
Lectures on The Lambda Calculus (III)

Masahiko Sato
Graduate School of Informatics, Kyoto University

Autumn school “Proof and Computation”
Fischbachau, Germany

October 7, 2016

Plan of the lectures

I Background history, philosophy and main idea.

II The free algebra T of threads

III The free algebra L of L-expressions.

These lectures are based on my work in progress.

What rests on what?

Does knowledge of ‘what λ-term is’ rest on knowledge of
‘what type theory is’?

No, it is the other way around!

You have to know what λ-term is before you can
understand what type theory is.

This is why I am trying to understand λ-terms as finitary objects
created by finitistic method.

What rests on what?

Does knowledge of ‘what λ-term is’ rest on knowledge of
‘what type theory is’?

No, it is the other way around!

You have to know what λ-term is before you can
understand what type theory is.

This is why I am trying to understand λ-terms as finitary objects
created by finitistic method.

What rests on what?

Does knowledge of ‘what λ-term is’ rest on knowledge of
‘what type theory is’?

No, it is the other way around!

You have to know what λ-term is before you can
understand what type theory is.

This is why I am trying to understand λ-terms as finitary objects
created by finitistic method.

What rests on what?

Does knowledge of ‘what λ-term is’ rest on knowledge of
‘what type theory is’?

No, it is the other way around!

You have to know what λ-term is before you can
understand what type theory is.

This is why I am trying to understand λ-terms as finitary objects
created by finitistic method.

History

Frege, in his Begriffsschrift (1879), used latin letters for global
variables and used german letters for local variables.

Gentzen (in the 30’s) also used different sets of variables for
global and local variables. He also introduced eigen variable.

Whitehead-Russell (1910) and, later, Gödel and Church used
only one sort of letters for both global and local variables. (I
think Church made a conceptual mistake here.)

Quine and Bourbaki (in the 50’s) introduced graphical (two
dimensional) notation for local variable binding.

McCarthy (1963) introduced abstract syntax

de Bruijn (1972) introduced his indices and provided a
canonical notation for α-equivalent terms.

Parametrized free algebra L

We generalize the parametrized free algebra L given in Lecture II
as follows.

Tβ = β + λTβ, Lτ = τ + (Lτ Lτ)N

Here, in the second equation, τ must be an instance of Tβ given
in the first equation.

Hence, in order to get a concrete instance of Lτ , one only has to
specify a concrete algebra β (the base algebra), and a height
function Ht : β → N. Then we put τ := Tβ and get Lτ .

Parametrized free algebra L (cont.)

We saw the following two instances of β in Lecture II.

1 β1 = N with Ht n := 0.

2 β2 = N with Ht n := n+ 1.

In the first case, we interpreted each n as an de Bruin index, and
in the second case, we interpreted each n as λn+1n in the algebra
Tβ1 (so that it always becomes a closed thread.)

β1 was used to define L which contains de Bruijn algebra D, and
β2 was used to define L containing only closed de Bruijn terms.

In this lecture we choose yet another β and use it to define L to
be used throughout the lecture. The choice is based on
Frege-Gentzen’s way of using disjoint sets of letters for free and
bound variables.

Definition of L in this lecture

In this lecture, we choose our β as follows and fix it throughout
this lecture.

β := A + N′,

where we assume that we have a fixed bijective correspondence
A↔ N, and N′ = {n′ | n ∈ N}. We call elements of A atoms.
Atoms will play the role of free variables.

Moreover, we use our knowledge of the above bijective
correspondence only to decide the equality of two atoms. This
setting automatically endows an equivariant structure on each of
β, τ := Tβ and Lτ .

Namely, the group of finite permutations on A naturally
determines equivariant group actions on each of these structures.

Definition of L in this lecture (cont.)

Now, we have Lτ determined by τ = Tβ and we write L for Lτ in
this lecture.

T = A + N′ + λT, L = T + (L L)N

L has the following abstact syntax.

A 3 a, b, c, . . .
N 3 i, j, k, `,m, n ::= 0 | n′

T 3 r, s, t ::= a | n′ | λt
L 3M,N,P ::= t | (M N)n

λ as unary operation on T and L

As can be seen from the abstract syntax of T, λ is a constructor
on T having arity:

λ : T→ T

We can naturally extend λ to λ so that λ will have arity:

λ : L→ L

1 λt := λt

2 λ(M N)n := (λM λN)n
′

Now, writing λT for {λt ∈ T | t ∈ T}, we have two bijections:

λ : T→ λT and λ : λT→ T,

where λ is the inverse of λ. We have also two similar bijections for
L.

Height of threads and L-terms

We define the height function Ht : L→ N as follows. Ht M is
called the height of M .

