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§1. The Computable Hierarchy

Definition
{e}f = the value after s steps in the computation of program e
on oracle f.

Definition
The computable jump operator is f — f’ where f'(n) = {no}/, .

Definition

(i) The “sub-elementary” functions are those definable by
compositions of +, — and ¥;_.

(Polynomially bounded; same as TM computable in linear space.)
(ii) For the “elementary” functions add ;.

Lemma
For “honest” functions f, f' is (sub)-elementarily inter-reducible
with n— f"(n).



Fast Growing Hierarchy F and Slow Growing G

Definition
For “tree ordinals” «, with specified fundamental sequences
assigned at limits A\, F,, is obtained by iterating the jump.

Fo(n)=n+1; Fayi(n) = F2(n); Fx(n) = Fy,(n).

NB: this is highly sensitive to the choice of fundamental sequences.

Theorem

For arithmetical theories T with “proof-theoretic ordinal” || T||, the
functions provably computable in T are exactly those elementary
in the F,, for o < || T||. (Schwichtenberg-W. around 1970 for PA.)

Definition (Slow Growing Hierarchy)
Go(n) = 0 Gus1(n) = Ga(n) + 15 Ga(n) = Gy, (n).



Goodstein Sequences and the Hardy Hierarchy H

» Take any number a, for example a = 16.

» Write a in “complete base-2", thus a = 22,

» Subtract 1, so the base-2 representation is
a—1=2%t1422 490l 41

> Increase the base by 1, to produce the next stage
a =314+ 43+ 1=112

» Continue subtracting 1 and increasing the base:

a,ai, as, as,.... Example: 16, 112, 1284, 18753, 326594, ...

Theorem (1. Goodstein 1944, 2. Kirby & Paris 1982)

1. Every Goodstein sequence eventually terminates in 0.
2. But this is not provable in Peano Arithmetic (PA).



Proof — The Hardy Functions

Throughout any Cantor Normal Form a < &q, replace w by n.
Then we obtain a “complete base-n" representation.

Subtract 1 and put w back: one gets a smaller ordinal P,().
Hence part 1 of the theorem, by well-foundedness.

E.G. With & = w*” and n = 2 we get a = 22" = 16.
Then a—1 =221 422421 1 1 and Py(a) = w ! +w¥ +w! +1.
Definition (Hardy Hierarchy)

Ho(n) = n; Hat1(n) = Ha(n+1); Ha(n) = H,(n).

Theorem (Cichon (1983))

Hn(n) = n+ the length of a Goodstein sequence on a, n.
A proof that all G-sequences terminate says H, is recursive.
But H., ~ F., is not provably recursive in PA. Hence part 2.



Some Relationships: F, := H ., B, := Ha

> Fgyp = Ha o Hg.

» So H,a+1(n) = Hyo.n(n) = Hla(n) = FJ(n) = Fot1(n).

» Similarly if B, = Hza then

n+1 ifa=0
B.(n) =4 Bg(Bs(n)) ifa=p5+1
B.,(n) if ais a limit

Theorem

{By :a < ||T||} also classifies provable recursion in arithmetical

theories T, i.e. provides bounds for witnesses of provable ¥9
formulas. Roughly, F, ~

w-a-



The Basic Witness-Bounding Principle

Suppose A(n) is a X3 formula: A(n) = JaD(n, a).
Suppose A(k) — A(n) is derivable by Cuts with “height” a:

8 A(k) — A(m) P A(m) — A(n)
o A(k) — A(n)

(B=<a)

Then | Ja < b.D(k, a) implies |=3a < B,(b).D(n, a).
Proof.

Sketch: by induction on a. Since 8 < a, the premises give
= da < b.D(k,a) implies |=3a < Bg(b).D(m, a)

= 3a < b/.D(m, a) implies |=3a < Bs(b').D(n, a)

Put b" = Bg(b) to obtain Bg(Bg(b)) = Bg+1(b) < Ba(b).
NB. This requires § + 1 <5 a where v <, v+ 1 and A\p <p A.



The Majorization Lemma

Lemma
If B <} o then Bg(b) < Bu(b).

Proof.

By transfinite induction on «:.
> If o = 0 then trivial.

> If o is a limit and 8 <, « then 8 <} ap.
By the induction hypothesis,

Bﬁ(b) < Bab(b) = Ba(b) .

» fa=~+1and 8 <p o then 8 <p 7.
By the induction hypothesis,

Bs(b) < By(b) < ByB,(b) = Ba(b) .



