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Abstract

1 Introduction

Errett Bishop, the founder of neutral constructive mathematics (or Bishop’s
constructive mathematics), wrote in his book as follows [6, Appendix A: Metriz-
ability and Separability].

The situation is easily summarized: Nonmetric spaces and nonsepa-
rable metric spaces play no significant role in those parts of analysis
with which this book is concerned. To illustrate this point, consider
the concept of a uniform space, as developed in Probs. 17 to 21 of
Chap. 4. A uniform space at first sight appears to be a natural and
fruitful concept for constructive mathematics, a promising substitute
for the concept of a topological space. In fact, this is not the case.

Bishop introduced the notion of a uniform space using a family of pseudometrics
in [6, Problem 17 of Chapter 4], and adopted a rather unsatisfactory notion of a
complete uniform space: a uniform space is complete if it is uniformly equivalent
to a complete metric space. Although classically,

• the topology on the space l∞ of bounded sequences of real numbers is
given by the norm

‖(xn)n∈N‖ = sup{|xn| | n ∈ N};

• the strong topology on the dual space (the set of bounded linear function-
als) E∗ of a normed space E is given by the norm

‖f‖ = sup{|f(x)| | x ∈ E, ‖x‖ ≤ 1},

constructively, they are uniform topologies but are not given by any family of
pseudometrics. We need a more general framework than a family of pseudomet-
rics for defining the notion of a uniform space.
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Here, as an application of a general framework for uniform spaces, we con-
sider integration theory. One of the motivations Lebesgue developed his inte-
gration theory was to make integration and limit commute:

lim
n→∞

∫
fn =

∫
lim
n→∞

fn,

which does not hold for the Riemann integral. The Lebesgue integral is based
on the Lebesgue measure which is a generalisation of the notions of a length, an
area and a volume. Since a measure is defined on a σ-algebra which is closed
under the complementation, the lack of law of excluded middle in constructive
mathematics brings us a difficulty to define an appropriate domain of a measure.
Bishop overcame the difficulty by introducing the notion of a complemented set,
and developed a constructive measure and integration theory. However, the
original motivation of Lebesgue is concerned with the topological notion of a
limit. Classicaly, the notion of a convergence induces a closure operation; hence
defines a topology. As far as we are concerned with convergence theorems such
as the monotone and dominated convergence theorems of Lebesgue, we may
be able to constructively deal with them topologically without invoking the
notion of a measure and the notion of a complemented set. Spitters [17] took
an approach using Bishop’s notion of a uniform space, and following Bishop’s
advice [6, Preface].

2 Preliminaries

2.1 Intuitionistic logic

In natural deduction, minimal logic is formalised by introduction (I) and elim-
ination (E) rules corresponding to each logical connective ∧ (conjunction), ∨
(disjunction), → (implication), ¬ (negation), ∀ and ∃ (universal and existential
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quantifiers) as follows.

D1
ϕ
D2

ψ

ϕ ∧ ψ ∧I

D
ϕ ∧ ψ
ϕ ∧Er

D
ϕ ∧ ψ
ψ

∧El

D
ϕ

ϕ ∨ ψ ∨Ir

D
ψ

ϕ ∨ ψ ∨Il

D1

ϕ ∨ ψ

[ϕ]
D2
χ

[ψ]
D3
χ

χ ∨E

[ϕ]
D
ψ

ϕ→ ψ
→I

D1

ϕ→ ψ
D2
ϕ

ψ
→E

[ϕ]
D
⊥
¬ϕ ¬I

D1¬ϕ
D2
ϕ

⊥ ¬E

D
ϕ

∀yϕ[x/y]
∀I

D
∀xϕ
ϕ[x/t]

∀E

D
ϕ[x/t]

∃xϕ ∃I
D1

∃yϕ[x/y]

[ϕ]
D2
χ

χ ∃E,

where ⊥ denotes an absurdity (or a contradiction); there are some variable
conditions for ∀I, ∀E ∃I and ∃E.

Intuitionistic logic is obtained by adding the following left rule, called EFQ
(ex falso quodlibet), to minimal logic, and classical logic is obtained by adding
the right rule, called RAA (reductio ad absurdum) to intuitionistic logic.

D
⊥
ϕ EFQ

[¬ϕ]
D
⊥
ϕ RAA

By using RAA, we can prove double negation elimination (DNE : ¬¬ϕ→ ϕ)
and law of excluded middle (LEM : ϕ ∨ ¬ϕ) as follows.

[¬¬ϕ]2 [¬ϕ]1

⊥ ¬E

ϕ RAA1

¬¬ϕ→ ϕ →I2

[¬(ϕ ∨ ¬ϕ)]2

[¬(ϕ ∨ ¬ϕ)]2
[ϕ]1

ϕ ∨ ¬ϕ ∨Ir

⊥ ¬E

¬ϕ ¬I1

ϕ ∨ ¬ϕ ∨Il

⊥ ¬E

ϕ ∨ ¬ϕ RAA2

Conversely, using DNE and LEM, we can simulate RAA in minimal logic and
intuitionistic logic, respectively, as follows.

¬¬ϕ→ ϕ

[¬ϕ]1

D
⊥
¬¬ϕ ¬I1

ϕ →E
ϕ ∨ ¬ϕ [ϕ]1

[¬ϕ]1

D
⊥
ϕ EFQ

ϕ ∨E1
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Note that ¬I is a rule showing ¬ϕ by deducing a contradiction from ϕ, and
RAA is a rule showing ϕ by deducing a contradiction from ¬ϕ. For example,
we learn, say in high school mathematics, a proof D√2 deducing a contradiction

from an assumption “
√

2 is rational”.

√
2 is rational
D√2

⊥

The following left deduction is a proof of “
√

2 is irrational” by using ¬I (without
using RAA), and the right deduction is a proof of “

√
2 is irrational” by using

RAA, if “
√

2 is irrational” is defined to be ¬(
√

2 is rational).

[
√

2 is rational]1

D√2

⊥√
2 is irrational

¬I1

[¬(
√

2 is irrational)]2 [
√

2 is irrational]1

⊥ ¬E
√

2 is rational
RAA1

D√2

⊥√
2 is irrational

RAA2

Intuitionistic logic, just lacking RAA, is consistent with, and has less de-
ducible formulae than classical logic used in usual mathematical practice. How-
ever, as BHK-interpretation and Curry-Howard isomorphism show, intuitionis-
tic logic has an affinity for computation.

2.2 Constructive set theory

In general, the language of a set theory contains variables for sets and the binary
predicates = and ∈. We use the following notations:

∀x ∈ aϕ(x) ≡ ∀x(x ∈ a→ ϕ(x)); ∃x ∈ aϕ(x) ≡ ∃x(x ∈ a ∧ ϕ(x));

a ⊆ b ≡ ∀x(x ∈ a→ x ∈ b); a G b ≡ ∃x(x ∈ a ∧ x ∈ b);
0 ≡ ∅; x+ 1 ≡ x ∪ {x};

note that n = {0, . . . , n− 1}.

Definition 2.1. The axioms and rules of iZF are those of intuitionistic predicate
logic with equality. In addition, iZF has the set theoretic axioms of the classical
Zermelo-Fraenkel set theory ZF:

Extensionality: ∀a∀b[∀x(x ∈ a↔ x ∈ b)→ a = b];

Pairing: ∀a∀b∃c∀x(x ∈ c↔ x = a ∨ x = b);

Emptyset: ∃a∀x(x 6∈ a);

Union: ∀a∃b∀x[x ∈ b↔∃y ∈ a (x ∈ y)];

Separation:
∀a∃b∀x[x ∈ b↔ x ∈ a ∧ ϕ(x)]

for all formula ϕ(x);
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Replacement:

∀a[∀x ∈ a∃!yϕ(x, y)→∃b∀y(y ∈ b↔∃x ∈ aϕ(x, y))]

for all formulae ϕ(x, y), where b is not free in ϕ(x, y);

Powerset: ∀a∃b∀x[x ∈ b↔ x ⊆ a];

Infinity: ∃a[0 ∈ a ∧ ∀x(x ∈ a→ x+ 1 ∈ a)];

∈-Induction:
∀a(∀x ∈ aϕ(x)→ ϕ(a))→∀aϕ(a),

for all formula ϕ(a).

Remark 2.2. The intuitionistic Zermelo-Fraenkel set theory IZF, introduced by
Friedman [?] and Myhill [?], adopts the following axiom of collection instead of
the axiom of replacement.

Collection:
∀a[∀x ∈ a∃yϕ(x, y)→∃b∀x ∈ a∃y ∈ b ϕ(x, y)]

for all formulae ϕ(x, y), where b is not free in ϕ(x, y).

Classically, they are equivalent, but, constructively, Replacement is weaker than
Collection; hence iZF is weaker than IZF.

The classical Zermelo-Fraenkel set theory ZF adopts, instead of ∈-Induction,
the following classically equivalent axiom of foundation.

Foundation:
∃xϕ(x)→∃x[ϕ(x) ∧ ∀y(y ∈ x→¬ϕ(y))]

for every formula ϕ(x).

However, constructively, it implies DNE, but ∈-Induction not; see [?].

Proposition 2.3. The axiom of foundation implies DNE.

Proof. Consider a foumula ϕ such that ¬¬ϕ, and a set a given by

a = {y ∈ {0, 1} | y = 1 ∨ (y = 0 ∧ ϕ)}.

Note that 1 ∈ a and 0 ∈ a if and only if ϕ. Then, since

∃x(x ∈ a)→∃x[x ∈ a ∧ ∀y(y ∈ x→¬(y ∈ a))],

by Foundation, there exists x ∈ a such that ¬(y ∈ a) for all y ∈ x. If x = 1 =
{0}, then ¬(0 ∈ a); hence ¬ϕ, a contradiction. Therefore x = 0, and so ϕ.

The axiom of choice may be used freely in the practice of classical mathe-
matics. However, constructively, it implies DNE. Here we consider the following
form of the axiom of choice:

∀a[∀x ∈ a∃y(y ∈ x)→∃f ∈ (
⋃
a)a ∀x ∈ a (f(x) ∈ x)].

Proposition 2.4. The axiom of choice implies DNE.
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Proof. For each formula ϕ with ¬¬ϕ, define sets x0 and x1 as follows:

x0 = {y ∈ {0, 1} | y = 0 ∨ ϕ}, x1 = {y ∈ {0, 1} | y = 1 ∨ ϕ},

and let a = {x0, x1}. Then, since 0 ∈ x0 and 1 ∈ x1, we have

∀x ∈ a ∃y(y ∈ x).

Hence, by the axiom of choice, there exists a function f : a→
⋃
a = {0, 1} such

that
∀x ∈ a (f(x) ∈ x).

Note that if ϕ, then, since x0 = x1, we have f(x0) = f(x1). If f(x0) = 0 and
f(x1) = 1, then ¬ϕ, a contradiction. Therefore either f(x0) = 1 or f(x1) = 0,
and so 1 ∈ x0 or 0 ∈ x1. Thus ϕ.

The set Pow(1) is considered as the set of truth values; note that 1 = {0} =
{∅}. For a formula ϕ, a subset [[ϕ]] of 1 given by

[[ϕ]] = {u ∈ 1 | ϕ},

whrere u is not free in ϕ, is considerd as a truth value of ϕ. Note that {0, 1} ⊆
Pow(1), but not Pow(1) ⊆ {0, 1}, constructively; Pow(1) ⊆ {0, 1} implies DNE
(Exercise). In iZF, we can show that Pow(1) is a subobject classifier in the
category of sets and functions.

In constructive set theory, predicativity is considered very often. The follow-
ing is an example of impredicative definition of a set:

S = {x ∈ N | ∀a ∈ Pow(N) (x ∈ a→ · · · )}
= {x ∈ N | ∀a(a ⊆ N ∧ x ∈ a→ · · · )}.

The set S is a subset of N, that is, S ∈ Pow(N); the variable a ranges over
Pow(N); hence we may take the set S being defined as a. A predicative set
theory does not allow this kind of circular argument (vicious circle) in defining
sets; does allow only constructions of sets from sets already constructed. As
the above example shows, we have to give up the axioms (full) Separation and
Powerset to make a set theory predicative.

The elementary constructive (and predicative) set theory ECST was intro-
duced by Aczel and Rathjen and is a subsystem of CZF; see their book draft
[3] written by extending their research report [2].

Definition 2.5. The axioms and rules of ECST are those of intuitionistic
predicate logic with equality. In addition, ECST has the set theoretic axioms
Extensionality, Pairing, Emptyset, Union, Replacement and

Bounded Separation:

∀a∃b∀x(x ∈ b↔ x ∈ a ∧ ϕ(x))

for all bounded formulae ϕ(x), where b is not free in ϕ(x); here a formula
ϕ(x) is bounded, or ∆0, if all its quantifiers are bounded, i.e. of the form
∀x ∈ c or ∃x ∈ c.
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Strong Infinity:

∃a[0 ∈ a ∧ ∀x(x ∈ a→ x+ 1 ∈ a)

∧ ∀y(0 ∈ y ∧ ∀x(x ∈ y→ x+ 1 ∈ y)→ a ⊆ y)].

Remark 2.6. With (full) Separation, Infinity implies Strong Infinity: for, since
there exists a set N0 such that 0 ∈ N0 ∧ ∀x(x ∈ N0→ x+ 1 ∈ N0), by Infinity,
there exists a set N given by

N = {z ∈ N0 | ∀y(0 ∈ y ∧ ∀x(x ∈ y→ x+ 1 ∈ y)→ z ∈ y)},

by (full) Separation; hence N is a unique set such that

0 ∈ N ∧ ∀x(x ∈ N→ x+ 1 ∈ N)

∧ ∀y(0 ∈ y ∧ ∀x(x ∈ y→ x+ 1 ∈ y)→ N ⊆ y).

For a set theory without (full) Separation, like ECST, we have to adopt Strong
Infinity instead of Infinity.

In ECST, we are able to perform basic set constructions in mathematical
practice. First note that a set A is inhabited if ∃x(x ∈ A), or A G A, and
nonempty if ¬∀x¬(x ∈ A), or ¬(A = ∅); “A is nonempty” is the double negation
of “A is inhabited”. Using Pairing, the ordered pair

(x, y) = {{x}, {x, y}}

of x and y, and, using Replacement and Union, the cartesian product A×B of
sets A and B consisting of the ordered pairs (x, y) with x ∈ A and y ∈ B can
be introduced in ECST.

A relation R between sets A and B is a subset of A × B, and we then
write x R y for (x, y) ∈ R; the inverse relation R−1 ⊆ B × A of R is given by
y R−1 x⇔ x R y for all x ∈ A and y ∈ B. We write R′ ◦R for the composition
of relations R ⊆ A × B and R′ ⊆ B × C, and ∆A for the diagonal subset of
A×A.

A relation R ⊆ A×B is total (or is a multivalued function) if for every x ∈ A
there exists y ∈ B such that x R y; single valued if for every x ∈ A there exists
at most one y ∈ B such that x R y. The class of total relations between sets A
and B is denoted by mv(A,B), or more formally

R ∈ mv(A,B)⇔R ⊆ A×B ∧ ∀x ∈ A ∃y ∈ B (x R y).

A function from a set A into a set B is a total and single valued relation
f ⊆ A×B, that is, for every x ∈ A there is exactly one y ∈ B, denoted by f(x),
with x f y; we then write f : A → B. The class of functions from a set A to a
set B is denoted by BA, or more formally

f ∈ BA⇔ f ∈ mv(A,B) ∧ ∀x ∈ A∀y, z ∈ B (x f y ∧ x f z→ y = z).

A function f : A → B is a surjection if for each y ∈ B, there exists x ∈ A
such that y = f(x); an injection if for all x, y ∈ A, f(x) = f(y) implies x = y;
a bijection if it is a surjection and an injection; we write A ∼= B if there is a
bijection between A and B. The composition g ◦ f of functions f : A → B
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and g : B → C is a function from A into C, and the diagonal subset ∆A is a
bijection between A and A, called the identity function on A and denoted by
idA.

Let A and B be sets. Then the projections πA,B0 : A × B → A and πA,B1 :
A×B → B, given by

πA,B0 : (x, y) 7→ x, πA,B1 : (x, y) 7→ y

for all (x, y) ∈ A × B, are surjective whenever A and B are inhabited; the

superscripts of πA,B0 and πA,B1 will be mostly omitted. The cartesian product
A × B of sets A and B is the product of A and B in the category of sets and
functions: for each set C and each pair of functions f : C → A and g : C → B,
there exists a unique function 〈f, g〉 : C → A×B such that π0 ◦ 〈f, g〉 = f and
π1 ◦ 〈f, g〉 = g.

A A×B B

C

π0 π1

f g
〈f,g〉

For functions f : A→ C and g : B → D, we write f ×g for 〈f ◦πA,B0 , g ◦πA,B1 〉 :
A×B → C ×D.

In ECST, the structure (N, 0, S), where 0 = ∅ and S : N → N is given by
S(x) = x+ 1 for all x ∈ N, satisfies the Dedekind-Peano axioms:

1. 0 6= S(x) for all x ∈ N;

2. S is an injection;

3. if A is a subset of N such that 0 ∈ A and S(x) ∈ A for all x ∈ A, then
A = N.

By mathematical induction which is a consequence of (3) above, we are able to
show, without invoking LEM, that the equality = on N is decidable, that is,

x = y ∨ ¬(x = y)

for all x, y ∈ N.

In this paper, we assume, in addition to the axioms of ECST, Exponentiation
Axiom asserting that the class BA of functions from a set A into a set B, called
the exponential of A and B, forms a set:

Exponentiation: ∀a∀b∃c∀f(f ∈ c↔ f ∈ ba).

The exponential BA of a set A and B is the exponential object of A and B
in the category of sets and functions with a function evA,B : BA×A→ B, given
by

evA,B : (f, x) 7→ f(x)

for all f ∈ BA and x ∈ A; the superscripts of evA,B will be mostly omitted: for
each set C and each function h : C × A → B, there exists a unique function
ĥ : C → BA such that evA,B ◦ (ĥ× idA) = h.
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BA ×A B

C ×A

ĥ×idA

ev

h

Note that for all sets A, B and C,

BC×A ∼= (BA)
C

with a bijection (̂-) : h 7→ ĥ between BC×A and (BA)C , and

AC ×BC ∼= (A×B)C

with a bijection 〈-, -〉 : (f, g) 7→ 〈f, g〉 between AC ×BC and (A×B)C .

In the presence of Exponentiation, functions on N are defined by primitive
recursion.

Proposition 2.7. Let A and B be sets, and let f : B → A and g : B×N×A→ A
be functions. Then there exists a unique function h : B × N→ A such that

h(x, 0) = f(x), h(x, y + 1) = g(x, y, h(x, y))

for all x ∈ B and y ∈ N.

Proof. Note that Exponentiation implies small iteration axiom SIA, and see [3,
Theorem 6.4.3].

Therefore we can define addition, multiplication, predecessor and truncated
subtraction funcitons on N by primitive recursion as follows.

x+ 0 = x, x+ (y + 1) = (x+ y) + 1; x0 = 0, x(y + 1) = (xy) + x;

prd(0) = 0, prd(y + 1) = y; x .− 0 = x, x .− y + 1 = prd(x .− y);

hence the maximun function is given by max(x, y) = (x .− y) + y.

A binary relation R ⊆ A × A on a set A is a preorder if it is reflexive and
transitive; an equivalence relation if it is reflexive, symmetric and transitive. A
preordered set is a pair I = (I,�I) of a set I and a preorder �I on I. Let
I = (I,�I) and I ′ = (I ′,�I′) be preordered sets. Then a function f : I → I ′ is
monotone if

x �I y⇒ f(x) �I′ f(y)

for all x, y ∈ I; we write hom(I, I ′) for the set of monotone functions between
I and I ′. The product of preordered sets I = (I,�I) and I ′ = (I ′,�I′) is given
by I × I ′ = (I × I ′,�I×I′), where

(x, x′) �I×I′ (y, y′)⇔ x �I y and x′ �I′ y′

for all (x, x′), (y, y′) ∈ I × I ′. We denote the constant function i 7→ i′, where
i′ ∈ I ′, from I into I ′ by i′; the diagonal function i 7→ (i, i) from I into I × I by
δI ; then i′ ∈ hom(I, I ′) and δI ∈ hom(I, I × I). A preordered set I = (I,4I) is
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directed if I is inhabited, and there exists ubI ∈ hom(I × I, I), called an upper
bound function, such that for each x, y ∈ I, x 4I ubI(x, y) and y 4I ubI(x, y). It
is straigtforward to see that the product of directed preordered sets is directed.

