
Lectures on The Lambda Calculus (I)

Masahiko Sato
Graduate School of Informatics, Kyoto University

Autumn school “Proof and Computation”
Fischbachau, Germany

October 4, 2016

Overview

In these lectures, I give an introduction to the λ-calculus from the
following view point.

Although λ-terms are defined by the well known ‘inductive
definition’, it is also well known that it is far from easy to define
the substitution operation on λ-terms correctly.

In order to cope with this situation, we will develop elementary
part of the λ-calculus, entirely based on the finitistic mathematics
(in the sense of Hilbert). This means that all the mathematical
objects we discuss in the lectures are finitary objects created by
finitistic methods.

Based on this foundational motivation, we will define λ-terms as
elements of a free algebra L.

Variable and substitution

The notions of variable and substituion are two central notions in
the λ-calculus.

For that matter, these notions are indispensable in any branch of
mathematics.

But, they are particularly important in the λ-calculus since, as
Church pointed out in his ‘Foundations of a simple theory of
types’, λ-terms can be used to encode other mathemtical
expressions involving variable binding (e.g. ∀x. x = x or

∑100
i=1 i.)

Variable and substitution

The notions of variable and substituion are two central notions in
the λ-calculus.

For that matter, these notions are indispensable in any branch of
mathematics.

But, they are particularly important in the λ-calculus since, as
Church pointed out in his ‘Foundations of a simple theory of
types’, λ-terms can be used to encode other mathemtical
expressions involving variable binding (e.g. ∀x. x = x or

∑100
i=1 i.)

Variable and substitution

The notions of variable and substituion are two central notions in
the λ-calculus.

For that matter, these notions are indispensable in any branch of
mathematics.

But, they are particularly important in the λ-calculus since, as
Church pointed out in his ‘Foundations of a simple theory of
types’, λ-terms can be used to encode other mathemtical
expressions involving variable binding (e.g. ∀x. x = x or

∑100
i=1 i.)

Variable and substitution (cont.)

In these lectures, I will argue that Church’s usage of variable and
substitution are conceptually wrong although technically consistent.

I think that this is unfortunate, since λ-calculus itself is a very
important calculus. The problem is that Church failed to introduce
it naturally.

I will develop λ-calculus without using variables and substitutions
in Church’s sense.

Frege, Gentzen, Church and McCarthy

Gottlob Frege (1848 – 1925)

Invented modern logic with quantification.

Gerhard Gentzen (1905 – 1945)

Invented sequent calculus and natural deduction.

Alonzo Church (1903 – 1995)

Invented λ-calculus.

John McCarthy (1927 – 2011)

Invented LISP programming language.
Introduced the notion of abstract syntax.
Introduced the notion of proof checking by a computer.

External syntax and internal syntax

External syntax is mainly used for human communications.
Abbreviations, macros, syntactitic sugar etc. are examples of
external syntax.

Internal syntax is mainly used to represent external syntax inside a
computer. Programming languages parse programs written in
external language into internal language. Internal syntax can be
hard to read but convenient for computing by a computer.

McCarthy introduced the notion of abstract syntax which can be
used to relate external syntax and internal syntax. In his paper ‘A
basis for a mathematical theory of computation’ (1963) McCarthy
(essentially) characterized abstact syntax as free algebra.

What is important here is that one and same object can be written
in various external or internal syntax, but abstract syntax gives a
canonical notation for the object.

Plan of the lectures

I Background history, philosophy and main idea.

II The free algebra T of threads

III The free algebra L of L-expressions. Church-Rosser Theorem
and the pushout property.

We will also discuss relationship between L, Church’s λ-terms and
de Bruijn’s noatation system.

These lectures are based on my work in progress.

Frege’s view

In §§28 – 31 of Grundgesetze der Arithmetic, volume 1 (1893),
Frege tried to define the syntax and semantics (Bedeutung) of the
language (Begriffsschrift) he used in the book.

Russell found a technical gap in Frege’s definition (Russell
Paradox), but it is interesting to note that Frege defined his
well-formed expressions (Eigennamen), which include higher-order
expressions, without starting from variables.

Therefore, I believe that Frege would have rejected the definition
of raw lambda-terms given by Church:

Λ 3M,N ::= x | λxM | (M N)

Raw λ-terms

Definition of raw lambda-terms.

