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Abstract

We give a predicative completion of a uniform space with pseudo-
metrics by means of the notion of a net. Since the notion of a net is a
generalization of the notion of a sequence, the completion is a general-
ization of, and parallel to the usual completion of a metric space. The
completion is given in the elementary constructive set theory ECST with
Exponentiation Axiom Exp. Since ECST + Exp is a subsystem of the
constructive and predicative Zermelo–Fraenkel set theory CZF, we do not
make use of Fullness, an axiom of CZF.

1 Introduction

Bishop introduced a constructive notion of a uniform space with a set of pseu-
dometrics, and construct a completion of a uniform space by means of the set
of Cauchy filters in [5, Problems 4.17 and 4.19]; see also [6, Problems 4.22 and
4.24]. Note that the construction of the set of Cauchy filters is problematic from
a predicative point of view. Bishop also gave a construction of the product of
uniform spaces; see [5, Problem 4.21] and also [6, Problem 4.26].

On the other hand, Bridges and Vı̂ţă [8] employed a set of entourages (with
an extra condition) to define a uniform space. Berger et al. [4] pointed out
that the notion of a uniform space with entourages has an advantage over the
one with pseudometrics, and gave a predicative completion of a uniform space
given by entourages (without any extra condition) in CZF, the constructive
and predicative Zermelo–Fraenkel set theory founded by Aczel [1].

However, the notion of a uniform space with pseudometrics has many appli-
cations in other areas of constructive mathematics such as locally convex spaces
[7, 5.4]; see also [11].

In this paper, we give a predicative completion of a uniform space with pseu-
dometrics by means of the notion of a net or Moore–Smith sequence (see [13,
Chapter 2]) in the elementary constructive set theory ECST with Exponenti-
ation Axiom Exp. Since the notion of a net is a generalization of the notion
of a sequence, the completion is a generalization of, and parallel to the usual
completion of a metric space; see [5, 4.3] and [6, 4.3].

The elementary constructive set theory ECST was introduced by Aczel and
Rathjen and is a subsystem of CZF; see their book draft [3] written by extending
their research report [2]. The set theory ECST uses intuitionistic logic and has
the set theoretic axioms: Extensionality, Pairing, Union, Replacement and
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Bounded Separation:

∀a∃b∀x(x ∈ b↔ x ∈ a ∧ ϕ(x))

for every bounded formula ϕ(x); here a formula ϕ(x) is restricted, or ∆0,
if all the quantifiers occurring in it are bounded, i.e. of the form ∀x ∈ c
or ∃x ∈ c;

Strong Infinity:

∃a[0 ∈ a ∧ ∀x(x ∈ a→ x+ 1 ∈ a)

∧ ∀y(0 ∈ y ∧ ∀x(x ∈ y→ x+ 1 ∈ y)→ a ⊆ y)],

where x+ 1 is x ∪ {x}, and 0 is the empty set ∅.

In ECST, we are able to perform basic set constructions in mathematical
practice such as finite cartesian products and infinite disjoint unions. A relation
r ⊆ a× b between sets a and b is total (or is a multivalued function) if for every
x ∈ a there exists y ∈ b such that (x, y) ∈ r. The class of total relations between
a and b is denoted by mv(a, b), or more formally

r ∈ mv(a, b)⇔ r ⊆ a× b ∧ ∀x ∈ a∃y ∈ b((x, y) ∈ r).

A function from a to b is a total relation f ⊆ a × b such that for every x ∈ a
there is exactly one y ∈ b with (x, y) ∈ f . The class of functions from a to b is
denoted by ba, or more formally

f ∈ ba⇔ f ∈ mv(a, b) ∧ ∀x ∈ a∀y, z ∈ b((x, y) ∈ f ∧ (x, z) ∈ f → y = z).

The set theory CZF is obtained from ECST by replacing Replacement by
Strong Collection and adding Subset Collection and Set Induction; see [2, 3] for
details. In ECST, Subset Collection implies

Fullness: ∀a∀b∃c(c ⊆ mv(a, b) ∧ ∀r ∈ mv(a, b)∃s ∈ c(s ⊆ r)),

and Fullness and Strong Collection imply Subset Collection. The notable con-
sequence of Fullness is that ba forms a set, that is, Exponentiation Axiom:

Exp: ∀a∀b∃c∀f(f ∈ c↔ f ∈ ba).

Note that the construction of a completion in [4] made use of Fullness. Since
the completion in this paper is a subset of the set of functions, we do not
make use of Fullness, but Exp which is a strictly weaker axiom than Fullness
in ECST. Note that we can construct infinite cartesian products, the natu-
ral numbers (and their operations) and the rationals (and their operations) in
ECST + Exp. Although the Dedekind reals was constructed in [2] with Full-
ness (see also [9]), we adapt the Cauchy reals within ECST + Exp, which is
constructed as the completion of the rationals in this paper.

