
Lectures on The Lambda Calculus (II)

Masahiko Sato
Graduate School of Informatics, Kyoto University

Autumn school “Proof and Computation”
Fischbachau, Germany

October 6, 2016



Plan of the lectures

I Background history, philosophy and main idea.

II The free algebra T of threads

III The free algebra L of L-expressions. Church-Rosser Theorem
and the pushout property.

These lectures are based on my work in progress.



de Bruijn algebra D vs. our algebra L

The de Buijn algebra enjoys the following equation:

D = N + λD + (D D)

We define the algebra L of L-expressions by the following two
equations.

T = N + λT, L = T + (L L)N

This is an instance of the following algebra which depends on
algebra τ :

Lτ = τ + (Lτ Lτ )N

By putting τ = T we obtain L.



de Bruijn algebra D vs. our algebra L (cont.)

Lτ = τ + (Lτ Lτ )N

By putting τ = P (closed threads), we obtain L0 consisting
exactly of closed L-expressions as follows.

L0 = P + (L0 L0)N

In D, it is not as easy as in our case. One can only get D0,
consisting of closed de Bruijn terms, by solving the following
infinite family of equations. We put
Ni := {n ∈ N | n < i} (i ∈ N).

D0 = N0 + λD1 + (D0 D0),

D1 = N1 + λD2 + (D1 D1),

D2 = N2 + λD3 + (D2 D2),

· · ·



Embedding of de Bruijn algebra D into our algebra L

We can save D from this situation by embedding D into our
algebra L by defining the embedding function

[·] : D→ L

as follows.

[n] := n,

[λD] := λ[D],

[(D E)] := ([D] [E]).

What is this function?

The identity function! D is indeed a subset of L. (So far we can
apply λ only to threads. But we will extend it to be applicable to
any L-expression.)



Embedding of de Bruijn algebra D into our algebra L

We can save D from this situation by embedding D into our
algebra L by defining the embedding function

[·] : D→ L

as follows.

[n] := n,

[λD] := λ[D],

[(D E)] := ([D] [E]).

What is this function?

The identity function! D is indeed a subset of L. (So far we can
apply λ only to threads. But we will extend it to be applicable to
any L-expression.)



The data structure of threads

We can view the algebra T in the following two ways.

T = N + λT or T = N× N

In the first view, a typical element of T can be written as λik.
This element is obtained from k by applying the constructor λ to
k i times.

In the second view, the same element can be written i/k.
From abstract syntax point of view, they are just two different
notation (written in two different syntax) for the same thread.

For example, k = λ0k in the first view, corresponds to 0/k in the
second view. For this reason we will also write k for 0/k.



The datatype T

For technical reason, we will officially define T by the following
inductive definition, taking the second view above.

i ∈ N k ∈ N
i/k ∈ T Thrd

We will use q, r, s, t as meta variables ranging over threads.

Now, any thread t can be uniquely written t = i/k. In this case
we say that height of t, written Ht(t) is i and depth of t, written
Dp(t), is k.



λ as an operator on T

We do not have λ in T, but we can define it as an operator on T:

λ
i

k
:=

i′

k
.

In general, we define λn : T→ T by

λn
i

k
:=

i+ n

k
.

So, λnt increases height of t by n keeping its depth. For example,
we have:

λik = λi
0

k
=

0 + i

k
= i/k



Closed and open threads

A thread i/k is defined to be closed if i > k, and it is defined to
be open if i ≤ k.

Since i/k = λik we may visualize it as follows.

λi−1λi−2 · · ·λ1λ0k

So, recalling the de Bruijn notation, we see that it is a closed term
if and only if i > k.

Closed threads are also called projections. We write P for the set
{t ∈ T | t is closed} of propositions.



Classification of T and P by height

We put

Tn := {t ∈ T | Ht(t) ≥ n},
Pn := {t ∈ P | Ht(t) ≥ n}.

