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Normed spaces

Definition
A normed space is a linear space E equipped with a norm
‖ · ‖ : E → R such that

I ‖x‖ = 0↔ x = 0,

I ‖ax‖ = |a|‖x‖,
I ‖x + y‖ ≤ ‖x‖+ ‖y‖,

for each x , y ∈ E and a ∈ R.

Note that a normed space E is a metric space with the metric

d(x , y) = ‖x − y‖.

Definition
A Banach space is a normed space which is complete with respect
to the metric.



Examples

For 1 ≤ p <∞, let

lp = {(xn) ∈ RN |
∑∞

n=0 |xn|p <∞}

and define a norm by

‖(xn)‖ = (
∑∞

n=0 |xn|p)1/p.

Then lp is a (separable) Banach space.



Examples

Classically the normed space

l∞ = {(xn) ∈ RN | (xn) is bounded}

with the norm
‖(xn)‖ = sup

n
|xn|

is an inseparable Banach space.

However, constructively, it is not a normed space.



Linear mappings

Definition
A mapping T between linear spaces E and F is linear if

I T (ax) = aTx ,

I T (x + y) = Tx + Ty

for each x , y ∈ E and a ∈ R.
A linear functional f on a linear space E is a linear mapping from
E into R.

Definition
The kernel ker(T ) of a linear mapping T between linear spaces E
and F is defined by

ker(T ) = {x ∈ E | Tx = 0}.



Bounded linear mappings

Definition
A linear mapping T between normed spaces E and F is bounded if

T (BE ) = {Tx | x ∈ BE}

is bounded, where BE = {x ∈ E | ‖x‖ ≤ 1}.

Proposition

Let T be a linear mapping between normed spaces E and F . Then
the following are equivalent.

I T is continuous,

I T is uniformly continuous,

I T is bounded.



Normable linear mappings

Definition
A linear mapping T between normed spaces E and F is normable if

‖T‖ = sup{‖Tx‖ | x ∈ BE}

exists.

Theorem (classical)

The set of bounded linear functionals on a normed space is a
Banach space.



Normable linear functionals

Proposition

If every bounded linear functional on l2 is normable, then LPO
holds.

Proof.
Let α be a binary sequence with at most one nonzero term, and
define a linear functional f on l2 by

f ((xn)) =
∞∑
k=0

α(k)xk .

Then f is bounded. If f is normable, then either 0 < ‖f ‖ or
‖f ‖ < 1; in the former case, we have α # 0; in the latter case, we
have ¬α # 0.



Normable linear functionals

Proposition

If the set (l1)∗ of normable linear functionals on l1 is linear, then
LPO holds.

Proof.
Let α be a binary sequence with α(0) = 0, and define linear
functionals on l1 by

f ((xn)) =
∞∑
k=0

xk , g((xn)) =
∞∑
k=0

(α(k)− 1)xk .

Then f and g are normable with ‖f ‖ = ‖g‖ = 1. If f + g is
normable, then either 0 < ‖f + g‖ or ‖f + g‖ < 1; in the former
case, we have α # 0; in the latter case, we have ¬α # 0.



Normable linear functionals

Let E ∗ be the set of normable linear fuctionals on a normed space
E .

Open Problem

Under what condition does E ∗ become a linear space?

Note that (lp)∗ is a linear space for 1 < p <∞, and H∗ is a linear
space for a Hilbert space H.



Normable linear functionals

Proposition

A nonzero bounded linear functional f on a normed space E is
normable if and only if its kernel

ker(f ) = {x ∈ E | f (x) = 0}

is located.



Classical Hahn-Banach theorem

Theorem
Let M be a subspace of a normed space E , and let f be a bounded
linear functional on M. Then there exists a bounded linear
functional g on E such that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.

Corollary

Let x be a nonzero element of a normed space E . Then there
exists a bounded linear functional f on E such that f (x) = ‖x‖
and ‖f ‖ = 1.



Classical Hahn-Banach theorem

Proposition

The classical Hahn-Banach theorem implies LLPO.

Proof.
Let (1, a) be a nonzero element of the normed space R2 with a
norm ‖(x , y)‖ = |x |+ |y |. Then there exists a bounded linear
functional f such that f (1, a) = 1 + |a| and ‖f ‖ = 1. Since
|f (1, 0)| ≤ 1 and |f (0, 1)| ≤ 1, we have

1 + |a| = f (1, a) = f (1, 0) + af (0, 1) ≤ f (1, 0) + |a|,

and therefore f (1, 0) = 1 and af (0, 1) = |a|. Either −1 < f (0, 1)
or f (0, 1) < 1. In the former case, we have 0 ≤ a; in the latter
case, we have a ≤ 0.



Constructive Hahn-Banach theorem

Theorem (Bishop 1967)

Let M be a subspace of a separable normed space E , and let f be
a nonzero normable linear functional on M. Then for each ε > 0
there exists a normable linear functional g on E such that
g(x) = f (x) for each x ∈ M and ‖g‖ ≤ ‖f ‖+ ε.