In Section 2, we give our construction of a completion of a uniform space
by means of the notion of a net. Since the completion is similar to the usual
completion of a metric space, if the reader is familiar with it, then it is easy
to follow. In Section 3, we introduce the notion of a uniformly (respectively,
locally uniformly) continuous mapping, and show a universal property, which a
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completion must have, for uniformly (respectively, locally uniformly) continuous
mappings. In Section 4, we give the product of uniform spaces following Bishop,
and show that the product of complete uniform spaces is complete. Finally, we
show that constructions of the completion and the product commute and, as a
corollary, we give a stronger version of the universal property which is crucial
in application [11].

There are other constructive treatments of a uniform space and its comple-
tion; for example, see [10] for uniform space in formal topology, and [12] for
localic completion of a uniform space.

2 A completion of a uniform space

Definition 1. A pseudometric d on a set X is a mapping d : X ×X → R such
that

1. d(x, x) = 0,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y)

for each x, y, z ∈ X.

Definition 2. A (metrically) uniform space is a pair (X,D) of a set X and a
family D = {di | i ∈ I} of pseudometrics indexed by an inhabited set I such
that

∀i ∈ I(di(x, y) = 0)⇒ x = y

for each x, y ∈ X. If I is a singleton, then (X,D) is called a metric space.

Definition 3. For a set S, we write S∗ for the set of finite sequences of S with
the following notations:

1. |σ| denotes the length of σ ∈ S∗;

2. ε denotes the empty sequence with |ε| = 0;

3. σ(l) denotes the l-th element of σ ∈ S∗, where l < |σ|;

4. s ∈ σ denotes that s = σ(l) for some l < |σ|;

5. σ ∗ τ denotes the concatenation of σ ∈ S∗ and τ ∈ S∗;

6. sn denotes the the constant sequence 〈s, . . . , s〉 of the length n.

We define a binary relation �S on S∗ by

σ �S τ ⇔ |σ| ≤ |τ | ∧ ∀s ∈ S(s ∈ σ→ s ∈ τ)

for each σ, τ ∈ S∗. If S is inhabited by s0 ∈ S, then for each n, we write σ+n

for the sequence σ ∗ sn0 ; note that σ+n �S τ+n whenever σ �S τ .

Lemma 4. Let S be a set. Then (S∗,�S) is a directed preordered set.

Proof. It is obvious that �S is a preorder on S∗, and for each σ, τ ∈ S∗, we
have σ �S σ ∗ τ and τ �S σ ∗ τ.
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Remark 5. If S is a singleton {s}, then (S∗,�S) is order isomorphic to (N,≤)
by the mapping σ 7→ |σ| and its inverse n 7→ sn.

Definition 6. Let (X,D) be a uniform space with D = {di | i ∈ I}, and for
each σ ∈ I∗, let dσ be a pseudometric on X given by

dσ(x, y) = max{di(x, y) | i ∈ σ}

for each x, y ∈ X; if σ = ε, then let dσ(x, y) = 0. Let (Λ,4) be a directed
preordered set. Then a map λ 7→ xλ of Λ into X is called a net (or Moore-Smith
sequence) on (Λ,4) in X, and is denoted by (xλ)λ∈Λ, or simply (xλ). A net
(xλ) converges to an element x of X with a modulus β : I∗ → Λ if

β(σ) 4 λ⇒ dσ(xλ, x) ≤ 2−|σ|

for each σ ∈ I∗ and λ ∈ Λ. We then write xλ → x, and x is called a limit of
(xλ). A net (xλ) is a Cauchy net with a modulus α : I∗ → Λ if

α(σ) 4 µ, ν⇒ dσ(xµ, xν) ≤ 2−|σ|

for each σ ∈ I∗ and µ, ν ∈ Λ. A uniform space (X,D) is complete if every
Cauchy net converges.

Lemma 7. Let (X,D) be a uniform space. If a net (xλ) in X converges to
elements x and y of X, then x = y.

Proof. Let D = {di | i ∈ I}, and suppose that a net (xλ) on (Λ,4) converges
to x ∈ X with a modulus α : I∗ → Λ and to y ∈ X with a modulus β : I∗ → Λ.
Then for each i ∈ I and n, there exists λ ∈ Λ such that α(in) 4 λ and β(in) 4 λ,
and hence

di(x, y) = din(x, y) ≤ din(x, xλ) + din(xλ, y) ≤ 2−n + 2−n.

Therefore, letting n→∞, we have di(x, y) = 0 for each i ∈ I, and so x = y.

Definition 8. Let (X,D) be a uniform space with D = {di | i ∈ I}. A regular
net in X is a Cauchy net on (I∗,�I) with the modulus idI∗ . We write X̃ for
the set of all regular nets in X.

Lemma 9. Let (X,D) be a uniform space with D = {di | i ∈ I}, and let i ∈ I.
Then the limit

d̃i(x,y) = lim
n→∞

di(xin , yin)

exists for each x = (xρ),y = (yρ) ∈ X̃, and d̃i is a pseudometric on X̃.