We have:

T = T0 ) T1 ) T2 · · ·
P = P0 ) P1 ) P2 · · ·

We note that λi : Tn → Tn+i and λi : Pn → Pn+i (since P is
closed under application of λ). So, it is natural to write λiTn for
Tn+i and λiPn for Pn+i



Closing and opening

Recall that:
λ : Tn → Tn+1 (n ∈ N)

Not only λ has this arity, it is also a bijective operator.

So it has its inverse

λ : Tn+1 → Tn (n ∈ N)

with the property λλt = t for all t ∈ T and λλt = t for all
t ∈ λT.
Note that

λ : T→ λT and λ : λT→ T

Given any thread, by applying λ sufficiently many times, it
becomes a closed thread. So we will call λ a closing operator.
Similarly λ will be called an opening operator.



Instantiation operation
We wish to define the instantiation operation which is a binary
function of the form:

〈λ · ·〉 : λT× T→ T

This form imposes a natural condition that 〈· t〉 is meaningful only
if the first argument · is of the form λr.

So, for any threads r and t, we wish to know what 〈λr t〉 means.
Our intuition is that it means the result of applying the function
λr to its argument t.

Our idea is to define it by defining yet another binary function of
the form:

· ← · : T× T→ T,

and then put:
〈λr t〉 := r ← t.



Filling operation

We wish to define the filling operation which is a binary function of
the form:

· ← · : T× T→ T

So, for any threads r and t, we wish to know what r ← t means.

Our idea is to define it by case analysis on the form of r. Namely,
we say that r is balanced if Ht(r) = Dp(r), and define the filling
operation according as r is balanced or not.



Filling operation: Balanced case

In this case, r = λik where i = Ht(r) = Dp(r) = k.

Filling succeeds in this case, and we put:

r ← t := ⇑r t.

Here, ⇑r : T→ T is a lifting operation defined by:

⇑r
j

`
:=


j+k
`

if j > `,

j+k
`+k

if j ≤ `.

Note that for any t ∈ T, ⇑r t is closed (open) iff t is closed
(open), and ⇑r t = λHt(r)t if t is closed. Also:

⇑r : Tn → Tn+Ht(r).



Filling operation: Unbalanced case

In this case, r = λik where i = Ht(r) 6= Dp(r) = k.
Filling fails in this case, and we put:

r ← t := ⇓ r.

Here, ⇓ : T→ T is a lowering operation defined by:

⇓
i

k
:=


i
k

if i ≥ k,

i
k−1

if i < k.

The lowering function lowers depth of r by one only when r is
open and Dp(r) > 0. Note that for any r ∈ T, ⇓ r is closed
(open) iff r is closed (open). Also:

⇓ : Tn → Tn.



Filling operation (cont.)

Combining the balanced and unbalanced cases, we get the
following definition of filling operation.

r ← t :=

{
⇑r t if r is balanced,

⇓ r if r is unbalanced.

We can spell out the explicit definition as follows.

i

k
←

j

`
:=



i
k

if i > k,

j+k
`

if i = k and j > `,

j+k
`+k

if i = k and j ≤ `,

i
k−1

if i < k.



Definition of instantiation operation

Our plan was to define instantiation operation with arity:

〈λ · ·〉 : λT× T→ T

in terms of the filling operation with arity

· ← · : T× T→ T

by putting
〈λr t〉 := r ← t.

Here, we define instantiation as follows.

Definition (Instantiaton 〈· ·〉 : λT× T→ T)

〈r t〉 := λr ← t



Definition of instantiation operation (cont.)

Putting r = i/k (i > 0) and t = j/` we have:

〈
i

k

j

`
〉 :=

i− 1

k
←

j

`
=



i−1
k

if i− 1 > k,

j+k
`

if i− 1 = k and j > `,

j+k
`+k

if i− 1 = k and j ≤ `,

i−1
k−1

if i− 1 < k.



Examples of instantiation operatation: Case 1

We wish to see the informal correctness of our definition of
instantiation based on our intuitive understanding of threads.