Let A be a set, and let R be an equivalence relation on A. Then the quotient
set

A/R = {[x]R | x ∈ A},
where [x]R = {y ∈ A | x R y} is an equivalence class of x ∈ A, is constructed by
Replacement. However, we have to be careful with using quotient sets, because
to pick up each representative of equivalence classes by a function f : A/R→ A,
we have to invoke the axiom of choice which is not acceptable in constructive
set theory. Therefore, we cannot uniformly refer structure and data of each
representative, constructively.

2.3 Setoids

A setoid (or Bishop set) X is a pair (X,=X) of a set X and an equivalence
relation =X on X; it is discrete if x =X y or ¬(x =X y) for all x, y ∈ X; stable
if ¬¬(x =X y) implies x =X y for all x, y ∈ X. If X is discrete, then it is stable.
We may consider a set X together with the equality = on sets as a setoid (X,=).

Let X = (X,=X) and Y = (Y ,=Y ) be setoids. Then a function f : X → Y
is a setoid mapping (or simply, mapping) of X into Y if

x =X y⇒ f(x) =Y f(y)

for all x, y ∈ X, and we then write f : X → Y ; for each pair of functions
f, g : X → Y , f is a setoid mapping if and only if g is a setoid mapping,
whenever f = g. Two setoid mappings f, g : X → Y are identical, denoted by
f ∼ g, if

x =X y⇒ f(x) =Y g(y)

for all x, y ∈ X, or equivalently f(x) =Y g(x) for all x ∈ X; hence, if f = g,
then f ∼ g. A setoid mapping f : X → Y is a setoid surjection if for every
y ∈ Y there exists x ∈ X such that y =Y f(x); a setoid injection if

f(x) =Y f(y)⇒ x =X y

for all x, y ∈ X; a setoid bijection if it is a surjection and an injection; we write
X ∼= Y if there is a setoid bijection between X and Y .

The composition g ◦ f of setoid mappings f : X → Y and g : Y → Z is
a setoid mapping of X into Z, and for all setoid mappings f ′ : X → Y and
g′ : Y → Z, if f ∼ f ′ and g ∼ g′, then g ◦ f ∼ g′ ◦ f ′; the identity function
idX : X → X is a setoid bijection, denoted by idX ; for all setoid mappings
f : X → Y , g : Y → Z and h : Z →W ,

h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f and idY ◦ f ∼ f ◦ idX ∼ f.

It is straightforward to show in ECST, by virtue of the following lemma, that
for each setoid mapping f : X → Y , f is a setoid surjection if and only if
f is an epimorphism (that is, for each pair of setoid mapping g, h : Y → Z,
if g ◦ f ∼ h ◦ f , then g ∼ h), and f is a setoid injection if and only if f is
a monomorphism (that is, for each pair of setoid mapping g, h : Z → X, if
f ◦ g ∼ f ◦ h, then g ∼ h), in the category of setoids and setoid mappings.
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Lemma 2.8. Let X and Y be setoids, and let f : X → Y be a setoid mapping.
Then f is a setoid surjection whenever f is an epimorphism in the category of
setois and setoid mappings.

Proof. Let X = (X,=X) and Y = (Y ,=Y ), and suppose that for all g, h : Y →
Z, if g ◦ f ∼ h ◦ f , then g ∼ h. For each y ∈ Y , let cy = [[∃x ∈ X (y =Y f(x))]].
Then, since ∀y ∈ Y ∃!z(z = cy),

C = {z | ∃y ∈ Y (z = cy)}

is a set by Replacement. Consider a setoid Z = (Z,=) where Z = C ∪ {1} and
= is the equality = on sets, and define g, h : Y → Z by g(y) = cy and h(y) = 1
for all y ∈ Y . Then g, h : Y → Z are setoid mappings, and

(g ◦ f)(x) = g(f(x)) = cf(x) = 1 = h(f(x)) = (h ◦ f)(x)

for all x ∈ X; hence g ◦ f ∼ h◦ f . Therefore g ∼ h, and so cy = g(y) = h(y) = 1
for all y ∈ Y . Thus ∀y ∈ Y ∃x ∈ X (y =Y f(x)), that is, f is surjective.

Remark 2.9. For each pair of setoid mappings f : X → Y and g : Y → Z, if
f and g are setoid surjections, then so is g ◦ f ; if g ◦ f is a setoid surjection,
then so is g; if f and g are setoid injections, then so is g ◦ f ; if g ◦ f is a setoid
injection, then so is f .

A subsetoid S of a setoidX = (X,=X) is a pair (S, ι) of a set S and a function
ι : S → X; in which case, (S,=S) is a setoid, where =S is an equivalence relation
on S given by

x =S y⇔ ι(x) =X ι(y)

for all x, y ∈ S, and ι : S → X is a setoid injection. We may consider a subset
S of X together with the inclusion function ι : S → X as a subsetoid S = (S, ι)
of X.

The cartesian product of setoids X = (X,=X) and Y = (Y ,=X), denoted
by X × Y , is a pair of the set X × Y and an equivalence relation =X×Y on
X × Y given by

(x, y) =X×Y (x′, y′)⇔ x =X x′ and y =Y y′

for all (x, y), (x′, y′) ∈ X × Y . It is straightforward to see that the projections

π
X,Y
0 : X×Y → X and π

X,Y
1 : X×Y → Y are setoid mappings πX,Y0 : X×Y →

X and πX,Y1 : X × Y → Y , respectively. The product X × Y is the product
of X and Y in the category of setoids and setoid mappings: for each setoid Z
and each pair of setoid mappings f : Z → X and g : Z → Y , there exists a
unique setoid mapping 〈f, g〉 : Z → X × Y such that πX,Y0 ◦ 〈f, g〉 ∼ f and

πX,Y1 ◦ 〈f, g〉 ∼ g.
Let X = (X,=X) be a setoid. Then an apartness #X on X is a binary

relation on X which is irreflexive: x =X y ⇒ ¬(x #X y) for all x, y ∈ X,
symmetric: x #X y⇒ y #X x for all x, y ∈ X, and cotransitive:

x #X y⇒ x #X z or z #X y

for all x, y, z ∈ X; it is tight if ¬(x #X y)⇒ x =X y for all x, y ∈ X. Note that
an apartness #X is a binary relation on the setoid X in the sense that

x #X y, x =X x′ and y =X y′⇒ x′ #X y′
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for all x, x′, y, y′ ∈ X: for if x #X y, x =X x′ and y =X y′, then, since
¬(x #X x′) and ¬(y′ #X y) by irreflexivity and symmetry, we have x′ #X y,
by cotransitivity; hence x′ #X y′, by cotransitivity. If X is a stable setoid, then
the denial inequality 6=X , given by

x 6=X y⇔¬(x =X y)

for all x, y ∈ X, is a tight apartness.
Let X = (X,=X) and Y = (Y ,=X) be setoids with apartesses #X and #Y ,

respectively. Then a setoid mapping f : X → Y is strongly extensional if

f(x) #Y f(y)⇒ x #X y

for all x, y ∈ X; an apartness #X×Y on the product X × Y is given by

(x, y) #X×Y (x′, y′)⇔ x #X x′ or y #Y y′

for all (x, y), (x′, y′) ∈ X × Y . It is straightforward to see that the projections

πX,Y0 : X × Y → X and πX,Y1 : X × Y → Y are strongly extensional.
A partial order ≤X on X is a binary relation on X which is reflexive:

x =X y⇒ x ≤X y

for all x, y ∈ X, antisymmetric: x ≤X y and y ≤X x⇒ x =X y for all x, y ∈ X
and transitive: x ≤X y and y ≤X z⇒ x ≤X z for all x, y, z ∈ X; it is total (or
linear) order if x ≤X y or y ≤X x for all x, y ∈ X; quasi-total (or quasi-linear)
order if ¬(x ≤X y)⇒y ≤X x for all x, y ∈ X; if ≤X is total, then it is quasi-total.

A (join) semilattice is a setoid X = (X,=X) equipped with a setoid mapping
(x, y) 7→ x ∨ y of X ×X into X, called a join, such that

x ∨ (y ∨ z) =X (x ∨ y) ∨ z, x ∨ y =X y ∨ x, x ∨ x =X x

for all x, y, z ∈ X. Let X = (X,=X) be a semilattice. Then the (canonical)
partial order ≤X on X is given by

x ≤X y⇔ x ∨ y =X y

for all x, y ∈ X, and x ∨ y is the least upper bound of {x, y} for all x, y ∈ X.
For an apartness #X and a quasi-total order ≤X on X, a binary relation

<X on X is given by

x <X y⇔ x ≤X y and x#Xy

for all x, y ∈ X.

Proposition 2.10. Let X = (X,=X) be a semilattice with an apartness #X

such that the canonical partial order ≤X is quasi-total. Then

1. if x <X y, then ¬(y <X x);

2. x #X y if and only if x <X y or y <X x;

3. if x ≤X y, then ¬(y <X x), and if ¬(y <X x), then x ≤X y whenever #X

is tight

12



for all x, y ∈ X. Forthermore, suppose that the join ∨ : X ×X → X is strongly
extensional. Then

4. if x <X y and y <X z, then x <X z;

5. if x <X y, then x <X z or z <X y

for all x, y, z ∈ X.

Proof. (1): Consider x, y ∈ X with x <X y. If y <X x, then, since x ≤X y and
y ≤X x, we have x =X y which contradicts x #X y. Hence ¬(y <X x).

(2): Consider x, y ∈ X. Then it is trivial that x <X y or y <X x implies
x #X y. Assume that x #X y. Then either x #X (x∨y) or (x∨y) #X y. In the
first case, since ¬(y ≤X x) by irreflexivity, we have x ≤X y, by quasi-totality;
hence x <X y. In the second case, similarly, we have y <X x.

(3): Consider x, y ∈ X with x ≤X y. If y <X x, then, since y ≤X x and
y #X x, we have x =X y, a contradiction. Hnece ¬(y <X x).

Suppose that #X is tight, and consider x, y ∈ X such that ¬(y <X x) and
x ∨ y #X y. Then, since ¬(x ≤X y) by irreflexivity, we have y ≤X x, by quasi-
totality; hence x #X y as x ∨ y =X x. Therefore y <X x, a contradiction, and
so x ∨ y =X y, by tightness. Thus x ≤X y.

(4): Consider x, y, z ∈ X such that x <X y and y <X z. Then, since x ≤X y
and y ≤X z, we have x ≤X z. Since x ∨ y =X y, z ∨ y =X z and y #X z, we
have (x ∨ y) #X (z ∨ y); hence either x #X z or y #X y. Therefore, since the
former must be the case, we have x <X z.

(5): Consider x, y, z ∈ X with x <X y. Then, since x #X y, either x #X z
or z #X y. In the first case, either x <X z or z <X x, by (2); since z <X y in
the latter case by (4), we have x <X z or z <X y. In the second case, similarly,
we have x <X z or z <X y.

2.4 Number systems and their algebraic structures

A ring is a setoid X = (X,=X) equipped with a setoid mapping (x, y) 7→ x+ y
of X×X into X, called addition, a setoid mapping x 7→ −x of X into X, called
inverse, a setoid mapping (x, y) 7→ xy of X ×X into X, called multiplication,
and an element 0 of X, called the zero element, such that

(x+ y) + z =X x+ (y + z), x+ y =X y + x, x+ 0 =X x, x+ (−x) =X 0,

(xy)z =X x(yz), x(y + z) =X xy + xz, (y + z)x =X yx+ zx

for all x, y, z ∈ X; it is unitary if there exists an element 1 of X, called the unity
element, such that 1x =X x1 =X x for all x ∈ X; commutative if xy =X yx for
all x, y ∈ X.

The setoid of integers is given as follows. Let Z = N× N, and let =Z be an
equivalence relation on Z given by

a =Z b⇔m+ n′ = m′ + n

for all a = (m,n), b = (m′, n′) ∈ Z. Then Z = (Z,=Z) is a discrete setoid of inte-
gers. Define the addition (a, b) 7→ a+ b, the inverse a 7→ −a, the multiplication
(a, b) 7→ ab and the join (a, b) 7→ maxZ(a, b) by

a+ b = (m+m′, n+ n′), −a = (n,m),

ab = (mm′ + nn′,mn′ + nm′), maxZ(a, b) = (max(m+ n′,m′ + n), n+ n′),
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respectively, for all a = (m,n), b = (m′, n′) ∈ Z. Then they are setoid mappings,
and Z is a unitary commutative ring with the zero element 0 = (0, 0) and the
unity element 1 = (1, 0), and Z is a semilattice such that the canonical partial
order ≤Z is total, and

1. maxZ(a, b) + c =Z maxZ(a+ c, b+ c);

2. if 0 ≤Z c, then maxZ(a, b)c =Z maxZ(ac, bc)

for all a, b, c ∈ Z. The set N of natural numbers is a subsetoid of Z with a
function ιN : N→ Z given by ιN : n 7→ (n, 0) for all n ∈ N, and then

m = n⇔ ιN(m) =Z ιN(n), ιN(m+ n) =Z ιN(m) + ιN(n),

ιN(m · n) =Z ιN(m)ιN(n), ιN(max(m,n)) =Z maxZ(ιN(m), ιN(n))

for all m,n ∈ N.
A field is a unitary commutative ring X = (X,=X) with the unity element

1 and a tight apartness #X on X such that for each x ∈ X, if x #X 0, then
there exists y ∈ X such that xy =X 1. An ordered field is a field X = (X,=X)
equipped with a quasi-total order ≤X such that

1. if x <X y, then x+ z <X y + z;

2. if x <X y and 0 <X z, then xz <X yz

for all x, y, z ∈ X; it is Archimedean if for all x, y ∈ X with 0 <X x and 0 <X y,
there exists n ∈ N such that x <X ny.

The setoid of rationals is given as follows. Let Q = Z×{a ∈ Z | ¬(a =Z 0)},
and let =Q be an equivalence relation on Q given by

p =Q q⇔ b′a =Z ba
′

for all p = (a, b), q = (a′, b′) ∈ Q. Then Q = (Q,=Q) is a discrete setoid
of rationals. Define the addition (p, q) 7→ p + q, the inverse p 7→ −p, the
multiplication (p, q) 7→ pq and the join (p, q) 7→ maxQ(p, q) by

p+ q = (b′a+ ba′, bb′), −p = (−a, b),
pq = (aa′, bb′), maxQ(p, q) = (maxZ(b′a, ba′), bb′),

respectively, for all p = (a, b), q = (a′, b′) ∈ Q. Then they are setoid mappings,
and Q is a unitary commutative ring with the zero element 0 = (0, 1) and the
unity element 1 = (1, 1), and Q is a semilattice such that the canonical partial
order ≤Q is total, and

1. maxQ(p, q) + r =Q maxQ(p+ r, q + r);

2. if 0 ≤Q r, then maxQ(p, q)r =Z maxQ(pr, qr)

for all p, q, r ∈ Z. The setoid Z of integers is a subsetoid of Q with a function
ιZ : Z→ Q given by ιZ : a 7→ (a, 1) for all a ∈ Z, and then

a =Z b⇔ ιZ(a) =Q ιZ(b), ιZ(a+ b) =Q ιZ(a) + ιZ(b), ιZ(−a) =Q −ιZ(a),

ιZ(ab) =Q ιZ(a)ιZ(b), ιZ(maxZ(a, b)) =Q maxQ(ιZ(a), ιZ(b))

for all a, b ∈ Z. The denial inequality 6=Q is a tight apartness on Q such that

1. if p 6=Q q, then p+ r 6=Q q + r;

2. if p 6=Q q and r 6=Q 0, then pr 6=Q qr

for all p, q, r ∈ Q. The setoid Q is an Archimedean ordered field.
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3 Uniform spaces

3.1 Fundamental definitions

Definition 3.1. A uniform structure on a setoid X = (X,=X) is a triple con-
sisting of a directed preordered set IX = (IX ,4IX ), a function ρX ∈ hom(IX , IX),
and a relation 
X between X ×X and IX such that

1. for all x, y ∈ X, x =X y if and only if (x, y) 
X a for all a ∈ IX ;

2. for all a ∈ IX and x, y, x′, y′ ∈ X, if x =X x′, y =X y′ and (x, y) 
X a,
then (x′, y′) 
X a;

3. for all a ∈ IX and x, y ∈ X, if (x, y) 
X a, then (y, x) 
X a;

4. for all a, b ∈ IX and x, y ∈ X, if a 4IX b and (x, y) 
X b, then (x, y) 
X a;

5. for all a ∈ IX and x, y, z ∈ X, if (x, y) 
X ρX(a) and (y, z) 
X ρX(a),
then (x, z) 
X a.

A uniform space is a setoid equipped with a uniform structure.

Example 3.2. Let X be a set, and let d : X ×X → R be a pseudometric on
X. Then a binary relation =X on X, given by

x =X y⇔ d(x, y) = 0

for all x, y ∈ X, is an equivalence relation; hence X = (X,=X) is a setoid.
Let ρX and 
X be a monotone function from N into N and a relation between

X ×X and N defined by

ρX(n) = n+ 1,

(x, y) 
X n⇔ d(x, y) ≤ 2−n

for all n ∈ N and x, y ∈ X, respectively. Then (N, ρX ,
X) is a uniform structure
on the setoid X.

Lemma 3.3. Let (IX , ρX ,
X) be a uniform structure on a setoid X. Then for
each n ∈ N,

1. for all a ∈ IX and x, y ∈ X, if (x, y) 
X ρnX(a), then (x, y) 
X a;

2. for all a ∈ IX and x0, . . . xn+1 ∈ X, if (xk, xk+1) 
X ρnX(a) for all k ∈ N
with 0 ≤ k ≤ n, then (x0, xn+1) 
X a.

Proof. (1): We proceed by induction on n. For n = 0, it is trivial. Given
a ∈ IX and x, y ∈ X, if (x, y) 
X ρn+1

X (a), then, since (y, y) 
X ρn+1
X (a), we

have (x, y) 
X ρnX(a); hence (x, y) 
X a, by the induction hypothesis.
(2): We proceed by induction on n. For n = 0 and x0, x1 ∈ X, it is

trivial. Given a ∈ IX and x0, . . . , xn+1, xn+2 ∈ X, if (xk, xk+1) 
X ρn+1
X (a)

for all k ∈ N with 0 ≤ k ≤ n + 1, then, since (xk, xk+1) 
X ρnX(ρX(a)) for all
k ∈ N with 0 ≤ k ≤ n and (xn+1, xn+2) 
X ρn+1

X (a), we have (x0, xn+1) 
X
ρX(a) and (xn+1, xn+2) 
X ρX(a), by the induction hypothesis and (1); hence
(x0, xn+2) 
X a.
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Definition 3.4. Let X be a setoid, and let J = (J,4J) be a directed preordered
set. Then a function x : j 7→ xj from J into X is called a net (or Moore-Smith
sequence) in X on J , and is denoted by (xj)j∈J ; a net (xn)n∈N on the linearly

ordered set (N,≤) is called a sequence in X; we write XJ for the set XJ of nets
in X on J .

Let (IX , ρX ,
X) be a uniform structure onX. Then a net x = (xj)j∈J ∈ XJ

converges to an element x of X in X if there exists β ∈ hom(IX , J), called a
modulus (of convergence), such that for each a ∈ IX ,

(xj , x) 
X a

for all j ∈ J with β(a) 4J j. We then write x→ x, and x is called a limit of x.
A net (xj)j∈J ∈ XJ is a Cauchy net in X if there exists α ∈ hom(IX , J),

called a (Cauchy) modulus, such that for each a ∈ IX ,

(xj , xj′) 
X a

for all j, j′ ∈ J with α(a) 4J j, j′. For each x ∈ X, the constant function j 7→ x
from J into X, denoted by (x)j∈J , is a Cauchy net in X with any modulus
α ∈ hom(IX , J).

Lemma 3.5. Let X = (X,=X) and Y = (Y ,=Y ) be a uniform space, and let
J be a directed preordered set. Then for each pair of nets x = (xj)j∈J ,y =

(yj)j∈J ∈ XJ such that xj =X yj for all j ∈ J and each pair of setoid mappings
f, g : X → Y with f ∼ g,

1. for all x, x′ ∈ X, if x→ x and y → x′, then x =X x′;

2. for all y, y′ ∈ Y , if f ◦ x→ y and g ◦ y → y′, then y =Y y′.