1 Ht a := 0

2 Ht n′ := n′

3 Ht λt := (Ht t)′

4 Ht (M N)n := min{n,Ht M,Ht N}

A term M is called an abstract if Ht M > 0.

Classification of L by height

We put

Ln := {M ∈ L | Ht M ≥ n}.

We have
L = L0) L1) L2 · · ·

We also note that

λnL := {λnM |M ∈ L} (Ln (n > 0),

since, for example, in case n = 1, 1 ∈ L1 cannot be written as
λM .

Closing and opening

The subsets Tn = λnT (n ∈ N) of T and the subsets Ln = λnL
(n ∈ N) of L are bijectively related as follows.

T λ−−→ λT λ−−→ λ2T λ−−→ · · ·

T λ←−− λT λ←−− λ2T λ←−− · · ·

L λ−−→ λL λ−−→ λ2L λ−−→ · · ·

L λ←−− λL λ←−− λ2L λ←−− · · ·

Suggested by these diagrams we will call λ a closing operator.
Similarly λ will be called an opening operator.

Abstraction and Instantiation

We have seen, in many lectures of this Autumn school, something
like the following informal notation:

(∀x. A(x))→ A(t)

where t is a term, and A(x) and A(t) are formulas.

But, what is A here?

It is an abstract! It is not a formula by itself, but by instantiating
A by a term, say, t, we get a formula for which we used the
notation A(t).

Note that the result of instantiation is completely determined by
the abstract A and the term t.

Abstraction and Instantiation

We have seen, in many lectures of this Autumn school, something
like the following informal notation:

(∀x. A(x))→ A(t)

where t is a term, and A(x) and A(t) are formulas.

But, what is A here?

It is an abstract! It is not a formula by itself, but by instantiating
A by a term, say, t, we get a formula for which we used the
notation A(t).

Note that the result of instantiation is completely determined by
the abstract A and the term t.

Abstraction and Instantiation

We have seen, in many lectures of this Autumn school, something
like the following informal notation:

(∀x. A(x))→ A(t)

where t is a term, and A(x) and A(t) are formulas.

But, what is A here?

It is an abstract! It is not a formula by itself, but by instantiating
A by a term, say, t, we get a formula for which we used the
notation A(t).

Note that the result of instantiation is completely determined by
the abstract A and the term t.

Instantiation

We define the instantiation function

〈− −〉 : L1 × L→ L

〈M P 〉 instantiates abstract M by P .

〈k′ P 〉 := λkP.

〈λt P 〉 := t.

〈(M N)n
′
P 〉 := (〈M P 〉 〈N P 〉)n (M,N ∈ L1).

Note that 1 is the identity combinator I and 2 is the K combinator.

Instantiation at level n
What we will do here is to generalize the instantiation operation
〈M P 〉 (which operates on M ∈ L1 and P ∈ L) to 〈M P 〉n
with arity:

〈− −〉n : λnL1 × λnL→ λnL

We define this operation so that the following diagram commutes:

λnL1 × λnL
〈− −〉n

- λnL

L1 × L

λ
n × λn

?

〈− −〉
- L

λn

6

So, the definition is

〈M N〉n := λn〈λnM λ
n
N〉 (M ∈ λnL1 and N ∈ λnL)

Lβ-calculus

We define Lβ-calculus as follows.

M ∈ λnL1 N ∈ λnL
(M N)n→β 〈M N〉n

β

M →βM
′

(M N)n→β (M ′ N)n
L

N →β N
′

(M N)n→β (M N ′)n
R

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule of Lβ-calculus subsumes the β and ξ rules of
λβ-calculus.

(λxM N)→βM [x := N]
β

M →β N

λxM →β λxN
ξ

Freshness

We define the meaning of the judgment ‘a is fresh for M ’ (written
a #M) for all a ∈ A and M ∈ L as follows.

a 6= b

a # b a # k
a # t
a # λt

a #M a #N
a # (M N)n

Note that we can test equality of any two atoms.

The judgment a #M just says that we can construct M without
using a.

Abstraction by an atom

We define λ(−) : A× L→ L1 as follows. λaM gives an abstract
obtained from M by abstacting a in M

1 λab :=

{
1 if a = b

λb if a 6= b

2 λak
′ := λk′.

3 λaλt := λλat.

4 λa(M N)n := (λaM λaN)n
′
.

Note that λaM = λM iff a #M .

Translation from Λ to L

Here, we define the set of raw λ-terms by the following abstract
syntax. We assume that X is a set of variables disjoint from A. We
also assume that we have a fixed injection X 3 x 7→ a ∈ A from
X to A.

X 3 x, y, z, . . .
Λ 3M,N,P ::= x | λxM | (M N)

We define the translation function [−] : Λ→ L as follows.

1 [x] := a where x 7→ a.

2 [λxM] := λ[x][M].

3 [(M N)] := ([M] [N]).

