Constructive (functional) analysis

Hajime Ishihara

School of Information Science Japan Advanced Institute of Science and Technology (JAIST) Nomi, Ishikawa 923-1292, Japan

Proof and Computation, Fischbachau, 3 - 8 October, 2016

Contents (lecture 2)

- Cauchy competeness
- Order completeness
- The intermediate value theorem
- Metric spaces
- Closed finite sets
- Strong extensionality and sequential continuity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Continuity and uniform continuity
- The Baire theorem
- Totally bounded metric spaces
- Located subsets
- Compact metric spaces

Omniscience principles

• The limited principle of omniscience (LPO, Σ_1^0 -PEM):

$$\forall \alpha [\alpha \# \mathbf{0} \lor \neg \alpha \# \mathbf{0}]$$

• The weak limited principle of omniscience (WLPO, Π_1^0 -PEM):

$$\forall \alpha [\neg \neg \alpha \ \# \ \mathbf{0} \lor \neg \alpha \ \# \ \mathbf{0}]$$

• The lesser limited principle of omniscience (LLPO, Σ_1^0 -DML):

$$\forall \alpha \beta [\neg (\alpha \# \mathbf{0} \land \beta \# \mathbf{0}) \rightarrow \neg \alpha \# \mathbf{0} \lor \neg \beta \# \mathbf{0}]$$

(日) (日) (日) (日) (日) (日) (日) (日)

Markov's principle

• Markov's principle (MP, Σ_1^0 -DNE):

$$\forall \alpha [\neg \neg \alpha \ \# \ \mathbf{0} \rightarrow \alpha \ \# \ \mathbf{0}]$$

• Markov's principle for disjunction (MP^{\vee} , Π_1^0 -DML):

$$\forall \alpha \beta [\neg (\neg \alpha \# \mathbf{0} \land \neg \beta \# \mathbf{0}) \rightarrow \neg \neg \alpha \# \mathbf{0} \lor \neg \neg \beta \# \mathbf{0}]$$

Weak Markov's principle (WMP):

$$\forall \alpha [\forall \beta (\neg \neg \beta \# \mathbf{0} \lor \neg \neg \beta \# \alpha) \to \alpha \# \mathbf{0}]$$

Relationship among principles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\blacktriangleright \text{ LPO} \Leftrightarrow \text{WLPO} + \text{MP}$
- ▶ $MP \Leftrightarrow WMP + MP^{\vee}$

Apartness and equality

Proposition

$$\flat \forall xy \in \mathbf{R}(x \# y \lor x = y) \Leftrightarrow LPO,$$

$$\flat \forall xy \in \mathbf{R}(\neg x = y \lor x = y) \Leftrightarrow \text{WLPO},$$

$$\forall xy \in \mathbf{R} (x \le y \lor y \le x) \Leftrightarrow \text{LLPO},$$

$$\forall xy \in \mathbf{R}(\neg x = y \to x \ \# \ y) \Leftrightarrow \mathrm{MP},$$

$$\flat \forall xyz \in \mathbf{R}(\neg x = y \rightarrow \neg x = z \lor \neg z = y) \Leftrightarrow \mathrm{MP}^{\lor},$$

$$\forall xy \in \mathbf{R} (\forall z \in \mathbf{R} (\neg x = z \lor \neg z = y) \to x \# y) \Leftrightarrow \text{WMP}.$$

Cauchy completeness

Definition A sequence (x_n) of real numbers converges to $x \in \mathbf{R}$ if

$$\forall k \exists N_k \forall n \geq N_k [|x_n - x| < 2^{-k}].$$

Definition

A sequence (x_n) of real numbers is a Cauchy sequence if

$$\forall k \exists N_k \forall mn \geq N_k [|x_m - x_n| < 2^{-k}].$$

Theorem

A sequence of real numbers converges if and only if it is a Cauchy sequence.

Classical order completeness

Theorem

If S is an inhabited subset of **R** with an upper bound, then $\sup S$ exists.

Proposition

If every inhabited subset S of **R** with an upper bound has a supremum, then WLPO holds.

Proof.

Let α be a binary sequence. Then $S = \{\alpha(n) \mid n \in \mathbf{N}\}$ is an inhabited subset of **R** with an upper bound 2. If sup *S* exists, then either $0 < \sup S$ or $\sup S < 1$; in the former case, we have $\neg \neg \alpha \# \mathbf{0}$; in the latter case, we have $\neg \alpha \# \mathbf{0}$.