Here, we consider the following case:

i > 0 and i− 1 > k

〈
i

k
r〉 :=

i− 1

k
← r =

i− 1

k

Let us say that i = 4 and k = 2, so that we have

〈λ42 r〉 = λ32← r = λ32

Or, equivalently:

〈λ42 r〉 = 〈λxyzuy r〉 = λyzuy = λ32



Examples of instantiation operatation: Case 2

Here, we consider the following case:

i > 0, i− 1 = k and j > l

〈
i

k

j

`
〉 :=

i− 1

k
←

j

`
=
j + k

`

Let us say that i = 3, k = 2, j = 1 and ` = 0 so that we have

〈λ32 λ10〉 = λ22← λ10 = λ30

Or, equivalently:

〈λ32 λ10〉 = 〈λxyzx λuu〉 = λyzλuu = λyzuu = λ30



Examples of instantiation operatation: Case 3

Here, we consider the following case:

i > 0, i− 1 = k and j ≤ l

〈
i

k

j

`
〉 :=

i− 1

k
←

j

`
=
j + k

`+ k

Let us say that i = 3, k = 2, j = 1 and ` = 1 so that we have

〈λ32 λ11〉 = λ22← λ11 = λ33

Or, equivalently:

〈λ32 λ11〉 = 〈λxyzx λu1〉 = λyzλu3 = λyzu3 = λ33

We changed 1 to 3 to avoid capturing by λyz.



Examples of instantiation operatation: Case 4

Here, we consider the following case:

i > 0 and i− 1 < k

〈
i

k
r〉 :=

i− 1

k
← r =

i− 1

k − 1

Let us say that i = 2 and k = 2, so that we have

〈λ22 r〉 = λ12← r = λ11

Or, equivalently:

〈λ22 r〉 = 〈λxy2 r〉 = λy1 = λ11

We changed 2 to 1 since it is not in the scope of λx anymore.



Instantiation under λ

Consider λz(λxy(x y) z). In the tradtitional λ-calculus, we can
convert the underlined β-redex using the ξ-rule as follows.

(λxy(x y) z)→β λy(z y)
β

λz(λxy(x y) z)→β λzy(z y)
ξ

In our calculus, we wish to eliminate the ξ-rule, by extending the
β-rule so that we can reduce the inner β-redex directly as shown
below. Here, we note that

λz(λxy(x y) z) = ((λ31 λ30)
3
λ10)

1

λzy(z y) = (λ21 λ20)
2

((λ31 λ30)
3
λ10)

1
→β 〈(λ31 λ30)

3
λ10〉1 = (λ21 λ20)

2



Instantiation at level n

What we will do here is to generalize the instantiation operation
〈r t〉 (which operates on r ∈ λT and t ∈ T) to 〈r t〉n with arity:

〈· ·〉n : λTn × Tn → Tn

We define this operation so that the following diagram commutes:

λTn × Tn
〈· ·〉n

- Tn

λT× T

λ
n × λn

?

〈· ·〉
- T

λn

6

Namely,
〈r t〉n := λn〈λnr λnt〉



Instantiation Lemma

Lemma (Instantiation Lemma for threads)

n < m, r ∈ Tm+1, s ∈ Tm, t ∈ Tn `
〈〈r s〉m t〉n = 〈〈r t〉n 〈s t〉n〉m−1.

The above lemma is derivable from the following lemma.

Lemma (special case of the above lemma)

0 < m, r ∈ Tm+1, s ∈ Tm, t ∈ T `
〈〈r s〉m t〉 = 〈〈r t〉 〈s t〉〉m−1.



Substitution and Instantiation

x 6= y, x 6∈ FV(M) `
K[x := L][y := M ] = K[y := M ][x := L[y := M ]].

K ∈ T2, L ∈ T1,M ∈ T ` 〈〈K L〉1 M〉 = 〈〈K M〉 〈L M〉〉.

Or, equivalently,

〈〈λ2K λ1L〉1 M〉 = 〈〈λ2K M〉 〈λ1L M〉〉.

We can see that Instantiation operation naturally represents
β-conversion rule as an algebraic operation.


