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Normed spaces

Definition
A normed space is a linear space E equipped with a norm
Il -] : E— R such that

> [[x|| =0+ x=0,
> [Jax]| = falllx]]
> x+yll < x4y,
for each x,y € E and a € R.
Note that a normed space E is a metric space with the metric

d(x,y) =[x =yl
Definition

A Banach space is a normed space which is complete with respect
to the metric.



Examples

For 1 < p < o0, let
l,={(xn) € RN | S |xalP < 00}

and define a norm by

0@l = (520 IxalP) VP

Then I, is a (separable) Banach space.



Examples

Classically the normed space
Io = {(x2) € RN | (x,) is bounded}

with the norm

1) | = sup [xa]
n

is an inseparable Banach space.

However, constructively, it is not a normed space.



Linear mappings

Definition
A mapping T between linear spaces E and F is linear if
» T(ax) = aTx,

> T(x+y)=Tx+ Ty
for each x,y € E and a € R.

A linear functional f on a linear space E is a linear mapping from
E into R.

Definition
The kernel ker(T) of a linear mapping T between linear spaces E

and F is defined by

ker(T) = {x € E | Tx = 0}.



Bounded linear mappings

Definition
A linear mapping T between normed spaces E and F is bounded if

T(BE) = {TX | X € BE}
is bounded, where B = {x € E | ||x| < 1}.

Proposition

Let T be a linear mapping between normed spaces E and F. Then
the following are equivalent.

» T is continuous,
» T is uniformly continuous,
» T is bounded.



Normable linear mappings

Definition
A linear mapping T between normed spaces E and F is normable if

| TIl = sup{l| Tx|| | x € Be}
exists.

Theorem (classical)

The set of bounded linear functionals on a normed space is a
Banach space.



Normable linear functionals

Proposition
If every bounded linear functional on Iy is normable, then LPO
holds.

Proof.
Let o be a binary sequence with at most one nonzero term, and
define a linear functional f on b by

o0

f((xn)) = a(k)xg.
k=0

Then f is bounded. If f is normable, then either 0 < ||f|| or
IIf]| < 1; in the former case, we have o # 0; in the latter case, we
have -« # 0. O



Normable linear functionals

Proposition

If the set (l)* of normable linear functionals on | is linear, then
LPO holds.

Proof.
Let « be a binary sequence with «(0) = 0, and define linear
functionals on by

f((Xn)) = leﬂ g((xn)) = Z(Oé(k) — l)Xk.
k=0 k=0

Then f and g are normable with ||| = |lg||=1. If f + g is
normable, then either 0 < ||f + g|| or ||f + g|| < 1; in the former
case, we have « # 0; in the latter case, we have —a # 0.



Normable linear functionals

Let E* be the set of normable linear fuctionals on a normed space
E.

Open Problem
Under what condition does E* become a linear space?

Note that (/5)* is a linear space for 1 < p < 0o, and H* is a linear
space for a Hilbert space H.



Normable linear functionals

Proposition
A nonzero bounded linear functional f on a normed space E is
normable if and only if its kernel

ker(f) = {x € E | f(x) =0}

is located.



Classical Hahn-Banach theorem

Theorem

Let M be a subspace of a normed space E, and let f be a bounded
linear functional on M. Then there exists a bounded linear
functional g on E such that g(x) = f(x) for each x € M and

gl = [Ifll-

Corollary

Let x be a nonzero element of a normed space E. Then there
exists a bounded linear functional f on E such that f(x) = ||x||
and ||f]| = 1.



Classical Hahn-Banach theorem

Proposition
The classical Hahn-Banach theorem implies LLPO.

Proof.
Let (1, a) be a nonzero element of the normed space R? with a
norm ||(x, y)|l = |x| + |y|- Then there exists a bounded linear

functional f such that f(1,a) =1+ |a| and ||f|| = 1. Since
|f(1,0)] <1 and |f(0,1)] <1, we have

1+ |a] = f(1,a) = f(1,0) + af (0,1) < £(1,0) + |a],

and therefore f(1,0) = 1 and af(0,1) = |a|. Either —1 < £(0,1)
or f(0,1) < 1. In the former case, we have 0 < a; in the latter
case, we have a < 0. OJ



Constructive Hahn-Banach theorem

Theorem (Bishop 1967)

Let M be a subspace of a separable normed space E, and let f be
a nonzero normable linear functional on M. Then for each ¢ > 0
there exists a normable linear functional g on E such that

g(x) = f(x) for each x € M and ||g|| < ||f|| +e.

Corollary

Let x be a nonzero element of a separable normed space E. Then
for each € > 0 there exists a normable linear functional f on E
such that f(x) = ||x|| and ||f|| < 1+e.



