Constructive (functional) analysis

Hajime Ishihara

School of Information Science Japan Advanced Institute of Science and Technology (JAIST) Nomi, Ishikawa 923-1292, Japan

Proof and Computation, Fischbachau, 3 - 8 October, 2016

Contents (lecture 3)

- Normed and Banach spaces
 - The Hahn-Banach theorem
 - The uniform boundedness theorem

- The open mapping theorem
- Hilbert spaces
 - Adjoit operators
 - Compact operators

Normed spaces

Definition A normed space is a linear space E equipped with a norm $\|\cdot\|: E \to \mathbf{R}$ such that

$$\blacktriangleright ||x|| = 0 \leftrightarrow x = 0,$$

•
$$||ax|| = |a|||x||,$$

►
$$||x + y|| \le ||x|| + ||y||,$$

for each $x, y \in E$ and $a \in \mathbf{R}$.

Note that a normed space E is a metric space with the metric

$$d(x,y) = \|x-y\|.$$

Definition

A Banach space is a normed space which is complete with respect to the metric.

Examples

For $1 \leq p < \infty$, let

$$I_p = \{(x_n) \in \mathbf{R}^{\mathbf{N}} \mid \sum_{n=0}^{\infty} |x_n|^p < \infty\}$$

and define a norm by

$$\|(x_n)\| = (\sum_{n=0}^{\infty} |x_n|^p)^{1/p}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Then l_p is a (separable) Banach space.

Examples

Classically the normed space

$$I_{\infty} = \{(x_n) \in \mathbf{R}^{\mathbf{N}} \mid (x_n) \text{ is bounded}\}$$

with the norm

$$\|(x_n)\| = \sup_n |x_n|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is an inseparable Banach space.

However, constructively, it is not a normed space.

Linear mappings

Definition

A mapping T between linear spaces E and F is linear if

•
$$T(ax) = aTx$$
,

$$T(x+y) = Tx + Ty$$

for each $x, y \in E$ and $a \in \mathbf{R}$.

A linear functional f on a linear space E is a linear mapping from E into \mathbf{R} .

Definition

The kernel ker(T) of a linear mapping T between linear spaces E and F is defined by

$$\ker(T) = \{x \in E \mid Tx = 0\}.$$

Bounded linear mappings

Definition

A linear mapping T between normed spaces E and F is bounded if

$$T(B_E) = \{Tx \mid x \in B_E\}$$

is bounded, where $B_E = \{x \in E \mid ||x|| \le 1\}.$

Proposition

Let T be a linear mapping between normed spaces E and F. Then the following are equivalent.

- T is continuous,
- T is uniformly continuous,
- T is bounded.

Normable linear mappings

Definition

A linear mapping T between normed spaces E and F is normable if

$$\|T\| = \sup\{\|Tx\| \mid x \in B_E\}$$

exists.

Theorem (classical)

The set of bounded linear functionals on a normed space is a Banach space.

Normable linear functionals

Proposition

If every bounded linear functional on l_2 is normable, then LPO holds.

Proof.

Let α be a binary sequence with at most one nonzero term, and define a linear functional f on l_2 by

$$f((x_n)) = \sum_{k=0}^{\infty} \alpha(k) x_k.$$

Then *f* is bounded. If *f* is normable, then either 0 < ||f|| or ||f|| < 1; in the former case, we have $\alpha \# \mathbf{0}$; in the latter case, we have $\neg \alpha \# \mathbf{0}$.

Normable linear functionals

Proposition

If the set $(I_1)^*$ of normable linear functionals on I_1 is linear, then LPO holds.

Proof.

Let α be a binary sequence with $\alpha(0) = 0$, and define linear functionals on l_1 by

$$f((x_n)) = \sum_{k=0}^{\infty} x_k, \quad g((x_n)) = \sum_{k=0}^{\infty} (\alpha(k) - 1) x_k.$$

Then f and g are normable with ||f|| = ||g|| = 1. If f + g is normable, then either 0 < ||f + g|| or ||f + g|| < 1; in the former case, we have $\alpha \# \mathbf{0}$; in the latter case, we have $\neg \alpha \# \mathbf{0}$.