Proof. Let (IX , ρX ,
X) be a uniform structure on X, and let x = (xj)j∈J ,y =

(yj)j∈J ∈ XJ be such that xj =X yj for all j ∈ J .
(1): For each pair of elements x, x′ ∈ X, if x → x and y → x′ with moduli

β ∈ hom(IX , J) and β′ ∈ hom(IX , J), respectively, then for all a ∈ IX , since
(xj , x) 
X ρX(a) and (yj , x

′) 
X ρX(a) for j = ubJ(β′(ρX(a)), β(ρX(a))), we
have (x, x′) 
X a as xj =X yj ; hence x =X y.

(2) For each pair of setoid mappings f, g : X → Y of X into Y = (Y ,=Y )
and each pair of elements y, y′ ∈ Y such that f ∼ g, f ◦ x→ y and g ◦ y → y′,
since f(xj) =Y g(yj) for all j ∈ J , we have y =Y y′, by (1).

Lemma 3.6. Every convergent net in a uniform space is a Cauchy net.

Proof. Let X be a uniform space with a uniform structure (IX , ρX ,
X) and
let J = (J,4J) be a directed preordered set. Consider x = (xj)j∈J ∈ XJ

and x ∈ X such that x → x with a modulus β ∈ hom(IX , J). Then for
each a ∈ IX , since (xj , x) 
X ρX(a) and (xj′ , x) 
X ρX(a) for all j, j′ ∈ J with
β(ρX(a)) 4J j, j′, we have (xj , xj′) 
X a for all j, j′ ∈ J with β(ρX(a)) 4J j, j′.
Therefore x is a Cauchy net with a modulus β ◦ ρX ∈ hom(IX , J).

Definition 3.7. Let X and Y be uniform spaces with uniform structures
(IX , ρX ,
X) and (IY , ρY ,
Y ), respectively. Then a function f : X → Y is
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uniformly continuous if there exists γ ∈ hom(IY , IX), called a modulus (of uni-
form continuity), such that for each b ∈ IY ,

(x, y) 
X γ(b)⇒ (f(x), f(y)) 
Y b

for all x, y ∈ X.
A uniformly continuous mapping f : X → Y is a uniform isomorphism if

there exists a uniformly continuous mapping g : Y → X, called an inverse of
f , such that g ◦ f ∼ idX and f ◦ g ∼ idY ; X and Y are uniformly equivalent if
there exists a uniform isomorphism between X and Y ; we then write X ' Y .

Lemma 3.8. Let X and Y be uniform spaces. Then every uniformly continuous
function f : X → Y is a setoid mapping.

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X = (X,=X

) and Y = (Y ,=Y ), respectively, and let γ ∈ hom(IY , IX) be a modulus of
uniform continuity of f , and consider x, y ∈ X with x =X y. Then for each b ∈
IY , since (x, y) 
X γ(b), we have (f(x), f(y)) 
Y b; hence f(x) =Y f(y).

Remark 3.9. For each pair of setoid mappings f, g : X → Y between uniform
spaces X and Y with f ∼ g, f is uniformly continuous if and only if g is uni-
formly continuous. Let X, Y and Z be uniform spaces with uniform structures
(IX , ρX ,
X), (IY , ρY ,
Y ) and (IZ , ρZ ,
Z), respectively. Then the composi-
tion g ◦f : X → Z of uniformly continuous mappings f : X → Y and g : Y → Z
with moduli γf ∈ hom(IY , IX) and γg ∈ hom(IZ , IY ), respectively, is uniformly
continuous with a modulus γf ◦ γg ∈ hom(IZ , IX), and the identity mapping
idX : X → X is a uniform isomorphism.

Lemma 3.10. Let X and Y be uniform spaces with uniform structures (IX , ρX ,
X
) and (IY , ρY ,
Y ), respectively, let J be a directed preordered set. Then for each
uniformly continuous function f : X → Y with a modulus γ ∈ hom(IY , IX) and
each net x ∈ XJ ,

1. for all x ∈ X, if x→ x ∈ X in X, then f ◦ x→ f(x) in Y ;

2. if x is a Cauchy net in X with a modulus α ∈ hom(IX , J), then f ◦ x is
a Cauchy net in Y with a modulus α ◦ γ ∈ hom(IY , J).

Proof. Let J = (J,4J), and consider a net x = (xj)j∈J ∈ XJ .
(1): For each element x ∈ X, if x→ x ∈ X with a modulus β ∈ hom(IX , J),

then for all b ∈ IY and j ∈ J with β(γ(b)) 4J j, since (xj , x) 
X γ(b), we have
(f(xj), f(x)) 
Y b; hence f ◦ x→ f(x) with a modulus β ◦ γ ∈ hom(IY , J).

(2): If x is a Cauchy net with a modulus α ∈ hom(IX , J), then for all
b ∈ IY and j, j′ ∈ J with α(γ(b)) 4J j, j′, since (xj , xj′) 
X γ(b), we have
(f(xj), f(xj′)) 
Y b; hence f ◦ x is a Cauchy net in Y with a modulus α ◦ γ ∈
hom(IY , J).

Definition 3.11. Let X be a uniform space. Then a uniform space S is a
uniform subspace of X if there exists a uniformly continuous setoid injection
ι : S → X.
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Proposition 3.12. Let X be a uniform space with a uniform structure (IX , ρX ,
X
), let S = (S, ι) be a subsetoid of X, and define a relation 
S between S × S
and IX by

(x, y) 
S a⇔ (ι(x), ι(y)) 
X a

for all a ∈ IX and x, y ∈ S. Then (IX , ρX ,
S) is a uniform structure on S,
and ιS : S → X is a uniformly continuous setoid injection; the uniform space S
is called a uniform subspace induced by a subsetoid S = (S, ι) of X.

Proof. It is straightforward to see that (IX , ρX ,
S) is a uniform structure on
S, and ι : S → X is a uniformly continuous setoid injection with a modulus
idIX ∈ hom(IX , IX).

Lemma 3.13. Let X be a uniform space with a uniform structure (IX , ρX ,
X),
and let S be the uniform subspace induced by a subsetoid S = (S, ι) of X. Then
for each uniform space Z,

1. for all function f : Z → S, f is uniformly continuous if and only if ι ◦ f
is uniformly continuous,

and for each directed preordered set J ,

2. for all x ∈ SJ and x ∈ S, x→ x in S if and only if ι ◦ x→ ι(x) in X;

3. for all x ∈ SJ and α ∈ hom(IX , J), x is a Cauchy net in S with a modulus
α if and only if ι ◦ x is a Cauchy net in X with a modulus α.

Proof. Straightforward.

Proposition 3.14. Let X and Y be uniform spaces with uniform structures
(IX , ρX ,
X) and (IY , ρY ,
Y ), respectively, and define ρX×Y ∈ hom(IX ×
IY , IX × IY ) and a relation 
X×Y between (X × Y )× (X × Y ) and IX × IY by

ρX×Y = ρX × ρY ,
((x, y), (x′, y′)) 
X×Y (a, b)⇔ (x, x′) 
X a and (y, y′) 
Y b

for all (a, b) ∈ IX×IY and (x, y), (x′, y′) ∈ X×Y . Then (IX×IY , ρX×Y ,
X×Y )
is a uniform structure on the product setoid X×Y A uniform space X×Y with
the uniform structure is called the product of uniform spaces X and Y .

Proof. (1): For all (x, y), (x′, y′) ∈ X × Y , if (x, y) =X×Y (x′, y′), then, since
x =X x′ and y =Y y′, we have (x, x′) 
X a and (y, y′) 
Y b for all (a, b) ∈
IX × IY ; hence ((x, y), (x′, y′)) 
X×Y (a, b) for all (a, b) ∈ IX × IY . Conversely,
if ((x, y), (x′, y′)) 
X×Y (a, b) for all (a, b) ∈ IX × IY , then, since (x, x′) 
X a
and (y, y′) 
Y b for all a ∈ IX and b ∈ IY , we have x =X x′ and y =Y y′; hence
(x, y) =X×Y (x′, y′).

(2) and (3): Straightforward.
(4): Consider (a, b), (a′, b′) ∈ IX × IY and (x, y), (x′, y′) ∈ X × Y such that

(a, b) 4IX×IY (a′, b′) and ((x, y), (x′, y′)) 
X×Y (a′, b′).

Then (x, x′) 
X a′ and (y, y′) 
Y b′. Since a 4IX a′ and b 4IY b′, we have
(x, x′) 
X a and (y, y′) 
Y b; hence ((x, y), (x′, y′)) 
X×Y (a, b).
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(5): Consider (a, b) ∈ IX × IY and (x, y), (x′, y′), (x′′, y′′) ∈ X × Y such
that ((x, y), (x′, y′)) 
X×Y ρX×Y (a, b) and ((x′, y′), (x′′, y′′)) 
X×Y ρX×Y (a, b).
Then, since (x, x′) 
X ρX(a), (y, y′) 
Y ρY (b), (x′, x′′) 
X ρX(a) and (y′, y′′) 
Y
ρY (b), we have (x, x′′) 
X a and (y, y′′) 
Y b; hence

((x, y), (x′′, y′′)) 
X×Y (a, b).

Theorem 3.15. Let X and Y be uniform spaces. Then the projections π0 :
X × Y → X and π1 : X × Y → Y are uniformly continuous, and for each
uniform space Z and each pair of uniformly continuous mappings f : Z → X
and g : Z → Y , there exists a unique uniformly continuous mapping 〈f, g〉 :
Z → X × Y such that π0 ◦ 〈f, g〉 ∼ f and π1 ◦ 〈f, g〉 ∼ g.

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structure on X = (X,=X)
and Y = (Y ,=Y ), respectively, and define γπ0 ∈ hom(IX , IX × IY ) by

γπ0 : a 7→ (a, b0)

for all a ∈ IX , where b0 is an inhabitant of IY . Then for all a ∈ IX and
(x, y), (x′, y′) ∈ X×Y , if ((x, y), (x′, y′)) 
X×Y γπ0(a), then, since (x, x′) 
X a,
we have (π0(x, y), π0(x′, y′)) 
X a. Hence π0 : X × Y → X is a uniformly
continuous mapping with a modulus γπ0 . Similarly, π1 : X × Y → Y is a
uniformly continuous mapping with a modulus γπ1 ∈ hom(IY , IX × IY ) given
by γπ1 : b 7→ (a0, b) for all b ∈ IY , where a0 is an inhabitant of IX .

Consider a uniform space Z = (Z,=Z) with a uniform structure (IZ , ρZ ,
Z)
and uniformly continuous mappings f : Z → X and g : Z → Y . Then it suffices
to show that the unique function 〈f, g〉 : Z → X × Y such that π0 ◦ 〈f, g〉 = f
and π1 ◦ 〈f, g〉 = g, is uniformly continuous. To this end, assume that f and g
are uniformly continuous with moduli γf ∈ hom(IX , IZ) and γg ∈ hom(IY , IZ),
respectively, and define γ〈f,g〉 ∈ hom(IX × IY , IZ) by

γ〈f,g〉 = ubIZ ◦ (γf × γg).

Then for all (a, b) ∈ IX × IY and z, z′ ∈ Z with

(z, z′) 
Z γ
〈f,g〉(a, b),

since γf (a) 4IZ γ〈f,g〉(a, b) and γg(b) 4IZ γ〈f,g〉(a, b), we have (z, z′) 
Z γf (a)
and (z, z′) 
Z γg(b). Therefore

(f(z), f(z′)) 
X a and (g(z), g(z′)) 
Y b,

and so (〈f, g〉(z), 〈f, g〉(z′)) 
X×Y (a, b). Thus 〈f, g〉 : Z → X × Y is uniformly
continuous with a modulus γ〈f,g〉 ∈ hom(IX × IY , IZ).

Corollary 3.16. Let X, X ′, Y and Y ′ be uniform spaces. Then each pair of
uniformly continuous mappings f : X → X ′ and g : Y → Y ′, f × g : X × Y →
X ′×Y ′ is a uniformly continuous mapping such that πX

′,Y ′

0 ◦ (f×g) ∼ f ◦πX,Y0

and πX
′,Y ′

1 ◦ (f × g) ∼ g ◦ πX,Y1 .

Proof. Straightforward by Theorem 3.15.
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Remark 3.17. ♣ Theorem 3.15 shows that the product uniform space X × Y
is the product of X and Y in the category of uniform spaces and uniformly
continuous mappings. For each pair of uniform isomorphisms f : X → Y
between uniform spaces X and Y and g : X ′ → Y ′ between uniform spaces X ′

and Y ′, since f × g : X × X ′ → Y × Y ′ is a uniform isomorphism, we have
X × Y ' X ′ × Y ′ whenever X ' X ′ and Y ' Y ′.

3.2 Completeness

Lemma 3.18. Let X = (X,=X) be a uniform space with a uniform structure
(IX , ρX ,
X), and let J = (J,4J) be a directed preordered set. Then a binary
relation =XJ on XJ given by

x =XJ y⇔∀a ∈ IX ∃j ∈ J ∀i ∈ J (j 4J i⇒ (xi, yi) 
X a)

for all x = (xi)i∈J ,y = (yi)i∈J ∈ XJ , is an equivalence relation on XJ ; hence

XJ = (XJ ,=XJ ) is a setoid.

Proof. Consider x = (xi)i∈J ∈ XJ . Then for each a ∈ IX , since (xi, xi) 
X a
for all i ∈ J , we have x =XJ x.

Consider x = (xi)i∈J ,y = (yi)i∈J ∈ XJ such that x =XJ y. Then for each
a ∈ IX , there exists j ∈ J such that for all i ∈ J with j 4J i, (xi, yi) 
X a;
hence (yi, xi) 
X a. Therefore y =XJ x.

Consider x = (xi)i∈J ,y = (yi)i∈J , z = (zi)i∈J ∈ XJ such that x =XJ y and
y =XJ z. Then given an a ∈ IX , there exists j ∈ J such that (xi, yi) 
X ρX(a)
for all i ∈ J with j 4J i, and there exists j′ ∈ J such that (yi, zi) 
X ρX(a)
for all i ∈ J with j′ 4J i. Therefore, since J is directed, there exists j′′ ∈ J
such that j 4J j′′ and j′ 4J j′′, and so for each i ∈ J , if j′′ 4J i, then, since
j 4J i and j′ 4J i, we have (xi, yi) 
X ρX(a) and (yi, zi) 
X ρX(a); hence
(xi, zi) 
X a. Thus x =XJ z.

Proposition 3.19. Let X = (X,=X) be a uniform space with a uniform struc-
ture (IX , ρX ,
X), and let J = (J,4J) be a directed preordered set. Then a
relation 
XJ between XJ ×XJ and IX given by

(x,y) 
XJ a⇔∃x′,y′ ∈ XJ [x =XJ x′ ∧ y =XJ y′

∧ ∃j ∈ J ∀i ∈ J (j 4J i⇒ (x′i, y
′
i) 
X a)]

for all a ∈ IX and x,y ∈ XJ where x′ = (x′i)i∈J and y′ = (y′i)i∈J , gives a

uniform structure (IX , ρ
2
X ,
XJ ) on XJ = (XJ ,=XJ ); hence XJ is a uniform

space.

Proof. (1): Consider x = (xi)i∈J ,y = (yi)i∈J . ∈ XJ . If x =XJ y, then for
each a ∈ IX , since x =XJ x, y =XJ y and there exists j ∈ J such that
(xi, yi) 
X a for all i ∈ J with j 4J i, we have (x,y) 
XJ a. Conversely,
suppose that (x,y) 
XJ a for all a ∈ IX . Then given an a ∈ IX , there exist
x′ = (x′i)i∈J ,y

′ = (y′i)i∈J ∈ X
J and j′ ∈ J such that x =XJ x′, y =XJ y′ and

(x′i, y
′
i) 
X ρ2X(a) for all i ∈ J with j′ 4J i. Therefore there exist j′′, j′′′ ∈ J

such that (x′i, xi) 
X ρ2X(a) for all i ∈ J with j′′ 4J i and (y′i, yi) 
X ρ2X(a) for
all i ∈ J with j′′′ 4J i. Since J is directed, there exists j ∈ J such that j′ 4J j,
j′′ 4J j and j′′′ 4J j; hence (xi, yi) 
X a for all i ∈ J with j 4J i, by Lemma
3.3 (2). Therefore x =XJ y.
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(2): Consider a ∈ IX and x,y,x′,y′ ∈ XJ such that x =XJ x′, y =XJ y′

and (x,y) 
XJ a. Then there exist x′′ = (x′′i )i∈J ,y
′′ = (y′′i )i∈J ∈ XJ and j ∈ J

such that x =XJ x′′, y =XJ y′′ and (x′′i , y
′′
i ) 
X a for all i ∈ J with j 4J i.

Therefore, since x′ =XJ x′′ and y′ =XJ y′′, we have (x′,y′) 
XJ a.
(3): Consider a ∈ IX and x,y ∈ XJ such that (x,y) 
XJ a. Then there

exist x′ = (x′i)i∈J ,y
′ = (y′i)i∈J ∈ X

J and j ∈ J such that x =XJ x′, y =XJ y′

and (x′i, y
′
i) 
X a for all i ∈ J with j 4J i; hence (y′i, x

′
i) 
X a for all i ∈ J with

j 4J i. Therefore (y,x) 
XJ a.
(4): Consider a, b ∈ IX and x,y ∈ XJ such that a 4IX b and (x,y) 
XJ b.

Then there exist x′ = (x′i)i∈J ,y
′ = (y′i)i∈J ∈ X

J and j ∈ J such that x =XJ x′,
y =XJ y′ and (x′i, y

′
i) 
X b for all i ∈ J with j 4J i; hence (y′i, x

′
i) 
X a for all

i ∈ J with j 4J i. Therefore (x,y) 
XJ a.
(5): Consider a ∈ IX and x,y, z ∈ XJ such that (x,y) 
XJ ρ2X(a) and

(y, z) 
XJ ρ2X(a). Then there exist x′ = (x′i)i∈J ,y
′ = (y′i)i∈J ∈ X

J and j′ ∈ J
such that x =XJ x′, y =XJ y′ and (x′i, y

′
i) 
X ρ2X(a) for all i ∈ J with j′ 4J i,

and there exist y′′ = (y′′i )i∈J , z
′ = (z′i)i∈J ∈ X

J and j′′ ∈ J such that y =XJ y′′,
z =XJ z′ and (y′′i , z

′
i) 
X ρ2X(a) for all i ∈ J with j′′ 4J i. Since y′ =XJ y′′,

there exists j′′′ ∈ J such that (y′i, y
′′
i ) 
X ρ2X(a) for all i ∈ J with j′′′ 4J i.

Therefore, since J is directed, there exists j ∈ J such that j′ 4J j, j′′ 4J j and
j′′′ 4J j, and so for each i ∈ J , if j 4J i, then (x′i, z

′
i) 
X a, by Lemma 3.3 (2).

Thus (x, z) 
XJ a.

Lemma 3.20. Let X = (X,=X) be a uniform space with a uniform structure
(IX , ρX ,
X), and let J = (J,4J) be a directed preordered set. Then for all
a ∈ IX and x = (xi)i∈J ,y = (yi)i∈J ∈ XJ ,

1. if (x,y) 
XJ ρ2X(a), then there exists j ∈ J such that (xi, yi) 
X a for all
i ∈ J with j 4J i;

2. if there exists j ∈ J such that (xi, yi) 
X a for all i ∈ J with j 4J i, then
(x,y) 
XJ a.

Proof. (1): Consider a ∈ IX and x = (xi)i∈J ,y = (yi)i∈J ∈ XJ , and suppose

that (x,y) 
XJ ρ2X(a). Then there exist x′ = (x′i)i∈J ,y
′ = (y′i)i∈J ∈ X

J and
j′ ∈ J such that x =XJ x′, y =XJ y′ and (x′i, y

′
i) 
X ρ2X(a) for all i ∈ J

with j′ 4J i. Since x =XJ x′ and y =XJ y′, there exist j′′, j′′′ ∈ J such that
(xi, x

′
i) 
X ρ2X(a) for all i ∈ J with j′′ 4J i, and (yi, y

′
i) 
X ρ2X(a) for all

i ∈ J with j′′′ 4J i. Therefore, since J is directed, there exists j ∈ J such that
j′ 4J j, j′′ 4J j and j′′′ 4J j, and so

(x′i, y
′
i) 
X ρ2X(a), (x′i, xi) 
X ρ2X(a), (y′i, yi) 
X ρ2X(a)

for all i ∈ J with j 4J i. Thus (xi, yi) 
X a for all i ∈ J with j 4J i, by
Lemma 3.3 (2).