§2. Provable Recursion in “Input-Output” Arithmetics
Definition (of EA(I;0))
» EA(I;0) has the language of arithmetic, with (quantified,
“output”) variables a, b, c, . . ..
» In addition there are numerical constants (“inputs”) x,y,....

» There are defining equations for (prim.) recursive functions.

» Basic terms are those built from the constants and variables
by successive application of successor and predecessor.

» Only basic terms are allowed as "witnesses” in the logical
rules for V and 3. E.g. A(t) — 3aA(a) only for basic t.

» However the equality axioms give t = a A A(t) — A(a), hence
Jda(t = a) A A(t) — JaA(a) and Ja(t = a) AVaA(a) — A(t).

“Predicative” induction axioms, for closed basic terms t(x):

v

A(0) AVC(A(C) = Alc + 1)) — A(t(x)) -



Working in EA(I;0)

Definition

Write t | for Ja(t = a).

Note: if t is not basic one cannot pass directly from t =t to t |.
But a4+ 1isbasic,andt=a—t+1=a+1sot|l—>t+1].

Example

>

From b+ c|— b+ (c+1) | one gets b+ x | by
Y ;-induction “up to" x. Then Vb(b + x |).

Then b+ x-cl— b+ x-(c+1)|. Therefore, by another
> 1-induction, b+ x - x |.

Hence Vb(b + x? |), Vb(b + x3 |) etc.
Similarly, 1Z1(1;0) F Vb(b + p(X) }) for any polynomial p.
Exponential requires a I, induction on Vb(b + 2€ |):



Proving Vb(b + 2* |) with T, induction -
an argument going back to Gentzen.

Assume
Vb(b+2°]).

Then, for arbitrary b, we have, by the assumption:
b+2°] andagain (b+2°)+2°]

Therefore
Vb(b +2° |) — Vb(b + 211 |)

and Vb(b + 2° |) because b + 1 is basic.
Therefore IM>(1;0) = Vb(b+2* ).
Similarly 1M5(1;0) F Vb(b + 2PX) |).
Then IM3(1;0) F Vb(b + 2% |) etc.



Bounding > ;-Inductions

Theorem
Witnesses for ¥1 theorems A(n) = JaD(n, a), proved by
> 1-inductions up to x := n, are bounded by By, where h = log n.

Proof.

Sketch: first, any induction up to x := n can be unravelled, inside
EA(I;0), to a binary tree of Cuts of height h = log n:

For any ¢, F A(c) — A(c + 2") with cut-height h.

A(c) = A(c+2")  A(c+2") — A(c+ 2" +2h)
A(c) — A(c + 2h+1)
Therefore F" A(0) — A(n) with cut-height h = log n.

The Witness-Bounding Principle then gives 3a < Bp(b).D(n, a)
where b is the witness for A(0). O




Provably Computable Functions in EA(I;0)

Definition
A provably computable/recursive function of EA(I;0) is one which
is ¥ 9-definable and provably total on inputs, i.e. - f(X) |.

Theorem (Leivant 1995, Ostrin-W. 2005)

The provable functions of 121 (1;0) are sub-elementary. Equiv:
TM-computable in linear space, or Grzegorczyk's £2.

The provable functions of IT,(1;0) are those computable in
exp-time 2P(M)
Etcetera, up the Ritchie-Schwichtenberg hierarchy for £3.

(See Leivant’s Ramified Inductions (1995) where such
characterizations were first obtained. Also Nelson's Predicative
Arithmetic (1986). Spoors (Ph.D. 2010) develops hierarchies of
ramified extensions of EA(I;0) classifying primitive recursion.)



Proof

Fix x := nin - f(x) | say with d nested inductions.

Partial cut-elimination yields a “free-cut-free” proof, so after
unravelling, only cuts on the induction formulas remain.

The height of the proof-tree will be (of the order of)
h=logn-d.

For IX1(1;0) the Bounding Principle applies immediately to
give complexity bounds

Biog n-d(b) = b+ lognd — 1 nd for some constant b.

For 1M one must first reduce all cuts to X1 form by Gentzen
cut-reduction, which further increases the height by an
exponential, so in that case the complexity bounds will be

Byiogna(b) = Ba(b) = b+ 2"



PA — by adding an Inductive Definition

Definition

ID1(I;0) is obtained from EA(I;0) by adding, for each uniterated
positive inductive form F (X, a), a new predicate P, and Closure
and Least-Fixed-Point axioms:

Va(F(P,a) — P(a))
Va(F(A,a) — A(a)) — Ya(P(a) — A(a))
for each formula A.