Proof. Let x = (xρ),y = (yρ) ∈ X̃. Then we show that (di(xin , yin))n is a
Cauchy sequence in R with a modulus n 7→ n+1. In fact, for each m,m′ ≥ n+1,
since

din+1(xim , xim′ ) ≤ 2−(n+1) and din+1(yim , yim′ ) ≤ 2−(n+1)

we have

di(xim , yim)− di(xim′ , yim′ ) ≤ di(xim , xim′ ) + di(xim′ , yim′ )

+ di(yim′ , yim)− di(xim′ , yim′ )
= din+1(xim , xim′ ) + din+1(yim′ , yim)

≤ 2−(n+1) + 2−(n+1) = 2−n.
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It is obvious that d̃i(x,x) = 0 and d̃i(x,y) = d̃i(y,x) for each x,y ∈ X̃. For
the triangle inequality, we have

d̃i(x,y) = lim
n→∞

di(xin , yin) ≤ lim
n→∞

di(xin , zin) + lim
n→∞

di(zin , yin)

= d̃i(x, z) + d̃i(z,y)

for each x = (xρ),y = (yρ), z = (zρ) ∈ X̃.

Lemma 10. Let (X,D) be a uniform space with D = {di | i ∈ I}. Define the
inclusion map ιX of X into X̃ by

(ιX(x))(σ) = x

for each x ∈ X and σ ∈ I∗. Then

dσ(x, y) = d̃σ(ιX(x), ιX(y))

for each σ ∈ I∗ and x, y ∈ X.

Proof. Straightforward.

Lemma 11. Let (X,D) be a uniform space with D = {di | i ∈ I}, and let
x = (xρ) ∈ X̃. Then

d̃σ(x, ιX(xτ )) ≤ 2−|τ |

for each σ, τ ∈ I∗ with σ �I τ .

Proof. Consider σ, τ ∈ I∗ with σ �I τ . Then for each i ∈ σ and n, since x is
regular, we have din(xin , xin∗τ ) ≤ 2−n and dτ (xin∗τ , xτ ) ≤ 2−|τ |, and hence

di(xin , xτ ) ≤ di(xin , xin∗τ ) + di(xin∗τ , xτ )

≤ din(xin , xin∗τ ) + dτ (xin∗τ , xτ ) ≤ 2−n + 2−|τ |.

Therefore, letting n→∞, we have d̃i(x, ιX(xτ )) ≤ 2−|τ | for each i ∈ σ, and so
d̃σ(x, ιX(xτ )) ≤ 2−|τ |.

Definition 12. The completion of a uniform space (X,D) with D = {di | i ∈ I}
is the uniform space (X̃, D̃) with D̃ = {d̃i | i ∈ I} and with the equality =X̃

given by
x =X̃ y⇔∀i ∈ I(d̃i(x,y) = 0)

for each x,y ∈ X̃.

Theorem 13. The completion (X̃, D̃) of a uniform space (X,D) is complete.

Proof. Let D = {di | i ∈ I}, and suppose that (xλ)λ∈Λ = ((xλ,ρ)ρ∈I∗)λ∈Λ is a

Cauchy net on (Λ 4) in X̃ with a modulus α : I∗ → Λ. For each σ ∈ I∗, define
a net y = (yρ) on (I∗,�I) in X by

yρ = xα(ρ+2),ρ+2

5



for each ρ ∈ I∗. We show that y is a regular net. To this end, consider
σ, τ, υ ∈ I∗ with σ �I τ, υ. Then there exists λ ∈ Λ such that α(τ+2) 4 λ and
α(υ+2) 4 λ, and, since σ �I τ+2, υ+2, we have

dσ(yτ , yυ) = d̃σ(ιX(xα(τ+2),τ+2), ιX(xα(υ+2),υ+2))

≤ d̃σ(ιX(xα(τ+2),τ+2),xα(τ+2)) + d̃σ(xα(τ+2),xλ) + d̃σ(xλ,xα(υ+2))

+ d̃σ(xα(υ+2), ιX(xα(υ+2),υ+2))

≤ 2−|τ
+2| + d̃τ+2(xα(τ+2),xλ) + d̃υ+2(xλ,xα(υ+2)) + 2−|υ

+2|

≤ 2−|τ
+2| + 2−|τ

+2| + 2−|υ
+2| + 2−|υ

+2|

≤ 2−(|τ |+1) + 2−(|υ|+1) ≤ 2−|σ|,

by Lemma 11. Therefore y is regular. Define β : I∗ → Λ by

β(σ) = α(σ+3)

for each σ ∈ I∗. If β(σ) 4 λ, then

d̃σ(xλ,y) ≤ d̃σ(xλ,xα(σ+3)) + d̃σ(xα(σ+3), ιX(xα(σ+3),σ+3)) + d̃σ(ιX(yσ+1),y)

≤ 2−|σ
+3| + 2−|σ

+3| + 2−|σ
+1| < 2−|σ|,

by Lemma 11. Therefore (xλ) converges to y with the modulus β.

