Lectures on The Lambda Calculus (1)

Masahiko Sato
Graduate School of Informatics, Kyoto University

Autumn school “Proof and Computation”
Fischbachau, Germany
October 6, 2016

Plan of the lectures

| Background history, philosophy and main idea.
[l The free algebra T of threads

1l The free algebra L. of LL-expressions. Church-Rosser Theorem
and the pushout property.

These lectures are based on my work in progress.

de Bruijn algebra D vs. our algebra L

The de Buijn algebra enjoys the following equation:
D =N+ AD + (D D)

We define the algebra IL of L-expressions by the following two
equations.

T=N+4+AT, L =T+ (L L)"

This is an instance of the following algebra which depends on
algebra 7:

]L’T =T+ (L‘r IL47')N
By putting 7 = T we obtain L.

de Bruijn algebra D vs. our algebra L (cont.)

]LT =7+ (LT LT)N

By putting 7 = P (closed threads), we obtain Ly consisting
exactly of closed IL-expressions as follows.

Lo = P + (Lo Lo)"

In D, it is not as easy as in our case. One can only get Dy,
consisting of closed de Bruijn terms, by solving the following
infinite family of equations. We put
N;:={n eN|n <} (¢ € N).

Do = No + AD; + (Do Do),
Dy = N3 + AD2 4 (D1 D4),
Dy = Ng + AD3 + (D2 D2),

Embedding of de Bruijn algebra D into our algebra L

We can save D from this situation by embedding D into our
algebra IL by defining the embedding function

[[]:D—L
as follows.

[n] := n,
[AD] := A\[D],
(D E)] := ([D] [E]).

What is this function?

Embedding of de Bruijn algebra D into our algebra L

We can save D from this situation by embedding D into our
algebra IL by defining the embedding function

[[]:D—L
as follows.

[n] := n,
[AD] := A\[D],
(D E)] := ([D] [E]).

What is this function?

The identity function! D is indeed a subset of L. (So far we can
apply A only to threads. But we will extend it to be applicable to
any LL-expression.)

The data structure of threads

We can view the algebra T in the following two ways.

T=N+AT or T=NXxN

In the first view, a typical element of T can be written as Ak.
This element is obtained from k by applying the constructor A to
k ¢ times.

In the second view, the same element can be written ¢/k.
From abstract syntax point of view, they are just two different
notation (written in two different syntax) for the same thread.

For example, k = A%k in the first view, corresponds to 0/k in the
second view. For this reason we will also write k for 0/k.

The datatype T

For technical reason, we will officially define T by the following
inductive definition, taking the second view above.

teEN keN

i/keT Thrd

We will use q, 7, s,t as meta variables ranging over threads.

Now, any thread ¢ can be uniquely written t = i/k. In this case
we say that height of t, written Ht(%) is ¢ and depth of ¢, written
Dp(t), is k.

A as an operator on T

We do not have X\ in T, but we can define it as an operator on T:

A== —.
k

In general, we define A™ : T — T by
) 1+n

A" — =
k k

So, A™t increases height of t by n keeping its depth. For example,
we have:

O—I—z
k

ANk = AiD —ilk
ko i/

Closed and open threads

A thread i /k is defined to be closed if 4 > k, and it is defined to
be openif 1 < k.

Since i/k = A’k we may visualize it as follows.
Aic1Ai—2 - A1 Aok

So, recalling the de Bruijn notation, we see that it is a closed term
if and only if ¢ > k.

Closed threads are also called projections. We write P for the set
{t € T |tis closed} of propositions.

Classification of T and P by height

We put

T" := {t € T | Ht(t) > n},
P" := {t € P | Ht(t) > n}.

We have:

T=T°>T!D>T2...
P=P° 2P DP2...

We note that A® : T™ — T™*% and A? : P® — Pt (since P is
closed under application of A). So, it is natural to write A*T™ for
T™** and XP™ for Pte

Closing and opening
Recall that:
A:T™ — Tt (n € N)

Not only A has this arity, it is also a bijective operator.

So it has its inverse
A: T 5 T (n €N)

with the property A\t = t for all t € T and AXt = t for all
t € AT.
Note that

A:T—= AT and A: AT — T

Given any thread, by applying A sufficiently many times, it
becomes a closed thread. So we will call X a closing operator.
Similarly A will be called an opening operator.

Instantiation operation

We wish to define the instantiation operation which is a binary
function of the form:

A) ATXT—>T

This form imposes a natural condition that (- ¢) is meaningful only
if the first argument - is of the form Ar.

So, for any threads r and ¢, we wish to know what (Ar t) means.
Our intuition is that it means the result of applying the function
Ar to its argument ¢.

Our idea is to define it by defining yet another binary function of
the form:
¢ +-:TXxT—T,

and then put:
(Ar t) ;=7 «t.

Filling operation

We wish to define the filling operation which is a binary function of
the form:
4= :TXxT—>T

So, for any threads r and t, we wish to know what r <— ¢ means.
Our idea is to define it by case analysis on the form of . Namely,

we say that r is balanced if Ht(r) = Dp(r), and define the filling
operation according as r is balanced or not.

