iy, py,IFy) be uniform structures on X and Y,
respectively, and suppose that f is locally uniformly continuous with a family
z — 7, of local moduli. For all z,y € X, if x =x y, then, for all b € Iy,
since (z,7) IFx Yy (2)(0) and (2,9) IFx Yy (2)(b), we have (nx(x),nx(x)) IF¢
Ynx (2)(0) and (nx (z),mx (¥)) IF 5 Ynx (@) (0) ; hence (f(z), f(y)) IFy b. Therefore
f(z) =y f(y). O

Lemma 3.46. Let X andY be uniform spaces with uniform structures (Ix, px,|Fx
) and (Iy, py,lFy), respectively, and let J be a directed preordered set. Then
for each locally uniformly continuous function f: X — Y with a family of local
moduli z — 7,
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1. forallxe X’ and x € X, if & — x, then fox — f(x);

2. for allxz € X' and o € hom(Ix,J), if  is a Cauchy net with a modulus
a, then fox is a Cauchy net with a modulus & 0 Y(goq) € hom(Iy, J).

Proof. (1): Consider = (z;)je; € X’ and = € X such that  — = with a
modulus 8 € hom(Ix,J). Then for allb € Iy and j € J with B(v,, (2)(0)) <7 Js
since (2, ;) IFx Yy (2)(b) and (z,2) IFx ¥y (2)(b), we have (nx (z), nx (x;)) IF 5
Ynx (2)(0) and (nx (x),nx (2)) IF g Vs (@) (b); hence (f(x;), f(x)) IFy b. Therefore
fox — f(z) with a modulus 3 o v, (z) € hom(Iy,J).

(2): Consider a Cauchy net © = (v;)jes € X’ with a modulus o €
hom(Ix,J). Then for all b € Iy and j,j' € J with a(Y@goa)(b)) <5 4,5’
since (Zqa(c), Tj) IFxX V(@oa) () and (za(c), 2j7) IFx V(@woa)(b) for all ¢ € Ix with
Y(moa)(b) <1y ¢, we have (f o o, nx(2;5)) IF g V(@oa)(b) and (f o o, nx (z4:)) IF¢
Y(zoa)(b); hence (f(x;), f(x;)) IFy b. Therefore foa is a Cauchy net in Y with
a modulus & 0 Y(goq) € hom(Iy,J). O

Remark 3.47. For each pair of setoid mappings f,g : X — Y between uniform
spaces X and Y with f ~ g, f is locally uniformly continuous if and only if
g is locally uniformly continuous. Let X = (X,=x), Y = (Y,=y) and Z =
(Z,=z) be uniform spaces with uniform structures (Ix, px,Fx), (Iy, py,IFy)
and (Iz,pz,lFz), respectively. Then the composition go f : X — Z of locally
uniformly continuous functions f: X — Y and ¢g: Y — Z with families z — ’yg
and 2z’ — 77, of local moduli, respcetively, is locally uniformly continuous with a

family z — ~vf o 'yélfozw 0 of local moduli. Every uniformly continuous function

f+ X — Y with a modulus v € hom(Iy,Ix) is locally uniformly continuous
with the constant function z — px o~ as a family of local moduli.

Lemma 3.48. Let X andY be uniform spaces, and let J be a directed preordered
set. Then

1. for each pair of locally uniformly continuous mappings f,q: X’ = Y, if
foix ~goik, then f ~g;

2. for each pair of locally uniformly continuous mappings f,g : X — Y, if
fonx ~gonx, then f ~g.

Proof. O

Proposition 3.49. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then for each locally uniformly continuous mapping f : X =Y,
there exists a locally uniformly continuous mapping f” : X7 — Y7 which makes
the following diagram commute, that is, f” oid ~ iy, of" and fJ o7y ~ iy o f.
Furthermore, such an f‘] s unique in the sense that for each locally uniformly
continuous mapping h: X7 — Y’ if ho % ~ 73 o f, then h ~ f'].

~J ~J
X Nx XJ Lx XJ
f f7 17
Y yJ V&
iy 4
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Proof. O

Theorem 3.50. Let X and Y be uniform spaces. Then for each uniformly
continuous (respectively, locally uniformly continuous) function f : X — Y,
there exists a uniformly continuous (respectively, locally uniformly continuous)
Junction f : X — Y which makes the Jollowing diagram commute, that is,
fonx ~ ny o f. Furthermore, such an f is unique in the sense that for each
locally uniformly continuous mapping h : X =Y, if honx ~nyof, then h ~ f

nx

X X

Proof. O

Remark 3.51. For uniform spaces X and Y, it is straightforward to see that
if X ~ Y, then X ~ Y for uniformly continuous mappings f,g : X — Y, if
f ~ g, then f ~ §; furthermore idx ~ idg, and (JT;Z)) ~ f o § for uniformly
continuous mappings f : X — Y and ¢g : Y — Z among uniform spaces X, Y
and Z.

4 Topological vector spaces and lattices

4.1 Real numbers

Proposition 4.1. Let pg and lFg be a monotone function from N into N and
a relation between Q x Q and N defined by

po(n) =n+1,
(P g)Fgnelp—ql <g27"
for alln € N and p,q € Q, respectively. Then (N, pg,lt-q) is a uniform structure
on the setoid Q = (Q,=q) such that the addition (p,q) — p+q, the inverse p —

—p and (p,q) — maxqg(p,q) are uniformly continuous, and the multiplication
(p, q) — pq is locally uniformly continuous.

Proof. O

The uniform space R of real numbers is the completion Q of the uniform
space Q.
Lemma 4.2. The setoid R is stable.
Proof. Consider s = (pn)nenst = (gn)nen with =—(s =g t). Given an n € N,
assume that [pn,, — ¢m| >q 27" for some m € N with n + 2 < m. Then for all
m' € Nwithn+2 < m’, since [pm —pm| <o 27" and |g,n — g | <@ 2712,
we have

Ipm' — Qm’l ZQ |pm - Qm| - |pm _pm" - |Qm - Qm’|
>Q 2—n _ 2—(n+2) _ 2—(n+2) =0 2—(71—&-1)'
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If s =g t, then there exists n’ € N such that |py, — gn/| <o 2~ (n+1) for all
m’ € N with n’ < m/; hence |p — gm| <o 27 for m/ = max(n + 2,7'), a
contradiction. Therefore —(s =g ), a contradiction, and so |pm, — ¢m| <g 27"
for all m € N with n +2 < m. Thus s =g ¢. ]

Proposition 4.3. The setoid R is a unitary commutative ring with the zero
element 0 = ng(0) and the unity element 1 = ng(1), and a semilattice such that

1. maxg(s,t) +r =g maxg(s + r,t + r);
2. if 0 <g 7, then maxg(s,t)r =g maxg(sr,tr)
for allr,s,t € R.
Proof. O

The uniform space Q of rationals is a uniform subspace of R with a function
ng : Q — R, and then

p=gq<= o) =rm0(@);, ne(p+q) =r o) +n0(q), mo(=p) =r —1e(p),
no(pa) =r mo(p)ne(a), mo(maxg{p, ¢}) =r maxe{ng(p), no(q)}

for all p,q € Q.