(2): Consider a ∈ IX and x = (xi)i∈J ,y = (yi)i∈J ∈ XJ , and suppose that
there exists j ∈ J such that (xi, yi) 
X a for all i ∈ J with j 4J i. Then, since
x =XJ x and y =XJ y, we have (x,y) 
XJ a.

Definition 3.21. Let X and Y be setoids, and let J and J ′ be directed pre-
ordered sets. Then a function ηJX : X → XJ is defined by

ηJX : x 7→ (x)j∈J
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for all x ∈ X; for each function f : X → Y , a function fJ : XJ → Y J is defined
by

fJ : x 7→ f ◦ x

for all x ∈ XJ ; for each σ ∈ hom(J ′, J), a function σX : XJ → XJ′ is defined
by

σX : x 7→ x ◦ σ

for all x ∈ XJ ; in which case

fJ ◦ ηJX = ηJY ◦ f and σX ◦ ηJX = ηJ
′

X .

Lemma 3.22. Let X be a uniform space, and let J be a directed preordered set.
Then ηJX : X → XJ is a uniformly continuous setoid injection such that

ηJX ◦ x→ x

in XJ for all Cauchy net x ∈ XJ ; hence X is a uniform subspace of XJ .

Proof. Let (IX , ρX ,
X) be a uniform structure on X. For all a ∈ IX and
x, y ∈ X, if (x, y) 
X a, then, since (x, y) 
X a for all i ∈ J with j0 4J i
where j0 is an inhabitant of J , we have (ηJX(x), ηJX(y)) 
XJ a, by Lemma
3.20 (2). Therefore ηJX : X → XJ is uniformly continuous with a modulus
idIX ∈ hom(IX , IX).

Consider x, y ∈ X with ηJX(x) =XJ ηJX(y). Then for all a ∈ IX , since there
exists j ∈ J such that (x, y) 
X a for all i ∈ J with j 4J i, we have (x, y) 
X a;
hence x =X y. Therefore ηJX : X → XJ is a setoid injection; see Lemma 3.8.

Consider a Cauchy net x = (xj)j∈J ∈ XJ with a modulus α ∈ hom(IX , J).
Then for each a ∈ IX , since (xj , xj′) 
X a for all j, j′ ∈ J with α(a) 4J j, j′,
we have (ηJX(xj),x) 
XJ a for all j ∈ J with α(a) 4J j, by Lemma 3.20 (2).
Therefore ηJX ◦ x converges to x in XJ with a modulus α.

Lemma 3.23. Let X and Y be uniform spaces, and let J be a directed preordered
set. Then for each uniformly continuous function f : X → Y , fJ : XJ → Y J

is uniformly continuous.

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and Y ,
respcetively, let J = (J,4J), and suppose that f : X → Y is uniformly continu-
ous with a modulus γ ∈ hom(IY , IX). Then for all b ∈ IY and x = (xj)j∈J ,y =

(yj)j∈J ∈ XJ , if
(x,y) 
XJ ρ2X(γ(b)),

then, since there exists j ∈ J such that (xi, yi) 
X γ(b) for all i ∈ J with j 4J i,
by Lemma 3.20 (1) , we have (f(xi), f(yi)) 
Y b for all i ∈ J with j 4J i; hence
(f ◦ x, f ◦ y) 
Y J b, or

(fJ(x), fJ(y)) 
Y J b,

by Lemma 3.20 (2) . Therefore fJ : XJ → Y J is uniformly continuous with a
modulus ρ2X ◦ γ ∈ hom(IY , IX).

Lemma 3.24. Let X be a uniform space, and let J = (J,4J) and J ′ = (J ′,4J′)
be directed preordered sets. Then for each σ ∈ hom(J ′, J), σX : XJ → XJ′ is
uniformly continuous whenever for each j ∈ J there exists j′ ∈ J ′ such that
j 4J σ(j′).
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Proof. Let (IX , ρX ,
X) be a uniform structure on X, let σ ∈ hom(J ′, J) be
such that for each j ∈ J there exists j′ ∈ J ′ with j 4J σ(j′), and consider
a ∈ IX and x = (xj)j∈J ,y = (yj)j∈J ∈ XJ with

(x,y) 
XJ ρ2X(a).

Then there exists j ∈ J such that (xi, yi) 
X a for all i ∈ J with j 4J i,
by Lemma 3.20 (1) ; hence there exists j′ ∈ J ′ such that j 4J σ(j′). There-
fore for each i′ ∈ J ′, if j′ 4J i′, then, since j 4J σ(j′) 4J σ(i′), we ahve
(xσ(i′), yσ(i′)) 
X a; hence (x ◦ σ,y ◦ σ) 
XJ′ a, or

(σX(x), σX(y)) 
XJ′ a,

by Lemma 3.20 (2) . Thus σX : XJ → XJ′ is uniformly continuous with a
modulus ρ2X ∈ hom(IX , IX).

Recall that for all setoids X = (X,=X), Y = (Y ,=Y ) and all directed
preordered sets J and J ′,

XJ×J′ ∼= (XJ′)
J

with the bijection (̂-) : XJ×J′ → (XJ′)
J
, and

XJ × Y J ∼= (X × Y )J

with the bijection 〈-, -〉 : XJ × Y J → (X × Y )J ;

(̂-) ◦ ηJ×J
′

X = ηJ
XJ′ ◦ ηJ

′

X and 〈-, -〉 ◦ (ηJX × ηJY ) = ηJX×Y .

Proposition 3.25. Let X = (X,=X) be a uniform space with a uniform
structure (IX , ρX ,
X), and let J and J ′ be directed preordered sets. Then

(̂-) : XJ×J′ → (XJ′)
J

is a uniformly continuous mapping such that for each
a ∈ IX ,

(x̂, ŷ) 

(XJ′ )

J ρ8X(a)⇒ (x,y) 
XJ×J a

for all pair of Cauchy nets x,y ∈ XJ×J′ .

Proof. Let J = (J,4J) and J ′ = (J ′,4J′), and consider a ∈ IX and x =

(xj,j′)(j,j′)∈J×J′ ,y = (yj,j′)(j,j′)∈J×J′ ∈ XJ×J′ with

(x,y) 
XJ×J′ ρ2X(a).

Then there exists (j, j′) ∈ J×J ′ such that (xi,i′ , yi,i′) 
X a for all (i, i′) ∈ J×J ′
with (j, j′) 4J×J′ (i, i′), by Lemma 3.20 (1). Consider i ∈ J with j 4J i. Then
for all i′ ∈ J ′ with j′ 4J′ i′, since (j, j′) 4J×J′ (i, i′), we have (xi,i′ , yi,i′) 
X a;
hence (x̂(i), ŷ(i)) 
XJ′ a, by Lemma 3.20 (2). Therefore

(x̂, ŷ) 

(XJ′ )

J a,

by Lemma 3.20 (2). Thus (̂-) : XJ×J′ → (XJ′)
J

is a uniformly continuous
mapping with a modulus ρ2X ∈ hom(IX , IX); see Lemma 3.8.
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Consider a ∈ IX and Cauchy nets x = (xj,j′)(j,j′)∈J×J′ ,y = (yj,j′)(j,j′)∈J×J′ ∈
XJ×J′ with moduli α ∈ hom(IX , J×J ′) and α′ ∈ hom(IX , J×J ′), respcetively,
with

(x̂, ŷ) 

XJ′J ρ

8
X(a),

and note that ρXJ′ = ρ2X ; see Proposition 3.19. Then, since (x̂, ŷ) 

XJ′J

ρ2
XJ′ (ρ

4
X(a)), there exits j ∈ J such that ((xi,j′)j′∈J′ , (yi,j′)j′∈J′) 
XJ′ ρ4X(a)

for all i ∈ J with j 4J i. Choose k ∈ J such that j 4J k, π0(α(ρ2X(a))) 4J k and
π0(α′(ρ2X(a))) 4J k. Then, since ((xk,j′)j′∈J′ , (yk,j′)j′∈J′) 
XJ′ ρ4X(a), there
exists j′ ∈ J ′ such that (xk,i′ , yk,i′) 
X ρ2X(a) for all i′ ∈ J with j′ 4J i′. Choose
k′ ∈ J ′ such that j′ 4J′ k′, π1(α(ρ2X(a))) 4J′ k′ and π1(α′(ρ2X(a))) 4J′ k′. Then
for all (i, i′) ∈ J × J ′ with (k, k′) 4J×J′ (i, i′), since (xk,k′ , yk,k′) 
X ρ2X(a),
α(ρ2X(a)) 4J×J′ (k, k′) and α′(ρ2X(a)) 4J×J′ (k, k′), we have (xi,i′ , xk,k′) 
X
ρ2X(a) and (yi,i′ , yk,k′) 
X ρ2X(a); hence (xi,i′ , yi,i′) 
X a, by Lemma 3.3 (2).
Therefore

(x,y) 
XJ×J′ a,

by Lemma 3.20 (2).

Proposition 3.26. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then 〈-, -〉 : XJ × Y J → (X × Y )J is a uniform isomorphism;
hence

XJ × Y J ' (X × Y )J .

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and Y ,
respectively, let J = (J,4J), and consider (a, b) ∈ IX×IY and (x,y), (x′,y′) ∈
XJ × Y J with

((x,y), (x′,y′)) 
XJ×Y J (ρ2X × ρ2Y )((a, b)),

where x = (xj)j∈J ,x
′ = (x′j)j∈J ∈ X

J and y = (yj)j∈J ,y
′ = (y′j)j∈J ∈ Y

J .

Then, since (x,x′) 
XJ ρ2X(a) and (y,y′) 
Y J ρ2Y (b), there exist j, j′ ∈ J such
that (xi, x

′
i) 
X a for all i ∈ J with j 4J i and (yi′ , y

′
i′) 
Y b for all i′ ∈ J

with j′ 4J i′, by Lemma 3.20 (1). Therefore for each i ∈ J , if ubJ(j, j′) 4J i,
then, since (xi, x

′
i) 
X a and (yi, y

′
i) 
Y b, we have ((xi, yi), (x

′
i, y
′
i) 
X×Y (a, b);

hence
(〈x,y〉, 〈x′,y〉) 
(X×Y )J (a, b).

Thus 〈-, -〉 : XJ × Y J → (X × Y )J is a uniformly continuous mapping with a
modulus ρ2X × ρ2Y ∈ hom(IX × IY , IX × IY ); see Lemma 3.8.

Let π0 : X × Y → X and π1 : X × Y → Y be the projections. Then, since
π0 and π1 are uniformly continuous, by Theorem 3.15, πJ0 : (X × Y )J → XJ

and πJ1 : (X × Y )J → Y J are uniformly continuous, by Lemma 3.23; hence
〈πJ0 , πJ1 〉 : (X × Y )J → XJ × Y J is uniformly continuous, by Theorem 3.15.
Furthermore, since

〈πJ0 , πJ1 〉(〈x,y〉) = (πJ0 (〈x,y〉), πJ1 (〈x,y〉))
= (π0 ◦ 〈x,y〉, π1 ◦ 〈x,y〉) = (x,y)

for all x ∈ XJ and y ∈ Y J , 〈πJ0 , πJ1 〉 : (X × Y )J → XJ × Y J is an inverse of
〈-, -〉 : XJ × Y J → (X × Y )J .

24



Definition 3.27. For each uniform space X = (X,=X) with a uniform struc-

ture (IX , ρX ,
X) and each directed preordered set J = (J,4J), let X̃
J

be a
subset of XJ × hom(IX , J) given by

X̃
J

= {(x, α) ∈ XJ × hom(IX , J) | x is a Cauchy net with a modulus α},

an let ι̃JX : X̃
J → XJ be a function given by

ι̃JX : (x, α) 7→ x

for all (x, α) ∈ X̃J
. Then a uniform space X̃J is a uniform subspace induced

by a subsetoid X̃J = (X̃
J
, ι̃JX) of XJ ; see Proposition 3.12. Note that for all

(x, α), (y, α′) ∈ X̃J
and a ∈ IX ,

(x, α) =X̃J (y, α′)⇔ x =XJ y, ((x, α), (y, α′)) 
X̃J a⇔ (x,y) 
XJ a.

Lemma 3.28. Let X be a uniform space, and let J be a directed preordered
set. Then there exists a uniformly continuous setoid injection η̃JX : X → X̃J

which makes the following diagram commute, that is, ι̃JX ◦ η̃JX ∼ ηJX ; hence X is
a subspace of X̃J .

X X̃J

XJ

η̃JX

ηJX

ι̃JX

Proof. Let (IX , ρX ,
X) be a uniform structure on X = (X,=X). Then for
each x ∈ X, ηJX(x) is a Cauchy net with a modulus j0 ∈ hom(IX , J), where j0

is an inhabitant of J . Define a function η̃JX : X → X̃
J

by

η̃JX : x 7→ (ηJX(x), j0)

for all x ∈ X. Then, since ι̃JX ◦ η̃JX = ηJX , we have ι̃JX ◦ η̃JX ∼ ηJX , and, since
ηJX : X → XJ is uniformly continuous, by Lemma 3.22, η̃JX : X → X̃J is
a uniformly continuous mapping, by Lemma 3.13 (1) and Lemma 3.8. Since
ι̃JX ◦ η̃JX is a setoid injection, so is η̃JX ; see Remark 2.9.

Lemma 3.29. Let X and Y be uniform spaces, and let J be a directed preordered
set. Then for each pair of uniformly continuous mappings f, g : X̃J → Y , if
f ◦ η̃JX ∼ g ◦ η̃JX , then f ∼ g; that is, η̃JX is an epimorphism in the category of
uniform spaces and uniformly continuous mappings.

Proof. Consider uniformly continuous mappings f, g : X̃J → Y with f ◦ η̃JX ∼
g ◦ η̃JX . Then for each (x, α) ∈ X̃J

, since ηJX ◦ x → x in XJ , by Lemma 3.22,
we have ηJX ◦ ι̃JX(x, α) → ι̃JX(x, α); hence ι̃JX ◦ η̃JX ◦ ι̃JX(x, α) → ι̃JX(x, α), by
Lemma 3.28. Therefore η̃JX ◦ ι̃JX(x, α)→ (x, α) in X̃J , by Lemma 3.13 (2), and
so f ◦ η̃JX ◦ ι̃JX(x, α)→ f(x, α) and g ◦ η̃JX ◦ ι̃JX(x, α)→ g(x, α) in Y , by Lemma

3.10 (1). Thus f(x, α) =Y g(x, α), by Lemma 3.5 (2), and so, since (x, α) ∈ X̃J

is arbitrary, we have f ∼ g.
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Lemma 3.30. Let X = (X,=X) and Y = (Y ,=Y ) be uniform spaces with
uniformly structures (IX , ρX ,
X) and (IY , ρY ,
Y ), respcetively, and let J and

J ′ be directed preordered sets. Then for each pair of functions F : XJ → Y J
′

and G : X̃
J → hom(IY , J

′) such that for all (x, α) ∈ X̃
J

, F (x) is a Cauchy

net with a modulus G(x, α), there exists a function F̃ : X̃
J → Ỹ

J′

such that
F ◦ ι̃JX ∼ ι̃J

′

Y ◦ F̃ . Furthermore, if F is uniformly continuous, then F̃ is uniformly
continuous.

Proof. Define a function F̃ : X̃
J → Ỹ

J′

by

F̃ : (x, α) 7→ (F (x), G(x, α))

for all (x, α) ∈ X̃J
. Then, since ι̃J

′

Y ◦ F̃ = F ◦ ι̃JX , we have ι̃J
′

Y ◦ F̃ ∼ F ◦ ι̃JX .
If F : XJ → Y J

′
is uniformly continuous, then, since F ◦ ι̃JX : X̃J → Y J is

uniformly continuous, by Proposition 3.12, ι̃J
′

Y ◦ F̃ : X̃J → Y J
′

is uniformly

continuous; hence F̃ : X̃
J → Ỹ

J′

is uniformly continuous, by Lemma 3.13
(1).

Proposition 3.31. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then for each uniformly continuous function f : X → Y , there
exists a uniformly continuous mapping f̃J : X̃J → Ỹ J which makes the following
diagram commute, that is, fJ ◦ ι̃JX ∼ ι̃JY ◦ f̃J and f̃J ◦ η̃JX ∼ η̃JY ◦ f.

X

Y

X̃J

Ỹ J

XJ

Y J

η̃JX

η̃JY

f f̃J

ι̃JX

ι̃JY

fJ

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and Y ,
respcetively, let J = (J,4J), and suppose that f : X → Y is uniformly con-
tinuous with a modulus γ ∈ hom(IY , IX). Then for each Cauchy net x ∈ XJ

with a modulus α ∈ hom(IX , J), fJ(x), or f ◦ x, is a Cauchy net in Y with
a modulus α ◦ γ ∈ hom(IY , J), by Lemma 3.10 (2). Apply Lemma 3.30 with
F : x 7→ fJ(x) and G : (x, α) 7→ α◦γ. Then there exists a uniformly continuous
mapping f̃J : X̃J → Ỹ J such that ι̃JY ◦ f̃J ∼ fJ ◦ ι̃JX . Since fJ ◦ ηJX = ηJY ◦ f,
we have

ι̃JY ◦ f̃J ◦ η̃JX ∼ fJ ◦ ι̃JX ◦ η̃JX ∼ fJ ◦ ηJX ∼ ηJY ◦ f ∼ ι̃JY ◦ η̃JY ◦ f ;

hence f̃J ◦ η̃JX ∼ η̃JY ◦ f, as ι̃JY is a monomorphism.

Proposition 3.32. Let X be a uniform space, and let J = (J,4J) and J ′ =
(J ′,4J′) be directed preordered sets. Then for each pair of σ ∈ hom(J ′, J) and
τ ∈ hom(J, J ′) such that j 4J σ(τ(j)) for all j ∈ J , there exists a uniformly
continuous mapping σ̃X : X̃J → X̃J′ which makes the following diagram com-
mute, that is, σX ◦ ι̃JX ∼ ι̃J

′

X ◦ σ̃X and σ̃X ◦ η̃JX ∼ η̃J
′

X .
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X X̃J

X̃J′

XJ

XJ′

η̃JX

η̃J
′

X

σ̃X

ι̃JX

ι̃J
′

X

σX

Proof. Let (IX , ρX ,
X) be a uniform structure on X = (X,=X), and consider
σ ∈ hom(J ′, J) and τ ∈ hom(J, J ′) such that j 4J σ(τ(j)) for all j ∈ J . Then
for each Cauchy net x ∈ XJ with a modulus α ∈ hom(IX , J), σX(x), or x◦σ, is a
Cauchy net on J ′ with a modulus τ ◦α ∈ hom(IX , J

′) : in fact, for all a ∈ IX and
i′, j′ ∈ J ′, if τ(α(a)) 4J′ i′, j′, then, since α(a) 4J σ(τ(α(a))) 4J σ(i′), σ(j′),
we have (x(σ(i′)),x(σ(j′))) 
X a, or ((x ◦ σ)(i′), (x ◦ σ)(j′)) 
X a. Apply
Lemma 3.30 with F : x 7→ σJ(x) and G : (x, α) 7→ τ ◦ α. Then there exists a
uniformly continuous mapping σ̃X : X̃J → X̃J′ such that σX ◦ ι̃JX ∼ ι̃J

′

X ◦ σ̃X .
Since σX ◦ ηJX = ηJ

′

X , we have

ι̃J
′

X ◦ σ̃X ◦ η̃JX ∼ σX ◦ ι̃JX ◦ η̃JX ∼ σX ◦ ηJX ∼ ηJ
′

X ∼ ι̃J
′

X ◦ η̃J
′

X ;

hence σ̃X ◦ η̃JX ∼ η̃J
′

X , as ι̃J
′

X is a monomorphism.

Theorem 3.33. Let X and Y be uniform spaces, and let J be a directed pre-

ordered set. Then there exists a uniform isomorphism 〈̃-, -〉 : X̃
J × Ỹ

J →
(X̃ × Y )J which makes the following diagram commute, that is, 〈̃-, -〉 ◦ (η̃JX ×
η̃JY ) ∼ η̃JX×Y and 〈-, -〉 ◦ (ι̃JX × ι̃JY ) ∼ ι̃JX×Y ◦ 〈̃-, -〉; hence

X̃J × Ỹ J ' (X̃ × Y )J .