Constructive order completeness

Theorem

Let S be an inhabited subset of **R** with an upper bound. If either $\exists s \in S(a < s)$ or $\forall s \in S(s < b)$ for each $a, b \in \mathbf{R}$ with a < b, then sup S exists.

Proof.

Let $s_0 \in S$ and u_0 be an upper bound of S with $s_0 < u_0$. Define sequences (s_n) and (u_n) of real numbers by

$$s_{n+1} = (2s_n + u_n)/3, u_{n+1} = u_n$$
 if $\exists s \in S[(2s_n + u_n)/3 < s];$
 $s_{n+1} = s_n, u_{n+1} = (s_n + 2u_n)/3$ if $\forall s \in S[s < (s_n + 2u_n)/3].$

Note that $s_n < u_n$, $\exists s \in S(s_n \le s)$ and $\forall s \in S(s \le u_n)$ for each n. Then (s_n) and (u_n) converge to the same limit which is a supremum of S.

Constructive order completeness

Definition

A set S of real numbers is totally bounded if for each k there exist $s_0, \ldots, s_{n-1} \in S$ such that

$$\forall y \in S \exists m < n[|s_m - y| < 2^{-k}].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructive order completeness

Proposition

An inhabited totally bounded set S of real numbers has a supremum.

Proof.

Let $a, b \in \mathbf{R}$ with a < b, and let k be such that $2^{-k} < (b-a)/2$. Then there exists $s_0, \ldots, s_{n-1} \in S$ such that

$$\forall y \in S \exists m < n[|s_m - y| < 2^{-k}].$$

Either $a < \max\{s_m \mid m < n\}$ or $\max\{s_m \mid m < n\} < (a+b)/2$. In the former case, there exists $s \in S$ such that a < s. In the latter case, for each $s \in S$ there exists m such that $|s - s_m| < 2^{-k}$, and hence

$$s < s_m + |s - s_m| < (a + b)/2 + (b - a)/2 = b.$$

Classical intermediate value theorem

Definition A function f from [0, 1] into **R** is uniformly continuous if

$$\forall k \exists M_k \forall xy \in [0,1][|x-y| < 2^{-M_k} \rightarrow |f(x) - f(y)| < 2^{-k}].$$

Theorem

If f is a uniformly continuous function from [0,1] into **R** with $f(0) \le 0 \le f(1)$, then there exists $x \in [0,1]$ such that f(x) = 0.

Classical intermediate value theorem

Proposition

The classical intermediate value theorem implies LLPO.

Proof.

Let $a \in \mathbf{R}$, and define a function f from [0,1] into \mathbf{R} by

$$f(x) = \min\{3(1+a)x - 1, 0\} + \max\{0, 3(1-a)x + (3a-2)\}.$$

Then f is uniformly continuous, and f(0) = -1 and f(1) = 1. If there exists $x \in [0, 1]$ such that f(x) = 0, then either 1/3 < x or x < 2/3; in the former case, we have $a \le 0$; in the latter case, we have $0 \le a$.

Constructive intermediate value theorem

Theorem If f is a uniformly continuous function from [0,1] into **R** with $f(0) \le 0 \le f(1)$, then for each k there exists $x \in [0,1]$ such that $|f(x)| < 2^{-k}$.

Constructive intermediate value theorem

Proof.

For given a k, let $l_0 = 0$ and $r_0 = 1$, and define sequences (l_n) and (r_n) by

$$\begin{split} &I_{n+1} = (I_n + r_n)/2, r_{n+1} = r_n & \text{if } f((I_n + r_n)/2) < 0, \\ &I_{n+1} = I_n, r_{n+1} = (I_n + r_n)/2 & \text{if } 0 < f((I_n + r_n)/2), \\ &I_{n+1} = (I_n + r_n)/2, r_{n+1} = (I_n + r_n)/2 & \text{if } |f((I_n + r_n)/2)| < 2^{-(k+1)}. \end{split}$$

Note that $f(I_n) < 2^{-(k+1)}$ and $-2^{-(k+1)} < f(r_n)$ for each n. Then (I_n) and (r_n) converge to the same limit $x \in [0, 1]$. Either $2^{-(k+1)} < |f(x)|$ or $|f(x)| < 2^{-k}$. In the former case, if $2^{-(k+1)} < f(x)$, then $2^{-(k+1)} < f(I_n) < 2^{-(k+1)}$ for some n, a contradiction; if $f(x) < -2^{-(k+1)}$, then $-2^{-(k+1)} < f(r_n) < -2^{-(k+1)}$ for some n, a contradiction. Therefore the latter must be the case.