Lemma 4.4. The canonical partial order <g on R is quasi-total.

Proof. Consider s = (pp)nen,t = (¢n)neny with =(s <g t), and note that, since

| max{pn, ¢} — max{pm, ¢m}| <o max{|p, — pml, g0 — @m|}

for all n,m € N, we have (max{pn, ¢n})neny € R, and, since ng(pm) — s and

no(gm) — t, we have ng(max{pm, ¢m}) =r max{ng(pm), no(gm)}) — max{s,t};
hence max{s, t} =g (max{pn, ¢n})nen. Given an n € N, assume that ¢,, —pm >0
27" for some m € N with n +2 < m. Then for all m’ € N with n +2 < m/,
since [pm — pmr| <o 272 and |gm — gmr| <@ 2712, we have

P’ — Gm' <Q —(@m — Pm) + |Pm — P | + [ — G|
<Q _9g—n + 2*(7@4’2) + 27(n+2) =0 727(n+1);

hence
0 SQ max{pm,, Qm’} —qm’ =Q max{pm/ — Qqm/, 0} SQ maX{O’ _2_(”+1)} =0 0.

Therefore max{pm/,¢m'} =@ gm’ for all m’ € N with n +2 < m/, and so
max{s,t} =g t, or s <g t, a contradiction. Thus for all m € N with n + 2 < m,
Gm — P < 277, and 50

| max{pm, ¢m} — Pm| =@ max{pm, @} — pm =g max{0, ¢gm — pm}
< max{0,2” ("D} = 2= (D) < 971,

This entails that max{s,t} =g s, or t <g s. O
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Lemma 4.5. Let #r be a binary relation on R given by
s#rt<In € NIm e NVm' e N(m <m' = |pm — ¢r| >0 27")

for all s = (Pn)nen,t = (Gn)neny € R. Then #r is a tight apartness on R such
that

1. if (s+7) #r (t+ 1), then s #g t;

2. if st #r tr, then s #g t;

3. if max{s,r} #r max{t,r}, then s #gr t
for allr,s,t € R.
Proof. O
Lemma 4.6. The join maxg : R x R — R s strongly extensional.
Proof. O
Proposition 4.7. The following hold.

1. if s <g t, then —(t <g $);

2. ifs<gt andt <g T, then s <g r;

3. if s<wt, then s <gr orr <gt;

4. s#rtif and only if s <g t ort <g s;

5. s <gt if and only if ~(t <g $)
for all s, t,r € R.
Proof. O
Theorem 4.8. The setoid R is an Archimedean ordered field.
Proof. O
& subspace [0, 1]

4.2 Topological vector spaces

Definition 4.9. A wvector space (over R) is a setoid X = (X,=x) equipped
with a setoid mapping (z,y) — x+y of X x X into X, called addition, a setoid
mapping x — —z of X into X, called inverse, a setoid mapping (s,z) — sz of
R x X into X, called scalar multiplication and an element 0 of X, called the
zero element, such that

(@+y)+z=xa+(y+2), r+ty=xy+u,
r+0=xz, v+ (—x) =x 0,
s(x+y) =x sz + sy, (s+t)x =x sx + tz,
s(tx) =x (st)z, le=x=z

for all x,y,z € X and s,t € R.
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Example 4.10. Let F[0, 1] be the set of setoid mappings of [0, 1] into R. Then
the setoid F[0, 1] = (F[0, 1], ~) is a vector space equipped with addition, inverse,
scalar multiplication and zero element given by

(f+9)(x) = f(z) +g(x), (=h)(@) = —f(2),
(sf)(x) = sf(x), O(z) =0
for all f,g € F[0,1], s € R and z € [0, 1].

Definition 4.11. Let X = (X, =x) is a vector space. Then a linear functional
on X is a setoid mapping f : X — R such that

flez+y)=r f(z)+ f(y) and f(sz) =r sf(z)
for all z,y € X and s € R.

Definition 4.12. A topological vector space is a vector space X = (X,=x)
equipped with a uniform structure (Ix, px,IFx) such that

1. the addition 4+ : X x X — X is uniformly continuous;

2. there exists a function ¢¥ : Iy x X — N such that for each a € I y,
(0,s7) IFx a

for all z € X and s € R with |s| <g 2*5)((“*””);

3. for each a € Iy,
(0,2) IFx a=(0,s2) IFx a

for all z € X and s € R with |s] <g 1.

Remark 4.13. & radial (absorbing)
& circled

Lemma 4.14. Let X be a topological vector space. Then the inverse x — —zx
is uniformly continuous, and the scalar multiplication (s,z) — sz of R x X is
locally uniformly continuous.

Proof. O
Theorem 4.15. If X is a topological vector space, then so is its completion X .

Proof. O

4.3 Topological vector lattices

Definition 4.16. A vector lattice is a vector space X = (X, =x) such that X
is a semilattice, and

L (z+2)V(y+2)=x (zVy)+2z
2. if 0 <g s, then s(z Vy) =x (sz) V (sy)

for all x,y,z € X and s € R.
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Example 4.17. Let CJ0, 1] be a set given by

C[0,1] ={(f,7) € E[0,1] x hom(N,N) |

f is uniformly continuous with a modulus ~v },

and let =¢0,1) be an equivalence relation on C[0, 1] given by

(fs Vf) =cp,1) (9,77) & f =F01) 9-

Then the setoid C[0,1] = (C[0,1],=¢jo,1}), is a vector lattice equipped with
addition, inverse, scalar multiplication and zero element given in Example 4.10
with appropriate moduli, and join given by

(f,77) vV (9.79) = (maxg o(f x g), maxg o(y/ x 79) o pg)
for all (f,~7),(g,79) € C[0,1].
Lemma 4.18. Let X = (X,=x) be a vector lattice. Then
1. ife<xwy,thenx+z<xy+z;
2. ifx <xy and 0 <g s, then sx <x sy
forall z,y,z € X and s € R.