Example
Associate the predicate N with the inductive form:

F(X,a) :== a=0Vv3b(X(b)ANa=b+1).



Embedding Peano Arithmetic
Theorem
If PA - A then IDy(1;0) - AN

» Since the LFP axiom gives:
A(0) AVa(A(a) — A(a+ 1)) — Va(N(a) — A(a)).

» Hence Peano Arithmetic is interpreted in ID1(1;0) by
relativizing quantifiers to N.

» Note that N(0) A Va(N(a) — N(a+ 1)) by the Closure
Axiom, so by “predicative” induction, ID1(l;0)F N(x).

» Hence if f is provably recursive in PA then, by the embedding,
ID1(I; O) - Va(N(a) — Ib(N(b) A f(a) = b))

and therefore, ID1(/; O) = f(x) L A N(f(x)).



Unravelling LFP-Axiom by Buchholz' £2-Rule

» We are still working in the I/O context, so can fix X := A" and
unravel inductions into iterated Cuts as before.

» However the resulting ID1(l;0)-derivations will be further
complicated by the presence of Least-Fixed-Point axioms.
» These must be “unravelled” as well, by the Q-Rule.

The infinitary system 1D1(1;0)> has Tait-style sequents n: N F* T
and rules (where 8 <, a) :

k< Bs(n) n:NF’T A(k) n:NFST, A®i) forall i

() n: NFeT 3aA(a) (v) n: NF>T,VaA(a)

@ FY N(m),To  FiN(m),A =T, A
FA o, M1

where A denotes an arbitrary set of “positive-in-N" formulas.




Q) Proves LFP-Axiom

The basic idea.

>

For the left-hand premise of the Q2-rule choose
FO N(m), ~N(m).
For the right-hand premise, first assume -5 N(m), A.

Each step of this (direct) cut-free proof can be mimicked to
prove A(m) if we assume that A is “inductive”.

Thus FA+h —va(F(A, a) — A(a)), A(m), A where k = |A].
The standard fundamental sequence for w gives wp, = h.
Q-rule gives F-+v —Va(F (A, a) — A(a)), =N(m), A(m)
and this holds for every number m.

Therefore by V and the infinitary V-rule obtain LFP-Ax:

HRHHS a(F(A, 2) = A(a)) V Va(-N(a) V A(a)).



Cut Elimination in ID(1;0)>

As usual, Gentzen-style cut-reduction raises height exponentially.
It cannot be done directly in PA because of the induction axioms.

Lemma (Cut-reduction)

(i) If £7 T, VYa—A(a) and ¢ I',3aA(a) both with cut-rank r, and
|A| = r then F7" T with cut-rank r.

(ii) Hence if =%, T then 2" T.

Proof.

(i) By induction on «. If the second premise comes from
F°T,3aA(a), A(t) then FY+P [, A(t) by the induction hypothesis.
Inverting the first premise gives -7 I, =A(t). Then 7T T by a
cut on A(t), still with rank r.

(ii) By another induction on «: at a cut on C = JaA(a) of size

r + 1 apply the induction hypothesis to both premises. Then apply
(i) with v = 3 = 2% where o/ < a. Clearly v + 3 < 2% O



Collapsing in ID1(1;0)>

Lemma (Collapsing)

Suppose, for fixed input x :== n > 1, we have a cut-free derivation
o I with T positive in N.
Then there is a derivation of finite height -§ T where k < B,y1(n).

Proof.
» For Q-rule, assume it holds for the premises, choosing A = lg:
Fo0 N(m),To and g N(m),To =" T.

» Then for the left premise, Fi N(m), o where h < B,,+1(n).
» And for the right premise, F§ I where k < By, +1(n).
» Hence k < By, +1(n) < By(h+ 1) < ByBa(n) = Bayi1(n).

Ba,+1(n) < By(max(n, h+1)) is a standard property at limits. [



“Another” Proof of an Old Theorem

Theorem

Every T2 theorem of PA has witnesses bounded by B, for some

« < €9. Therefore the provably recursive functions of PA are those
computable in B,-bounded resource for some a < eg.

Proof.
» Embed as ID1(1;0) + Ja(N(a) A A(n, a)) with x := n input.

» Translate this into ID1(1;0)> with proof-height w + k,
cut-rank r.

