Lectures on The Lambda Calculus (II)

Masahiko Sato Graduate School of Informatics, Kyoto University

Autumn school "Proof and Computation" Fischbachau, Germany October 6, 2016

Plan of the lectures

- I Background history, philosophy and *main idea*.
- II The free algebra ${\mathbb T}$ of ${\it threads}$
- III The free algebra \mathbb{L} of \mathbb{L} -*expressions*. Church-Rosser Theorem and the pushout property.

These lectures are based on my work in progress.

de Bruijn algebra $\mathbb D$ vs. our algebra $\mathbb L$

The de Buijn algebra enjoys the following equation:

```
\mathbb{D} = \mathbb{N} + \lambda \mathbb{D} + (\mathbb{D} \mathbb{D})
```

We define the algebra $\mathbb L$ of $\mathbb L\text{-expressions}$ by the following two equations.

$$\mathbb{T} = \mathbb{N} + \lambda \mathbb{T}, \ \mathbb{L} = \mathbb{T} + (\mathbb{L} \ \mathbb{L})^{\mathbb{N}}$$

This is an instance of the following algebra which depends on algebra τ :

$$\mathbb{L}_{ au} = au + (\mathbb{L}_{ au} \ \mathbb{L}_{ au})^{\mathbb{N}}$$

By putting $au = \mathbb{T}$ we obtain \mathbb{L} .

de Bruijn algebra \mathbb{D} vs. our algebra \mathbb{L} (cont.)

 $\mathbb{L}_{\tau} = \tau + (\mathbb{L}_{\tau} \ \mathbb{L}_{\tau})^{\mathbb{N}}$

By putting $\tau = \mathbb{P}$ (closed threads), we obtain \mathbb{L}_0 consisting exactly of *closed* \mathbb{L} -*expressions* as follows.

 $\mathbb{L}_0 = \mathbb{P} + (\mathbb{L}_0 \ \mathbb{L}_0)^{\mathbb{N}}$

In \mathbb{D} , it is not as easy as in our case. One can only get \mathbb{D}_0 , consisting of closed de Bruijn terms, by solving the following infinite family of equations. We put $\mathbb{N}_i := \{n \in \mathbb{N} \mid n < i\} \ (i \in \mathbb{N}).$

$$egin{aligned} \mathbb{D}_0 &= \mathbb{N}_0 + \lambda \mathbb{D}_1 + (\mathbb{D}_0 \ \mathbb{D}_0), \ \mathbb{D}_1 &= \mathbb{N}_1 + \lambda \mathbb{D}_2 + (\mathbb{D}_1 \ \mathbb{D}_1), \ \mathbb{D}_2 &= \mathbb{N}_2 + \lambda \mathbb{D}_3 + (\mathbb{D}_2 \ \mathbb{D}_2), \end{aligned}$$

Embedding of de Bruijn algebra $\mathbb D$ into our algebra $\mathbb L$

We can save $\mathbb D$ from this situation by embedding $\mathbb D$ into our algebra $\mathbb L$ by defining the embedding function

$$[\cdot]:\mathbb{D}\to\mathbb{L}$$

as follows.

$$[n] := n, \ [\lambda D] := {oldsymbol \lambda}[D], \ [(D \ E)] := ([D] \ [E]).$$

What is this function?

Embedding of de Bruijn algebra $\mathbb D$ into our algebra $\mathbb L$

We can save $\mathbb D$ from this situation by embedding $\mathbb D$ into our algebra $\mathbb L$ by defining the embedding function

$$[\cdot]:\mathbb{D}\to\mathbb{L}$$

as follows.

$$[n] := n,$$

 $[\lambda D] := \lambda [D],$
 $[(D E)] := ([D] [E]).$

What is this function?

The identity function! \mathbb{D} is indeed a subset of \mathbb{L} . (So far we can apply λ only to threads. But we will extend it to be applicable to any \mathbb{L} -expression.)