Let E^* be the set of normable linear fuctionals on a normed space E.

Open Problem

Under what condition does E* become a linear space?

Note that $(I_p)^*$ is a linear space for $1 , and <math>H^*$ is a linear space for a Hilbert space H.

Normable linear functionals

Proposition

A nonzero bounded linear functional f on a normed space E is normable if and only if its kernel

$$\ker(f) = \{x \in E \mid f(x) = 0\}$$

is located.

Classical Hahn-Banach theorem

Theorem

Let M be a subspace of a normed space E, and let f be a bounded linear functional on M. Then there exists a bounded linear functional g on E such that g(x) = f(x) for each $x \in M$ and $\|g\| = \|f\|$.

Corollary

Let x be a nonzero element of a normed space E. Then there exists a bounded linear functional f on E such that f(x) = ||x|| and ||f|| = 1.

Classical Hahn-Banach theorem

Proposition

The classical Hahn-Banach theorem implies LLPO.

Proof.

Let (1, a) be a nonzero element of the normed space \mathbb{R}^2 with a norm ||(x, y)|| = |x| + |y|. Then there exists a bounded linear functional f such that f(1, a) = 1 + |a| and ||f|| = 1. Since $|f(1, 0)| \le 1$ and $|f(0, 1)| \le 1$, we have

$$1+|a|=f(1,a)=f(1,0)+af(0,1)\leq f(1,0)+|a|,$$

and therefore f(1,0) = 1 and af(0,1) = |a|. Either -1 < f(0,1) or f(0,1) < 1. In the former case, we have $0 \le a$; in the latter case, we have $a \le 0$.

Constructive Hahn-Banach theorem

Theorem (Bishop 1967)

Let *M* be a subspace of a separable normed space *E*, and let *f* be a nonzero normable linear functional on *M*. Then for each $\epsilon > 0$ there exists a normable linear functional *g* on *E* such that g(x) = f(x) for each $x \in M$ and $||g|| \le ||f|| + \epsilon$.

Corollary

Let x be a nonzero element of a separable normed space E. Then for each $\epsilon > 0$ there exists a normable linear functional f on E such that f(x) = ||x|| and $||f|| \le 1 + \epsilon$.

Gâteaux differentiable norm

Definition

The norm of a normed space *E* is Gâteaux differentiable at $x \in E$ with the derivative $f : E \to \mathbf{R}$ if for each $y \in E$ with ||y|| = 1 and $\epsilon > 0$ there exists $\delta > 0$ such that

$$\forall t \in \mathbf{R}(|t| < \delta \rightarrow |||x + ty|| - ||x|| - tf(y)| < \epsilon|t|).$$

Note that the derivative f is linear.

Definition

The norm of a normed space *E* is Gâteaux differentiable if it is Gâteaux differentiable at each $x \in E$ with ||x|| = 1.

Remark

The norm of l_p for $1 and the norm of a Hilbert space are Gâteaux differentiable at each <math>x \in E$ with x # 0.

A constructive corollary

Proposition (I 1989)

Let x be a nonzero element of a normed linear space E whose norm is Gâteaux differentiable at x. Then there exists a unique normable linear functional f on E such that f(x) = ||x|| and ||f|| = 1.

Proof.

Take the derivative f of the norm at x.

Uniformly convex spaces

Definition

A normed space E is uniformly convex if for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\|x - y\| \ge \epsilon \to \|(x + y)/2\| \le 1 - \delta$$

for each $x, y \in E$ with ||x|| = ||y|| = 1.

Proposition (Bishop-Bridges 1985)

Let f be a nonzero normable linear functional on a uniformly convex Banach space E. Then there exists $x \in E$ such that f(x) = ||f|| and ||x|| = 1.