Metric spaces

Definition

A metric space is a set X equipped with a metric $d: X \times X \to \mathbf{R}$ such that

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

•
$$d(x,y) = 0 \leftrightarrow x = y$$
,

$$\blacktriangleright d(x,y) = d(y,x),$$

•
$$d(x,y) \leq d(x,z) + d(z,y)$$
,

for each $x, y, z \in X$.

For $x, y \in X$, we write x # y for 0 < d(x, y).

Open and closed subsets

Definition

A subset S of a metric space X is

- open if $\forall x \in S \exists k \forall y \in X[d(x, y) < 2^{-k} \rightarrow y \in S];$
- ► closed if $\forall x \in X[\forall k \exists y \in S(d(x, y) < 2^{-k}) \rightarrow x \in S].$

Definition

Let S be a subset of a metric space X. Then

• the interior S° of S is defined by

$$S^{\circ} = \{x \in S \mid \exists k \forall y \in X[d(x, y) < 2^{-k} \rightarrow y \in S]\};$$

• the closure \overline{S} of S is defined by

$$\overline{S} = \{x \in X \mid \forall k \exists y \in S[d(x, y) < 2^{-k}]\}.$$

Separable metric spaces

Definition

- A subset S of a metric space X is dense in X if $\overline{S} = X$.
- ► A metric space is separable if there exists a countable dense subset. (A set S is countable if there exists a mapping from N onto S.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition A sequence (x_n) of X converges to $x \in X$ if

$$\forall k \exists N_k \forall n \geq N_k [d(x_n, x) < 2^{-k}].$$

Remark

A subset S of a metric space X is closed if and only if $x \in S$ whenever there exists a sequence (x_n) of S converging to x.

Closed finite sets

Proposition

Let $x, y \in \mathbf{R}$. Then $\forall z \in \mathbf{R}(\neg x = z \lor \neg z = y)$ if and only if $\neg x = y$ and $\{x, y\}$ is closed.

Proof.

For "only if part", suppose that $\forall z \in \mathbf{R}(\neg x = z \lor \neg z = y)$. Then trivially $\neg x = y$. Let (z_n) is a sequence of $\{x, y\}$ converging to $z \in \mathbf{R}$. Then either $\neg x = z$ or $\neg z = y$. In the former case, if z # y, then there exists N such that $\forall n \ge N(z_n \# y)$, and hence x = z, a contradiction. Therefore z = y. In the latter case, similarly we have z = y.

Closed finite sets

Proof.

For "if part", suppose that $\neg x = y$ and $\{x, y\}$ is closed. Define binary sequences α and β with at most one nonzero term such that

$$\begin{aligned} \alpha(n) &= 0 \to |x - y| < 2^{-(n+1)}, \quad \alpha(n) = 1 \to x \ \# \ y, \\ \beta(n) &= 0 \to \alpha(n) = 0 \lor x \ \# \ z, \quad \beta(n) = 1 \to \alpha(n) = 1 \land z \ \# \ y \end{aligned}$$

for each *n*, and define a sequence (u_n) of $\{x, y\}$ by

$$u_n = \begin{cases} x & \text{if } \forall k \le n(\alpha(k) = 0), \\ x & \text{if } \exists k \le n(\alpha(k) = 1 \land \beta(k) = 0), \\ y & \text{if } \exists k \le n(\alpha(k) = 1 \land \beta(k) = 1). \end{cases}$$

Then (u_n) is a Cauchy sequence, and hence converges to $u \in \{x, y\}$. Therefore either u = x or u = y. In the former case, assume that x = z. If x # y, then u = y, and hence x = y, a contradiction. Therefore x = y, a contradiction, and so $\neg x = z$. In the latter case, similarly we have $\neg z = y$.

Proposition (Mandelkern 1988)

•
$$\forall xy \in \mathbf{R}[\neg x = y \rightarrow \{x, y\} \text{ is closed}] \Leftrightarrow \mathrm{MP}^{\vee},$$

►
$$\forall xy \in \mathbf{R}[\{x, y\} \text{ is closed} \to (\neg x = y \to x \# y)] \Leftrightarrow \text{WMP}.$$

Definition

A mapping f between metric spaces X and Y is

strongly extensional if

$$\forall xy \in X[f(x) \ \# \ f(y) \rightarrow x \ \# \ y];$$

sequentially continuous if

$$f(x_n) \rightarrow f(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for each sequence (x_n) converging to x.

Proposition

If every mapping between metric spaces is strongly extensional, then ${\rm MP}$ holds.

Proof.