Gateaux differentiable norm

Definition

The norm of a normed space E is Gateaux differentiable at x € E
with the derivative f : E — R if for each y € E with ||y|| =1 and
€ > 0 there exists 6 > 0 such that

vt e R(|t] <0 = [llx + ty| — lIx[l = tF(y)] < elt]).

Note that the derivative f is linear.

Definition
The norm of a normed space E is Gateaux differentiable if it is
Gateaux differentiable at each x € E with ||x|| = 1.

Remark
The norm of /, for 1 < p < oo and the norm of a Hilbert space are
Gateaux differentiable at each x € E with x # 0.



A constructive corollary

Proposition (I 1989)

Let x be a nonzero element of a normed linear space E whose norm
is Gateaux differentiable at x. Then there exists a unique normable
linear functional f on E such that f(x) = ||x|| and ||f]| = 1.

Proof.
Take the derivative f of the norm at x. O



Uniformly convex spaces

Definition
A normed space E is uniformly convex if for each ¢ > 0 there exists
d > 0 such that

Ix=yllze=ll(x+y)/2l<1-0

for each x,y € E with [|x|| = ||y]| = 1.
Proposition (Bishop-Bridges 1985)

Let f be a nonzero normable linear functional on a uniformly

convex Banach space E. Then there exists x € E such that
f(x) = |If]l and [[x|| = 1.

Remark
I, for 1 < p < oo and a Hilbert space are uniformly convex.



Constructive Hahn-Banach theorem

Theorem (I 1989)

Let M be a subspace of a uniformly convex Banach space E with a
Gateaux differentiable norm, and let f be a normable linear
functional on M. Then there exists a unique normable linear
functional g on H such that g(x) = f(x) for each x € M and

gl = 11l

Proof.

We may assume without loss of generality that ||f|| = 1. Let M be
the closure of M. Then there exists a normable extension f of f on
M. Since M is a uniformly convex Banach, there exists x € ‘M such
that f(x) = ||x|| = 1. Take the derivative g of the norm at x. [



Classical uniform boundedness theorem

Theorem
Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F such that the set

{Tmx | me N}

is bounded in F for each x € E. Then (T,,)m is equicontinuous,
that is, { Tmx | m € N,x € Bg} is bounded.

Corollary

Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F such that the limit

Tx = lim Tp,x
m—o0

exists for each x € E. Then (being obviously linear) T is bounded.



Classical uniform boundedness theorem

Proposition (I 2012)

The classical uniform boundedness theorem implies BD-N.

Proof.
Let S = {s, | n € N} be a pseudobounded countable subset of N,
and define a sequence (Tp,)m of bounded linear mappings from h
itself by

Tm(xn) = (S0X0s -+ -y SmXm, 0...).

Then, since S is pseudobounded, we can show that the limit

Tx = lim Tmx = (SpXn)
m—o0

exists for each x € h. If T is bounded, then we see that S is
bounded. OJ



A constructive uniform boundedness theorem

Theorem (Bishop 1967)

Let (Tm)m be a sequence of bounded linear mappings from a
Banach space E into a normed space F. If (xm,) is a sequnece of
Be such that { Tpxm | m € N} is unbounded, then there exists
x € E such that

{Tmx | me N}

is unbounded.



A constructive uniform boundedness theorem

Proposition (I 2012)
Assume BD-N. If (T,)m is a sequence of bounded linear mappings
from a separable Banach space E into a normed space F such that

the set
{Tmx | me N}

is bounded for each x € E, then (Tny)m is equicontinuous.



Classical open mapping theorem

Definition
A linear mapping T between normed spaces E and F is open if
T(Bg) has an inhabited interior.

Theorem (Open mapping theorem)

Let T be a bounded linear mapping between Banach spaces. Then
T is an open mapping.

Corollary (Closed graph theorem)

Let T be a linear mapping between Banach spaces. Then T is
bounded if and only if its graph is closed.

Corollary (Banach's inverse mapping theorem)

Let T be a bounded one-to-one linear mapping from a Banach
space onto a Banach space. Then its inverse T~ is bounded.



Classical open mapping theorem

Proposition
Classical Banach's inverse mapping theorem implies BD-N.

Proof.
Let S = {s, | n € N} be a pseudobounded countable subset of N,
and define a bounded linear mapping T from b itself by

T(xn) = (x2/2°).

Then T is one-to-one, and, since S is pseudobounded, we can
show that T is onto. If T~! is bounded, then S is bounded. O



A constructive open mapping theorem

Theorem (I 1994)

Let T be a sequentially continuous one-to-one linear mapping from
a separable Banach space onto a Banach space. Then its inverse
T~ is sequentially continuous.