Remark

 l_p for 1 and a Hilbert space are uniformly convex.

Constructive Hahn-Banach theorem

Theorem (I 1989)

Let M be a subspace of a uniformly convex Banach space E with a Gâteaux differentiable norm, and let f be a normable linear functional on M. Then there exists a unique normable linear functional g on H such that g(x) = f(x) for each $x \in M$ and $\|g\| = \|f\|$.

Proof.

We may assume without loss of generality that ||f|| = 1. Let \overline{M} be the closure of M. Then there exists a normable extension \overline{f} of f on \overline{M} . Since \overline{M} is a uniformly convex Banach, there exists $x \in \overline{M}$ such that $\overline{f}(x) = ||x|| = 1$. Take the derivative g of the norm at x. \Box

Classical uniform boundedness theorem

Theorem

Let $(T_m)_m$ be a sequence of bounded linear mappings from a Banach space E into a normed space F such that the set

$$\{T_m x \mid m \in \mathbf{N}\}$$

is bounded in F for each $x \in E$. Then $(T_m)_m$ is equicontinuous, that is, $\{T_m x \mid m \in \mathbf{N}, x \in B_E\}$ is bounded.

Corollary

Let $(T_m)_m$ be a sequence of bounded linear mappings from a Banach space E into a normed space F such that the limit

$$Tx = \lim_{m \to \infty} T_m x$$

exists for each $x \in E$. Then (being obviously linear) T is bounded.

Classical uniform boundedness theorem

Proposition (I 2012)

The classical uniform boundedness theorem implies BD-N.

Proof.

Let $S = \{s_n \mid n \in \mathbf{N}\}$ be a pseudobounded countable subset of \mathbf{N} , and define a sequence $(T_m)_m$ of bounded linear mappings from I_2 itself by

$$T_m(x_n) = (s_0 x_0, \ldots, s_m x_m, 0 \ldots).$$

Then, since S is pseudobounded, we can show that the limit

$$Tx = \lim_{m \to \infty} T_m x = (s_n x_n)$$

exists for each $x \in I_2$. If T is bounded, then we see that S is bounded.

A constructive uniform boundedness theorem

Theorem (Bishop 1967)

Let $(T_m)_m$ be a sequence of bounded linear mappings from a Banach space E into a normed space F. If (x_m) is a sequnece of B_E such that $\{T_m x_m \mid m \in \mathbf{N}\}$ is unbounded, then there exists $x \in E$ such that

 $\{T_m x \mid m \in \mathbf{N}\}$

is unbounded.

A constructive uniform boundedness theorem

Proposition (I 2012)

Assume BD-N. If $(T_m)_m$ is a sequence of bounded linear mappings from a separable Banach space E into a normed space F such that the set

$$\{T_m x \mid m \in \mathbf{N}\}$$

is bounded for each $x \in E$, then $(T_m)_m$ is equicontinuous.

Classical open mapping theorem

Definition

A linear mapping T between normed spaces E and F is open if $T(B_E)$ has an inhabited interior.

Theorem (Open mapping theorem)

Let T be a bounded linear mapping between Banach spaces. Then T is an open mapping.

Corollary (Closed graph theorem)

Let T be a linear mapping between Banach spaces. Then T is bounded if and only if its graph is closed.

Corollary (Banach's inverse mapping theorem)

Let T be a bounded one-to-one linear mapping from a Banach space onto a Banach space. Then its inverse T^{-1} is bounded.

Classical open mapping theorem

Proposition

Classical Banach's inverse mapping theorem implies BD-N.

Proof.

Let $S = \{s_n \mid n \in \mathbf{N}\}$ be a pseudobounded countable subset of \mathbf{N} , and define a bounded linear mapping \mathcal{T} from l_2 itself by

$$T(x_n)=(x_n/2^{s_n}).$$

Then T is one-to-one, and, since S is pseudobounded, we can show that T is onto. If T^{-1} is bounded, then S is bounded.