The data structure of threads

We can view the algebra ${\mathbb T}$ in the following two ways.

 $\mathbb{T}=\mathbb{N}+\lambda\mathbb{T}$ or $\mathbb{T}=\mathbb{N} imes\mathbb{N}$

In the first view, a typical element of \mathbb{T} can be written as $\lambda^i k$. This element is obtained from k by applying the constructor λ to k *i* times.

In the second view, the same element can be written i/k. From abstract syntax point of view, they are just two different notation (written in two different syntax) for the same *thread*.

For example, $k = \lambda^0 k$ in the first view, corresponds to 0/k in the second view. For this reason we will also write k for 0/k.

The datatype ${\mathbb T}$

For technical reason, we will officially define $\mathbb T$ by the following inductive definition, taking the second view above.

$$rac{i \in \mathbb{N} \quad k \in \mathbb{N}}{i/k \in \mathbb{T}}$$
 Thrd

We will use q, r, s, t as meta variables ranging over threads.

Now, any thread t can be uniquely written t = i/k. In this case we say that *height* of t, written Ht(t) is i and *depth* of t, written Dp(t), is k.

λ as an operator on $\mathbb T$

We do not have λ in \mathbb{T} , but we can *define* it as an operator on \mathbb{T} :

$$\lambdarac{i}{k}:=rac{i'}{k}.$$

In general, we define $\lambda^n:\mathbb{T} o\mathbb{T}$ by

$$\lambda^nrac{i}{k}:=rac{i+n}{k}.$$

So, $\lambda^n t$ increases height of t by n keeping its depth. For example, we have:

$$\lambda^i k = \lambda^i rac{0}{k} = rac{0+i}{k} = i/k$$

Closed and open threads

A thread i/k is defined to be *closed* if i > k, and it is defined to be *open* if $i \le k$.

Since $i/k = \lambda^i k$ we may visualize it as follows.

$$\lambda_{i-1}\lambda_{i-2}\cdots\lambda_1\lambda_0k$$

So, recalling the de Bruijn notation, we see that it is a closed term if and only if i > k.

Closed threads are also called *projections*. We write \mathbb{P} for the set $\{t \in \mathbb{T} \mid t \text{ is closed}\}$ of propositions.

Classification of \mathbb{T} and \mathbb{P} by height

We put

$$\mathbb{T}^{n} := \{t \in \mathbb{T} \mid \mathsf{Ht}(t) \ge n\},\\ \mathbb{P}^{n} := \{t \in \mathbb{P} \mid \mathsf{Ht}(t) \ge n\}.$$

We have:

$$\mathbb{T} = \mathbb{T}^0 \supseteq \mathbb{T}^1 \supseteq \mathbb{T}^2 \cdots$$
$$\mathbb{P} = \mathbb{P}^0 \supseteq \mathbb{P}^1 \supseteq \mathbb{P}^2 \cdots$$

We note that $\lambda^i : \mathbb{T}^n \to \mathbb{T}^{n+i}$ and $\lambda^i : \mathbb{P}^n \to \mathbb{P}^{n+i}$ (since \mathbb{P} is closed under application of λ). So, it is natural to write $\lambda^i \mathbb{T}^n$ for \mathbb{T}^{n+i} and $\lambda^i \mathbb{P}^n$ for \mathbb{P}^{n+i}

Closing and opening

Recall that:

$$\lambda:\mathbb{T}^n o\mathbb{T}^{n+1}\ (n\in\mathbb{N})$$

Not only λ has this arity, it is also a *bijective* operator.

So it has its inverse

$$\overline{\lambda}:\mathbb{T}^{n+1}
ightarrow\mathbb{T}^n\ (n\in\mathbb{N})$$

with the property $\overline{\lambda}\lambda t = t$ for all $t \in \mathbb{T}$ and $\lambda\overline{\lambda}t = t$ for all $t \in \lambda\mathbb{T}$. Note that

$$\lambda:\mathbb{T} o\lambda\mathbb{T}$$
 and $\overline{\lambda}:\lambda\mathbb{T} o\mathbb{T}$

Given any thread, by applying λ sufficiently many times, it becomes a closed thread. So we will call λ a *closing* operator. Similarly $\overline{\lambda}$ will be called an *opening* operator.