Let x and y be real numbers such that $\neg x = y$, and define a mapping from $\{x, y\}$ into $\{0, 1\}$ by

$$f(x)=0, \quad f(y)=1.$$

Then, since $\neg x = y$, f is well defined. If f is strongly extensional, then we have x # y.

Proposition

Assume MP. Then every mapping between metric spaces is strongly extensional.

Proof.

If d(x, y) = 0 for $x, y \in X$ with f(x) # f(y), then we have a contradiction, and $\neg d(x, y) = 0$; whence 0 < d(x, y), by MP.

Proposition

If every mapping from a complete metric space into a metric sapce is strongly extensional, then WMP holds.

Proposition

Assume WMP. Then every mapping from a complete metric space into a metric sapce is strongly extensional.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Every sequentially continuous mapping f between metric spaces X and Y is strongly extensional.

Proof.

Let $x, y \in X$ with f(x) # f(y), and define a sequnece (x_n) of X by

$$x_n = \begin{cases} y & \text{if } d(x,y) < 2^{-n}, \\ x & \text{if } 2^{n+1} < d(x,y). \end{cases}$$

Then (x_n) converges to x. Since f is sequentially continuous, there exists N such that $d(f(x), f(x_N)) < d(f(x), f(y))$. If $d(x, y) < 2^{N+1}$, then $x_N = y$, a contradiction; whence $2^{N+1} \le d(x, y)$.

Definition

A mapping f between metric spaces X and Y is

► (pointwise) continuous if

$$\forall x \in X \forall k \exists M_k \forall y \in X[d(x, y) < 2^{-M_k} \rightarrow d(f(x), f(y)) < 2^{-k}];$$

uniformly continuous if

 $\forall k \exists M_k \forall xy \in X[d(x,y) < 2^{-M_k} \rightarrow d(f(x),f(y)) < 2^{-k}].$

Definition

A subset S of **N** is pseudobounded if $\lim_{n\to\infty} s_n/n = 0$ for each sequence (s_n) of S.

BD-N: Every countable pseudobounded subset of N is bounded.

Remark

BD-N does not hold in (Bishop's) constructive mathematics, but holds in classical mathematics, constructive recuresive mathematics and intuitionism.

Proposition (I 1992)

If every sequentially continuous mapping from a separable metric space into a metric space is continuous, then BD-N holds.

Proof.

Let $S = \{s_n \mid n \in \mathbb{N}\}$ be a countable pseudobounded subset of \mathbb{N} , and let $X = \{0\} \cup \{2^{-s_n} \mid n \in \mathbb{N}\}$. Then X is a separable metric space. Defin a mapping f from X into $\{0, 1\}$ by

$$f(0) = 0, \quad f(2^{-s_n}) = 1.$$

Then, since S is pseudobounded, we can show that f is sequentially continuous. If f is continuous, then there exists M_1 such that $\forall y \in X[|y| < 2^{-M_1} \rightarrow |f(y)| < 2^{-1}]$, and therefore $s_n \leq M_1$ for each n.

Proposition (I 1992)

Assume BD-N. Then evey sequentially continuous mapping from a separable metric space into a metric space is continuous.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complete metric spaces

Definition

A sequence (x_n) of a metric space is a Cauchy sequence if

$$\forall k \exists N_k \forall mn \geq N_k [d(x_m, x_n) < 2^{-k}].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A metric space is complete if every Cauchy sequence converes.

Theorem (the Baire theorem)

If (G_n) is a sequence of closed subsets of a complete metric space X such that $X = \bigcup_{n=0}^{\infty} G_n$, then there exists n such that G_n has an inhabited interior.

Proposition (I-Schuster 2008)

The classical Baire theorem implies BD-N.

Open Problem

Does BD-N imply the classical Baire theorem?

Constructive Baire theorem

Theorem

If (U_n) is a sequence of open dense subsets of a complete metric space X, then $\bigcap_{n=0}^{\infty} U_n$ is dense in X.

Corollary

If (x_n) is a sequence of real numbers, then there exists $a \in \mathbf{R}$ such that $x_n \# a$ for each n.

Proof.

Let $U_n = \{x \in \mathbf{R} \mid x \# x_n\}$ for each *n*. Then U_n is open and dense. Therefore there exists $a \in \bigcap_{n=0}^{\infty} U_n$.

Totally bounded metric spaces

Definition

A metric space X is totally bounded if for each k there exist $x_0, \ldots, x_{n-1} \in X$ such that

$$\forall y \in X \exists m < n[d(x_m, y) < 2^{-k}].$$

Note that every totally bounded metric space is separable.