A constructive open mapping theorem

Theorem (I 1994)

Let T be a sequentially continuous one-to-one linear mapping from a separable Banach space onto a Banach space. Then its inverse T^{-1} is sequentially continuous.

Corollary (I 1994)

Let T be a sequentially continuous linear mapping from a separable Banach space onto a Banach space such that ker(T) is located. Then T is sequentially open.

Corollary (I 1994)

Let T be a linear mapping between Banach spaces such that its graph is separable. Then T is sequentially continuous if and only if its graph is closed.

A constructive open mapping theorem

Theorem

Assume BD-N. If T is a bounded one-to-one linear mapping from a separable Banach space onto a Banach space, then its inverse T^{-1} is bounded.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hilbert spaces

Definition

An inner product space is a linear space E equipped with an inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathbf{R}$ such that

• $\langle x,x
angle \geq 0$ and $\langle x,x
angle = 0 \leftrightarrow x = 0$,

$$\land \langle x, y \rangle = \langle y, x \rangle,$$

$$\flat \langle ax, y \rangle = a \langle x, y \rangle,$$

$$\land \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

for each $x, y, z \in E$ and $a \in \mathbf{R}$.

Note that an inner product space E is a normed space with the norm

$$\|x\| = \langle x, x \rangle^{1/2}.$$

Definition

A Hilbert space is an inner product space which is a Banach space.

Example

Let

$$l_2 = \{(x_n) \in \mathbf{R}^{\mathbf{N}} \mid \sum_{n=0}^{\infty} |x_n|^2 < \infty\}$$

and define an inner product by

$$\langle (x_n), (y_n) \rangle = \sum_{n=0}^{\infty} x_n y_n.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Then l_2 is a Hilbert space.

Proposition (Bishop-Bridges 1985)

Let f be a bounded linear functional on a Hilbert space H. Then f is normable if and only if there exists (unique) $x_0 \in H$ such that

$$f(x) = \langle x, x_0 \rangle$$

for each $x \in H$.

Adjoint operators

Definition

An operator A on a Hilbert space H is a bounded linear mapping from H into itself.

Definition

An operator A^* on a Hilbert space H is an adjoint of an operator A on H if

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

for each $x, y \in H$.

Remark

Classically, every operator has an adjoint.

Adjoint operators

Proposition

If every operator on l_2 has an adjoint, then LPO holds.

Proof.

Let α be a binary sequence with at most one nonzero term, and define a linear mapping C from l_2 into itself by

$$C(x_n) = \left(\sum_{k=0}^{\infty} \alpha(k) x_k / \sqrt{2^{n+1}}\right).$$

Then C is an operator. Note that

$$\langle C(x_n), y \rangle = \sum_{k=0}^{\infty} \alpha(k) x_k$$

for $y = (1/\sqrt{2^{n+1}})$. If C has an adjoint, then, the linear functional $f: (x_n) \mapsto \langle C(x_n), y \rangle$ is normable, by the Riesz theorem, and therefore either 0 < ||f|| or ||f|| < 1; in the former case, we have $\alpha \# \mathbf{0}$; in the latter case, we have $\neg \alpha \# \mathbf{0}$.

Weakly compact operators

Definition

An operator A on a Hilbert space H is weakly compact if

$$\{\langle Ax, y\rangle \mid x \in B_H\}$$

is totally bounded for each $y \in H$.

Proposition (I 1991)

An operator A has an adjoint if and only if A is weakly compact.

Proof.

By the Riesz theorem, A has an adjoint if and only if the linear functional $x \mapsto \langle Ax, y \rangle$ is normable for each $y \in H$ if and only if $\{\langle Ax, y \rangle \mid x \in H, ||x|| \le 1\}$ is totally bounded for each $y \in H$.