X × Y X̃J × Ỹ J

X̃ × Y
J

XJ × Y J

(X × Y )J

η̃JX×η̃
J
Y

η̃JX×Y

〈̃-,-〉

ι̃JX×ι̃
J
Y

ι̃JX×Y

〈-,-〉

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and
Y , respectively, and let J = (J,4J) with an upper bound function ubJ ∈
hom(J × J, J). Then for each pair of Cauchy nets x = (xj)j∈J ∈ XJ and

y = (yj)j∈J ∈ Y J with moduli α ∈ hom(IX , J) and α′ ∈ hom(IY , J), re-

spectively, 〈x,y〉 = ((xj , yj))j∈J ∈ X × Y J is a Cauchy net with a modulus
ubJ ◦ (α× α′) ∈ hom(IX × IY , J) : in fact, for all (a, b) ∈ IX × IY and i, j ∈ J ,
if ubJ(α(a), α′(b)) 4J i, j, then, since α(a) 4J i, j and α′(b) 4J i, j, we have
(xi, xj) 
X a and (yi, yj) 
Y b; hence ((xi, yi), (xj , yj)) 
X×Y (a, b). Define a

function 〈̃-, -〉 : X̃
J × Ỹ J → (X̃ × Y )J by

〈̃-, -〉 : ((x, α), (y, α′)) 7→ (〈x,y〉,ubJ ◦ (α× α′))
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for all (x, α) ∈ X̃J
and (y, α′) ∈ Ỹ J . Then, since 〈-, -〉◦(ι̃JX× ι̃JY ) = ι̃JX×Y ◦ 〈̃-, -〉,

we have 〈-, -〉 ◦ (ι̃JX × ι̃JY ) ∼ ι̃JX×Y ◦ 〈̃-, -〉, and, since 〈-, -〉 ◦ (ι̃JX × ι̃JY ) is uniformly

continuous, by Proposition 3.12 and Proposition 3.26, ι̃JX×Y ◦ 〈̃-, -〉 : X̃J ×
Ỹ J → (X × Y )J is uniformly continuous; hence 〈̃-, -〉 : X̃

J × Ỹ J → (X̃ × Y )J

is a uniformly continuous mapping, by Lemma 3.13 (1) and Lemma 3.8. Since
〈-, -〉 ◦ (ηJX × ηJY ) = ηJX×Y , we have

ι̃JX×Y ◦ 〈̃-, -〉 ◦ (η̃JX × η̃JY ) ∼ 〈-, -〉 ◦ (ι̃JX × ι̃JY ) ◦ (η̃JX × η̃JY )

∼ 〈-, -〉 ◦ (ηJX × ηJY ) ∼ ηJX×Y ∼ ι̃JX×Y ◦ η̃JX×Y ;

hence 〈̃-, -〉 ◦ (η̃JX × η̃JY ) ∼ η̃JX×Y , as ι̃JX×Y is a monomorphism.

For each Cauchy net 〈x,y〉 = ((xj , yj))j∈J ∈ X × Y J with a modulus α ∈
hom(IX × IY , J), x = (xj)j∈J ∈ XJ and y = (yj)j∈J ∈ Y J are Cauchy nets

with moduli α◦(idIX×b0) ∈ hom(IX , J) and α◦(a0×idIY ) ∈ hom(IY , J) where
a0 and b0 are inhabitants of IX and IY , respectively: in fact, for all a ∈ IX
and i, j ∈ J , if α(a, b0) 4J i, j, then, since ((xi, yi), (xj , yj)) 
X×Y (a, b0), we
have (xi, xj) 
X a; similarly, for all b ∈ IY and i, j ∈ J , if α(a0, b) 4J i, j, then
(xi, xj) 
X b. Let π0 : X × Y → X and π1 : X × Y → Y be the projections,

and define a function ˜〈πJ0 , πJ1 〉 : (X̃ × Y )J → X̃
J × Ỹ J by

˜〈πJ0 , πJ1 〉 : (〈x,y〉, α) 7→ ((x, α ◦ (idIX × b0)), (y, α ◦ (a0 × idIY )))

for all (〈x,y〉, α) ∈ X̃ × Y
J

; see the proof of Proposition 3.26. Then, since

ι̃JX×Y ◦ ˜〈πJ0 , πJ1 〉 = 〈πJ0 , πJ1 〉 ◦ (ι̃JX × ι̃JY ), we have ι̃JX×Y ◦ ˜〈πJ0 , πJ1 〉 ∼ 〈πJ0 , πJ1 〉 ◦
(ι̃JX× ι̃JY ), and, since 〈πJ0 , πJ1 〉◦(ι̃JX× ι̃JY ) is uniformly continuous, by Proposition

3.12 and Proposition 3.26, ι̃JX×Y ◦ ˜〈πJ0 , πJ1 〉 : (X ×Y )J → X̃J × Ỹ J is uniformly

continuous; hence ˜〈πJ0 , πJ1 〉 : (X̃ × Y )J → X̃
J × Ỹ J is a uniformly continuous

mapping, by Lemma 3.13 (1) and Lemma 3.8.
♣

˜〈πJ0 , πJ1 〉 : (X̃ × Y )J → X̃J×Ỹ J is an inverse of 〈̃-, -〉 : X̃J×Ỹ J → (X̃ × Y )J .

Definition 3.34. Let X = (X,=X) be a uniform space with a uniform struc-
ture (IX , ρX ,
X). Then a regular net in X is a Cauchy net on the directed
preordered set IX with a modulus idIX ∈ hom(IX , IX).

Let X̃ be a subset of XIX given by

X̃ = {x ∈ XIX | x is a regular net},

and let ι̃X : X̃ → X̃
IX

be a function given by

ι̃X : x 7→ (x, idIX )

for all x ∈ X̃. Then a uniform space X̃, called a completion of X, is a uniform
subspace induced by a subsetoid X̃ = (X̃, ι̃X) of X̃IX ; see Proposition 3.12.
Note that for all x,y ∈ X̃ and a ∈ IX ,

x =X̃ y⇔ x =XIX y, (x,y)) 
X̃ a⇔ (x,y) 
XIX a.
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Since ηIXX (x) ∈ X̃ for all x ∈ X, we denote ηIXX : X → XIX by ηX : X → X̃;

note that, since ι̃IXX ◦ ι̃X ◦ η
IX
X ∼ ηIXX , we have ι̃IXX ◦ ι̃X ◦ ηX ∼ ι̃IXX ◦ η̃

IX
X , by

Lemma 3.22; hence ι̃X ◦ ηX ∼ η̃IXX as ι̃IXX is a monomorphism.

X X̃

X̃IX

ηX

η̃
IX
X

ι̃X

Lemma 3.35. Let X be a uniform space with a uniform structure (IX , ρX ,
X),
and let J be a directed preordered set. Then

1. if x ∈ XJ is a Cauchy net with a modulus α ∈ hom(IX , J), then x ◦ α ∈
XIX is a regular net;

2. if x,y ∈ XJ are Cauchy nets with moduli α, α′ ∈ hom(IX , J), respectively,
then for each a ∈ IX ,

(x,y) 
XJ ρ4X(a)⇒ (x ◦ α,y ◦ α′) 
XIX a;

3. if x,y ∈ XJ are Cauchy nets with moduli α, α′ ∈ hom(IX , J), respectively,
then for each a ∈ IX ,

(x ◦ α,y ◦ α′) 
XIX ρ4X(a)⇒ (x,y) 
XJ a;

4. if x,y ∈ XJ are Cauchy nets with moduli α, α′ ∈ hom(IX , J), respectively,
then

x =XJ y⇔ x ◦ α =XIX y ◦ α′;

5. if x ∈ XIX is a Cauchy net with a modulus α ∈ hom(IX , IX), then

x ◦ α =XIX x.

Proof. Let IX = (IX ,4IX ) with an upper bound function ubIX ∈ hom(IX ×
IX , IX), and let J = (J,4J).

(1): Consider a Cauchy net x = (xj)j∈J ∈ XJ with a modulus α ∈
hom(IX , J) and a ∈ IX . Then for all c, c′ ∈ IX with a 4IX c, c′, since
α(a) 4J α(c), α(c′), we have (xα(c), xα(c′)) 
X a. Therefore x ◦ α ∈ XIX is
a regular net.

(2): Consider Cauchy nets x = (xj)j∈J ,y = (yj)j∈J ∈ XJ with moduli
α, α′ ∈ hom(IX , J), respectively, and a ∈ IX such that (x,y) 
XJ ρ4X(a).
Then there exists j ∈ J such that (xi, yi) 
X ρ2X(a) for all i ∈ J with j 4J i,
by Lemma 3.20 (1). Choose i ∈ J such that j 4J i, α(ρ2X(a)) 4J i and
α′(ρ2X(a)) 4J i. Then for all c ∈ IX with ρ2X(a) 4IX c, since α(ρ2X(a)) 4J α(c), i
and α′(ρ2X(a)) 4J α(c), i, we have (xi, yi) 
X ρ2X(a), (xα(c), xi) 
X ρ2X(a) and
(yα′(c), yi) 
X ρ2X(a); hence we have (xα(c), yα′(c)) 
X a, by Lemma 3.3 (2) .
Therefore (x ◦ α,y ◦ α′) 
XIX a, by Lemma 3.20 (2).

(3): Consider Cauchy nets x = (xj)j∈J ,y = (yj)j∈J ∈ XJ with moduli
α, α′ ∈ hom(IX , J), respectively, and a ∈ IX such that (x ◦ α,y ◦ α′) 
XIX
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ρ4X(a). Then there exists b ∈ IX such that (xα(c), yα′(c)) 
X ρ2X(a) for all
c ∈ IX with b 4IX c, by Lemma 3.20 (1). Choose c ∈ IX such that b 4IX c,
and ρ2X(a) 4IX c. Then for all i ∈ J with ubJ(α(ρ2X(a)), α′(ρ2X(a)) 4J i, since
α(ρ2X(a)) 4J α(c), i and α′(ρ2X(a)) 4J α′(c), i, we have (xα(c), yα′(c)) 
X ρ2X(a),
(xα(c), xi) 
X ρ2X(a) and (yα′(c), yi) 
X ρ2X(a); hence we have (xi, yi) 
X a, by
Lemma 3.3 (2) . Therefore (x,y) 
XJ a, by Lemma 3.20 (2).

(4): It follows from (2) and (3).
(5): Consider a Cauchy net x = (xj)j∈J ∈ XJ with a modulus α ∈

hom(IX , J) and a ∈ IX . Then for all c ∈ IX with ubIX (a, α(a)) 4IX c, since
α(a) 4J c and α(a) 4J α(c), we have (xα(c), xc) 
X a. Therefore, since a ∈ IX
is arbitrary, we have x ◦ α =XIX x.

Proposition 3.36. Let X be a uniform space with a uniform structure (IX , ρX ,
X
), and let J be a directed preordered set. Then there exists a uniformly continu-
ous setoid injection νJX : X̃J → X̃ which makes the following diagram commute,
that is, νJX ◦ η̃JX ∼ ηX ; hence X̃J is a subspace of X̃. Especially, νIXX : X̃IX → X̃

is a uniform isomorphism with an inverse ι̃X : X̃ → X̃IX ; hence

X̃ ' X̃IX .

X X̃J

X̃

η̃JX

ηX
νJ
X

Proof. Note that for each (x, α) ∈ X̃
J
, x ◦ α ∈ X̃, by Lemma 3.35 (1), and

define a function νJX : X̃
J → X̃ by

νJX : (x, α) 7→ x ◦ α

for all (x, α) ∈ X̃J
. For all (x, α), (y, α′) ∈ X̃J

and a ∈ IX , if ((x, α), (y, α′)) 
X̃J

ρ4X(a), then, since (x,y) 
XJ ρ4X(a), we have (x ◦α,y ◦α′) 
XIX a, by Lemma

3.35 (2); hence (x ◦ α,y ◦ α′) 
X̃ a. Therefore νJX : X̃
J → X̃ is uniformly

continuous with a modulus ρ4X ∈ hom(IX , IX). It is straightforward to see that
νJX : X̃J → X̃ is a setoid injection, by Lemma 3.35 (4), and, since νJX ◦ η̃JX = ηX ,
we have νJX ◦ η̃JX ∼ ηX .

For each (x, α) ∈ X̃IX
, since x ◦ α =XIX x, we have

(ι̃X ◦ νIXX )(x, α) =X̃IX ι̃X(νIXX (x, α)) =X̃IX ι̃X(x ◦ α)

=X̃IX (x ◦ α, idIX ) =X̃IX (x, α),

and for each x ∈ X̃, since x ◦ idIX = x, we have

(νIXX ◦ ι̃X)(x) =X̃ νIXX (ι̃X(x)) =X̃ νIXX (x, idIX ) =X̃ x ◦ idIX =X̃ x.

Therefore ι̃X : X̃ → X̃IX is an inverse of νJX : X̃J → X̃.
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Lemma 3.37. Let X and Y be uniform spaces. Then for each pair of uniformly
continuous mappings f, g : X̃ → Y , if f ◦ ηX ∼ g ◦ ηX , then f ∼ g; that is, ηX
is an epimorphism in the category of uniform spaces and uniformly continuous
mappings.

Proof. Consider uniformly continuous mappings f, g : X̃ → Y with f ◦ ηX ∼
g ◦ ηX . Then, since f ◦ νIXX ◦ η̃

IX
X ∼ g ◦ ν

IX
X ◦ η̃

IX
X , we have f ◦ νIXX ∼ g ◦ νIXX , by

Lemma 3.29; hence f ∼ f ◦νIXX ◦ ι̃X ∼ g ◦ν
IX
X ◦ ι̃X ∼ g, by Proposition 3.36.

Proposition 3.38. Let X be a uniform space with a uniform structure (IX , ρX ,
X
), and let J be a directed preordered set. Then νIX×JX : X̃IX×J → X̃ and

νJ×IXX : X̃J×IX → X̃ are uniform isomorphisms; hence

X̃IX×J ' X̃ and X̃J×IX ' X̃.

Proof. Let π0 : IX × J → IX be the projection, and let τ0 ∈ hom(IX , IX × J)
be given by

τ0 : a 7→ (a, j0)

for all a ∈ IX , where j0 is an inhabitant of J . Then π0 ∈ hom(IX × J, IX) and
a 4IX π0(τ0(a)) for all a ∈ IX ; hence there exist uniformly continuous mapping
(π̃0)X : X̃IX → X̃IX×J such that (π̃0)X ◦ η̃IXX ∼ ηIX×JX , by Proposition 3.32.

Therefore, since ι̃X ◦ηX ∼ η̃IXX and νIX×JX ◦ηIX×JX ∼ ηX , by Proposition 3.36, we

have νIX×JX ◦(π̃0)X◦ι̃X◦ηX ∼ ηX and (π̃0)X◦ι̃X◦νIX×JX ◦ηIX×JX ∼ ηIX×JX , and so

νIX×JX ◦ (π̃0)X ◦ ι̃X ∼ idX̃ and (π̃0)X ◦ ι̃X ◦νIX×JX ∼ idX̃IX×J , by Lemma ?? (??)

and (??). Thus (π̃0)X ◦ ι̃X : X̃ → X̃IX×J is an inverse of νIX×JX : X̃IX×J → X̃.
Similarly, for the projection π1 : J × IX → IX and τ1 ∈ hom(IX , J × IX)

given by τ1 : a 7→ (j0, a) for all a ∈ IX , (π̃1)X ◦ ι̃X : X̃ → X̃J×IX is an inverse
of νJ×IXX : X̃J×IX → X̃.

Proposition 3.39. Let X be a uniform space with a uniform structure (IX , ρX ,
X
), and let J be a directed preordered set. Then there exists a uniformly continu-

ous mapping θJX : ˜̃XJ

→ X̃J×IX which makes the following diagram commute,
that is, θJX ◦ ηJX̃ ◦ ηX ∼ η

J×IX
X .

X

X̃

X̃J×IX

˜̃XJ

η̃
J×IX
X

ηX

η̃J
X̃

θJX

Proof. LetX = (X,=X) be a uniform space with a uniform structure (IX , ρX ,
X
), and let J = (J,4J) be a directed preordered set.

We show that for each x ∈ XJ×IX , if x̂ ∈ X̃
J

is a Cauchy net with
a modulus α ∈ hom(IX , J), then x is a Cauchy net with a modulus 〈α ◦
ρ4X , ρ

2
X〉 ∈ hom(IX , J × IX). To this end, consider a ∈ IX and (j, c), (j′, c′) ∈

J × IX with (α(ρX(a)), ρ2X(a)) 4J×IX (j, c), (j′, c′). Then, since α(ρ4X(a)) 4J
j, j′, we have ((xj,b)b∈IX , (xj′,b)b∈IX ) 
X̃ ρ4X(a); hence there exists b ∈ IX
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such that (xj,b′ , xj′,b′)) 
X ρ2X(a) for all b′ ∈ IX with b 4IX b′. Set b′ =
ubIX (b, ρ2X(a)). Then, since ρ2X(a) 4IX c, c′, b′, we have (xj,c, xj,b′) 
X ρ2X(a)
and (xj′,b′ , xj,c′) 
X ρ2X(a); hence (xj,c, xj′,c′) 
X a, by Lemma 3.3 (2).

Definition 3.40. A uniform space X is complete if ηX : X → X̃ is a uniform
isomorphism.

Proposition 3.41. Every Cauchy net in a complete uniform space X converges.

Proof. Let (IX , ρX ,
X) be a uniform structure on X, let g : X̃ → X be a
uniformly continuous inverse of ηX : X → X̃, and consider a Cauchy net x
in X on a directed preordered set J with a modulus α ∈ hom(IX , J), that

is, (x, α) ∈ X̃
J

. Then, since ηJX ◦ x → x in XJ , by Lemma 3.22, we have
ι̃JX ◦ η̃JX ◦ x → ι̃JX(x, α) in XJ , by Lemma 3.28; hence η̃JX ◦ x → (x, α) in X̃J ,
by Lemma 3.13 (2). Therefore, since νJX ◦ η̃JX ◦ x→ νJX(x, α) in X̃, by Lemma
3.10 (1), we have ηX ◦ x→ νJX(x, α) in X̃, and so g ◦ ηX ◦ x→ g(νJX(x, α)) in
X, by Lemma 3.10 (1). Thus x→ g(νJX(x, α)) in X.

Theorem 3.42. The completion X̃ of a uniform space X is complete.

Proof. Let (IX , ρX ,
X) be a uniform structure on X, and note that νIX
X̃

:˜̃XIX
→ ˜̃X is a uniform isomorphism, by Proposition 3.36. Define a uniformly

continuous mapping g : ˜̃X → X̃ by

g = νIX×IXX ◦ θIXX ◦ (νIX
X̃

)−1.

Then, since g ◦ ηX̃ ◦ ηX ∼ ν
IX×IX
X ◦ θIXX ◦ η

IX
X̃
◦ ηX ∼ νIX×IXX ◦ ηIX×IX

X̃
∼ ηX and

ηX̃ ◦ g ◦ ηX̃ ◦ ηX ∼ ηX̃ ◦ ηX , we have g ◦ ηX̃ ∼ idX̃ and ηX̃ ◦ g ◦ ηX̃ ∼ ηX̃ , by

Lemma 3.37; hence ηX̃ ◦ g ∼ id ˜̃X
, by Lemma 3.37. Therefore ηX̃ : X̃ → ˜̃X is a

uniform isomorphism with an inverse g : ˜̃X → X̃.