3 A universal property

Definition 14. Let (X,D) and (Y,D′) be uniform spaces with D = {di | i ∈ I}
and D′ = {d′j | j ∈ J}. Then a mapping f : X → Y is uniformly continuous
with a monotone modulus α : J∗ → I∗ (that is, σ′ �J τ ′ implies α(σ′) �I α(τ ′)
for each σ′, τ ′ ∈ J∗) if

dα(σ′)(x, y) ≤ 2−|α(σ′)|⇒ d′σ′(f(x), f(y)) ≤ 2−|σ
′|

for each σ′ ∈ J∗ and x, y ∈ X. A uniformly continuous mapping f : X → Y is a
uniform isomorphism if it has a uniformly continuous inverse, and (X,D) and
(Y,D′) are uniformly equivalent if there exists a uniform isomorphism between
X and Y .

A mapping f : X → Y is locally uniformly continuous if for each x ∈ X̃
there exists a monotone modulus α : J∗ → I∗ such that

y, z ∈ Uα(σ′)(x)⇒ d′σ′(f(y), f(z)) ≤ 2−|σ
′|

for each σ′ ∈ J∗ and y, z ∈ X, where

Uσ(x) = {z ∈ X | d̃σ(x, ιX(z)) ≤ 2−|σ|}

for each σ ∈ I∗.

Remark 15. For each ρ′ ∈ J∗, the set {σ′ ∈ J∗ | σ′ �J ρ′} is finitely enumerable;
for {σ′ ∈ J∗ | σ′ �J ρ′} = {ρ′ ◦ π | π ∈ |ρ′|n, n ≤ |ρ′|}, where |ρ′|n is the finite
set of functions from {0, . . . , n − 1} into {0, . . . , |ρ′| − 1}. Therefore we may
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replace any modulus α : J∗ → I∗ of uniform continuity by a monotone modulus
α′ : J∗ → I∗ given by

α′(ρ′) = the concatenation of {α(σ′) | σ′ �J ρ′}

for each ρ′ ∈ J∗.
Remark 16. We introduced here the notion of a locally uniformly continuous
mapping, since it is convenient to deal with it in constructing the completions
of some important spaces. For example, the scalar multiplication (a, x) 7→ ax of
a normed space is not uniformly continuous, but locally uniformly continuous.

Remark 17. A uniform space (X,D) with a countable set D = {dn | n ∈ N} of
pseudometrics is uniformly equivalent to a metric space (X, d) with a metric d
defined by

d(x, y) =

∞∑
n=0

1

2n
dn(x, y)

1 + dn(x, y)

for each x, y ∈ X. In fact, it is straightforward to show that idX : (X,D) →
(X, d) and idX : (X, d) → (X,D) are uniformly continuous; see [5, Problem
4.17] and [6, Problem 4.22].

Lemma 18. Let (X,D) and (Y,D′) be uniform spaces. Then every uniformly
continuous mapping f : X → Y is locally uniformly continuous.

Proof. Let D = {di | i ∈ I} and D′ = {d′j | j ∈ J}, and let f : X → Y be a

uniformly continuous mapping with a modulus α : J∗ → I∗. Consider x ∈ X̃.
For each σ′ ∈ J∗ and x, y ∈ X, if x, y ∈ Uα(σ′)+1(x), then, since

dα(σ′)(x, y) = d̃α(σ′)(ιX(x),x) + d̃α(σ′)(x, ιX(y))

≤ d̃α(σ′)+1(ιX(x),x) + d̃α(σ′)+1(x, ιX(y))

≤ 2−|α(σ′)+1| + 2−|α(σ′)+1| = 2−|α(σ′)|,

we have d′σ′(f(x), f(y)) ≤ 2−|σ
′|. Therefore f is locally uniformly continuous at

x with a modulus σ′ 7→ α(σ′)+1.

Lemma 19. Let (X,D) and (Y,D′) be uniform spaces with D = {di | i ∈ I} and
D′ = {d′j | j ∈ J}. Then a locally uniformly continuous mapping f : (X,D) →
(Y,D′) is pointwise continuous, in the sense that for each x ∈ X there exists
α : J∗ → I∗ such that

dα(σ′)(x, y) ≤ 2−|α(σ′)|⇒ d′σ′(f(x), f(y)) ≤ 2−|σ
′|

for each y ∈ X and σ′ ∈ J∗. Especially,

xλ → x⇒ f(xλ)→ f(x)

for each net (xλ) in X.

Proof. Let x ∈ X, and let α : J∗ → I∗ be a modulus of local uniform continuity
at ιX(x). For each y ∈ X and σ′ ∈ J∗, if dα(σ′)(x, y) ≤ 2−|α(σ′)|, then x, y ∈
Uα(σ′)(ιX(x)), and hence

d′σ′(f(x), f(y)) ≤ 2−|σ
′|.
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Suppose that a net (xλ) on (Λ,4) in X converges to a limit x ∈ X with a
modulus β : I∗ → Λ. Then for each σ′ ∈ J∗ and λ ∈ Λ with β(α(σ′)) 4
λ, since dα(σ′)(xλ, x) ≤ 2−|α(σ′)|, we have xλ, x ∈ Uα(σ′)(ιX(x)), and hence

d′σ′(f(xλ), f(x)) ≤ 2−|σ
′|. Therefore the net (f(xλ))λ∈Λ converges to f(x) with

a modulus β ◦ α.