Proof. (1): For all z,y,z € X, if x <x vy, then, since x Vy =x y, we have
(x+2)Vy+z2)=xazVy+z=xy+z hencex+2<xy+z

(2): Forallz,y € X and s € R, if # <x y and 0 <g s, then, since 2Vy =x vy,
we have (sx) V (sy) =x s(x Vy) =x sy; hence sz <x sy. O

Proposition 4.19. Let X = (X, =x) be a vector lattice, and let (x,y) — x Ay
be a setoid mapping of X x X into X, called a meet, given by

rANy=—(—zV —y)
forall x,y € X. Then

e A(YANz)=x (xANy)ANz, zAy=xyAz, xAx=x1,
zV(xAy)=xz, zA(@xVy) =xzx

Jor all x,y,2 € X. Furthermore, * <x y<x Ay =x x and x Ay is the greatest
lower bound of {x,y} for all x,y € X.

Proof. 1t is straightforward to see the first three equations. To see the rest,
consider z,y € X. Then, since —z <x —zV —y, we have t Ay <x x, by Lemma
4.18 (1); hence z V (z A y) <x x. Therefore, since x <x z V (z A y), we have
zV (xAy) =x x. Since x <x x Vy, we have —(z Vy) <x —z, by Lemma 4.18
(1); hence —x V —(z Vy) <x —x. Therefore x <x = A (x V y), by Lemma 4.18
(1), and so, since —x <x —x V —(z Vy), we have z A (z Vy) <x z, by Lemma
4.18 (1). Thus z A (z Vy) =x =.

If x <x vy, then, since x Vy =x y, we have x ANy =x z A (z Vy) =x x;
conversely, if x Ay =x x, then, since x Vy =x (xAy)Vy =x y, we have z <x y.
Since (zAy)Ve =x z and (xAy)Vy =x y, we have x Ay <x z and z Ay <x y.
For each z € X, if z <y x and z <x v, then, since 2z Ax =x z and z Ay =x 2,
we have z A (x Ay) =x (zAx) ANy=x 2 Ay =x z; hence z <x x Ay. O
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Lemma 4.20. Let X = (X,=x) be a vector lattice. Then
lL.x+y=xzxzVy+zANy,
2. (x+2)AN(y+2)=x (@ Ay)+2;
3. if 0 <s, then s(x Ay) =x sz A sy
forall x,y,z € X and s € R.
Proof. (1): For all z,y € X, since
—zV—-y+(@+y =x(—r+z+y)V(-y+z+y) =xyVe=xzVy,

wehavex +y=x zVy— (—zV —y)=x Vy+ 2 Ay, by Lemma 4.18 (1).
(2): For all z,y,z € X, we have

(@+2)A(y+2) =x —(x—=2)V(-y—2) =x —((-2V—y) —2) =x (€Ay)+ 2
(3): For all z,y € X and s € R, if 0 < s, then
s(xANy) =x —s(—x V —y) =x —(—sz V —sy) =x sz A sy. O

Proposition 4.21. Every vector lattice X = (X,=x) is a distributive lattice,
that is, tV (y N z) =x (xVy)A(xVz) orzA(yVz)=x (xAy)V (xAz) for
all x,y,z € X.

Proof. Let x,y,z € X. Then, since x <x xVzand yANz <x 2z <x =V z,
we have ¢V (y A z) <x z V z; similarly, we have z V (y A z) <x y V z. Hence
xV(yAz) <x (xVz)A(yVz). Let w= (xVy)A(xVz). Then, since w <x xVy,
we have w+ Ay <x cVy+zAy=x =+y, by Lemma 4.20 (1); similarly, we
have w +x A z <x x + z. Hence

wH(@xAyAz)=x wH+(@xAyAzAz)=xw+ (xA2)A(yA2)
<x (wH+zAyY)A(w+zAz)<x (x+y)A(z+2)
=xz+ (yA=z2),

by Lemma 4.20 (2). Therefore, since, by Lemma 4.20 (1),
r+YNz)=xzV(yAz)+(xAyAz),
we have w <x x+ (yAz) —(x AyAz)=x zV (yAz). Thus

eV (yAz)=x (zVy A(zV=2).

Definition 4.22. Let X = (X,=x) be a vector lattice. Then the subset
Cx={zeX|0<x z}
is called a positive cone of X; note that Cx = (Cyx,<x) with ubg, =V €

hom(Cy x Cy,C ) is a directed preordered set.
A linear functional f on X is positive if 0 <g f(x) for all x € C.
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Example 4.23. Let R: C[0,1] — R be a function given by

R(f) = [ £
where [ is the Riemann integral, for all (f,v) € C[0,1]. Then R is a positive

linear functional.

Definition 4.24. Let X = (X, =x) be a vector lattice, and let ()T : X — X,
()7 : X = X and |- | : X — X be setoid mappings given by

T =2VO0, x” = (—z) V0, |z| =2V (—x),

respectively, for all z € X; note that 27,2~ € Cy. Two elements z,y € X are
disjoint if |x| A |y| =x 0.

Lemma 4.25. Let X = (X,=x) be a vector lattice. Then
1.o=xat —a;
2. % and x~ are disjoint;

3. for each pair of disjoint elements u,v € Cx, if v =x u—v thenu =x z"
and v =x x~;

4. |—z|=x|z|=x 2t +27 € Cx;
5. for each s € R, if 0 <g s, then (sz)™ =x szt, (sz)” =x sz~ and
|sx| =x s|al;
6. x and y are disjoint if and only if |z| V |y| =x |z| + |yl;
7. if x and y are disjoint, then (x +y)* =x 2T +yT, (x+y)” =x ™ +y~
and |z +y| =x [x] + [y|
forallx,y,z € X.
Proof. Let x,y,z € X. Then

(1) z2=x2+0=x2V0+a2A0=x2V0—(—2)V0=x 2t —a, by
Lemma 4.20 (1).

(2):

P AT =x (T -2 )A0+ 2" =x 2 A0+2" =x —(—2xV0)+a~
=x —r +z° =x0,
by Lemma 4.20 (2) and (1).