Instantiation operation

We wish to define the *instantiation* operation which is a binary function of the form:

 $\langle \lambda \cdot \ \cdot \rangle : \lambda \mathbb{T} imes \mathbb{T} o \mathbb{T}$

This form imposes a natural condition that $\langle \cdot t \rangle$ is meaningful only if the first argument \cdot is of the form λr .

So, for any threads r and t, we wish to know what $\langle \lambda r t \rangle$ means. Our intuition is that it means the result of *applying* the function λr to its argument t.

Our idea is to define it by defining yet another binary function of the form:

$$\cdot \leftarrow \cdot : \mathbb{T} imes \mathbb{T} o \mathbb{T},$$

and then put:

$$\langle \lambda r t \rangle := r \leftarrow t.$$

Filling operation

We wish to define the *filling* operation which is a binary function of the form:

$\boldsymbol{\cdot} \leftarrow \boldsymbol{\cdot} : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$

So, for any threads r and t, we wish to know what $r \leftarrow t$ means.

Our idea is to define it by case analysis on the form of r. Namely, we say that r is *balanced* if Ht(r) = Dp(r), and define the filling operation according as r is balanced or not.

Filling operation: Balanced case

In this case, $r = \lambda^i k$ where $i = \operatorname{Ht}(r) = \operatorname{Dp}(r) = k$.

Filling *succeeds* in this case, and we put:

$$r \leftarrow t := \Uparrow^r t.$$

Here, $\uparrow^r : \mathbb{T} \to \mathbb{T}$ is a *lifting* operation defined by:

$$\Uparrow^r \frac{j}{\ell} := \begin{cases} \frac{j+k}{\ell} & \text{if } j > \ell, \\ \frac{j+k}{\ell+k} & \text{if } j \leq \ell. \end{cases}$$

Note that for any $t \in \mathbb{T}$, $\uparrow^r t$ is closed (open) iff t is closed (open), and $\uparrow^r t = \lambda^{\operatorname{Ht}(r)}t$ if t is closed. Also:

$$\Uparrow^r : \mathbb{T}^n \to \mathbb{T}^{n+\mathrm{Ht}(r)}.$$

Filling operation: Unbalanced case

In this case, $r = \lambda^i k$ where $i = \text{Ht}(r) \neq \text{Dp}(r) = k$. Filling *fails* in this case, and we put:

$$r \leftarrow t := \Downarrow r.$$

Here, \Downarrow : $\mathbb{T} \to \mathbb{T}$ is a *lowering* operation defined by:

$$\Downarrow rac{i}{k} := egin{cases} rac{i}{k} & ext{if } i \geq k, \ rac{i}{k-1} & ext{if } i < k. \end{cases}$$

The lowering function lowers depth of r by one only when r is open and Dp(r) > 0. Note that for any $r \in \mathbb{T}$, $\Downarrow r$ is closed (open) iff r is closed (open). Also:

$$\Downarrow : \mathbb{T}^n \to \mathbb{T}^n.$$

Filling operation (cont.)

Combining the balanced and unbalanced cases, we get the following definition of filling operation.

$$r \leftarrow t := egin{cases} \Uparrow^r t & ext{if } r ext{ is balanced,} \ \Downarrow r & ext{if } r ext{ is unbalanced.} \end{cases}$$

We can spell out the explicit definition as follows.

$$\frac{i}{k} \leftarrow \frac{j}{\ell} := \begin{cases} \frac{i}{k} & \text{if } i > k, \\ \frac{j+k}{\ell} & \text{if } i = k \text{ and } j > \ell, \\ \frac{j+k}{\ell+k} & \text{if } i = k \text{ and } j \leq \ell, \\ \frac{i}{k-1} & \text{if } i < k. \end{cases}$$