Compact Operators

Definition

An operator A on a Hilbert space H is compact if $A(B_H)$ is totally bounded.

Remark

- Every compact operator is weakly compact.
- Every compact operator is normable.

Note that the identity operator $I : x \mapsto x$ on I^2 is not compact, but weakly compact.

Compact operators

Theorem (classical)

Let A and B be compact operators on a Hilbert space H, let C be an operator on H, and let $a \in \mathbf{R}$. Then

- ▶ aA, A + B and A^{*} are compact,
- CA and AC are compact.

Compact operators

Proposition

If AC is compact for each compact operator A and bounded operator C on l_2 , then LPO holds.

Proof.

Let α be a binary sequence with at most one nonzero term, and define linear mappings A and C from l_2 into itself by

$$A(x_n) = (x_n/\sqrt{2^{n+1}}),$$

$$C(x_n) = (\sum_{k=0}^{\infty} \alpha(k) x_k/\sqrt{2^{n+1}}).$$

Then A is compact and C is bounded, and

$$\|AC(x_n)\|^2 = |\sum_{k=0}^{\infty} \alpha(k) x_k|^2 / 3.$$

Therefore either 0 < ||AC|| or ||AC|| < 1/3; in the former case, we have $\alpha # \mathbf{0}$; in the latter case, we have $\neg \alpha # \mathbf{0}$.

Compact operators

Theorem (I 1991)

Let A and B be compact operators on a Hilbert space H, let C be an operator on H, and let $a \in \mathbf{R}$. Then

- ► aA and A + B are compact,
- A* exists and is compact,
- CA is compact,
- ▶ if C is weakly compact, then AC is compact.

Future challenges

- Developing a constructive theory of distributions. We have shown that the completeness of the space D(R) of test functions is equivalent to BD-N.
- Developing a constructive reverese (functional) analysis. Which nonconstructive principle is equivalent to the Baire theorem for complete metric spaces?
- Developing a constructive theory of uniform spaces and topological spaces.
 We have given constructions of a completion of a uniform space and a quotient topology in CZF.

References

- Josef Berger, Hajime Ishihara, Erik Palmgren and Peter Schuster, A predicative completion of a uniform space, Ann. Pure Appl. Logic 163 (2012), 975–980.
- Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- Errett Bishop and Douglas Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.
- Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, Cambridge Univ. Press, London, 1987.
- Douglas Bridges and Luminiţa Vîţă, Techniques of Constructive Analysis, Springer, New York, 2006.
- Hajime Ishihara, On the constructive Hahn-Banach theorem, Bull. London Math. Soc. 21 (1989), 79–81.

References

- Hajime Ishihara, An omniscience principle, the König lemma and the Hahn-Banach theorem, Z. Math. Logik Grundlagen Math. 36 (1990), 237–240.
- Hajime Ishihara, A constructive version of Banach's inverse mapping theorem, New Zealand J. Math. 23 (1994), 71–75.
- Hajime Ishihara, Constructive reverse mathematics: compactness properties, in: L. Crosilla and P. Schuster eds., From Sets and Types to Topology and Analysis, Oxford Univ. Press, 2005, 245–267.
- Hajime Ishihara, The uniform boundedness theorem and a boundedness principle, Ann. Pure Appl. Logic 163 (2012), 1057–1061.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

- Hajime Ishihara and Erik Palmgren, Quotient topologies in constructive set theory and type theory, Ann. Pure Appl. Logic 141 (2006), 257–265.
- Hajime Ishihara and Peter Schuster, A continuity principle, a version of Baire's theorem and a boundedness principle, J. Symbolic Logic 73 (2008), 1354–1350.
- Hajime Ishihara and Satoru Yoshida, A constructive look at the completeness of D(R), J. Symbolic Logic 67 (2002), 1511–1519.

 Walter Rudin, *Functional Analysis*, Second Edition, McGraw-Hill, New York, 1991.