(3): Consider u,v € Cx such that u Av=x 0 and x =x u — v. Then, since
u=x r+vand v=x u—z, we have ¢ <x u and —z <x v; hence 27 < u and
x~ < wv. Note that, sinceu—v=x r=x zt —z7, wehaveu —zt =x v—z".
Then, since © — T <x uw and v — 2~ <x v, we have

0<xu—zt=x (u—a2)A(u—a2")=x (u—at)A(v—27)

<x uAv=x0;

hence v =x zt. Similarly, we have v =x x~.
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(4):
| —2|=x —2V—(—2)=x —sVar=xz+(-22) VO=x z+2(—2 vV 0)
=xz+2 =x (2" —27)+ 20" =x 2T +2~ €Cy,

by (1).
(5): for each s € R, if 0 <g s, then (sz)™ =x (sz) V0O =x s(zV0) =x szT
and, similary, (sz)” =x sz~ ; hence

|sz| =x (s2)T + (s2)” =x szt + 527 =x s(zT +27) =x s|z],

by (4).

(6): |zl+[yl =x [z[V|y[+|z|Alyl, by Lemma 4.20 (1); hence |z[Ax [y| =x O
if and only if |x| + |y| =x |z| V |y|.

(7): Assume that z and y are disjoint, and note that, since

0<xz" Ayt 2™ Ay~ <x |z|Alyl =x 0,

T and y*, and 2~ and y~ are disjoint, respectively. Then, since, by (4) and

(6),

(T +y) Vv +y ) =x @t vy v vy )=x T va)Vv(yTvy)
=x (" +27) V(" +y7) =x |z V]yl
=x [z + ]yl =x (@ +27) + (" +y7)
=x (@ +y )+ (@ +y7),

2T +y* and ™ + y~ are disjoint, by (6). Therefore, since
rty=x @ -2 )+ -y )=x @ +y") - (@ +y),
we have (z +y)T =x 27 +yT and (r+y)” =x 2~ +y~, by (3), and so
[z +yl=x (@ +y) " +(@+y)” =x @ +y")+ (@ +y)
=x (@ +27) + (" +y7) =x |z + 1y,
by (4). O
Lemma 4.26. Let X = (X,=x) be a vector lattice. Then

L |z +yl <x |z[ + |yl;

IS

- sl <x [s]]a];

o

SeVe—y Vel <x |z -yl

B

S Az—yAz| <x |z —yl;

v

Szl ) Au<x |zl Au+ fy] A

D

sz Au <x (Js] + 1) (2] A w);

<

e Alyl =2 Alzl] <x ly = 2| Al

forallz,y,ze X, se R andu e Cx.
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Proof. Consider z,y,z € X, s € Rand u € Cx. Then
(1): Since z, —x <x |z| and y, —y <x |y|, we have

r+y<x|z|+ |yl and —(r+y) =x —v—y <x |2+ |y;

hence |z + y| <x |z| + |y|.
(2): For each s € R, we write s™ and s~ for maxg(s,0) and maxg(—s,0),
respectively. Then

|sz| =x |(sT —s7)z| =x |sT2 — s 2| <x |sTx| +| -5 2|
=x [stx|+[s7 x| =x sT|z| + 57 |2| =x (sT +57)|z|

=x |slx],

by (1) and Lemma 4.25 (4) and (5).
(3): Since, by (1),

r<x|lz—y|l+y<x|r—yl+yVvz and z2<xyVz<xl|r—yl+yVz,

we have ¢V z <x |t —y| +y V z; hence x V z — y V z <x |z — y|. Similarly, we
have y Vz — 2V z <x |z — y|. Therefore |tV z—yV z| <x |z —y|.

(4): Since by (1), 2Nz <x z <x [z —y|+yandz Az <x z <x |z —y|+z,
we have 2 Az <x (lz —y|+y) A (Jx —y|+2) =x |x —y|+y Az, by Lemma 4.20
(2); hence £ Az — y A z <x |z — y|. Similarly, we have y Az —x A z <x |z — y|.
Therefore [t Az —y A z| <x |z —y|.

(5): Since (Jz]+ [yl) A <x |2l + |yl and (ja] + lyl) Aw <x u <x ut |y, we
have (|z[ +[yl) Au <x (Jo] +[y[) A (u+ |y|) =x (Jz[ Aw) + |y|, by Proposition
4.19 and Lemma 4.20 (2). Therefore, since (|z|+|y|) Au <x v <x (Jz| Au)+u,
we have

(e[ +1y[) Aw <x (lz[ Aw+[y]) A (J2] Autu) =x [z Au+ |yl Au,

by Proposition 4.19 and Lemma 4.20 (2).
(6): Since, by (2), |sz| Au <x |sz] <x |s|lz| <x [s[[z] + || =x (|s| + 1)|z|
and [sz| Au <x u <x |s|lu+u=x (|]s| + 1)u, we have

[se[ Au <x (Is| + D] A (s] + Du =x (Is| + 1) (|z] Aw),

by Proposition 4.19 and Lemma 4.20 (3).

(7): Since z A |y| <x = <x |z| +z and z A |y| <x = <x |z| <, |z| + ||, we
have zAly| < (|z|+z)A(|z]+|2]) =x |x|+2A|z| by Proposition 4.19 and Lemma
4.20 (2); hence zAly|—xzA|z| <x |z|. Similarly, we have zA|z|—2A|y| <x |z|, and
so |z Ayl —xzA|z|| <x |x|, by Proposition 4.19. Since, by (1), |y| <x |ly—z|+|z|
and 2| <x [y—z|-+|y|, we have [y] — |+ <x |y—z| and |2|— |y| <x Jy—2]; hence
[ lyl—2Al2l| <x llyl~J2l] <x ly—z|. Therefore [zAly| A 2] <x ly—2|Alz],
by Proposition 4.19. O

Definition 4.27. A vector lattice X = (X,=x) is Archimediean if for each
x € X, x <x 0 whenever there exists y € X such that z <x 27"y for all n € N.

Lemma 4.28. Let X = (X,=x) be an Archimedean vector lattice. Then

1. if 0 <x z, then maxg(s,t)z =x sz V tx;
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2. if 0 <x x, then ming(s,t)r =x sz A tz;
5. [sz] =x |slla]
foralls,t e R and z € X.