X̃ X̃IX×IX ˜̃XIX ˜̃X

X X̃

ν
IX×IX
X θ

IX
X ν

IX
X̃

ηX
η
IX×IX
X η

IX
X̃ ηX̃

ηX

ηX̃

Theorem 3.43. Let X and Y be uniform spaces. Then

X̃ × Ỹ ' X̃ × Y ,

and X × Y is complete whenever so are X and Y .
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Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and Y,
respectively. Then, since νIX×IYX : X̃IX×IY → X̃ and νIX×IYY : Ỹ IX×IY → Ỹ

are uniform isomorphisms, by Proposition 3.38, we have νIX×IYX × νIX×IYY :

Ỹ IX×IY × X̃IX×IY → X̃ × Ỹ is a uniform isomorphism. Therefore, since

νIX×IYX×Y : X̃ × Y
IX×IY

→ X̃ × Y and 〈̃-, -〉 : X̃IX×IY × Ỹ IX×IY → X̃ × Y
IX×IY

are uniform isomorphisms, by Proposition 3.36 and Theorem 3.33, a mapping

g : X̃ × Ỹ → X̃ × Y given by

g = νIX×IYX×Y ◦ 〈̃-, -〉 ◦ (νIX×IYX × νIX×IYY )−1

is a uniform isomorphism. If X and Y are complete, then, since ηX : X → X̃
and ηY : Y → Ỹ are uniform isomorphisms, ηX × ηY : X × Y → X̃ × Ỹ is a

uniform isomorphism; hence so is ηX×Y ∼ g ◦ (ηX × ηY ) : X × Y → X̃ × Y .

X̃ × Ỹ

X̃IX×IY × Ỹ IX×IY X̃ × Y
IX×IY

X̃ × Y

X × Y

ν
IX×IY
X ×νIX×IY

Y

〈̃-,-〉

ν
IX×IY
X×Y

ηX×ηY

η
IX×IY
X ×ηIX×IY

Y η
IX×IY
X×Y

ηX×Y

Definition 3.44. Let X and Y be uniform spaces with uniform structures
(IX , ρX ,
X) and (IY , ρY ,
Y ), respectively. Then a function f : X → Y is
locally uniformly continuous if there exists a function z 7→ γz from X̃ into
hom(IY , IX), called a family of local moduli, such that for each b ∈ IY ,

(z, ηX(x)) 
X̃ γz(b) and (z, ηX(y)) 
X̃ γz(b) ⇒ (f(y), f(z)) 
Y b

for all z ∈ X̃ and x, y ∈ X

Lemma 3.45. Let X and Y be uniform spaces. Then every locally uniformly
continuous function f : X → Y is a setoid mapping.

Proof. Let (IX , ρX ,
X) and (IY , ρY ,
Y ) be uniform structures on X and Y ,
respectively, and suppose that f is locally uniformly continuous with a family
z 7→ γz of local moduli. For all x, y ∈ X, if x =X y, then, for all b ∈ IY ,
since (x, x) 
X γηX(x)(b) and (x, y) 
X γηX(x)(b), we have (ηX(x), ηX(x)) 
X̃
γηX(x)(b) and (ηX(x), ηX(y)) 
X̃ γηX(x)(b) ; hence (f(x), f(y)) 
Y b. Therefore
f(x) =Y f(y).

Lemma 3.46. Let X and Y be uniform spaces with uniform structures (IX , ρX ,
X
) and (IY , ρY ,
Y ), respectively, and let J be a directed preordered set. Then
for each locally uniformly continuous function f : X → Y with a family of local
moduli z 7→ γz,
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1. for all x ∈ XJ and x ∈ X, if x→ x, then f ◦ x→ f(x);

2. for all x ∈ XJ and α ∈ hom(IX , J), if x is a Cauchy net with a modulus
α, then f ◦ x is a Cauchy net with a modulus α ◦ γ(x◦α) ∈ hom(IY , J).

Proof. (1): Consider x = (xj)j∈J ∈ XJ and x ∈ X such that x → x with a
modulus β ∈ hom(IX , J). Then for all b ∈ IY and j ∈ J with β(γηX(x)(b)) 4J j,
since (x, xj) 
X γηX(x)(b) and (x, x) 
X γηX(x)(b), we have (ηX(x), ηX(xj)) 
X̃
γηX(x)(b) and (ηX(x), ηX(x)) 
X̃ γηX(x)(b); hence (f(xj), f(x)) 
Y b. Therefore
f ◦ x→ f(x) with a modulus β ◦ γηX(x) ∈ hom(IY , J).

(2): Consider a Cauchy net x = (xj)j∈J ∈ XJ with a modulus α ∈
hom(IX , J). Then for all b ∈ IY and j, j′ ∈ J with α(γ(x◦α)(b)) 4J j, j′,
since (xα(c), xj) 
X γ(x◦α)(b) and (xα(c), xj′) 
X γ(x◦α)(b) for all c ∈ IX with
γ(x◦α)(b) 4IX c, we have (f ◦ α, ηX(xj)) 
X̃ γ(x◦α)(b) and (f ◦ α, ηX(xj′)) 
X̃
γ(x◦α)(b); hence (f(xj), f(xj′)) 
Y b. Therefore f ◦x is a Cauchy net in Y with
a modulus α ◦ γ(x◦α) ∈ hom(IY , J).

Remark 3.47. For each pair of setoid mappings f, g : X → Y between uniform
spaces X and Y with f ∼ g, f is locally uniformly continuous if and only if
g is locally uniformly continuous. Let X = (X,=X), Y = (Y ,=Y ) and Z =
(Z,=Z) be uniform spaces with uniform structures (IX , ρX ,
X), (IY , ρY ,
Y )
and (IZ , ρZ ,
Z), respectively. Then the composition g ◦ f : X → Z of locally
uniformly continuous functions f : X → Y and g : Y → Z with families z 7→ γfz
and z′ 7→ γgz′ of local moduli, respcetively, is locally uniformly continuous with a
family z 7→ γfz ◦ γ

g

(f◦z◦γf
z )

of local moduli. Every uniformly continuous function

f : X → Y with a modulus γ ∈ hom(IY , IX) is locally uniformly continuous
with the constant function z 7→ ρX ◦ γ as a family of local moduli.

Lemma 3.48. Let X and Y be uniform spaces, and let J be a directed preordered
set. Then

1. for each pair of locally uniformly continuous mappings f, g : X̃J → Y , if
f ◦ η̃JX ∼ g ◦ η̃JX , then f ∼ g;

2. for each pair of locally uniformly continuous mappings f, g : X̃ → Y , if
f ◦ ηX ∼ g ◦ ηX , then f ∼ g.

Proof.

Proposition 3.49. Let X and Y be uniform spaces, and let J be a directed
preordered set. Then for each locally uniformly continuous mapping f : X → Y ,
there exists a locally uniformly continuous mapping f̃J : X̃J → Ỹ J which makes
the following diagram commute, that is, fJ ◦ ι̃JX ∼ ι̃JY ◦ f̃J and f̃J ◦ η̃JX ∼ η̃JY ◦ f.
Furthermore, such an f̃J is unique in the sense that for each locally uniformly
continuous mapping h : X̃J → Ỹ J , if h ◦ η̃JX ∼ η̃JY ◦ f, then h ∼ f̃J .

X

Y

X̃J

Ỹ J

XJ

Y J

η̃JX

η̃JY

f f̃J

ι̃JX

ι̃JY

fJ
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Proof.

Theorem 3.50. Let X and Y be uniform spaces. Then for each uniformly
continuous (respectively, locally uniformly continuous) function f : X → Y ,
there exists a uniformly continuous (respectively, locally uniformly continuous)
function f̃ : X̃ → Ỹ which makes the following diagram commute, that is,
f̃ ◦ ηX ∼ ηY ◦ f. Furthermore, such an f̃ is unique in the sense that for each
locally uniformly continuous mapping h : X̃ → Ỹ , if h◦ηX ∼ ηY ◦f, then h ∼ f̃ .

X

Y

X̃

Ỹ

ηX

ηY

f f̃

Proof.

Remark 3.51. For uniform spaces X and Y , it is straightforward to see that
if X ' Y , then X̃ ' Ỹ ; for uniformly continuous mappings f, g : X → Y , if

f ∼ g, then f̃ ∼ g̃; furthermore ĩdX ∼ idX̃ , and (f̃ ◦ g) ∼ f̃ ◦ g̃ for uniformly
continuous mappings f : X → Y and g : Y → Z among uniform spaces X, Y
and Z.

4 Topological vector spaces and lattices

4.1 Real numbers

Proposition 4.1. Let ρQ and 
Q be a monotone function from N into N and
a relation between Q×Q and N defined by

ρQ(n) = n+ 1,

(p, q) 
Q n⇔ |p− q| ≤Q 2−n

for all n ∈ N and p, q ∈ Q, respectively. Then (N, ρQ,
Q) is a uniform structure
on the setoid Q = (Q,=Q) such that the addition (p, q) 7→ p+q, the inverse p 7→
−p and (p, q) 7→ maxQ(p, q) are uniformly continuous, and the multiplication
(p, q) 7→ pq is locally uniformly continuous.

Proof.

The uniform space R of real numbers is the completion Q̃ of the uniform
space Q.

Lemma 4.2. The setoid R is stable.

Proof. Consider s = (pn)n∈N, t = (qn)n∈N with ¬¬(s =R t). Given an n ∈ N,
assume that |pm − qm| >Q 2−n for some m ∈ N with n + 2 ≤ m. Then for all
m′ ∈ N with n+2 ≤ m′, since |pm−pm′ | ≤Q 2−(n+2) and |qm−qm′ | ≤Q 2−(n+2),
we have

|pm′ − qm′ | ≥Q |pm − qm| − |pm − pm′ | − |qm − qm′ |
>Q 2−n − 2−(n+2) − 2−(n+2) =Q 2−(n+1).
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If s =R t, then there exists n′ ∈ N such that |pm′ − qm′ | ≤Q 2−(n+1) for all
m′ ∈ N with n′ ≤ m′; hence |pm′ − qm′ | ≤Q 2−(n+1) for m′ = max(n+ 2, n′), a
contradiction. Therefore ¬(s =R t), a contradiction, and so |pm − qm| ≤Q 2−n

for all m ∈ N with n+ 2 ≤ m. Thus s =R t.

Proposition 4.3. The setoid R is a unitary commutative ring with the zero
element 0 = ηQ(0) and the unity element 1 = ηQ(1), and a semilattice such that

1. maxR(s, t) + r =R maxR(s+ r, t+ r);

2. if 0 ≤R r, then maxR(s, t)r =R maxR(sr, tr)

for all r, s, t ∈ R.

Proof.

The uniform space Q of rationals is a uniform subspace of R with a function
ηQ : Q→ R, and then

p =Q q⇔ ηQ(p) =R ηQ(q), ηQ(p+ q) =R ηQ(p) + ηQ(q), ηQ(−p) =R −ηQ(p),

ηQ(pq) =R ηQ(p)ηQ(q), ηQ(maxQ{p, q}) =R maxR{ηQ(p), ηQ(q)}

for all p, q ∈ Q.

Lemma 4.4. The canonical partial order ≤R on R is quasi-total.

Proof. Consider s = (pn)n∈N, t = (qn)n∈N with ¬(s ≤R t), and note that, since

|max{pn, qn} −max{pm, qm}| ≤Q max{|pn − pm|, |qn − qm|}

for all n,m ∈ N, we have (max{pn, qn})n∈N ∈ R, and, since ηQ(pm) → s and
ηQ(qm)→ t, we have ηQ(max{pm, qm}) =R max{ηQ(pm), ηQ(qm)})→ max{s, t};
hence max{s, t} =R (max{pn, qn})n∈N. Given an n ∈ N, assume that qm−pm >Q
2−n for some m ∈ N with n + 2 ≤ m. Then for all m′ ∈ N with n + 2 ≤ m′,
since |pm − pm′ | ≤Q 2−(n+2) and |qm − qm′ | ≤Q 2−(n+2), we have

pm′ − qm′ ≤Q −(qm − pm) + |pm − pm′ |+ |qm − qm′ |
<Q −2−n + 2−(n+2) + 2−(n+2) =Q −2−(n+1);

hence

0 ≤Q max{pm′ , qm′} − qm′ =Q max{pm′ − qm′ , 0} ≤Q max{0,−2−(n+1)} =Q 0.

Therefore max{pm′ , qm′} =Q qm′ for all m′ ∈ N with n + 2 ≤ m′, and so
max{s, t} =R t, or s ≤R t, a contradiction. Thus for all m ∈ N with n+ 2 ≤ m,
qm − pm ≤Q 2−n, and so

|max{pm, qm} − pm| =Q max{pm, qm} − pm =Q max{0, qm − pm}
≤Q max{0, 2−(n+1)} =Q 2−(n+1) <Q 2−n.

This entails that max{s, t} =R s, or t ≤R s.
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Lemma 4.5. Let #R be a binary relation on R given by

s #R t⇔∃n ∈ N∃m ∈ N ∀m′ ∈ N (m ≤ m′⇒ |pm′ − qm′ | >Q 2−n)

for all s = (pn)n∈N, t = (qn)n∈N ∈ R. Then #R is a tight apartness on R such
that

1. if (s+ r) #R (t+ r), then s #R t;

2. if sr #R tr, then s #R t;

3. if max{s, r} #R max{t, r}, then s #R t

for all r, s, t ∈ R.

Proof.

Lemma 4.6. The join maxR : R× R→ R is strongly extensional.

Proof.

Proposition 4.7. The following hold.

1. if s <R t, then ¬(t <R s);

2. if s <R t and t <R r, then s <R r;

3. if s <R t, then s <R r or r <R t;

4. s #R t if and only if s <R t or t <R s;

5. s ≤R t if and only if ¬(t <R s)

for all s, t, r ∈ R.

Proof.

Theorem 4.8. The setoid R is an Archimedean ordered field.

Proof.

♣ subspace [0, 1]

4.2 Topological vector spaces

Definition 4.9. A vector space (over R) is a setoid X = (X,=X) equipped
with a setoid mapping (x, y) 7→ x+ y of X ×X into X, called addition, a setoid
mapping x 7→ −x of X into X, called inverse, a setoid mapping (s, x) 7→ sx of
R × X into X, called scalar multiplication and an element 0 of X, called the
zero element, such that

(x+ y) + z =X x+ (y + z), x+ y =X y + x,

x+ 0 =X x, x+ (−x) =X 0,

s(x+ y) =X sx+ sy, (s+ t)x =X sx+ tx,

s(tx) =X (st)x, 1x =X x

for all x, y, z ∈ X and s, t ∈ R.
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Example 4.10. Let F [0, 1] be the set of setoid mappings of [0, 1] into R. Then
the setoid F [0, 1] = (F [0, 1],∼) is a vector space equipped with addition, inverse,
scalar multiplication and zero element given by

(f + g)(x) = f(x) + g(x), (−f)(x) = −f(x),

(sf)(x) = sf(x), 0(x) = 0

for all f, g ∈ F [0, 1], s ∈ R and x ∈ [0, 1].

Definition 4.11. Let X = (X,=X) is a vector space. Then a linear functional
on X is a setoid mapping f : X → R such that

f(x+ y) =R f(x) + f(y) and f(sx) =R sf(x)

for all x, y ∈ X and s ∈ R.

Definition 4.12. A topological vector space is a vector space X = (X,=X)
equipped with a uniform structure (IX , ρX ,
X) such that

1. the addition + : X ×X → X is uniformly continuous;

2. there exists a function ξX : IX ×X → N such that for each a ∈ IX ,

(0, sx) 
X a

for all x ∈ X and s ∈ R with |s| ≤R 2−ξ
X(a,x);

3. for each a ∈ IX ,
(0, x) 
X a⇒ (0, sx) 
X a

for all x ∈ X and s ∈ R with |s| ≤R 1.

Remark 4.13. ♣ radial (absorbing)
♣ circled

Lemma 4.14. Let X be a topological vector space. Then the inverse x 7→ −x
is uniformly continuous, and the scalar multiplication (s, x) 7→ sx of R ×X is
locally uniformly continuous.

Proof.

Theorem 4.15. If X is a topological vector space, then so is its completion X̃.

Proof.

4.3 Topological vector lattices

Definition 4.16. A vector lattice is a vector space X = (X,=X) such that X
is a semilattice, and

1. (x+ z) ∨ (y + z) =X (x ∨ y) + z,

2. if 0 ≤R s, then s(x ∨ y) =X (sx) ∨ (sy)

for all x, y, z ∈ X and s ∈ R.
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Example 4.17. Let C[0, 1] be a set given by

C[0, 1] = {(f, γ) ∈ F [0, 1]× hom(N,N) |
f is uniformly continuous with a modulus γ },

and let =C[0,1] be an equivalence relation on C[0, 1] given by

(f, γf ) =C[0,1] (g, γg)⇔ f =F [0,1] g.

Then the setoid C[0, 1] = (C[0, 1],=C[0,1]), is a vector lattice equipped with
addition, inverse, scalar multiplication and zero element given in Example 4.10
with appropriate moduli, and join given by

(f, γf ) ∨ (g, γg) = (maxR ◦(f × g),maxR ◦(γf × γg) ◦ ρR)

for all (f, γf ), (g, γg) ∈ C[0, 1].

Lemma 4.18. Let X = (X,=X) be a vector lattice. Then

1. if x ≤X y, then x+ z ≤X y + z;

2. if x ≤X y and 0 ≤R s, then sx ≤X sy

for all x, y, z ∈ X and s ∈ R.

Proof. (1): For all x, y, z ∈ X, if x ≤X y, then, since x ∨ y =X y, we have
(x+ z) ∨ (y + z) =X x ∨ y + z =X y + z; hence x+ z ≤X y + z.

(2): For all x, y ∈ X and s ∈ R, if x ≤X y and 0 ≤R s, then, since x∨y =X y,
we have (sx) ∨ (sy) =X s(x ∨ y) =X sy; hence sx ≤X sy.

Proposition 4.19. Let X = (X,=X) be a vector lattice, and let (x, y) 7→ x∧ y
be a setoid mapping of X ×X into X, called a meet, given by

x ∧ y = −(−x ∨ −y)

for all x, y ∈ X. Then

x ∧ (y ∧ z) =X (x ∧ y) ∧ z, x ∧ y =X y ∧ x, x ∧ x =X x,

x ∨ (x ∧ y) =X x, x ∧ (x ∨ y) =X x

for all x, y, z ∈ X. Furthermore, x ≤X y⇔ x∧ y =X x and x∧ y is the greatest
lower bound of {x, y} for all x, y ∈ X.

Proof. It is straightforward to see the first three equations. To see the rest,
consider x, y ∈ X. Then, since −x ≤X −x∨−y, we have x∧y ≤X x, by Lemma
4.18 (1); hence x ∨ (x ∧ y) ≤X x. Therefore, since x ≤X x ∨ (x ∧ y), we have
x ∨ (x ∧ y) =X x. Since x ≤X x ∨ y, we have −(x ∨ y) ≤X −x, by Lemma 4.18
(1); hence −x ∨ −(x ∨ y) ≤X −x. Therefore x ≤X x ∧ (x ∨ y), by Lemma 4.18
(1), and so, since −x ≤X −x ∨ −(x ∨ y), we have x ∧ (x ∨ y) ≤X x, by Lemma
4.18 (1). Thus x ∧ (x ∨ y) =X x.

If x ≤X y, then, since x ∨ y =X y, we have x ∧ y =X x ∧ (x ∨ y) =X x;
conversely, if x∧y =X x, then, since x∨y =X (x∧y)∨y =X y, we have x ≤X y.
Since (x∧y)∨x =X x and (x∧y)∨y =X y, we have x∧y ≤X x and x∧y ≤X y.
For each z ∈ X, if z ≤X x and z ≤X y, then, since z ∧ x =X z and z ∧ y =X z,
we have z ∧ (x ∧ y) =X (z ∧ x) ∧ y =X z ∧ y =X z; hence z ≤X x ∧ y.
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Lemma 4.20. Let X = (X,=X) be a vector lattice. Then

1. x+ y =X x ∨ y + x ∧ y;

2. (x+ z) ∧ (y + z) =X (x ∧ y) + z;

3. if 0 ≤ s, then s(x ∧ y) =X sx ∧ sy

for all x, y, z ∈ X and s ∈ R.

Proof. (1): For all x, y ∈ X, since

−x ∨ −y + (x+ y) =X (−x+ x+ y) ∨ (−y + x+ y) =X y ∨ x =X x ∨ y,

we have x+ y =X x ∨ y − (−x ∨ −y) =X x ∨ y + x ∧ y, by Lemma 4.18 (1).
(2): For all x, y, z ∈ X, we have

(x+ z)∧ (y+ z) =X −(−x− z)∨ (−y− z) =X −((−x∨−y)− z) =X (x∧ y) + z.

(3): For all x, y ∈ X and s ∈ R, if 0 ≤ s, then

s(x ∧ y) =X −s(−x ∨ −y) =X −(−sx ∨ −sy) =X sx ∧ sy.