Proposition

If f is a uniformly continuous mapping from a totally bounded metric space X into a metric space, then

$$f(X) = \{f(x) \mid x \in X\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is totally bounded.

Totally bounded metric spaces

Proposition

If every subset S of a totally bounded metric space is totally bounded, then LPO holds.

Proof.

Let α be a binary sequence. Then $S = \{\alpha(n) \mid n \in \mathbb{N}\}$ is a subset of a totally bounded metric space $\{0, 1\}$. If S is totally bounded, then there exist $s_0, \ldots, s_{n-1} \in S$ such that

$$\forall y \in S \exists m < n[|s_m - y| < 2^{-1}],$$

and therefore either $0 < \max\{s_m \mid m < n\}$ or $\max\{s_m \mid m < n\} < 2^{-1}$; in the former case, we have $\alpha \# \mathbf{0}$; in the later case, we have $\neg \alpha \# \mathbf{0}$.

Located subsets

Definition A subset S of a metric space X is located if

$$d(x,S) = \inf\{d(x,y) \mid y \in S\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

exists for each $x \in X$.

Located subsets

Proposition

Every located subset S of a totally bounded metric space X is totally bounded.

Proof.

For given a k, there exist $x_0, \ldots, x_{n-1} \in X$ such that

$$\forall y \in X \exists m < n[d(x_m, y) < 2^{-(k+2)}].$$

Let $s_0, \ldots, s_{n-1} \in S$ be such that $d(x_m, s_m) < d(x_m, S) + 2^{-(k+1)}$ for each m < n. Then for each $y \in S$ there exists m < n such that $d(x_m, y) < 2^{-(k+2)}$, and therefore

$$egin{aligned} d(s_m,y) &\leq d(s_m,x_m) + d(x_m,y) < d(x_m,S) + 2^{-(k+1)} + d(x_m,y) \ &\leq d(x_m,y) + 2^{-(k+1)} + d(x_m,y) < 2^{-k}. \end{aligned}$$

Proposition

A totally bounded subset S of a metric space X is located.

Proof.

Let $x \in X$. Then the mapping $y \mapsto d(x, y)$ is a uniformly continuous mapping from S into \mathbf{R} , and hence $\{d(x, y) \mid y \in S\}$ is totally bounded. Therefore $\inf\{d(x, y) \mid y \in S\}$ exists.

Compact metric spaces

Definition

A metric space is compact if it is totally bounded and complete.

Proposition

If for every sequence (U_n) of open subsets of a compact metric space X with $X = \bigcup_{n=0}^{\infty} U_n$ there exists N such that $X = \bigcup_{n=0}^{N} U_n$, then the fan theorem (FAN) holds.

Proposition

If every sequence (G_n) of closed subsets of a compact metric space X with finite intersection property has an inhabited intersection, then LLPO holds.

Compact metric spaces

Proposition

If every continuous mapping from a compact metric space into a metric space is uniformly continuous, then FAN holds.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References

- Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- Errett Bishop and Douglas Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.
- Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, Cambridge Univ. Press, London, 1987.
- Douglas Bridges and Luminiţa Vîţă, Techniques of Constructive Analysis, Springer, New York, 2006.
- Peter Lietz and Thomas Streicher, *Realizability models* refuting Ishihara's boundedness princile, Ann. Pure Appl. Logic 163 (2012), 1803-1807.

References

- Hajime Ishihara, An omniscience principle, the König lemma and the Hahn-Banach theorem, Z. Math. Logik Grundlagen Math. 36 (1990), 237-240.
- Hajime Ishihara, Continuity and nondiscontinuity in constructive mathematics, J. Symbolic Logic 56 (1991), 1349-1354.
- Hajime Ishihara, Continuity properties in constructive mathematics, J. Symbolic Logic 57 (1992), 557-565.
- Hajime Ishihara, Constructive reverse mathematics: compactness properties, In: L. Crosilla and P. Schuster eds., From Sets and Types to Analysis and Topology: Towards Practicable Foundations for Constructive Mathematics, Oxford Logic Guides 48, Oxford Univ. Press, 2005, 245-267.

References

 Hajime Ishihara and Peter Schuster, A continuity principle, a version of Baire's theorem and a boundedness principle, J. Symbolic Logic 73 (2008), 1354-1350.

- Mark Mandelkern, Constructively complete finite sets, Z. Math. Logik Grundlagen Math. 34 (1988), 97-103.
- A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics, An Introduction*, Vol. I, North-Holland, Amsterdam, 1988.