Corollary

Let x be a nonzero element of a separable normed space E. Then
for each ε > 0 there exists a normable linear functional f on E
such that f (x) = ‖x‖ and ‖f ‖ ≤ 1 + ε.



Gâteaux differentiable norm

Definition
The norm of a normed space E is Gâteaux differentiable at x ∈ E
with the derivative f : E → R if for each y ∈ E with ‖y‖ = 1 and
ε > 0 there exists δ > 0 such that

∀t ∈ R(|t| < δ→ |‖x + ty‖ − ‖x‖ − tf (y)| < ε|t|).

Note that the derivative f is linear.

Definition
The norm of a normed space E is Gâteaux differentiable if it is
Gâteaux differentiable at each x ∈ E with ‖x‖ = 1.

Remark
The norm of lp for 1 < p <∞ and the norm of a Hilbert space are
Gâteaux differentiable at each x ∈ E with x # 0.



A constructive corollary

Proposition (I 1989)

Let x be a nonzero element of a normed linear space E whose norm
is Gâteaux differentiable at x. Then there exists a unique normable
linear functional f on E such that f (x) = ‖x‖ and ‖f ‖ = 1.

Proof.
Take the derivative f of the norm at x .



Uniformly convex spaces

Definition
A normed space E is uniformly convex if for each ε > 0 there exists
δ > 0 such that

‖x − y‖ ≥ ε→‖(x + y)/2‖ ≤ 1− δ

for each x , y ∈ E with ‖x‖ = ‖y‖ = 1.

Proposition (Bishop-Bridges 1985)

Let f be a nonzero normable linear functional on a uniformly
convex Banach space E . Then there exists x ∈ E such that
f (x) = ‖f ‖ and ‖x‖ = 1.

Remark
lp for 1 < p <∞ and a Hilbert space are uniformly convex.



Constructive Hahn-Banach theorem

Theorem (I 1989)

Let M be a subspace of a uniformly convex Banach space E with a
Gâteaux differentiable norm, and let f be a normable linear
functional on M. Then there exists a unique normable linear
functional g on H such that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.

Proof.
We may assume without loss of generality that ‖f ‖ = 1. Let M be
the closure of M. Then there exists a normable extension f of f on
M. Since M is a uniformly convex Banach, there exists x ∈ M such
that f (x) = ‖x‖ = 1. Take the derivative g of the norm at x .



Classical uniform boundedness theorem

Theorem
Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F such that the set

{Tmx | m ∈ N}

is bounded in F for each x ∈ E . Then (Tm)m is equicontinuous,
that is, {Tmx | m ∈ N, x ∈ BE} is bounded.

Corollary

Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F such that the limit

Tx = lim
m→∞

Tmx

exists for each x ∈ E . Then (being obviously linear) T is bounded.



Classical uniform boundedness theorem

Proposition (I 2012)

The classical uniform boundedness theorem implies BD-N.

Proof.
Let S = {sn | n ∈ N} be a pseudobounded countable subset of N,
and define a sequence (Tm)m of bounded linear mappings from l2
itself by

Tm(xn) = (s0x0, . . . , smxm, 0 . . .).

Then, since S is pseudobounded, we can show that the limit

Tx = lim
m→∞

Tmx = (snxn)

exists for each x ∈ l2. If T is bounded, then we see that S is
bounded.



A constructive uniform boundedness theorem

Theorem (Bishop 1967)

Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F . If (xm) is a sequnece of
BE such that {Tmxm | m ∈ N} is unbounded, then there exists
x ∈ E such that

{Tmx | m ∈ N}

is unbounded.



A constructive uniform boundedness theorem

Proposition (I 2012)

Assume BD-N. If (Tm)m is a sequence of bounded linear mappings
from a separable Banach space E into a normed space F such that
the set

{Tmx | m ∈ N}

is bounded for each x ∈ E , then (Tm)m is equicontinuous.



Classical open mapping theorem

Definition
A linear mapping T between normed spaces E and F is open if
T (BE ) has an inhabited interior.

Theorem (Open mapping theorem)

Let T be a bounded linear mapping between Banach spaces. Then
T is an open mapping.

Corollary (Closed graph theorem)

Let T be a linear mapping between Banach spaces. Then T is
bounded if and only if its graph is closed.

Corollary (Banach’s inverse mapping theorem)

Let T be a bounded one-to-one linear mapping from a Banach
space onto a Banach space. Then its inverse T−1 is bounded.



Classical open mapping theorem

Proposition

Classical Banach’s inverse mapping theorem implies BD-N.

Proof.
Let S = {sn | n ∈ N} be a pseudobounded countable subset of N,
and define a bounded linear mapping T from l2 itself by

T (xn) = (xn/2sn).

Then T is one-to-one, and, since S is pseudobounded, we can
show that T is onto. If T−1 is bounded, then S is bounded.



A constructive open mapping theorem

Theorem (I 1994)

Let T be a sequentially continuous one-to-one linear mapping from
a separable Banach space onto a Banach space. Then its inverse
T−1 is sequentially continuous.