Proof. (1): Consider s,t € R and € X with 0 <x x. Then, since s,t <g
maxg(s,t), we have sz, tx <x maxg(s,t)x, by Lemma 4.18 (2); hence sxVtar <x
maxg(s,t)z. For each n € N, either maxg(s,t) <g s+ 27" or maxg(s,t) <g
t+ 27", by Lemma & ; in the first case, we have

maxg(s,t)r <x (s +27 ")z <x szt +27"x <x sz Vitr+2 "z

in the second case, similarly, we have maxg(s,t)x <x sz Vtx+ 2 "z. Therefore
maxg(s,t)r —sxVitr <x 27"z for all n € N, and so maxg(s,t)x — sz Vizr <x 0,
that is, maxg(s,t)r <x sz V tx. Thus maxg(s,t)x =x sz V tx.
(2): For all s,t € R and z € X with 0 <y z, since maxg(—s, —t)x =x
(=sx) V (—tz), by (1), we have
ming(s,t)z =x —(maxr(—s, —t)z) =x —((—sx) V (—tz)) =x sz Atx.

(3): For each s € R, we write sT and s~ for maxg(s,0) and maxg(—s,0),
respectively. Then for all s € R and x € X, since ming(s™,s™) =g 0, we have
stlz| A s7]z| =x ming(sT,s7)|z] =x 0, by (2); hence st|z| =x |sTz| and
s7|x| =x |sTxz| =x | — s~ x| are disjoint, by Lemma 4.25 (4) and (5). Therefore

|s|lz] =x (s7 4+ s7)|z] =x sT|z| + 57 [z =x [sT2| + | - s 2]
=x |stz —s7z| =x [(sT — s7)z| =x |sz],
by Lemma 4.25 (7). O

Definition 4.29. A topological vector lattice is a vector lattice X = (X,=x)
equipped with a uniform structure (Ix, px,!Fx) such that

1. X is a topological vector space with the uniform structure;
2. the join V: X x X — X is uniformly continuous;

3. for each a € Iy,
0,y) Fx a=(0,z) IFx a

for all z,y € Cyx with z <x y.
Remark 4.30. & the positive cone C'y is normal
Lemma 4.31. Every topological vector lattice is Archimedean.

Proof. Let X = (X, =x) be a topological vector lattice equipped with a uniform
structure (Ix,px,lFx), and consider z,y € X such that x <x 27"y for all
n € N. Then 27 =x (27"y)t <x 27"y" for for all n € N. Therefore for

each a € Iy, since 27 <x 2*5)((avy+)y+ and (0,2*§X(avy+)y+) IFx a, we have
(0,27) IFx a. Thus ¥ =x 0, and so = <x 0. O

Theorem 4.32. If X is a topological vector lattice, then so is its completion
X.

Proof. O
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5 Integration theory
An abstract integration space is a vector lattice X = (X, =x) equipped with a
positive linear functional F on X.

Example 5.1. (C]0,1], R) is an abstract integration space; see Example 4.17
and Example 4.23.

In the following, we fix an abstract integration space (X, E).

5.1 Integrable functions
Lemma 5.2. Let =, be a binary relation on X given by
r=pyeneN(E(z—y|) <g2™")

for all z,y € X. Then =p, is an equivalence relation on X; hence L = (X, =r)
is a setoid.

Proof. 1t is trivial that for all z,y € X, x =p « and if x =, y then y = z. For
all z,y,z € X, if x =p y and y =, z, then, since E(jz — y|) <g 2-(+1) and
E(lz —y|) <g 27+ for all n € N, we have

E(jz - 2[) <r E(jz —y|) + E(jy — 2|) <g 27D 4 27(F0 —p 97n
for all n € N; hence x =, 2. O

Proposition 5.3. Let p;, and IFp be a monotone function from N into N and
a relation between X x X and N defined by

pr(n)=n+1 and (,y) IFpne E(lz —y|) <g 277,
respectively, for alln € N and (z,y) € X x X. Then (N, pp,lF1) is a uniform
structure on the setoid L = (X, =r).

Proof. (1): For all z,y € X, if x =, y, then, since E(|x — y|) <g 27" for all
n € N, we have (z,y) Iz n for all n € N; conversely, if (z,y) IF1 n for all n € N,
then E(Jx —y|) <g 27" for all n € N; hence x =, y.

(2) For all n € N and z,2",y,y € X, ifx = o/, y =1 v and (x,y) Ik n,
then, since F(|z — 2'|) <g 27V and E(|ly — ¢/|) <g 27*V for all m € N,
we have

E(l2" = y']) <e B(l2" — z)) + E(jz —y]) + E(ly — y'])
SR 27(m+1) + 2771 + 27(m+1) = 27m + 277’7,
for all m € N; hence E(|z’ —y'|) <g 27". Therefore (2, ') IFL n.

(3): Straightforward.
(4): For all myn € Nand z,y € X, if m <n and (z,y) Ik n, then

E(lz —y|) <p 27" <g 27™;

hence (z,y) IFr m.
(5): For alln € N and z,y,2z € X, if (x,y) Ik pr(n) and (y, 2) kL pr(n),
then, since E(|z —y|) <g 2~ "*Y and E(|ly — z|) <g 27"*1), we have

E(jz - z|) <g E(|lz — y|) + BE(ly — 2|) <g 2~"*D 4 2=(n+1) —p om0,

hence (z,z2) IFp, n. O
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Proposition 5.4. L is a topological vector lattice.

Proof. Let v* € hom(N,N x N) be given by v"(n) = (n+1,n+1) for all n € N,
and consider n € N and (z,y), (2/,y’) € L x L such that

((xay)a (x/ay/)) IFLXL ’}/JF(TL)

Then, since (x,2') Ik n+ 1 and (y,9’) IFr n+ 1, we have
E(l(z+y) = (&' +y)]) <e E(l(z = 2") + (y = y)])
<p E(jlz — 2| + 1y = ¥])
=r E(lz —2'|) + E(ly — ¥'|)
<g 2—(n+1) + 2—(n+1) =g 2—n7
by Lemma 4.26 (1); hence (x + ',y + 9') I n. Therefore + : L x L — L is
uniformly continuous with a modulus 7.