» Eliminate cuts to obtain proof-height o = 2,(w + k) < &p.
» Collapse to obtain i 3a(N(a) A A(n, a)) with h = B,y1(n).

> Use original Bounding Principle to bound witness a below
By(n) < Bi(h) = Bu(h) = BuBa+1(n) < Ba2(n).



Generalizing to ID_,

» Williams’ thesis (Leeds 2004) generalizes the foregoing to
theories of finitely iterated inductive definitions ID;(1;0).
E.g. ID2(1;0) defines Kleene's O:

acO < a=0VVne N({a}(n) € 0).

» Higher-level Q-rules are then needed, and they require ordinals
in successively higher number-classes 21,2, ..., ;.

» Collapsing (and Bounding) from one level i + 1 down to the
one below is then computed in terms of higher-level extensions
of the B, hierarchy: <pg)(5) for a € Qj11,8 € Q.

» The ordinal bound of ID,(1;0) is then the Bachmann-Howard:

s = o) (W) = o, ()
Y (3) (w1)
Ps” (w2)



Bounding Functions for ID_,, and Mi-CA,

Define Lp(k) s Qpr1 X Qi — Qi by:

B+1 if =0
() = w%g o (8) ff a=vy+1
“ Cag (B) if & =supag (€ € Q)
suppbd(B) i a=supag (€ € Qex)

Define 7 = sup 7; where 79 = w and

1 1
)

Theorem
The proof-theoretic ordinal of ID; is Ti1». The provably computable
functions of Mi-CAq are those computably-bounded by {Be }o<r-



§3. Independence Results
(i) Kruskal’s Theorem with Labels

Theorem (Friedman’s Miniaturized Version)

For each constant c there is a number K(c) so large that in every
sequence { T;}j<k(c) of finite trees with labels from a given finite
set, and such that |T;| < c -2/, there are j1 < jo where Tj, < Tj,.
The embedding must preserve infs, labels, and satisfy a certain
"“gap condition”.

Lemma
The (natural) computation sequence for B;,(n) satisfies the
size-bound above, and is a “bad” sequence, i.e. no embeddings.

Corollary

For a simple ¢, we must have B;(n) = B, (n) < K(c,) for all n.
Therefore K is not provably recursive in ID.,, nor in I'I%-CAO.



The Computation Sequence for 7,

By reducing/rewriting 7, according to the defining equations of the
p-functions, we pass through all the ordinals <, 7,. Each term is a
binary tree with labels < n, and each one-step-reduction at most
doubles the size of the tree. E.g. with n = 2 the sequence begins:

(1) (1 (1)
T2 — 80 2 (w) — ww§2)@§2)(w1)( w) = @ (2 o wg )(wl)(w) —

)(w1)

(1) (1) (1) (1) (1)
_>
¥ (2 (wl)(SO@(())@gz)( )(W)) (psogz)(m)((pgof)(m)(spwg @1 ) (w )(W)))
( ), (1) (1) (1) (1) (1) (

= P OL R 1 Pl ) @) 7 P eB(-)). ..

(w1) $o P1 (w1) Spwl( )
The length of the entire sequence (down to zero) is therefore
> Gp(7n) = Br,_,(n). Furthermore, the sequence is bad - no term
is gap-embeddable in any follower.



Recall the Slow Growing Hierarchy G,
Definition
For each countable “tree ordinal” «, define the finite set a[n] of its
“n-predecessors” as follows:
On=¢ a+1[n=a[nu{a} X[n]=X[n].
Call @ “standard” if o = (J{a[0] C a[l] Ca2] C a[3] C...}.

Then the “slow growing hierarchy” is {G,} where G,(n) = |a[n]|.
With n fixed we often write G,(«) instead of G,(n). Thus

Gn(0) =0; Gp(a+1) = Gu(a)+1; Gu(A) = Gn(An).

Theorem
Let ¢ = V). Then for “well behaved” o € Q, 3 € Q,

Gn(@oc(ﬁ)) = BGn(O()(Gn(B)) :



Proof by induction on «

» If a =0,
Gn(po(B)) = Ga(B +1) = Ga(B) +1 = Bo(Gn(B))-
» Fora— a+1,
Gn(pa+1(8)) = Ga(para(B)) = BGn(a)BGn(a)(Gn(/B)) =
BGn(a)—l—l(Gn(ﬁ)) = BGn(a+1)(Gn(ﬁ))-
> If o = sup; a;,
Gn(pa(B)) = Gn(sup; pa;(8)) = Gn(pa,(8)) =
BG,,(an)(Gn(/B)) = BGn(a)(Gn(/B))-
> If a= supg g,
Gn(va(B)) = GH(SOOZ,B(B)) BG,(as)(Gn(B)) =
B (), (Go()) = B (o) (Go(5)).