Proposition 4.21. Every vector lattice X = (X,=X) is a distributive lattice,
that is, x ∨ (y ∧ z) =X (x ∨ y) ∧ (x ∨ z) or x ∧ (y ∨ z) =X (x ∧ y) ∨ (x ∧ z) for
all x, y, z ∈ X.

Proof. Let x, y, z ∈ X. Then, since x ≤X x ∨ z and y ∧ z ≤X z ≤X x ∨ z,
we have x ∨ (y ∧ z) ≤X x ∨ z; similarly, we have x ∨ (y ∧ z) ≤X y ∨ z. Hence
x∨ (y∧z) ≤X (x∨z)∧ (y∨z). Let w = (x∨y)∧ (x∨z). Then, since w ≤X x∨y,
we have w+ x∧ y ≤X x∨ y+ x∧ y =X x+ y, by Lemma 4.20 (1); similarly, we
have w + x ∧ z ≤X x+ z. Hence

w + (x ∧ y ∧ z) =X w + (x ∧ y ∧ z ∧ z) =X w + (x ∧ z) ∧ (y ∧ z)
≤X (w + x ∧ y) ∧ (w + x ∧ z) ≤X (x+ y) ∧ (x+ z)

=X x+ (y ∧ z),

by Lemma 4.20 (2). Therefore, since, by Lemma 4.20 (1),

x+ (y ∧ z) =X x ∨ (y ∧ z) + (x ∧ y ∧ z),

we have w ≤X x+ (y ∧ z)− (x ∧ y ∧ z) =X x ∨ (y ∧ z). Thus

x ∨ (y ∧ z) =X (x ∨ y) ∧ (x ∨ z).

Definition 4.22. Let X = (X,=X) be a vector lattice. Then the subset

CX = {x ∈ X | 0 ≤X x}

is called a positive cone of X; note that CX = (CX ,≤X) with ubCX
= ∨ ∈

hom(CX × CX , CX) is a directed preordered set.
A linear functional f on X is positive if 0 ≤R f(x) for all x ∈ CX .
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Example 4.23. Let R : C[0, 1]→ R be a function given by

R(f, γ) =

∫
f,

where
∫

is the Riemann integral, for all (f, γ) ∈ C[0, 1]. Then R is a positive
linear functional.

Definition 4.24. Let X = (X,=X) be a vector lattice, and let (-)+ : X → X,
(-)− : X → X and | - | : X → X be setoid mappings given by

x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x ∨ (−x),

respectively, for all x ∈ X; note that x+, x− ∈ CX . Two elements x, y ∈ X are
disjoint if |x| ∧ |y| =X 0.

Lemma 4.25. Let X = (X,=X) be a vector lattice. Then

1. x =X x+ − x−;

2. x+ and x− are disjoint;

3. for each pair of disjoint elements u, v ∈ CX , if x =X u− v then u =X x+

and v =X x−;

4. | − x| =X |x| =X x+ + x− ∈ CX ;

5. for each s ∈ R, if 0 ≤R s, then (sx)+ =X sx+, (sx)− =X sx− and
|sx| =X s|x|;

6. x and y are disjoint if and only if |x| ∨ |y| =X |x|+ |y|;

7. if x and y are disjoint, then (x+ y)+ =X x+ + y+, (x+ y)− =X x− + y−

and |x+ y| =X |x|+ |y|

for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X. Then
(1): x =X x + 0 =X x ∨ 0 + x ∧ 0 =X x ∨ 0 − (−x) ∨ 0 =X x+ − x−, by

Lemma 4.20 (1).
(2):

x+ ∧ x− =X (x+ − x−) ∧ 0 + x− =X x ∧ 0 + x− =X −(−x ∨ 0) + x−

=X −x− + x− =X 0,

by Lemma 4.20 (2) and (1).
(3): Consider u, v ∈ CX such that u ∧ v =X 0 and x =X u− v. Then, since

u =X x+ v and v =X u− x, we have x ≤X u and −x ≤X v; hence x+ ≤ u and
x− ≤ v. Note that, since u− v =X x =X x+ − x−, we have u− x+ =X v − x−.
Then, since u− x+ ≤X u and v − x− ≤X v, we have

0 ≤X u− x+ =X (u− x+) ∧ (u− x+) =X (u− x+) ∧ (v − x−)

≤X u ∧ v =X 0;

hence u =X x+. Similarly, we have v =X x−.
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(4):

| − x| =X −x ∨ −(−x) =X −x ∨ x =X x+ (−2x) ∨ 0 =X x+ 2(−x ∨ 0)

=X x+ 2x− =X (x+ − x−) + 2x− =X x+ + x− ∈ CX ,

by (1).
(5): for each s ∈ R, if 0 ≤R s, then (sx)+ =X (sx) ∨ 0 =X s(x ∨ 0) =X sx+

and, similary, (sx)− =X sx−; hence

|sx| =X (sx)+ + (sx)− =X sx+ + sx− =X s(x+ + x−) =X s|x|,

by (4).
(6): |x|+ |y| =X |x|∨ |y|+ |x|∧ |y|, by Lemma 4.20 (1); hence |x|∧X |y| =X 0

if and only if |x|+ |y| =X |x| ∨ |y|.
(7): Assume that x and y are disjoint, and note that, since

0 ≤X x+ ∧ y+, x− ∧ y− ≤X |x| ∧ |y| =X 0,

x+ and y+, and x− and y− are disjoint, respectively. Then, since, by (4) and
(6),

(x+ + y+) ∨ (x− + y−) =X (x+ ∨ y+) ∨ (x− ∨ y−) =X (x+ ∨ x−) ∨ (y+ ∨ y−)

=X (x+ + x−) ∨ (y+ + y−) =X |x| ∨ |y|
=X |x|+ |y| =X (x+ + x−) + (y+ + y−)

=X (x+ + y+) + (x− + y−),

x+ + y+ and x− + y− are disjoint, by (6). Therefore, since

x+ y =X (x+ − x−) + (y+ − y−) =X (x+ + y+)− (x− + y−),

we have (x+ y)+ =X x+ + y+ and (x+ y)− =X x− + y−, by (3), and so

|x+ y| =X (x+ y)+ + (x+ y)− =X (x+ + y+) + (x− + y−)

=X (x+ + x−) + (y+ + y−) =X |x|+ |y|,

by (4).

Lemma 4.26. Let X = (X,=X) be a vector lattice. Then

1. |x+ y| ≤X |x|+ |y|;

2. |sx| ≤X |s||x|;

3. |x ∨ z − y ∨ z| ≤X |x− y|;

4. |x ∧ z − y ∧ z| ≤X |x− y|;

5. (|x|+ |y|) ∧ u ≤X |x| ∧ u+ |y| ∧ u;

6. |sx| ∧ u ≤X (|s|+ 1)(|x| ∧ u);

7. |x ∧ |y| − x ∧ |z|| ≤X |y − z| ∧ |x|

for all x, y, z ∈ X, s ∈ R and u ∈ CX .
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Proof. Consider x, y, z ∈ X, s ∈ R and u ∈ CX . Then
(1): Since x,−x ≤X |x| and y,−y ≤X |y|, we have

x+ y ≤X |x|+ |y| and − (x+ y) =X −x− y ≤X |x|+ |y|;

hence |x+ y| ≤X |x|+ |y|.
(2): For each s ∈ R, we write s+ and s− for maxR(s, 0) and maxR(−s, 0),

respectively. Then

|sx| =X |(s+ − s−)x| =X |s+x− s−x| ≤X |s+x|+ | − s−x|
=X |s+x|+ |s−x| =X s+|x|+ s−|x| =X (s+ + s−)|x|
=X |s||x|,

by (1) and Lemma 4.25 (4) and (5).
(3): Since, by (1),

x ≤X |x− y|+ y ≤X |x− y|+ y ∨ z and z ≤X y ∨ z ≤X |x− y|+ y ∨ z,

we have x ∨ z ≤X |x− y|+ y ∨ z; hence x ∨ z − y ∨ z ≤X |x− y|. Similarly, we
have y ∨ z − x ∨ z ≤X |x− y|. Therefore |x ∨ z − y ∨ z| ≤X |x− y|.

(4): Since by (1), x∧ z ≤X x ≤X |x− y|+ y and x∧ z ≤X z ≤X |x− y|+ z,
we have x∧ z ≤X (|x− y|+ y)∧ (|x− y|+ z) =X |x− y|+ y ∧ z, by Lemma 4.20
(2); hence x ∧ z − y ∧ z ≤X |x− y|. Similarly, we have y ∧ z − x ∧ z ≤X |x− y|.
Therefore |x ∧ z − y ∧ z| ≤X |x− y|.

(5): Since (|x|+ |y|)∧ u ≤X |x|+ |y| and (|x|+ |y|)∧ u ≤X u ≤X u+ |y|, we
have (|x|+ |y|) ∧ u ≤X (|x|+ |y|) ∧ (u+ |y|) =X (|x| ∧ u) + |y|, by Proposition
4.19 and Lemma 4.20 (2). Therefore, since (|x|+ |y|)∧u ≤X u ≤X (|x| ∧u) +u,
we have

(|x|+ |y|) ∧ u ≤X (|x| ∧ u+ |y|) ∧ (|x| ∧ u+ u) =X |x| ∧ u+ |y| ∧ u,

by Proposition 4.19 and Lemma 4.20 (2).
(6): Since, by (2), |sx| ∧ u ≤X |sx| ≤X |s||x| ≤X |s||x|+ |x| =X (|s|+ 1)|x|

and |sx| ∧ u ≤X u ≤X |s|u+ u =X (|s|+ 1)u, we have

|sx| ∧ u ≤X (|s|+ 1)|x| ∧ (|s|+ 1)u =X (|s|+ 1)(|x| ∧ u),

by Proposition 4.19 and Lemma 4.20 (3).
(7): Since x ∧ |y| ≤X x ≤X |x|+ x and x ∧ |y| ≤X x ≤X |x| ≤x |x|+ |z|, we

have x∧|y| ≤ (|x|+x)∧(|x|+|z|) =X |x|+x∧|z| by Proposition 4.19 and Lemma
4.20 (2); hence x∧|y|−x∧|z| ≤X |x|. Similarly, we have x∧|z|−x∧|y| ≤X |x|, and
so |x∧|y|−x∧|z|| ≤X |x|, by Proposition 4.19. Since, by (1), |y| ≤X |y−z|+ |z|
and |z| ≤X |y−z|+ |y|, we have |y|−|z| ≤X |y−z| and |z|−|y| ≤X |y−z|; hence
|x∧|y|−x∧|z|| ≤X ||y|−|z|| ≤X |y−z|. Therefore |x∧|y|−x∧|z|| ≤X |y−z|∧|x|,
by Proposition 4.19.

Definition 4.27. A vector lattice X = (X,=X) is Archimediean if for each
x ∈ X, x ≤X 0 whenever there exists y ∈ X such that x ≤X 2−ny for all n ∈ N.

Lemma 4.28. Let X = (X,=X) be an Archimedean vector lattice. Then

1. if 0 ≤X x, then maxR(s, t)x =X sx ∨ tx;
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2. if 0 ≤X x, then minR(s, t)x =X sx ∧ tx;

3. |sx| =X |s||x|

for all s, t ∈ R and x ∈ X.

Proof. (1): Consider s, t ∈ R and x ∈ X with 0 ≤X x. Then, since s, t ≤R
maxR(s, t), we have sx, tx ≤X maxR(s, t)x, by Lemma 4.18 (2); hence sx∨tx ≤X
maxR(s, t)x. For each n ∈ N, either maxR(s, t) ≤R s + 2−n or maxR(s, t) ≤R
t+ 2−n, by Lemma ♣ ; in the first case, we have

maxR(s, t)x ≤X (s+ 2−n)x ≤X sx+ 2−nx ≤X sx ∨ tx+ 2−nx;

in the second case, similarly, we have maxR(s, t)x ≤X sx∨ tx+ 2−nx. Therefore
maxR(s, t)x−sx∨ tx ≤X 2−nx for all n ∈ N, and so maxR(s, t)x−sx∨ tx ≤X 0,
that is, maxR(s, t)x ≤X sx ∨ tx. Thus maxR(s, t)x =X sx ∨ tx.

(2): For all s, t ∈ R and x ∈ X with 0 ≤X x, since maxR(−s,−t)x =X

(−sx) ∨ (−tx), by (1), we have

minR(s, t)x =X −(maxR(−s,−t)x) =X −((−sx) ∨ (−tx)) =X sx ∧ tx.

(3): For each s ∈ R, we write s+ and s− for maxR(s, 0) and maxR(−s, 0),
respectively. Then for all s ∈ R and x ∈ X, since minR(s+, s−) =R 0, we have
s+|x| ∧ s−|x| =X minR(s+, s−)|x| =X 0, by (2); hence s+|x| =X |s+x| and
s−|x| =X |s−x| =X |− s−x| are disjoint, by Lemma 4.25 (4) and (5). Therefore

|s||x| =X (s+ + s−)|x| =X s+|x|+ s−|x| =X |s+x|+ | − s−x|
=X |s+x− s−x| =X |(s+ − s−)x| =X |sx|,

by Lemma 4.25 (7).

Definition 4.29. A topological vector lattice is a vector lattice X = (X,=X)
equipped with a uniform structure (IX , ρX ,
X) such that

1. X is a topological vector space with the uniform structure;

2. the join ∨ : X ×X → X is uniformly continuous;

3. for each a ∈ IX ,
(0, y) 
X a⇒ (0, x) 
X a

for all x, y ∈ CX with x ≤X y.

Remark 4.30. ♣ the positive cone CX is normal

Lemma 4.31. Every topological vector lattice is Archimedean.

Proof. Let X = (X,=X) be a topological vector lattice equipped with a uniform
structure (IX , ρX ,
X), and consider x, y ∈ X such that x ≤X 2−ny for all
n ∈ N. Then x+ =X (2−ny)+ ≤X 2−ny+ for for all n ∈ N. Therefore for

each a ∈ IX , since x+ ≤X 2−ξ
X(a,y+)y+ and (0, 2−ξ

X(a,y+)y+) 
X a, we have
(0, x+) 
X a. Thus x+ =X 0, and so x ≤X 0.

Theorem 4.32. If X is a topological vector lattice, then so is its completion
X̃.

Proof.
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5 Integration theory

An abstract integration space is a vector lattice X = (X,=X) equipped with a
positive linear functional E on X.

Example 5.1. (C[0, 1], R) is an abstract integration space; see Example 4.17
and Example 4.23.

In the following, we fix an abstract integration space (X,E).

5.1 Integrable functions

Lemma 5.2. Let =L be a binary relation on X given by

x =L y⇔∀n ∈ N (E(|x− y|) ≤R 2−n)

for all x, y ∈ X. Then =L is an equivalence relation on X; hence L = (X,=L)
is a setoid.

Proof. It is trivial that for all x, y ∈ X, x =L x and if x =L y then y =L x. For
all x, y, z ∈ X, if x =L y and y =L z, then, since E(|x − y|) ≤R 2−(n+1) and
E(|x− y|) ≤R 2−(n+1) for all n ∈ N, we have

E(|x− z|) ≤R E(|x− y|) + E(|y − z|) ≤R 2−(n+1) + 2−(n+1) =R 2−n

for all n ∈ N; hence x =L z.

Proposition 5.3. Let ρL and 
L be a monotone function from N into N and
a relation between X ×X and N defined by

ρL(n) = n+ 1 and (x, y) 
L n⇔ E(|x− y|) ≤R 2−n,

respectively, for all n ∈ N and (x, y) ∈ X ×X. Then (N, ρL,
L) is a uniform
structure on the setoid L = (X,=L).

Proof. (1): For all x, y ∈ X, if x =L y, then, since E(|x − y|) ≤R 2−n for all
n ∈ N, we have (x, y) 
L n for all n ∈ N; conversely, if (x, y) 
L n for all n ∈ N,
then E(|x− y|) ≤R 2−n for all n ∈ N; hence x =L y.

(2) For all n ∈ N and x, x′, y, y′ ∈ X, if x =L x
′, y =L y

′ and (x, y) 
L n,
then, since E(|x − x′|) ≤R 2−(m+1) and E(|y − y′|) ≤R 2−(m+1) for all m ∈ N,
we have

E(|x′ − y′|) ≤R E(|x′ − x|) + E(|x− y|) + E(|y − y′|)
≤R 2−(m+1) + 2−n + 2−(m+1) =R 2−m + 2−n

for all m ∈ N; hence E(|x′ − y′|) ≤R 2−n. Therefore (x′, y′) 
L n.
(3): Straightforward.
(4): For all m,n ∈ N and x, y ∈ X, if m ≤ n and (x, y) 
L n, then

E(|x− y|) ≤R 2−n ≤R 2−m;

hence (x, y) 
L m.
(5): For all n ∈ N and x, y, z ∈ X, if (x, y) 
L ρL(n) and (y, z) 
L ρL(n),

then, since E(|x− y|) ≤R 2−(n+1) and E(|y − z|) ≤R 2−(n+1), we have

E(|x− z|) ≤R E(|x− y|) + E(|y − z|) ≤R 2−(n+1) + 2−(n+1) =R 2−n;

hence (x, z) 
L n.
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Proposition 5.4. L is a topological vector lattice.

Proof. Let γ+ ∈ hom(N,N×N) be given by γ+(n) = (n+1, n+1) for all n ∈ N,
and consider n ∈ N and (x, y), (x′, y′) ∈ L× L such that

((x, y), (x′, y′)) 
L×L γ
+(n).

Then, since (x, x′) 
L n+ 1 and (y, y′) 
L n+ 1, we have

E(|(x+ y)− (x′ + y′)|) ≤R E(|(x− x′) + (y − y′)|)
≤R E(|x− x′|+ |y − y′|)
=R E(|x− x′|) + E(|y − y′|)
≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (1); hence (x + x′, y + y′) 
L n. Therefore + : L × L → L is
uniformly continuous with a modulus γ+.

Let γ∨ ∈ hom(N,N × N) be given by γ∨(n) = (n + 1, n + 1) for all n ∈ N,
and consider n ∈ N and (x, y), (x′, y′) ∈ L× L such that

((x, y), (x′, y′)) 
L×L γ
∨(n).

Then, since (x, x′) 
L n+ 1 and (y, y′) 
L n+ 1, we have

E(|x ∨ y − x′ ∨ y′|) =R E(|(x ∨ y − x′ ∨ y) + (x′ ∨ y − x′ ∨ y′)|)
≤R E(|x ∨ y − x′ ∨ y|+ |x′ ∨ y − x′ ∨ y′|)
≤R E(|x ∨ y − x′ ∨ y|) + E(|x′ ∨ y − x′ ∨ y′|)
≤R E(|x− x′|) + E(|y − y′|)
≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (1) and (3); hence (x+x′, y+y′) 
L n. Therefore ∨ : L×L→ L
is uniformly continuous with a modulus γ∨.

We write L for the completion L̃ of the topological vector lattice L, and
call an element of L an integrable function over the abstract integration space
(X,E).

Proposition 5.5. There exists a uniformly continuous mapping
∫

: L → R
such that

1.
∫
ηL(x) =R E(x),

2.
∫

(f + g) =R
∫
f +

∫
g,

3.
∫

(sf) =R s
∫
f,

4. if 0 ≤L f, then 0 ≤R
∫
f

for all x ∈ L, f, g ∈ L and s ∈ R. For f ∈ L,
∫
f is called the integral of f .
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Proof. Consider n ∈ N and x, y ∈ L with (x, y) 
L n, and note that, since
x− y ≤X |x− y| and y− x ≤X |x− y|, we have E(x)−E(y) ≤R E(|x− y|) and
E(y)− E(x) ≤R E(|x− y|); hence |E(x)− E(y)| ≤R E(|x− y|). Then, since

|E(x)− E(y)| ≤R E(|x− y|) ≤R 2−n,

we have ♣ (E(x), E(y)) 
R n. Therefore E : L → R is a uniformly continuous
mapping, and so there exists a uniformly continuous mapping Ẽ : L → R̃ such
that ηR ◦ E = Ẽ ◦ ηL, by Theorem 3.50. Since R is complete, there exists
a uniformly continuous mapping εR : R̃ → R such that εR ◦ ηR = idR. Let∫

= εR ◦ Ẽ, and note that∫
ηL(x) =R εR(Ẽ(ηL(x))) =R εR(ηR(E(x))) =R E(x)

for all x ∈ L. Then, since∫
(ηL(x) + ηL(y)) =R

∫
ηL(x+ y) =R E(x+ y)

=R E(x) + E(y) =R

∫
ηL(x) +

∫
ηL(y)

for all x, y ∈ L, we have
∫

(f + g) =R
∫
f +

∫
g for all f, g ∈ L. Similarly, since∫

sηL(x) =R

∫
ηL(sx) =R E(sx) =R sE(x) =R s

∫
ηL(x)

for all x ∈ L and s ∈ R, we have
∫
sf =R s

∫
f for all f ∈ L and s ∈ R.