Definition of instantiation operation

Our plan was to define instantiation operation with arity:

 $\langle \lambda \cdot \ \cdot
angle : \lambda \mathbb{T} imes \mathbb{T} o \mathbb{T}$

in terms of the filling operation with arity

 $\cdot \leftarrow \cdot : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$

by putting

$$\langle \lambda r t \rangle := r \leftarrow t.$$

Here, we define instantiation as follows. Definition (Instantiaton $\langle \cdot \cdot \rangle : \lambda \mathbb{T} \times \mathbb{T} \to \mathbb{T}$)

$$\langle r t \rangle := \overline{\lambda}r \leftarrow t$$

Definition of instantiation operation (cont.)

Putting r=i/k~(i>0) and $t=j/\ell$ we have:

$$\langle rac{i}{k} \ rac{j}{\ell}
angle := rac{i-1}{k} \leftarrow rac{j}{\ell} = egin{cases} rac{i-1}{k} & ext{if } i-1 > k, \ rac{j+k}{\ell} & ext{if } i-1 = k ext{ and } j > \ell, \ rac{j+k}{\ell+k} & ext{if } i-1 = k ext{ and } j \leq \ell, \ rac{j-1}{k-1} & ext{if } i-1 < k. \end{cases}$$

We wish to see the informal correctness of our definition of instantiation based on our intuitive understanding of threads.

Here, we consider the following case:

$$i>0$$
 and $i-1>k$
 $\langle rac{i}{k} \; r
angle := rac{i-1}{k} \leftarrow r = rac{i-1}{k}$

Let us say that i=4 and k=2, so that we have

$$\langle \lambda^4 2 \; r
angle = \lambda^3 2 \leftarrow r = \lambda^3 2$$

Or, equivalently:

$$\langle \lambda^4 2 \; r
angle = \langle \lambda_{xyzu} y \; r
angle = \lambda_{yzu} y = \lambda^3 2$$

Here, we consider the following case:

$$i>0,\;i-1=k$$
 and $j>l$
 $\langle rac{i}{k} rac{j}{\ell}
angle := rac{i-1}{k} \leftarrow rac{j}{\ell} = rac{j+k}{\ell}$

Let us say that $i=3,\,k=2,\,j=1$ and $\ell=0$ so that we have

$$\langle \lambda^3 2 \; \lambda^1 0 \rangle = \lambda^2 2 \leftarrow \lambda^1 0 = \lambda^3 0$$

Or, equivalently:

$$\langle \lambda^3 2 \; \lambda^1 0
angle = \langle \lambda_{xyz} x \; \lambda_{oldsymbol{u}} oldsymbol{u}
angle = \lambda_{yz} \lambda_{oldsymbol{u}} oldsymbol{u} = \lambda_{yzoldsymbol{u}} oldsymbol{u} = \lambda^3 0$$

Here, we consider the following case:

$$i>0,\;i-1=k$$
 and $j\leq l$
 $\langle rac{i}{k} rac{j}{\ell}
angle := rac{i-1}{k} \leftarrow rac{j}{\ell} = rac{j+k}{\ell+k}$

Let us say that $i=3,\,k=2,\,j=1$ and $\ell=1$ so that we have

$$\langle \lambda^3 2 \; \lambda^1 1 \rangle = \lambda^2 2 \leftarrow \lambda^1 1 = \lambda^3 3$$

Or, equivalently:

$$\langle \lambda^3 2 \; \lambda^1 1
angle = \langle \lambda_{xyz} x \; \lambda_u 1
angle = \lambda_{yz} \lambda_u 3 = \lambda_{yzu} 3 = \lambda^3 3$$

We changed 1 to 3 to avoid capturing by λ_{yz} .