Lemma 20. Let (X,D), (Y,D′) and (Z,D′′) be uniform spaces. Then the com-
position g ◦f of uniformly (respectively, locally uniformly) continuous mappings
f : (X,D) → (Y,D′) and g : (Y,D′) → (Z,D′′) is uniformly (respectively,
locally uniformly) continuous.

Proof. Let D = {di | i ∈ I}, D′ = {d′j | j ∈ J} and D′′ = {d′′k | k ∈ K}. Since it
is straightforward for uniformly continuous mappings, we only show for locally
uniformly continuous mappings.

Consider x = (xρ)ρ∈I∗ ∈ X̃, and let α : J∗ → I∗ be a modulus of local
uniform continuity for f at x. Then for each σ′ ∈ J∗ and τ ∈ I∗ with α(σ′) �I τ ,
since d̃α(σ′)(x, ιX(xτ )) ≤ 2−|α(σ′)|, by Lemma 11, we have xτ ∈ Uα(σ′)(x). Let
y = (yρ′)ρ′∈J∗ be a net in Y given by

yρ′ = f(xα(ρ′))

for each ρ′ ∈ J∗. Then for each σ′, τ ′, υ′ ∈ J∗ with σ′ �J τ ′, υ′, since α(σ′) �I
α(τ ′), α(υ′), we have xα(τ ′), xα(υ′) ∈ Uα(σ′)(x), and hence

d′σ′(yτ ′ , yυ′) = d′σ′(f(xα(τ ′)), f(xα(υ′))) ≤ 2−|σ
′|.

Therefore y is a regular net in Y . Let β : K∗ → J∗ be a modulus of lo-
cal uniform continuity for g at y. Consider σ′′ ∈ K∗ and x ∈ X with x ∈
Uα(β(σ′′))(x). Then for each n, since xα(β(σ′′)+n) ∈ Uα(β(σ′′))(x), we have

d′β(σ′′)(f(xα(β(σ′′)+n)), f(x)) ≤ 2−|β(σ′′)|, and hence

d̃′β(σ′′)(y, f(x)) ≤ d̃′β(σ′′)(y, yβ(σ′′)+n) + d̃′β(σ′′)(f(xα(β(σ′′)+n)), f(x))

≤ 2−|β(σ′′)+n| + 2−|β(σ′′)| ≤ 2−n + 2−|β(σ′′)|,

by Lemma 11. Therefore, letting n → ∞, we have d̃′β(σ′′)(y, f(x)) ≤ 2−|β(σ′′)|,

and so f(x) ∈ U ′β(σ′′)(y), where U ′σ′(y) = {z ∈ Y | d̃′σ′(y, ιY (z)) ≤ 2−|σ
′|} for

each σ′ ∈ J∗. Thus for each σ′′ ∈ K∗ and x, y ∈ X, if x, y ∈ Uα(β(σ′′))(x), then

f(x), f(y) ∈ U ′β(σ′′)(y), and hence d′′σ′′(g(f(x)), g(f(y))) ≤ 2−|σ
′′|; and so g ◦ f

is locally uniformly continuous at x with a modulus α ◦ β : K∗ → I∗.

Theorem 21. Let (X,D) be a uniform spaces, and let (Y,D′) be a complete
uniform space. Then for each uniformly (respectively, locally uniformly) con-
tinuous mapping f : (X,D)→ (Y,D′), there exists a unique uniformly (respec-
tively, locally uniformly) continuous mapping f̃ : (X̃, D̃)→ (Y,D′) which makes
the following diagram commute.

(X̃, D̃)
f̃ // (Y,D′)

(X,D)

ιX

OO

f

::
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Proof. Let D = {di | i ∈ I} and D′ = {d′j | j ∈ J}. Since it is similar and easier
for uniformly continuous f , we only show for locally uniformly continuous f .

We first construct f̃(x) ∈ Y for each x ∈ X̃. To this end, consider x ∈ X̃
with x = (xρ)ρ∈I∗ , and note that for each σ, τ ∈ I∗, if σ �I τ , then, since

d̃σ(x, ιX(xτ )) ≤ 2−|τ | ≤ 2−|σ|, by Lemma 11, we have xτ ∈ Uσ(x). Let α :
J∗ → I∗ be a modulus of local uniform continuity for f at x. Then for each
σ′ ∈ J∗ and τ, υ ∈ I∗ with α(σ′) �I τ, υ, since xτ , xυ ∈ Uα(σ′)(x), we have

d′σ′(f(xτ ), f(xυ)) ≤ 2−|σ
′|. Therefore (f(xρ)) is a Cauchy net on (I∗,�I) in Y

with modulus α, and so converges to the unique limit f̃(x).
To show that f̃ : X̃ → Y is locally uniformly continuous, consider (xρ)ρ∈I∗ ∈

˜̃X. We now construct a modulus of local uniform continuity for f̃ at (xρ). Since

(xρ) is Cauchy and X̃ is complete, (xρ) converges to x ∈ X̃ with a modulus

β : I∗ → I∗. Note that for each y ∈ X̃ and i ∈ I, since

d̃i(xin ,y) ≤ d̃in(xin ,xin∗β(in)) + d̃in(xin∗β(in),x) + d̃i(x,y)

≤ 2−n + 2−n + d̃in(x,y)

and similarly d̃i(x,y) ≤ 2−n + 2−n + d̃i(xin ,y) for each n, we have

˜̃
di((xρ), ιX̃(y)) = lim

n→∞
d̃i(xin ,y) = d̃i(x,y).