Let vV € hom(N,N x N) be given by vV(n) = (n+ 1,n+ 1) for all n € N,
and consider n € N and (x,y), (¢/,y") € L x L such that

((,9), (=", 9) FLxr 7" (n).
Then, since (z,z’) Ik n+ 1 and (y,y') IFL n+ 1, we have
E(lzvy—2'Vy'|)=r E(|(xVy—2'Vy)+ (' Vy—a"Vy)|)
<k E(lzVy—a' vyl + 2" vVy—2a' V)
<z E(jlzVy—2a'Vvy|)+ E(l2" vy -2’ vy
<z E(lz —2'[) + E(ly — ¢'|)
<p 27D 4 27D =5 97

by Lemma 4.26 (1) and (3); hence (z+2',y+y’) IFr n. Therefore V: Lx L — L
is uniformly continuous with a modulus vV.
O

We write £ for the completion L of the topological vector lattice L, and
call an element of £ an integrable function over the abstract integration space
(X, E).

Proposition 5.5. There exists a uniformly continuous mapping [ : £ — R
such that

1. [np(z) =r E(2),
2. [(f+9) == [+ [,
3. [(sf)=rs[ [,
4. if0<g f, then0<g [ f
forallz €L, f.ge £ and s €R. For f € £, [ f is called the integral of f.
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Proof. Consider n € N and z,y € L with (z,y) IFr n, and note that, since
r—y<xl|rx—yland y —z <x |z —y|, we have E(x) — E(y) <g E(]z —y|) and
E(y) — E(z) <g E(|z — y|); hence |E(z) — E(y)| <g E(]z — y|). Then, since

[E(z) = E(y)| <z E(lz —y]) <e 277,

we have & (E(z), E(y)) IFg n. Therefore E : L — R is a uniformly continuous
mapping, and so there exists a uniformly continuous mapping E : £ — R such
that ng o £ = Eo 1L, by Theorem 3.50. Since R is complete, there exists
a uniformly continuous mapping eg : R — R such that eg o nr = idg. Let
[=c¢ro E. and note that

/UL(JT) =g er(E(nL(2))) =r cr(mr(E(2))) =g E(z)

for all x € L. Then, since

/ (no(2) +10.()) = / no(@ + ) =r Bz +)
—p E(z) + E(y) =n / nu(z) + / no(v)

for all z,y € L, we have [(f+g)=r [ f+ [ g for all f,g € £. Similarly, since

/SUL(%") =R /HL(SI) =g E(sz) =g sE(z) =g S/HL(JU)

forall z € L and s € R, we have [sf =g s [ fforall f e £ and s €R.

Consider f = (p)neny € £ with 0 <g f. Then, since (1)t : £ — £ is
uniformly continuous and g (z,,) — f by Corollary ??, we have (nr(z,))" —
/1, and, since fT =¢ f and (np(z,))" =e no(x}) for all n € N, we have
nr(z;7) — f. Therefore, since [ : £ — £ is uniformly continuous and

0<g E(z}) =g /nL(xi)

for all n € N, we have 0 <g [ f. O

Proposition 5.6. Let (f,)nen be an increasing sequence of integrable functions,

that is, fn <g¢ fn+1 for alln € N. If ([ fo)nen converges in R, then (fy)nen
converges in L.

Proof. Suppose that ([ f,)nen converges in R. Then ([ f,,)nen is a Cauchy se-
quence, by Proposition ?7?; hence there exists a Cauchy modulus a € hom(N, N)
such that for each n € N, | [ fi, — [ for| < 27" for all m,m’ € N with
a(n) <m,m'.

Given ann € N, consider m, m’ € N such that a(pg(n)+1) < m < m'. Then,
since fm <g fins, we have [ fr, <g [ fur; hence [ for— [ frn < 2702+ Tet
fm = (@n)wen and frr = (Yn')nren. Then, since nr (2 ) = fim, 1L(Yn') = for
and V: £ x £ — £ is uniformly continuous, we have

nL(xn’ \/yn’) =g nL(wn’) \/nL(yn’) - fm \/fm’ =g fm’;
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hence E(zy/) =g [nr(zn) = [ fm and E(z Vyn) =r [ 00 (@0 NVYyn) = [ for-
Choose n' € N such that

(fm,ﬂL($n/)) IFE p%(n)’ (fm’anL(xn/ V yn’)) ‘FE P%(n),
E(z,) — /fml <r 2*(P22(n)+2)’ |E(zns V ) — /fm/| <p 2~ (Pe(m+2)
Then

E(|zn Vyn — 2n|) =r E(xp V Yn — Tp) =g E(@n V yn) — E(xp)

= (Baw Vi)~ [ For) + /fmf—/fm
e

< 1B V) = [ o4 o= [ 1)
+|/fm_ (Tnr)

<g 2~ (PR | 9=(pR(M+D) 4 9= (pE(m)+2)
—p 2~ (PR (),

b

hence (' V Ynr, Tn) IF 1 pi(n). Therefore (ng(xn V yn), N (zn)) e pi(n), by
Lemma ??, and so (f, fm/) Fe n. Thus (fm)men is a Cauchy sequence in £
with a modulus n — a(pe(n) + 1), and so converges. O

5.2 Measurable functions
Lemma 5.7. Let =); be a binary relation on X given by
r=pmyeVuelxVneN(E(z—y|lAu) <g27")

forallz,y € X. Then =) is an equivalence relation on X ; hence M = (X, =)
is a setotd.

Proof. It is trivial that for all 2,y € X,  =p; « and if x =) y then y =y 2.
For all #,y,2 € X, if 2 =) y and y =) 2, then, since E(|z —y| Au) <g 271
and E(|lz —y| Au) <g 27D for all u € C'y and n € N, we have
E(lz —z[ Au) =g E(|(z —y) + (y — 2)[ Aw)
E((lz =yl +ly = 2) Aw)
E(lz —y|Au+ |y — 2| Au)
=r E(jz —y[Au) + E(ly — 2[ Au)
S]R 27(n+1) 4 27(n+1) =g 9—n
for all u € C'y and n € N, by Lemma 4.26 (1) and (5); hence & =) z. O

Proposition 5.8. Let pp;s and Iy be a monotone function from Cx x N into
Cx x N, and a relation between X x X and Cy x N, respectively, defined by

prv((uym)) = (uy,m+1) and (z,y) Fy (u,n) & E(lz —y| Au) <g 27",

respectively, for all (u,n) € Cx XN and (z,y) € X xX. Then (Cx xN, ppar,IFar)
is a uniform structure on the setoid M = (X,=p).
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Proof. (1): For all z,y € X, if x =j y, then, since E(|z —y| Au) <g 27" for all
u € Cy and n € N, we have (x,y) IFas (u,n) for all (u,n) € Cy x N; conversely,
if (z,y) IFar (u,n) for all (u,n) € Cx x N, then, since E(|z —y| Au) <g 27" for
all u € Cy and n € N, we have z =,/ y.