Consider f = (xn)n∈N ∈ L with 0 ≤L f . Then, since (-)+ : L → L is
uniformly continuous and ηL(xn) → f by Corollary ??, we have (ηL(xn))+ →
f+, and, since f+ =L f and (ηL(xn))+ =L ηL(x+n ) for all n ∈ N, we have
ηL(x+n )→ f. Therefore, since

∫
: L→ L is uniformly continuous and

0 ≤R E(x+n ) =R

∫
ηL(x+n )

for all n ∈ N, we have 0 ≤R
∫
f.

Proposition 5.6. Let (fn)n∈N be an increasing sequence of integrable functions,
that is, fn ≤L fn+1 for all n ∈ N. If (

∫
fn)n∈N converges in R, then (fn)n∈N

converges in L.

Proof. Suppose that (
∫
fn)n∈N converges in R. Then (

∫
fn)n∈N is a Cauchy se-

quence, by Proposition ??; hence there exists a Cauchy modulus α ∈ hom(N,N)
such that for each n ∈ N, |

∫
fm −

∫
fm′ | ≤ 2−n for all m,m′ ∈ N with

α(n) ≤ m,m′.
Given an n ∈ N, considerm,m′ ∈ N such that α(ρL(n)+1) ≤ m ≤ m′. Then,

since fm ≤L fm′ , we have
∫
fm ≤R

∫
fm′ ; hence

∫
fm′−

∫
fm ≤ 2−(ρL(n)+1). Let

fm = (xn′)n′∈N and fm′ = (yn′)n′∈N. Then, since ηL(xn′)→ fm, ηL(yn′)→ fm′

and ∨ : L× L→ L is uniformly continuous, we have

ηL(xn′ ∨ yn′) =L ηL(xn′) ∨ ηL(yn′)→ fm ∨ fm′ =L fm′ ;
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hence E(xn′) =R
∫
ηL(xn′)→

∫
fm and E(xn′∨yn′) =R

∫
ηL(xn′∨yn′)→

∫
fm′ .

Choose n′ ∈ N such that

(fm, ηL(xn′)) 
L ρ
2
L(n), (fm′ , ηL(xn′ ∨ yn′)) 
L ρ

2
L(n),

|E(xn′)−
∫
fm| ≤R 2−(ρ

2
L(n)+2), |E(xn′ ∨ yn′)−

∫
fm′ | ≤R 2−(ρ

2
L(n)+2).

Then

E(|xn′ ∨ yn′ − xn′ |) =R E(xn′ ∨ yn′ − xn′) =R E(xn′ ∨ yn′)− E(xn′)

=R (E(xn′ ∨ yn′)−
∫
fm′) + (

∫
fm′ −

∫
fm)

+ (

∫
fm − E(xn′))

≤R |E(xn′ ∨ yn′)−
∫
fm′ |+ (

∫
fm′ −

∫
fm)

+ |
∫
fm − E(xn′)|

≤R 2−(ρ
2
L(n)+2) + 2−(ρ

2
L(n)+1) + 2−(ρ

2
L(n)+2)

=R 2−(ρ
2
L(n));

hence (xn′ ∨ yn′ , xn′) 
L ρ2L(n). Therefore (ηL(xn′ ∨ yn′), ηL(xn′)) 
L ρ
2
L(n), by

Lemma ??, and so (fm, fm′) 
L n. Thus (fm)m∈N is a Cauchy sequence in L
with a modulus n 7→ α(ρL(n) + 1), and so converges.

5.2 Measurable functions

Lemma 5.7. Let =M be a binary relation on X given by

x =M y⇔∀u ∈ CX ∀n ∈ N (E(|x− y| ∧ u) ≤R 2−n)

for all x, y ∈ X. Then =M is an equivalence relation on X; hence M = (X,=M )
is a setoid.

Proof. It is trivial that for all x, y ∈ X, x =M x and if x =M y then y =M x.
For all x, y, z ∈ X, if x =M y and y =M z, then, since E(|x−y| ∧u) ≤R 2−(n+1)

and E(|x− y| ∧ u) ≤R 2−(n+1) for all u ∈ CX and n ∈ N, we have

E(|x− z| ∧ u) =R E(|(x− y) + (y − z)| ∧ u)

≤R E((|x− y|+ |y − z|) ∧ u)

≤R E(|x− y| ∧ u+ |y − z| ∧ u)

=R E(|x− y| ∧ u) + E(|y − z| ∧ u)

≤R 2−(n+1) + 2−(n+1) =R 2−n

for all u ∈ CX and n ∈ N, by Lemma 4.26 (1) and (5); hence x =M z.

Proposition 5.8. Let ρM and 
M be a monotone function from CX × N into
CX × N, and a relation between X ×X and CX × N, respectively, defined by

ρM ((u, n)) = (u, n+ 1) and (x, y) 
M (u, n)⇔ E(|x− y| ∧ u) ≤R 2−n,

respectively, for all (u, n) ∈ CX×N and (x, y) ∈ X×X. Then (CX×N, ρM ,
M )
is a uniform structure on the setoid M = (X,=M ).
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Proof. (1): For all x, y ∈ X, if x =M y, then, since E(|x− y| ∧u) ≤R 2−n for all
u ∈ CX and n ∈ N, we have (x, y) 
M (u, n) for all (u, n) ∈ CX ×N; conversely,
if (x, y) 
M (u, n) for all (u, n) ∈ CX ×N, then, since E(|x− y| ∧u) ≤R 2−n for
all u ∈ CX and n ∈ N, we have x =M y.

(2): For all (u, n) ∈ CX × N and x, x′, y, y′ ∈ X, if x =M x′, y =M y′ and
(x, y) 
M (u, n), then, since E(|x− x′| ∧ u) ≤R 2−(m+1) and E(|y − y′| ∧ u) ≤R
2−(m+1) for all m ∈ N, we have

E(|x′ − y′| ∧ u) =R E(|(x′ − x) + (x− y′)| ∧ u)

≤R E((|x′ − x|+ |x− y′|) ∧ u)

≤R E(|x′ − x| ∧ u+ |x− y′| ∧ u)

=R E(|x′ − x| ∧ u+ |(x− y) + (y − y′)| ∧ u)

≤R E(|x′ − x| ∧ u+ (|x− y|+ |y − y′|) ∧ u)

≤R E(|x′ − x| ∧ u+ |x− y| ∧ u+ |y − y′| ∧ u)

=R E(|x′ − x| ∧ u) + E(|x− y| ∧ u) + E(|y − y′| ∧ u)

≤R 2−(m+1) + 2−n + 2−(m+1) =R 2−m + 2−n

for all m ∈ N, by Lemma 4.26 (1) and (5); hence E(|x′ − y′| ∧ u) ≤R 2−n.
Therefore (x′, y′) 
M (u, n).

(3): Straightforward.
(4): For all (u, n), (v,m) ∈ CX ×N and x, y ∈ X, if (u, n) 4CX×N (v,m) and

(x, y) 
M (v,m), then, since u ≤X v and n ≤ m, we have

E(|x− y| ∧ u) ≤R E(|x− y| ∧ v) ≤R 2−m ≤R 2−n;

hence (x, y) 
M (u, n).
(5): For all (u, n) ∈ CX × N and x, y, z ∈ X, if (x, y) 
M ρM ((u, n)) and

(y, z) 
M ρM ((u, n)), then, since E(|x−y|∧u) ≤R 2−(n+1) and E(|y−z|∧u) ≤R
2−(n+1), we have

E(|x− z| ∧ u) ≤R E(|(x− y) + (y − z)| ∧ u)

≤R E((|x− y|+ |y − z|) ∧ u)

≤R E(|x− y| ∧ u+ |y − z| ∧ u)

≤R E(|x− y| ∧ u) + E(|y − z| ∧ u)

≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (1) and (5); hence (x, z) 
M (u, n).

Proposition 5.9. M is a topological vector lattice.

Proof. Let γ+ ∈ hom(CX × N, (CX × N)× (CX × N)) be given by

γ+((u, n)) = ((u, n+ 1), (u, n+ 1))

for all (u, n) ∈ CX×N, and consider (u, n) ∈ CX×N and (x, y), (x′, y′) ∈M×M
such that ((x, y), (x′, y′)) 
M×M γ+((u, n)). Then, since (x, x′) 
M (u, n + 1)
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and (y, y′) 
M (u, n+ 1), we have

E(|(x+ y)− (x′ + y′)| ∧ u) ≤R E(|(x− x′) + (y − y′)| ∧ u)

≤R E((|x− x′|+ |y − y′|) ∧ u)

≤R E(|x− x′| ∧ u+ |y − y′| ∧ u))

=R E(|x− x′| ∧ u) + E(|y − y′| ∧ u)

≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (5); hence (x+x′, y+y′) 
M (u, n). Therefore + : M×M →M
is uniformly continuous with a modulus γ+.

Let γ∨ ∈ hom(CX × N, (CX × N)× (CX × N)) be given by

γ∨((u, n)) = ((u, n+ 1), (u, n+ 1))

for all (u, n) ∈ CX×N, and consider (u, n) ∈ CX×N and (x, y), (x′, y′) ∈M×M
such that ((x, y), (x′, y′)) 
M×M γ∨(n). Then, since (x, x′) 
M (u, n + 1) and
(y, y′) 
M (u, n+ 1), we have

E(|x ∨ y − x′ ∨ y′| ∧ u) =R E(|(x ∨ y − x′ ∨ y) + (x′ ∨ y − x′ ∨ y′)| ∧ u)

≤R E((|x ∨ y − x′ ∨ y|+ |x′ ∨ y − x′ ∨ y′|) ∧ u)

≤R E(|x ∨ y − x′ ∨ y| ∧ u+ |x′ ∨ y − x′ ∨ y′| ∧ u)

≤R E(|x ∨ y − x′ ∨ y| ∧ u) + E(|x′ ∨ y − x′ ∨ y′| ∧ u)

≤R E(|x− x′| ∧ u) + E(|y − y′| ∧ u)

≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (1), (3) and (5); hence (x + x′, y + y′) 
M (u, n). Therefore
∨ : M ×M →M is uniformly continuous with a modulus γ∨.

We write M for the completion M̃ of the topological vector lattice M , and
call an element of M a measurable function over the abstract integration space
(X,E).

5.3 Convergence theorems

Lemma 5.10. The function idX : X → X is a uniformly continuous setoid
injection of L into M .

Proof. Let γ ∈ hom(CX × N,N) be given by

γ((u, n)) = n

for all (u, n) ∈ CX ×N. Then for all (u, n) ∈ CX ×N and x, y ∈ L, if (x, y) 
L
γ((u, n)), then, since E(|x− y|) ≤R 2−n, we have

E(|idX(x)− idX(y)| ∧ u) =R E(|x− y| ∧ u) ≤R E(|x− y|) ≤R 2−n;

hence (idX(x), idX(y)) 
M (u, n). Therefore idX : L → M is a uniformly
continuous mapping, by Lemma ♣ 3.8.
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For all x, y ∈ L, if idX(x) =M idX(y), then, since E(|x − y| ∧ u) =R
E(|idX(x)− idX(y)| ∧ u) ≤R 2−n for all u ∈ CX and n ∈ N, we have

E(|x− y|) =R E(|x− y| ∧ |x− y|) ≤R 2−n

for all n ∈ N; hence x =L y. Thus idX : L→M is a setoid injection.

Proposition 5.11. There exists a uniformly continuous embedding λ : L→M
such that ηM ◦ idX = λ ◦ ηL.

Proof. Since, by Lemma 5.10, idX : L→M is uniformly continuous, there exists
a unique uniformly continuous mapping λ : L→M such that ηM ◦ idX = λ◦ηL.

To see that λ preserves all vector lattice operations, we only show that

λ(f + g) =M λ(f) + λ(g)

for all f, g ∈ L. Other operations are similar. Let F,G : L × L →M be setoid
mappings given by F (f, g) = λ(f +g) and G(f, g) = λ(f)+λ(g) for all f, g ∈ L,
respectively. Note that F and G are uniformly continuous. Then, since

F (ηL(x), ηL(y)) =M λ(ηL(x) + ηL(y)) =M λ(ηL(x+ y)) =M ηM (idX(x+ y))

=M ηM (idX(x) + idX(y)) =M ηM (idX(x)) + ηM (idX(y))

=M λ(ηL(x)) + λ(ηL(y)) =M G(ηL(x), ηL(y))

for all x, y ∈ L, we have F = G by the uniqueness of such uniformly continuous
mapping. Therefore λ(f + g) =M λ(f) + λ(g) for all f, g ∈ L.

To show that λ is injective, consider f = (xm)m∈N ∈ L with λ(f) =M ηM (0).
Then, since ηL(xm)→ f in L, we have λ(ηL(xm))→ ηM (0) in M. Given an n ∈
N, there exists m ∈ N such that (λ(ηL(xm′)), ηM (0)) 
M ρ2M ((|xn+1|, n + 1)),
that is,

(ηM (idX(xm′)), ηM (0)) 
M ρ2M ((|xn+1|, n+ 1))

for all m′ ∈ N with m ≤ m′; hence (idX(xm′), 0)) 
M (|xn+1|, n + 1) for
all m′ ∈ N with m ≤ m′, by Lemma ??. Therefore for all m′ ∈ N with
max{m,n+ 1} ≤ m′, since (xm′ , xn+1) 
L n+ 1, we have

E(|xm′ |) ≤R E(|xm′ | ∧ |xm′ |) ≤R E(|xn+1 + (xm′ − xn+1)| ∧ |xm′ |)
≤R E((|xn+1|+ |xm′ − xn+1|) ∧ |xm′ |)
≤R E(|xn+1| ∧ |xm′ |+ |xm′ − xn+1| ∧ |xm′ |)
≤R E(|xm′ | ∧ |xn+1|+ |xm′ − xn+1|)
≤R E(|xm′ | ∧ |xn+1|) + E(|xm′ − xn+1|)
≤R 2−(n+1) + 2−(n+1) =R 2−n,

by Lemma 4.26 (1) and (5), and so (xm′ , 0) 
L n. Thus f =L 0.

Lemma 5.12. The function (x, y) 7→ x ∧ |y| from X × X into X is a locally
uniformly continuous mapping of L×M into L.

Proof.
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Proposition 5.13. For each g ∈ L, there exists a uniformly continuous map-
ping µg : M→ L such that

µg(λ(f)) =L g ∧ |f | and λ(µg(h)) =M λ(g) ∧ |h|

for all f ∈ L and h ∈M.

Proof.

Theorem 5.14. Let f be a measurable function. If there exists an integrable
function g such that |f | ≤M λ(g), then there exists an integrable function fL
such that f =M λ(fL).

Proof. Suppose that |f | ≤M λ(g) for some integrable function g. Then, since
f+ ≤M |f | ≤M λ(g) and f+ ≤M |f | ≤M λ(g), we have

λ(µg(f
+)) =M λ(g) ∧ |f+| =M λ(g) ∧ f+ =M f+

and
λ(µg(f

−)) =M λ(g) ∧ |f−| =M λ(g) ∧ f− =M f−.

Therefore, setting fL = µg(f
+)− µg(f−), we have

λ(fL) =M λ(µg(f
+)−µg(f−)) =M λ(µg(f

+))−λ(µg(f
−)) =M f+− f− =M f.

Definition 5.15. Let (fn)n∈N be a sequence of integrable functions, and let f
be an integrable function. Then

1. (fn)n∈N converges in norm to f if fn → f in L;

2. (fn)n∈N converges in measure to f if λ(fn)→ λ(f) in M.

Lemma 5.16. Let (fn)n∈N be an increasing sequence of integrable functions
converging in measure to an integrable function f . Then fn ≤L f for all n ∈ N.

Proof. Given an n ∈ N, since fn ∧ fm =L fn for all m ∈ N with n ≤ m, we have
(fn ∧ fm, fn) 
L n for all n ∈ N and m ∈ N with n ≤ m; hence (fn ∧ fm)m∈∈N
converges to fn. Therefore

λ(fn) ∧ λ(fm) =M λ(fn ∧ fm)→ λ(fn)

in M. On the other hand, since λ(fm)→ λ(f) in M, we have

λ(fn) ∧ λ(fm)→ λ(fn) ∧ λ(f).

Thus λ(fn∧f) =M λ(fn)∧λ(f) =M λ(fn), and so, since λ : L→M is injective,
we have fn ∧ f =L fn; hence fn ≤L f.

Theorem 5.17 (Lebesgue’s Monotone Convergence Theorem). Let (fn)n∈N be
an increasing sequence of integrable functions. Then the following are equivalent.

1. (fn)n∈N converges in measure to some integrable function f ,

2. (fn)n∈N converges in norm to some integrable function f ,
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3. (
∫
fn)n∈N converges; in which case∫

fn →
∫
f.

Proof. (1) ⇒ (2): Note that fn ≤L f for all n ∈ N, by Lemma 5.16. Then, by
replacing fn and f by fn− f0 and f − f0, respectively, we may assume without
loss of generality that 0 ≤L fn for all n ∈ N and 0 ≤L f . Since λ(fn)→ λ(f) in
M,

fn =L f ∧ fn =L f ∧ |fn| =L µf (λ(fn))→ µf (λ(f)) =L f ∧ |f | =L f

in L.
(2) ⇒ (3): Since

∫
: L→ R, we have

∫
fn →

∫
f.

(3) ⇒ (1): Suppose that (
∫
fn)n∈N converses. Then (fn)n∈N converges in L

to some f ∈ L, by Proposition 5.6. Therefore, since λ : L → M is uniformly
continuous, we have λ(fn)→ λ(f) in M.

Theorem 5.18 (Fatou’s Lemma). Let (fn)n∈N be a sequence of integrable func-
tions converging in measure to an integrable function f such that 0 ≤L fn and∫
fn ≤ B for all n ∈ N. Then

∫
f ≤ B.

Proof. Since λ(fn)→ λ(f) in M,

f ∧ fn =L f ∧ |fn| =L µf (λ(fn))→ µf (λ(f)) =L f ∧ |f | =L f

in L; hence
∫
f ∧ fn →

∫
f. Since

∫
f ∧ fn ≤

∫
fn ≤ B for all n ∈ N, we have∫

f ≤ B.

Lemma 5.19. Let (fn)n∈N be a sequence of integrable functions converging in
measure to an integrable function f , and let g be an integrable function such
that |fn| ≤L g for all n ∈ N. Then |f | ≤L g.

Proof. Since λ(fn)→ λ(f) in M and |fn| =L g ∧ |fn| for all n ∈ N,

|fn| =L g ∧ |fn| =L µg(λ(fn))→ µg(λ(f)) =L g ∧ |f |

in L; hence |f | ∧ |fn| → |f | ∧ (g ∧ |f |) =L g ∧ |f | in L. On the other hand,

|f | ∧ |fn| =L µ|f |(λ(fn))→ µ|f |(λ(f)) =L |f | ∧ |f | =L |f |

in L. Therefore g ∧ |f | =L |f |, and so |f | ≤L g.

Theorem 5.20 (Lebesgue’s Dominated Convergence Theorem). Let (fn)n∈N
be a sequence of integrable functions converging in measure to an integrable
function f , and let g be an integrable function such that |fn| ≤L g for all n ∈ N.
Then (fn)n∈N converges in norm to f .

Proof. Note that |f | ≤L g, by Lemma 5.19. Then, since λ(fn) → λ(f) in M,
λ(f+n ) =M λ(fn)+ → λ(f)+ =M λ(f+) in M; hence

g ∧ f+n =L g ∧ |f+n | =L µg(λ(f+n ))→ µg(λ(f+)) =L g ∧ |f+| =L g ∧ f+

in L. Therefore, since f+n ≤L |fn| ≤L g for all n ∈ N and f+ ≤L |f | ≤L g,

f+n → f+

in L. Similarly, f−n → f− in L. Thus fn =L f
+
n −f−n → f+−f− =L f in L.
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