Let α : J∗ → I∗ be a modulus of local uniform continuity for f at x, and define
α̃ : J∗ → I∗ by

α̃(σ′) = α(σ′)+1

for each σ′ ∈ J∗. Then for each y = (yρ) ∈ Ũσ+1((xρ)), where

Ũσ((xρ)) = {y ∈ X̃ | ˜̃
dσ((xρ),y) ≤ 2−|σ|},

and each σ′ ∈ J∗ and τ ∈ I∗ with α̃(σ′) �I τ , since

d̃α(σ′)(x, ι(yτ )) ≤ d̃α̃(σ′)(x, ι(yτ )) ≤ d̃α̃(σ′)(x,y) + d̃α̃(σ′)(y, ι(yτ ))

≤ 2−|α(σ′)+1| + 2−|α(σ′)+1| = 2−|α(σ′)|,

we have yτ ∈ Uα(σ′)(x). Consider y = (yρ), z = (zρ) ∈ Ũα̃(σ′)((xρ)) and σ′ ∈ J∗.
Given an n, since (f(yρ)) and (f(zρ)) converge to f̃(y) and f̃(z), respectively,
there exist τ̌ , υ̌ ∈ I∗ such that

d′σ′+n(f(yτ ), f̃(y)) ≤ 2−|σ
′+n| ≤ 2−n, d′σ′+n(f(zυ), f̃(z)) ≤ 2−|σ

′+n| ≤ 2−n

for each τ, υ ∈ I∗ with τ̌ �I τ and υ̌ �I υ. Let τ = τ̌ ∗ α̃(σ′) and υ = υ̌ ∗ α̃(σ′).
Then, since yτ , zυ ∈ Uα(σ′)(x), we have d′σ′(f(yτ ), f(zυ)) ≤ 2−|σ

′|, and hence

d′σ′(f̃(y), f̃(z)) ≤ d′σ′(f̃(y), f(yτ ) + d′σ′(f(yτ ), f(zυ)) + d′σ′(f(zυ), f̃(z))

≤ d′σ′+n(f̃(y), f(yτ ) + d′σ′(f(yτ ), f(zυ)) + d′σ′+n(f(zυ), f̃(z))

≤ 2−n + 2−|σ
′| + 2−n.

Therefore, letting n → ∞, we have d′σ′(f̃(y), f̃(z)) ≤ 2−|σ
′|. Thus f is locally

uniformly continuous at (xρ) with a modulus α̃.
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As to the uniqueness, let g : X̃ → Y be any other locally uniformly contin-
uous extension of f . Consider x ∈ X̃, and let α : J∗ → I∗ and β : J∗ → I∗ be
moduli of uniform continuity for f̃ and g, respectively, at ιX̃(x). Given j ∈ J
and n, let υ = α(jn) ∗ β(jn). Then, since

˜̃
dα(jn)(ιX̃(x), ιX̃(ιX(xυ))) = d̃α(jn)(x, ιX(xυ)) ≤ 2−|υ| ≤ 2−|α(jn)|,

by Lemma 11, we have

d′j(f̃(x), f(xυ)) = d′j(f̃(x), f̃(ιX(xυ))) = d′jn(f̃(x), f̃(ιX(xυ))) ≤ 2−n.

Similarly, we have d′j(g(x), f(xυ)) = d′j(g(x), g(ιX(xυ))) ≤ 2−n. Therefore

d′j(f̃(x), g(x)) ≤ d′j(f̃(x), f(xυ)) + d′j(f(xυ), g(x)) ≤ 2−n + 2−n.

Thus, letting n→∞, we have d′j(f̃(x), g(x)) = 0 for each j ∈ J .

Corollary 22. Let (X,D) be a uniform space. Then (X̃, D̃) and ( ˜̃X, ˜̃D) are
uniformly equivalent.

Proof. By Theorem 21, there exists a uniformly continuous mapping ĩdX̃ :

( ˜̃X, ˜̃D)→ (X̃, D̃) which makes the following diagram commute.

( ˜̃X, ˜̃D)
ĩdX̃ // (X̃, D̃)

ιX̃ // ( ˜̃X, ˜̃D)

(X̃, D̃)

ιX̃

cc

idX̃

OO

ιX̃

;;

Since ιX̃ : (X̃, D̃) → ( ˜̃X, ˜̃D) is uniformly continuous, by Lemma 10, ιX̃ ◦ ĩdX̃ :

( ˜̃X, ˜̃D) → ( ˜̃X, ˜̃D) is uniformly continuous. Therefore we have ιX̃ ◦ ĩdX̃ = id ˜̃X
.