Corollary (1 1994)

Let T be a sequentially continuous linear mapping from a
separable Banach space onto a Banach space such that ker(T) is
located. Then T is sequentially open.

Corollary (1 1994)

Let T be a linear mapping between Banach spaces such that its
graph is separable. Then T is sequentially continuous if and only if
its graph is closed.



A constructive open mapping theorem

Theorem
Assume BD-N. If T is a bounded one-to-one linear mapping from

a separable Banach space onto a Banach space, then its inverse
T~ is bounded.



Hilbert spaces

Definition
An inner product space is a linear space E equipped with an inner
product (-,-) : E X E — R such that
» (x,x) >0and (x,x) =0+ x =0,
> (X, y) =y, x),
> (ax,y) = a(x,y),
> (xt+y,z)=(x,2) +(y,2)
for each x,y,z € E and a € R.

Note that an inner product space E is a normed space with the
norm
1/2
x| = (x, )2,
Definition
A Hilbert space is an inner product space which is a Banach space.



Example

Let
h={(xn) € RN | 3202 |xal? < 00}

and define an inner product by

((xn), (vn)) = Ziio XnYn-

Then b is a Hilbert space.



The Riesz theorem

Proposition (Bishop-Bridges 1985)
Let f be a bounded linear functional on a Hilbert space H. Then f
is normable if and only if there exists (unique) xo € H such that

f(x) = (x, xo)

for each x € H.



Adjoint operators

Definition
An operator A on a Hilbert space H is a bounded linear mapping
from H into itself.

Definition
An operator A* on a Hilbert space H is an adjoint of an operator A
on H if

(Ax,y) = (x, A%y)

for each x,y € H.

Remark
Classically, every operator has an adjoint.



Adjoint operators

Proposition
If every operator on b has an adjoint, then LPO holds.
Proof.

Let o be a binary sequence with at most one nonzero term, and
define a linear mapping C from k into itself by

Clxn) = (XkZo alk)xic/V2THL).

Then C is an operator. Note that

[e.e]

(Con)y) = " alk)x

k=0

for y = (1/v/2n+1). If C has an adjoint, then, the linear functional
f:(xn) = (C(xn),y) is normable, by the Riesz theorem, and
therefore either 0 < ||f]| or ||f]] < 1; in the former case, we have

a # 0; in the latter case, we have —a # 0. Ol



Weakly compact operators

Definition
An operator A on a Hilbert space H is weakly compact if

{{(Ax,y) | x € B}
is totally bounded for each y € H.
Proposition (I 1991)

An operator A has an adjoint if and only if A is weakly compact.

Proof.

By the Riesz theorem, A has an adjoint if and only if the linear
functional x — (Ax, y) is normable for each y € H if and only if
{{Ax,y) | x € H,||x|| < 1} is totally bounded for each y € H. [



Compact Operators

Definition

An operator A on a Hilbert space H is compact if A(By) is totally
bounded.

Remark

» Every compact operator is weakly compact.

» Every compact operator is normable.

Note that the identity operator / : x — x on /? is not compact, but
weakly compact.



Compact operators

Theorem (classical)

Let A and B be compact operators on a Hilbert space H, let C be
an operator on H, and let a € R. Then

» aA, A+ B and A* are compact,
» CA and AC are compact.



Compact operators

Proposition
If AC is compact for each compact operator A and bounded
operator C on bk, then LPO holds.

Proof.
Let o be a binary sequence with at most one nonzero term, and
define linear mappings A and C from / into itself by

A(xn) = (xa/ V2™H1),
Clxn) = (XkZo alk)xic/V2HL).

Then A is compact and C is bounded, and
[ACGn)II? = [ 22020 alk)xi[?/3.

Therefore either 0 < ||[AC|| or ||[AC|| < 1/3; in the former case, we
have o # 0; in the latter case, we have -« # 0. O



Compact operators

Theorem (I 1991)

Let A and B be compact operators on a Hilbert space H, let C be
an operator on H, and let a € R. Then

» aA and A+ B are compact,
» A* exists and is compact,
» CA is compact,

» if C is weakly compact, then AC is compact.



Future challenges

> Developing a constructive theory of distributions.

We have shown that the completeness of the space D(R) of
test functions is equivalent to BD-N.

» Developing a constructive reverese (functional) analysis.
Which nonconstructive principle is equivalent to the Baire
theorem for complete metric spaces?

» Developing a constructive theory of uniform spaces and
topological spaces.

We have given constructions of a completion of a uniform
space and a quotient topology in CZF.
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