Λ 3M,N,P ::= x | λxM | (M N)

(M N) stands for the application of (function) M to N .

We write [x := N]M for the result of substituting N for x in M .

Problems with raw λ-terms

A problem with raw lambda-terms is that substitution is non-trivial.

Let M be λy(x y). Then, what is [x := y]M?

[x := y]λy(x y) = λy(y y) is not correct. y was a free variable
before substitution, but it becomes a bound variable after
susbstitution.

The problem is solved by renaming y in M to a fresh variable z.
Then, [x := y]λz(x z) = λz(y z).

We replaced M = λy(x y) by M ′ = λz(x z) hich is obtained
by renaming. Such a pair of M and M ′ are called α-equivalent.

Problems with raw λ-terms (cont.)

A second problem with raw λ-terms is that the notion of
immediate subterm becomes obscure on (raw) λ-terms.

For example what is (or, are) the immediate subterm(s) of

λxλy(x y)?

You may say the answer is λy(x y) (with x free).

But, then what about
λyλx(y x)?

Your answer should be λx(y x) (with y free).

Since two given terms are α-equivalent, the answers must also be
α-equivalent. But, this is not the case here.

Problems with raw λ-terms (cont.)

All of these difficulties boil down to the following:

1 The raw λ-terms λxx and λyy are two distinct raw λ-terms
(since they are syntactically different).

2 However, we somehow wish to identify them. And we do this
by quotienting Λ by the α-equivalence relation.

Structure of raw λ-terms

Recall that:

Λ 3M,N,P ::= x | λxM | (M N)

By writing λx1x2···xnM for λx1λx2 · · ·λxnM (n ≥ 0), any
λ-term can be uniquely written in one of the following two forms.

1 λx1x2···xny.

2 λx1x2···xn(M N).

We will call a term of the first form thread.

An alternative definition of Λ

Using the above classification, we can give an alternative definition
of Λ as follows.

λx̄y ∈ Λ

λx̄M ∈ Λ λx̄N ∈ Λ

λx̄(M N) ∈ Λ

This gives a correct definition of Λ since by these rules we can
generate all the raw λ-tersm.

But it is incovenient to use this as an official definition of raw
λ-term since it does not give us a free algebra.

However, it can be used to characterize closed λ-terms and also to
define α-equivalence.

The set Λ0 of closed terms

We can define the subset Λ0 of Λ, consiting of closed λ-terms, as
follows.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

Note that the above definition does not rely on the notion of free
occurrences of a variable in a term.

This definition suggests that we should be able to develop proof
theory of the λ-calculus with free variables without appealing to
the notion of bound variables, and of the λ-caluculs of closed
λ-terms without using the notion of variables.

λβ-calculus

(λxM N)→βM [x := N]
β

M →βM
′

(M N)→β (M ′ N)
L

N →β N
′

(M N)→β (M N ′)
R

M →β N

λxM →β λxN
ξ

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule captures the informal notion of function application.

History

Frege, in his Begriffsschrift (1879), used Latin letters for
global variables and used German letters for local variables.

Gentzen (in the 30’s) also used different sets of variables for
global and local variables. He also introduced eigen variable.

Whitehead-Russell (1910) and, later, Gödel and Church used
only one sort of letters for both global and local variables. (I
think Church made a conceptual mistake here.)

Quine and Bourbaki (in the 50’s) introduced graphical (two
dimensional) notation for local variable binding.

McCarthy (1963) introduced abstract syntax

de Bruijn (1972) introduced his indices and provided a
canonical notation for α-equivalent terms.

Quine’s notation

Bourbaki’s notation

See next slide.