Here, we consider the following case:

$$i > 0$$
 and $i-1 < k$ $\langle rac{i}{k} \; r
angle := rac{i-1}{k} \leftarrow r = rac{i-1}{k-1}$

Let us say that i=2 and k=2, so that we have

$$\langle \lambda^2 2 \ r \rangle = \lambda^1 2 \leftarrow r = \lambda^1 1$$

Or, equivalently:

$$\langle \lambda^2 2 \; r
angle = \langle \lambda_{xy} 2 \; r
angle = \lambda_y 1 = \lambda^1 1$$

We changed 2 to 1 since it is not in the scope of λ_x anymore.

Instantiation under λ

Consider $\lambda_z(\lambda_{xy}(x \ y) \ z)$. In the traditional λ -calculus, we can convert the underlined β -redex using the ξ -rule as follows.

$$rac{\overline{(\lambda_{xy}(x \; y) \; z) o_eta \; \lambda_y(z \; y)}}{\lambda_z(\lambda_{xy}(x \; y) \; z) o_eta \; \lambda_{zy}(z \; y)} \, eta } \, \xi$$

In our calculus, we wish to eliminate the ξ -rule, by extending the β -rule so that we can reduce the inner β -redex directly as shown below. Here, we note that

$$egin{aligned} &\lambda_z(\lambda_{xy}(x\;y)\;z) = \left(\left(\lambda^31\;\lambda^30
ight)^3\;\lambda^10
ight)^1\ &\lambda_{zy}(z\;y) = \left(\lambda^21\;\lambda^20
ight)^2\ &\left(\left(\lambda^31\;\lambda^30
ight)^3\;\lambda^10
ight)^1 o_eta\left(\left(\lambda^31\;\lambda^30
ight)^3\;\lambda^10
ight)^1 = \left(\lambda^21\;\lambda^20
ight)^2 \end{aligned}$$

Instantiation at level n

What we will do here is to generalize the instantiation operation $\langle r \ t \rangle$ (which operates on $r \in \lambda \mathbb{T}$ and $t \in \mathbb{T}$) to $\langle r \ t \rangle^n$ with arity:

$$\langle \cdot \cdot
angle^n : \lambda \mathbb{T}^n imes \mathbb{T}^n o \mathbb{T}^n$$

We define this operation so that the following diagram commutes:

Namely,

$$\langle r t \rangle^n := \lambda^n \langle \overline{\lambda}^n r \overline{\lambda}^n t \rangle$$

Instantiation Lemma

Lemma (Instantiation Lemma for threads)

$$egin{aligned} n < m, r \in \mathbb{T}^{m+1}, s \in \mathbb{T}^m, t \in \mathbb{T}^n dash \ \langle (r \; s
angle^m \; t
angle^n = \langle \langle r \; t
angle^n \; \langle s \; t
angle^n
angle^{m-1}. \end{aligned}$$

The above lemma is derivable from the following lemma. Lemma (special case of the above lemma)

$$egin{aligned} 0 < m, r \in \mathbb{T}^{m+1}, s \in \mathbb{T}^m, t \in \mathbb{T} \vdash \ & \langle \langle r \; s
angle^m \; t
angle = \langle \langle r \; t
angle \; \langle s \; t
angle
angle^{m-1}. \end{aligned}$$

Substitution and Instantiation

$$x \neq y, x \notin FV(M) \vdash$$

 $K[x := L][y := M] = K[y := M][x := L[y := M]].$

 $K \in \mathbb{T}^2, L \in \mathbb{T}^1, M \in \mathbb{T} \vdash \langle \langle K | L \rangle^1 | M \rangle = \langle \langle K | M \rangle | \langle L | M \rangle \rangle.$ Or, equivalently,

 $\langle\langle\lambda^2 K\;\lambda^1 L\rangle^1\;M
angle=\langle\langle\lambda^2 K\;M
angle\;\langle\lambda^1 L\;M
angle
angle.$

We can see that Instantiation operation naturally represents β -conversion rule as an algebraic operation.