(2): For all (u,n) € Cx x Nand z,2',y,y € X, if e =y 2/, y =n ¢ and
(z,9) IFar (u,n), then, since E(|z — 2| Au) <g 27D and E(|ly — /| Au) <g
2= (m+1) for all m € N, we have

E(l2" —y'| Au) =r E(|(2" —2) + (z — y)| Au)
<RE((|$/—$\+|$—?J|)/\U)

<g B(|z' —z|Au+l|z—y|Au)
—RE(ISE’—CEIAqu\(w—y)Jr(y—y')lAU)
<k E(|2" —z[Au+t (2 —yl+ ]y —¢]) Au)
<g E(lt' —z|Au+|z—ylAu+|y—y|Au)
=r E(|2" —z| Au) + E(jlz —y| Aw) + E(ly —y| Aw)

<g 27D omn 4 9= (mAl) —p 9=m 4 9—n

for all m € N, by Lemma 4.26 (1) and (5); hence E(|z' — y'| Au) <g 27™.
Therefore (2',y") IFar (u,n).

(3): Straightforward.

(4): For all (u,n), (v,m) € Cx xNand z,y € X, if (u,n) Koy xn (v,m) and
(z,y) IFar (v,m), then, since u <x v and n < m, we have

E(lz—ylAu) <g E(Jt —y|Av) <g 27" <g 277

hence (z,y) IFar (u,n).

(5): For all (u,n) € Cx x N and z,y,z € X, if (z,y) IFar par((u,n)) and
(4.2) It par((us ), then, since B(Jz—y|Au) <a 2=+ and B(Jy—z|Au) <
2~ (n+1) we have

E(|z — z| Au) <R
rE
rRFE

[z —y)+ (y—2)| Au)

(lz =yl + 1y — 2) Aw)

[z =yl Autly —=z[Au)

[z =yl Au) + E(ly — 2| Au)
<g 2~ 4 o=(ntl) —p 9—n

E(
(
(
E(

by Lemma 4.26 (1) and (5); hence (z, 2) Ik (u,n). O
Proposition 5.9. M is a topological vector lattice.
Proof. Let v+ € hom(Cx x N, (Cx x N) x (Cx x N)) be given by

Y ((u,n) = ((u,n + 1), (u,n + 1))

for all (u,n) € CXXN and consider (u n) € CxyxNand (z,y), (2',y') € MxM
such that ((x,v), (@',9")) Farxar v ((uw,n)). Then, since (x,2’) IFpr (u,n + 1)
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and (y,y') IFar (u,n + 1), we have

l(x—2") + (y =y ) Au)
(lz —2'[+ |y —y') Aw)

E|x—x|/\u—|—|y y'| Au))
7RE|x—x|/\u)+E(|yfy|/\u)
<g 2-(ntD) 4 o=(ntl) —p o—n

E(l(z+y) = (@ + ) Au) <JR
r B

/—\/\/\/\

by Lemma 4.26 (5); hence (x+2',y+y') IFas (u,n). Therefore +: M x M — M
is uniformly continuous with a modulus y*.
Let vV € hom(Cx x N, (Cx x N) x (Cx x N)) be given by

'Yv((uvn)) = ((u,n+1), (u,n + 1))

for all (u,n) € Cx xN, and consider (u,n) € Cx xNand (x,y), (¢/,y") € M xM
such that ((z,9), (@',y")) Farxam 7Y (n). Then, since (x,2’) IFps (u,n + 1) and
(y,v') IFpr (u,n+ 1), we have

E(lavy—a'Vy|Au) =r E((zVy —2'Vy)+ (2’ Vy - 2" Vi) Au)

<RE((IxVy—x Vyl+lz' vy —a' Vi) Au)
<gE(zVy—2'VylAu+|z'Vy—2' VY| Au)

<RE(|m\/y—x VylAu)+ E(lz' Vy —2' VY| Au)

<z E(lz — 2’| Au) + E(ly — y'| Au)

<g 27D 4 o=(ntl) —p 9—n

by Lemma 4.26 (1), (3) and (5); hence (z + 2’,y + ¢') IFps (u,n). Therefore
V: M x M — M is uniformly continuous with a modulus V.
O

We write 90 for the completion M of the topological vector lattice M, and
call an element of 9 a measurable function over the abstract integration space
(X, E).

5.3 Convergence theorems

Lemma 5.10. The function idx : X — X is a uniformly continuous setoid
injection of L into M.

Proof. Let v € hom(Cx x N,N) be given by
Y((u,n)) =n

for all (u,n) € Cx x N. Then for all (u,n) € Cx xNand z,y € L, if (z,y) IFp
~v((u,n)), then, since E(|x — y|) <g 27", we have

B(fidx (@) — idx (y)| A u) =& Bl — y| Au) <z E(le - yl) <x 27

hence (idx(z),idx(y)) IFar (u,n). Therefore idx : L — M is a uniformly
continuous mapping, by Lemma & 3.8.
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For all z,y € L, if idx(xz) =p idx(y), then, since E(jlz — y| A u) =g
E(lidx (z) —idx(y)| Au) <g 27" for all u € C'y and n € N, we have

E(lz —yl) = E(lz —y| Az —y|) <g 27"
for all n € N; hence x =, y. Thus idx : L — M is a setoid injection. O

Proposition 5.11. There exists a uniformly continuous embedding A : £ — M
such that ny oidx = Aonyg.

Proof. Since, by Lemma 5.10, idx : L — M is uniformly continuous, there exists
a unique uniformly continuous mapping A : £ — 91 such that ny0idx = Aony.
To see that A\ preserves all vector lattice operations, we only show that

A(f +g) =m A(f) + Alg)

for all f,g € £. Other operations are similar. Let F, G : £ x £ — 9 be setoid
mappings given by F(f,g) = A(f +g) and G(f,g) = A(f) +A(g) for all f,g € £,
respectively. Note that F' and G are uniformly continuous. Then, since

F(ne(z),nc(y)) =m A(nL(2) +nL(y)) =m Ane(z +y)) =m nu(idx (z +y))
= N (idx (7) +idx(y )) =on N (idx () + nar(idx (y))
=m A(nr(z)) + A(L(y)) =m G(nr(z), nL(y))

for all z,y € L, we have F' = G by the uniqueness of such uniformly continuous
mapping. Therefore A(f 4+ ¢g) =m A\(f) + A(g) for all f,g € £.