Bourbaki’s notation

From Church to Quine-Bourbaki

λzx (λy (y z) (z x))

λz

λx

@

λy

@

y z

@

z x

λ

λ

@

λ

@

□ □

@

□ □

From Quine-Bourbaki to de Bruijn

λzx (λy (y z) (z x))

λ

λ

@

λ

@

□ □

@

□ □

λ

λ

@

λ

@

0 2

@

1 0

From Church to de Bruijn

λzx(λy(y z) (z x)) = λ2(λ(0 2) (1 0))

λz

λx

@

λy

@

y z

@

z x

λz

λx

@

λ

@

0 z

@

z x

λz

λ

@

λ

@

0 z

@

z 0

λ

λ

@

λ

@

0 2

@

1 0

From Church to de Bruijn

λzx(λy(y z) (z x)) = λ2(λ(0 2) (1 0))

λz

λx

@

λy

@

y z

@

z x

λz

λx

@

λ

@

0 z

@

z x

λz

λ

@

λ

@

0 z

@

z 0

λ

λ

@

λ

@

0 2

@

1 0

From Church to de Bruijn

λzx(λy(y z) (z x)) = λ2(λ(0 2) (1 0))

λz

λx

@

λy

@

y z

@

z x

λz

λx

@

λ

@

0 z

@

z x

λz

λ

@

λ

@

0 z

@

z 0

λ

λ

@

λ

@

0 2

@

1 0

From Church to de Bruijn

λzx(λy(y z) (z x)) = λ2(λ(0 2) (1 0))

λz

λx

@

λy

@

y z

@

z x

λz

λx

@

λ

@

0 z

@

z x

λz

λ

@

λ

@

0 z

@

z 0

λ

λ

@

λ

@

0 2

@

1 0

From de Bruijn to our approach

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

λ

λ

@

@1

λ

0

λ

2

@

1 0

λ

@1

@2

λ

λ

0

λ

λ

2

@1

λ

1

λ

0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

From de Bruijn to our approach

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

λ

λ

@

@1

λ

0

λ

2

@

1 0

λ

@1

@2

λ

λ

0

λ

λ

2

@1

λ

1

λ

0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

From de Bruijn to our approach

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

λ

λ

@

@1

λ

0

λ

2

@

1 0

λ

@1

@2

λ

λ

0

λ

λ

2

@1

λ

1

λ

0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

From de Bruijn to our approach

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

λ

λ

@

@1

λ

0

λ

2

@

1 0

λ

@1

@2

λ

λ

0

λ

λ

2

@1

λ

1

λ

0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

From de Bruijn to our approach (cont.)

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

@2

@3

λ30 λ32

@2

λ21 λ20

From de Bruijn to our approach (cont.)

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

@2

@3

λ30 λ32

@2

λ21 λ20

From de Bruijn to our approach (cont.)

λ2(λ(0 2) (1 0)) = ((λ30 λ32)
3
(λ21 λ20)

2
)
2

λ

λ

@

λ

@

0 2

@

1 0

@2

@3

λ

λ

λ

0

λ

λ

λ

2

@2

λ

λ

1

λ

λ

0

@2

@3

λ30 λ32

@2

λ21 λ20

Finitistic mathematics and free algebra

Finitistic mathematics (initiated by Hilbert) is deeply connected to
(finitistic) free algebras.

Indeed all the finitistic mathematical objects are inductively
generated as elements of some finitistic free algebras.

So, in finitistic mathematics:

We can analyze every objects completely.

We can prove properties of objects of a free algebra by using
the induction principle associated with the algebra.

The free algebra N of natural numbers

0 ∈ N Zero
k ∈ N
k′ ∈ N Succ

This algebra has the following signature.

Zero : → N
Succ : N→ N

Note that we have

0 = Zero,

1 = 0′ = Succ(Zero),

2 = 0′′= Succ(Succ(Zero)),

· · ·

de Bruijn algebra D

k ∈ N
k ∈ D

D ∈ D
λD ∈ D Abs

D ∈ D E ∈ D
(D E) ∈ D

App

The de Buijn algebra enjoys the following equation:

D = N + λD + (D D)

D vs. L

The de Buijn algebra enjoys the following equation:

D = N + λD + (D D)

We define the algebra L of L-expressions by the following two
equations.

T = N + λT, L = T + (L L)N

Note that

T = N + λT = N + λ(N + λT) = N + λN + λ2T

= · · · =
∑
n∈N

λnN

' N× N

D vs. L (cont.)

We now know that:

L = T + (L L)N and T = N + λT ' N× N

So, technically, we can define the algebra L to enjoy the equation:

L = N× N + (L L)N

Compare this with:

D = N + λD + (D D)

Note that the abstraction constructor λ in D is missing in L.