4 Product uniform spaces

Definition 23. Let {(Xk, Dk) | k ∈ K} be an inhabited family of uniform
spaces such that Dk = {dki | i ∈ Ik} for each k ∈ K. Then the product uniform
space

∏
k∈K(Xk, Dk) is a uniform space (X,D) such that X =

∏
k∈K Xk and

D = {d(k,i) | (k, i) ∈ I}, where I =
∑
k∈K Ik and

d(k,i)(ξ, ζ) = dki (ξ(k), ζ(k))

for each (k, i) ∈ I and ξ, ζ ∈
∏
k∈K Xk.

Remark 24. For a family {(Xk, Dk) | k ∈ K} of uniform spaces, where Dk =
{dki | i ∈ Ik} for each k ∈ K, we tacitly assume that

∏
k∈K Ik is inhabited.

Definition 25. Let {Sk | k ∈ K} be a family of sets indexed by a set K, and
let S =

∑
k∈K Sk. Then for each k ∈ K and σ ∈ S∗k , define {k} × σ ∈ S∗ with

|{k} × σ| = |σ| by
({k} × σ)(l) = (k, σ(l))

for each l < |σ|. Note that for each k ∈ K, if σ �Sk
τ , then {k}×σ �S {k}× τ .
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Proposition 26. Let {(Xk, Dk) | k ∈ K} be an inhabited family of complete
uniform spaces. Then the product uniform space

∏
k∈K(Xk, Dk) is complete.

Proof. Let Dk = {dki | i ∈ Ik} for each k ∈ K, and let I =
∑
k∈K Ik. Suppose

that (ξλ) is a Cauchy net on (Λ,4) in
∏
k∈K Xk with a modulus α : I∗ → Λ.

Given a k ∈ K, let (xkλ) be a net on (Λ,4) in Xk defined by

xkλ = ξλ(k).

Then, for each σ ∈ I∗k and µ, ν ∈ Λ with α({k} × σ) 4 µ, ν, we have

dkσ(xkτ , x
k
υ) = dkσ(ξµ(k), ξν(k)) = d{k}×σ(ξµ, ξν) ≤ 2−|{k}×σ| = 2−|σ|.

Therefore (xkλ) is a Cauchy net with a modulus σ 7→ α({k}×σ), and so converges
to the unique limit zk ∈ Xk with a modulus βk : I∗k → Λ.

Define ζ ∈ X by ζ(k) = zk for each k ∈ K, and consider σ ∈ I∗ and λ ∈ Λ
with α(σ) 4 λ. Then for each (k, i) ∈ σ and n, choosing µ ∈ Λ so that α(σ) 4 µ
and βk(in) 4 µ, we have

d(k,i)(ξλ, ζ) = d(k,i)(ξλ, ξµ) + d(k,i)(ξµ, ζ) ≤ dσ(ξλ, ξµ) + dki (ξµ(k), ζ(k))

≤ 2−|σ| + dkin(xµ(k), zk) ≤ 2−|σ| + 2−n,

and hence, letting n → ∞, we have d(k,i)(ξλ, ζ) ≤ 2−|σ|. Therefore dσ(ξλ, ζ) ≤
2−|σ| for each σ ∈ I∗ and λ ∈ Λ with α(σ) 4 λ, and so (ξλ) converges to ζ with
the modulus α.

Lemma 27. Let {(Xk, Dk) | k ∈ K} be an inhabited family of uniform spaces
such that Dk = {dki | i ∈ Ik} for each k ∈ K, and let I =

∑
k∈K Ik. Define the

inclusion map ~ι of
∏
k∈K Xk into

∏
k∈K X̃k by

~ι(ξ) = (ιXk
(xk))k∈K

for each ξ = (xk)k∈K ∈
∏
k∈K Xk. Then

dσ(ξ, ζ) = d̃σ(~ι(ξ),~ι(ζ))

for each σ ∈ I and ξ, ζ ∈
∏
k∈K Xk, and ~ι :

∏
k∈K(Xk, Dk) →

∏
k∈K(X̃k, D̃k)

is uniformly continuous.

Proof. Straightforward, by Lemma 10.

Definition 28. A set K is discrete if k = k′ ∨ ¬k = k′ for each k, k′ ∈ K.
Let {Sk | k ∈ K} be a family of sets indexed by a discrete set K such that
(sk)k∈K ∈

∏
k∈K Sk, and let S =

∑
k∈K Sk. Then for each k ∈ K and σ ∈ S∗,

define σ � k ∈ S∗k with |σ � k| = |σ| by

(σ � k)(l) =

{
s if σ(l) = (k′, s) and k = k′,

sk otherwise

for each l < |σ|. Note that for each k ∈ K, since K is discrete, σ � k is well
defined and if σ �S τ , then σ � k �Sk

τ � k.
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Lemma 29. Let {(Xk, Dk) | k ∈ K} be an inhabited family of uniform spaces
indexed by a discrete set K, and let (X,D) =

∏
k∈K(Xk, Dk) be the prod-

uct uniform space. Then there exists a uniformly continuous injection κ :∏
k∈K(X̃k, D̃k)→ (X̃, D̃) such that κ ◦~ι = ιX .