Example

With 7 = cp(l(l) (w), Gn(12) = B @), \(n) = Br(n).
Puw (“’1) (@)



(i) Goodstein-style Independence Results
Tree Ordinals aw < Iy (joint with Arai & Weiermann)

A fundamental sequence {\} is assigned to each A = ¢, ()
in the Veblen hierarchy of normal functions:

Definition
> If)\:goo(5+1)—w5+1 then A\, = w? - x
» If A = ©q(0) then A, = 9$I(1)

(
> 1F A = a(B + 1) then Ay = ¥8(0u(B) + 1)
> If A = ¢o(83) and Lim(3) then A\, = v, (Bx)

where

| a1 if Succ(w)
Yo=Y g, if Lim(a).



G, Collapses Veblen onto Ackermann

Theorem

Gx(a(B)) = Alx: Gx(a), G(5))

where A(x; a, b)) is a parametrized-at-x version of Ackermann:

A(x;0, b) = xb
A(x; a+ 1,0) = A(x;a)™(1)
Ax;a+1,b+1) = A(x,a)¥(A(x;a+1,b) +1).

This is easily checked by induction on «, for example:

Gu(pat1(0)) = Gx(sgpsogf)(l)) = Ge(¢$I(1))

= A(x; Ge(a))X)(1) = A(x; Gy(a +1),0).

And if o is a limit:

Gx(#a(0)) = Gx(pa,(0)) = A(x; Gx(ax),0) = A(x; Gx(a),0).



An Independence result for ATR,

The x-representation of n is formed as follows:
» Choose n and a fixed base x > 2.
Write A,(b) for A(x; a, b)
» Find greatest a and then greatest b such that A,(b) < n
» If not equal, find greatest b’ such that A, 1(b') < n

» Continue until = n or Ag(b") < n < Ag(b” +1)
Then n=x?" -y +x*" -y + ... with y's < x.

» Now, hereditarily find x-representations of the a's and b's

» This x-representation of n is now G,(a) where « is
obtained by replacing A(x; —, —) by ¢(—, —) throughout.

» The Goodstein process is:
Subtract 1 and update the base to x + 1. Then repeat.



Termination of Goodstein implies Voo < T¢. H, |

Note: G.(Py(c)) = Gy (a)—1 where (Cichon)
P«(0) =0, Pi(a+ 1) = a, P(A) = Pe(Ax) -

v

Start with the x-representation of n

v

Then by Collapsing, n = G,(«) where « is a p-term < Iy
Goodstein: n:=n—1= G(Px(a)); x:=x+1, n:=m
Then n; = G,y 1(a1) where a; := P, («)

v

v

v

Repeat: ny = G,y2(n) where ap := P, 1(ay) etcetera

v

Termination at stage y when P,_; -+ P, oPy1Pi(a) =0
But the least such y is H,(x)

v

EG. n = A(x; A(x; -+ - A(x; 1,0) -+ ,0),0) gives y = Hry(x).



References

1) W. Buchholz: “An independence result for M{-CA+BI". APAL
Vol. 33 (1987) 131-155.

2) H. Friedman, N. Robertson & P. Seymour: "“The
metamathematics of the graph minor theorem”. In S. Simpson
(Ed) Logic and Combinatorics, AMS Contemp. Math. Vol. 65
(1987) 229-261.

3) D. Leivant: “Intrinsic theories and computational complexity” .
In D. Leivant (Ed) LCC'94, LNCS Vol. 960 (1995) 177-194.

4) G. Ostrin & S. Wainer: “Elementary arithmetic”. APAL Vol.
133 (2005) 275-292.

5) H. Schwichtenberg & S. Wainer: “Proofs and
Computations”. ASL Perspectives in Logic, CUP (2012) 465 + xiii.
6) E. Spoors & S. Wainer: “A hierarchy of ramified theories
below PRA”. In Berger, Diener, Schuster, Seisenberger (Eds)
Logic, Constr., Comp., Ontos Math. Logic Vol. 3 (2012) 475-499.
7) R. Williams & S. Wainer: “Inductive definitions over a
predicative arithmetic”. APAL Vol. 136 (2005) 175-188.