Corollary (I 1994)

Let T be a sequentially continuous linear mapping from a
separable Banach space onto a Banach space such that ker(T ) is
located. Then T is sequentially open.

Corollary (I 1994)

Let T be a linear mapping between Banach spaces such that its
graph is separable. Then T is sequentially continuous if and only if
its graph is closed.



A constructive open mapping theorem

Theorem
Assume BD-N. If T is a bounded one-to-one linear mapping from
a separable Banach space onto a Banach space, then its inverse
T−1 is bounded.



Hilbert spaces

Definition
An inner product space is a linear space E equipped with an inner
product 〈·, ·〉 : E × E → R such that

I 〈x , x〉 ≥ 0 and 〈x , x〉 = 0↔ x = 0,

I 〈x , y〉 = 〈y , x〉,
I 〈ax , y〉 = a〈x , y〉,
I 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉

for each x , y , z ∈ E and a ∈ R.

Note that an inner product space E is a normed space with the
norm

‖x‖ = 〈x , x〉1/2.

Definition
A Hilbert space is an inner product space which is a Banach space.



Example

Let
l2 = {(xn) ∈ RN |

∑∞
n=0 |xn|2 <∞}

and define an inner product by

〈(xn), (yn)〉 =
∑∞

n=0 xnyn.

Then l2 is a Hilbert space.



The Riesz theorem

Proposition (Bishop-Bridges 1985)

Let f be a bounded linear functional on a Hilbert space H. Then f
is normable if and only if there exists (unique) x0 ∈ H such that

f (x) = 〈x , x0〉

for each x ∈ H.



Adjoint operators

Definition
An operator A on a Hilbert space H is a bounded linear mapping
from H into itself.

Definition
An operator A∗ on a Hilbert space H is an adjoint of an operator A
on H if

〈Ax , y〉 = 〈x ,A∗y〉

for each x , y ∈ H.

Remark
Classically, every operator has an adjoint.



Adjoint operators

Proposition

If every operator on l2 has an adjoint, then LPO holds.

Proof.
Let α be a binary sequence with at most one nonzero term, and
define a linear mapping C from l2 into itself by

C (xn) = (
∑∞

k=0 α(k)xk/
√

2n+1).

Then C is an operator. Note that

〈C (xn), y〉 =
∞∑
k=0

α(k)xk

for y = (1/
√

2n+1). If C has an adjoint, then, the linear functional
f : (xn) 7→ 〈C (xn), y〉 is normable, by the Riesz theorem, and
therefore either 0 < ‖f ‖ or ‖f ‖ < 1; in the former case, we have
α # 0; in the latter case, we have ¬α # 0.



Weakly compact operators

Definition
An operator A on a Hilbert space H is weakly compact if

{〈Ax , y〉 | x ∈ BH}

is totally bounded for each y ∈ H.

Proposition (I 1991)

An operator A has an adjoint if and only if A is weakly compact.

Proof.
By the Riesz theorem, A has an adjoint if and only if the linear
functional x 7→ 〈Ax , y〉 is normable for each y ∈ H if and only if
{〈Ax , y〉 | x ∈ H, ‖x‖ ≤ 1} is totally bounded for each y ∈ H.



Compact Operators

Definition
An operator A on a Hilbert space H is compact if A(BH) is totally
bounded.

Remark

I Every compact operator is weakly compact.

I Every compact operator is normable.

Note that the identity operator I : x 7→ x on l2 is not compact, but
weakly compact.



Compact operators

Theorem (classical)

Let A and B be compact operators on a Hilbert space H, let C be
an operator on H, and let a ∈ R. Then

I aA, A + B and A∗ are compact,

I CA and AC are compact.



Compact operators

Proposition

If AC is compact for each compact operator A and bounded
operator C on l2, then LPO holds.

Proof.
Let α be a binary sequence with at most one nonzero term, and
define linear mappings A and C from l2 into itself by

A(xn) = (xn/
√

2n+1),

C (xn) = (
∑∞

k=0 α(k)xk/
√

2n+1).

Then A is compact and C is bounded, and

‖AC (xn)‖2 = |
∑∞

k=0 α(k)xk |2/3.

Therefore either 0 < ‖AC‖ or ‖AC‖ < 1/3; in the former case, we
have α # 0; in the latter case, we have ¬α # 0.



Compact operators

Theorem (I 1991)

Let A and B be compact operators on a Hilbert space H, let C be
an operator on H, and let a ∈ R. Then

I aA and A + B are compact,

I A∗ exists and is compact,

I CA is compact,

I if C is weakly compact, then AC is compact.



Future challenges

I Developing a constructive theory of distributions.
We have shown that the completeness of the space D(R) of
test functions is equivalent to BD-N.

I Developing a constructive reverese (functional) analysis.
Which nonconstructive principle is equivalent to the Baire
theorem for complete metric spaces?

I Developing a constructive theory of uniform spaces and
topological spaces.
We have given constructions of a completion of a uniform
space and a quotient topology in CZF.
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