Filling operation: Balanced case
In this case, » = Atk where i = Ht(r) = Dp(r) = k.
Filling succeeds in this case, and we put:
r«t:=1"t

Here, " : T — T is a lifting operation defined by:

o Ik if g > e,
£l i<

Note that for any t € T, 4" ¢ is closed (open) iff ¢ is closed
(open), and " t = AH("¢ if ¢t is closed. Also:

,ﬂf < T — Tn+Ht(r).

Filling operation: Unbalanced case

In this case, 7 = Ak where i = Ht(r) # Dp(r) = k.
Filling fails in this case, and we put:

r—t:=1]r.
Here, | : T — T is a lowering operation defined by:

if i > k,

IO

4 =

koo |y ifi<ke
The lowering function lowers depth of r by one only when r is
open and Dp(7) > 0. Note that for any » € T, |} 7 is closed

(open) iff 7 is closed (open). Also:

J : T — T™

Filling operation (cont.)

Combining the balanced and unbalanced cases, we get the
following definition of filling operation.

7 t if r is balanced,
rt:=
{ r if r is unbalanced.

We can spell out the explicit definition as follows.

%' if 1 > k,
; ; # ifi=kandj > ¥,
k 14 % ifi=kandj <&,
iy fi <k

Definition of instantiation operation

Our plan was to define instantiation operation with arity:
A) ATXT—>T
in terms of the filling operation with arity
¢ :TXT—T

by putting
(Ar t) :=7r «t.

Here, we define instantiation as follows.

Definition (Instantiaton (-) : AT x T — T)

(rt):=xr<«t

Definition of instantiation operation (cont.)

Putting r = i/k (¢ > 0) and t = j /£ we have:

(

=l ifi—1>k,
i] i—1 Ik ifi—1=kandj > ¢,
TR T itk ifi—1=kandj <&,
lifi—1<k.

Examples of instantiation operatation: Case 1

We wish to see the informal correctness of our definition of
instantiation based on our intuitive understanding of threads.

Here, we consider the following case:

>0 and 1—1>k
7 7 —1 7 —1

&7 % k

Let us say that 2 = 4 and k = 2, so that we have

(A2 7)Y = A32 « r =232
Or, equivalently:

()\42 r) = Azyzul) = Ayzuy = 232

Examples of instantiation operatation: Case 2

Here, we consider the following case:
©t>0,1—1=k and 5 >1

i—1 itk

t g J
(ch=tm 2
k¢ k y4 0

Let ussay that 2 =3, k = 2, 7 = 1 and £ = 0 so that we have

(A32 A10) = 222 «— Ao =)%

Or, equivalently:

(A32 A10) = (Azy=® Au) = Azt = Ayzuu = A30

Examples of instantiation operatation: Case 3

Here, we consider the following case:
©1>0,1—1=k and 53 <I
i i —1 j J+k
(rhy=t el I
k ¢ k L L4k
Let ussay that2 =3, k =2, 7 = 1 and £ = 1 so that we have
(A32 A1) = 222 « A1 = \3%3
Or, equivalently:
(A32 A1) = Agye® Aul) = A2 Au3 = Ayzu3 = A33

We changed 1 to 3 to avoid capturing by Ay..

Examples of instantiation operatation: Case 4

Here, we consider the following case:

1 >0 and 1 — 1<k
1 7 —1 71— 1
(=)= ——«—1r=——
k k kE—1
Let us say that 2 = 2 and k = 2, so that we have
AN227) =A12 «r =211
Or, equivalently:
(A227) = Agy2 1) = Ayl = A1

We changed 2 to 1 since it is not in the scope of A, anymore.

Instantiation under \

Consider Az (Azy(x y) 2). In the tradtitional A-calculus, we can
convert the underlined 3-redex using the &-rule as follows.

B
(Azy(T) 2) =8 Ay(2 y)
Az(Azy (T y) 2) =8 Azy(2 y)
In our calculus, we wish to eliminate the &-rule, by extending the

B3-rule so that we can reduce the inner B-redex directly as shown
below. Here, we note that

A (Aay(@ 9) 2) = (A*1 A%0)° Al0)'
Azy(2z y) = (A21 A20)*

1
((A31 X30)® A10)" =5 ((A31 A%0)° A10)! = (A21 A20)°

Instantiation at level n

What we will do here is to generalize the instantiation operation
(r t) (which operateson r € AT and t € T) to (r t)™ with arity:

(¢)" AT X T - T
We define this operation so that the following diagram commutes:

AT™ x T™ SN ™

A" x A" A"

AT x T T

(-
Namely,
’ (r t)™ := A" (A"r A"t)

Instantiation Lemma

Lemma (Instantiation Lemma for threads)

n<m,r €Tt scT™ tc T}
((rs)™ "™ = ((rt)™ (s ty™)™~1.

The above lemma is derivable from the following lemma.
Lemma (special case of the above lemma)

O<m,reT L, seT™teTH
((rs)™t)y = ((rt) (st))™ "

Substitution and Instantiation

T #y,x &FV(M)+
K[x := L][y := M] = K|y := M][x := L[y := M]].

KeT’,LeT ,M Tk ((K L)' M) = ((K M) (L M)).
Or, equivalently,

((N2K ML) M) = (2K M) (\'L M)).

We can see that Instantiation operation naturally represents
B-conversion rule as an algebraic operation.