To show that X is injective, consider f = (T )men € £ with A(f) = nar(0).
Then, since 0, () — [ in £, we have A(nL(zy,)) — na(0) in 9. Given ann €
N, there exists m € N such that (A(nL(zm)), na(0)) ko p3;((|Zns1l,n + 1)),
that is,

(mar (idx () 100 (0)) o iy ((J2na ], m + 1))
for all m’ € N with m < m/; hence (idx(zn/),0)) IFar (|@nt1],n + 1) for
all m" € N with m < m/, by Lemma ??. Therefore for all m’ € N with
max{m,n + 1} < m/, since (X7, Tp41) IFL n+ 1, we have

E(|m]) <R E(|zm | Alzm]) Sk E(|Tn+1 + (@ — Tog)| A [T ])
<k E((|zns1| + [2m: — Zng1]) Alzm|)
<R E(|Zn+1]| AlZmr | + [ — Toga | A |Tme])
SR E(lmnﬂl A |xn+1| + ‘xM’ - $n+1|)
<k E(|zm | A|znga|) + E(|Tm — Tpgal)
<g 27D 4 9= (nFD) —p 97n

by Lemma 4.26 (1) and (5), and so (2,/,0) Ik n. Thus f =¢ 0. O

Lemma 5.12. The function (z,y) — x A |y| from X x X into X is a locally
uniformly continuous mapping of L x M into L.

Proof. O
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Proposition 5.13. For each g € £, there exists a uniformly continuous map-
ping prg - M — £ such that

1g(A(f)) = g A |f] and Apg(h)) =am A(g) A [R]
forall f € £ and h € M.
Proof. O

Theorem 5.14. Let f be a measurable function. If there exists an integrable
function g such that |f| <sq A(g), then there exists an integrable function fe
such that f = M fe).

Proof. Suppose that |f| <on A(g) for some integrable function g. Then, since
fT <o [f] <o A(g) and f7 <on [f] <om A(g), we have

Apg(f1)) =am Mg) ALf T =om M) A fF = fF
and
Mg (f7)) = Ag) AT =am Mg) A f™ =am [
Therefore, setting fe = p14(fT) — pg(f~), we have
Afe) = Mpg(F 1) = 11 (F7)) = Mpg(F 1) = Mg (f 7)) =on f* =~ = [.
O

Definition 5.15. Let (f,)nen be a sequence of integrable functions, and let f
be an integrable function. Then

1. (fn)nen converges in norm to f if f, — f in £;
2. (fn)nen converges in measure to f if A(f,,) — A(f) in M.

Lemma 5.16. Let (fn)nen be an increasing sequence of integrable functions
converging in measure to an integrable function f. Then f, <g f for alln € N.

Proof. Given an n € N; since f,, A f;, =¢ fn for all m € N with n < m, we have
(fa A fms fn) IFe n for all n € N and m € N with n < m; hence (f, A fim)meen
converges to f,. Therefore

in M. On the other hand, since A(fr,) — A(f) in M, we have

Afn) AASm) = Afn) AAS).

Thus A(fn A f) = M fu) ANS) = A(frn), and so, since A : £ — 9 is injective,
we have f, A f =g fn; hence f, <g¢ f. O

Theorem 5.17 (Lebesgue’s Monotone Convergence Theorem). Let (fy,)nen be
an increasing sequence of integrable functions. Then the following are equivalent.

1. (fn)nen converges in measure to some integrable function f,

2. (fn)nen converges in norm to some integrable function f,
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3. ([ fn)nen converges; in which case

[ [

Proof. (1) = (2): Note that f,, <e f for all n € N, by Lemma 5.16. Then, by
replacing f,, and f by f, — fo and f — fy, respectively, we may assume without
loss of generality that 0 <g f, for alln € Nand 0 <g¢ f. Since A(f,,) = A(f) in
M,

fo=e A fo=c [ Afal = ur(A(fn)) = npA(f) = fALfI=¢ f

in £.

(2) = (3): Since [ : £ — R, we have [ f, = [ f.

(3) = (1): Suppose that ([ fn)nen converses. Then (f,)nen converges in £
to some f € £, by Proposition 5.6. Therefore, since A : £ — 91 is uniformly
continuous, we have \(f,) — A(f) in . O

Theorem 5.18 (Fatou’s Lemma). Let (f,,)nen be a sequence of integrable func-
tions converging in measure to an integrable function f such that 0 <¢ f, and
[ fn < B foralln € N. Then [ f < B.

Proof. Since A(fn) — A(f) in 9N,
SN In=e FA Il = np(A(fo)) = g (AF)) = FA LI =2 f

in £ hence [ fA f, — [ f. Since [ fA f, < [ fn < BforallneN, we have
Jf<B. O

Lemma 5.19. Let (f,)nen be a sequence of integrable functions converging in
measure to an integrable function f, and let g be an integrable function such
that | fr] <e g for alln € N. Then |f] <¢ g.

Proof. Since A(fn) = A(f) in M and |f,| =¢ g A |fn| for all n € N,
[ful =2 g Al fnl =2 1g(A(fn)) = 1g(A(f)) =2 g A If]
in £; hence |f| A |fu|l = |fIA(@A|f]) = g Alf| in £. On the other hand,
FIA Ll =2 g (A(Fn)) = g (M) =2 [FIATf] =2 |f]
in £. Therefore g A |f| =¢ |f], and so |f]| <g¢ g. O

Theorem 5.20 (Lebesgue’s Dominated Convergence Theorem). Let (fy)nen
be a sequence of integrable functions converging in measure to an integrable
function f, and let g be an integrable function such that |f,| <g g for alln € N.
Then (fn)nen converges in norm to f.

Proof. Note that |f| <e¢ g, by Lemma 5.19. Then, since A(f,) — A(f) in M,
M) = A(fu)™ = A(f)T =an A(f7) in M; hence

gAfa =2 g ATl =2 g f2) = mgNF D) =2 g A [f T =2 g A fT
in £. Therefore, since f;7 <g |fu] <g g foralln € Nand fT <g |f| <e g,
fa = fF

in £. Similarly, f, — f~in £ Thus f, =¢ i —f, = fT—f"=c fing O
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