Proof. Let Dk = {dki | i ∈ Ik} for each k ∈ K, and let I =
∑
k∈K Ik. Note

that
∏
k∈K Ik is inhabited. Consider ~x ∈

∏
k∈K X̃k with ~x = (xk)k∈K =

((xkρ)ρ∈I∗k )k∈K , and let [~x]ρ = (xkρ�k)k∈K for each ρ ∈ I∗, where ρ � k is defined

for each element ρ of I∗. Then for each σ, τ, υ ∈ I∗ with σ �I τ, υ, since xk is
regular and σ � k �Ik τ � k, υ � k, we have

d(k,i)([~x]τ , [~x]υ) = dki (xkτ�k, x
k
υ�k) ≤ dkσ�k(xkτ�k, x

k
υ�k) ≤ 2−|σ�k| = 2−|σ|

for each (k, i) ∈ σ, and hence dσ([~x]τ , [~x]υ) ≤ 2−|σ|. Therefore ([~x]ρ)ρ∈I∗ is

regular in X. For each ~x ∈
∏
k∈K X̃k, define κ(~x) ∈ X̃ by

κ(~x) = ([~x]ρ)ρ∈I∗ .

Then for each ~x, ~y ∈
∏
k∈K X̃k with ~x = (xk)k∈K = ((xkρ′)ρ′∈I∗k )k∈K and ~y =

(yk)k∈K = ((ykρ′)ρ′∈I∗k )k∈K , we have

d̃(k,i)(κ(~x), κ(~y)) = lim
n→∞

d(k,i)([~x](k,i)n , [~y](k,i)n) = lim
n→∞

dki (xk(k,i)n�k, y
k
(k,i)n�k)

= lim
n→∞

dki (xkin , y
k
in) = d̃ki (xk,yk) = d̃(k,i)(~x, ~y)

for each (k, i) ∈ I. Therefore κ :
∏
k∈K(X̃k, D̃k) → (X̃, D̃) is a uniformly

continuous injection with a modulus idI∗ . Since

κ(~ι(ξ)) = ([~ι(ξ)]ρ)ρ∈I∗ = ([(ιXk
(xk))k∈K ]ρ)ρ∈I∗ = ((xk)k∈K)ρ∈I∗ = ιX(ξ)

for each ξ ∈ X with ξ = (xk)k∈K , we have κ ◦~ι = ιX .

Theorem 30. Let {(Xk, Dk) | k ∈ K} be an inhabited family of uniform spaces
indexed by a discrete set K, and let (X,D) =

∏
k∈K(Xk, Dk) be the product

uniform space. Then (X̃, D̃) and
∏
k∈K(X̃k, D̃k) are uniformly equivalent.

Proof. Since ~ι : (X,D) →
∏
k∈K(X̃k, D̃k) is uniformly continuous, by Lemma

27, there exists a uniformly continuous mapping ~̃ι : (X̃, D̃) →
∏
k∈K(X̃k, D̃k)

which makes the following diagram commute, by Theorem 21.

(X̃, D̃)
~̃ι // ∏

k∈K(X̃k, D̃k)
κ // (X̃, D̃)

(X,D)

ιX

ff

~ι

OO

ιX

88

Since κ ◦ ~̃ι : (X̃, D̃)→ (X̃, D̃) is uniformly continuous, we have κ ◦ ~̃ι = idX̃ , and

hence κ is surjective. Therefore, since κ is bijective, we have ~̃ι = κ−1.

Remark 31. In particular, Theorem 30 holds for finite or countable products of
uniform spaces.
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Corollary 32. Let {(Xk, Dk) | k ∈ K} be an inhabited family of uniform
spaces indexed by a discrete set K, and let (Y,D′) be a complete uniform space.
Then for each uniformly (respectively, locally uniformly) continuous mapping f :∏
k∈K(Xk, Dk) → (Y,D′), there exists a unique uniformly (respectively, locally

uniformly) continuous mapping f̃ :
∏
k∈K(X̃k, D̃k) → (Y,D′) which makes the

following diagram commute.∏
k∈K(X̃k, D̃k)

f̃ // (Y,D′)

∏
k∈K(Xk, Dk)

~ι

OO

f

88

Proof. Let (X,D) =
∏
k∈K(Xk, Dk). Then, by Theorem 21, there exists a

uniformly continuous mapping g : (X̃, D̃)→ (Y,D′) which makes the following
diagram commute.∏

k∈K(X̃k, D̃k)
κ // (X̃, D̃)

g // (Y,D′)

(X,D)

~ι

ff
ιX

OO

f

::

Define f̃ :
∏
k∈K(X̃k, D̃k) → (Y,D′) by f̃ = g ◦ κ, and assume that h :∏

k∈K(X̃k, D̃k) → (Y,D′) is a uniformly continuous mapping with h ◦ ~ι = f .

Then h◦~̃ι : (X̃, D̃)→ (Y,D′) is a uniformly continuous mapping with h◦~̃ι◦ιX =

h ◦~ι = f, and hence h ◦ ~̃ι = g. Therefore f̃ = g ◦ κ = h ◦ ~̃ι ◦ κ = h.
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