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Omniscience principles

» The limited principle of omniscience (LPO, £-PEM):
Vala # 0V —a # 0]
» The weak limited principle of omniscience (WLPO, N?-PEM):
Va[-—a # 0V —a # 0]
» The lesser limited principle of omniscience (LLPO, ¥$-DML):

VaB[(a #0A B #0) = —a# 0V -5 #0]



Markov's principle

» Markov's principle (MP, ¥9-DNE):
Va[-—a # 0 — a # 0]
» Markov's principle for disjunction (MPY, N?-DML):
VaB[(—a # 0 A =8 # 0) > ~=a # 0V 5 # 0]
» Weak Markov's principle (WMP):

Va[VB(~=B # 0V =8 # a) — a # 0]



Relationship among principles

. /LPO\

WLPO

|

LLPO

|

WMP MPY

» LPO & WLPO + MP
» MP < WMP + MPY



Apartness and equality

Proposition

» Vxy € R(x # y Vx=y) < LPO,

» Vxy € R(—x =y V x =y)< WLPO,

» Vxy € R(x <yVy <x)< LLPO,

Vxy € R(—x =y — x # y) & MP,

Vxyz € R(-x =y = —x=2zV ~z=y) & MPY,

Vxy ER(Vz e R(-x=2zV z=y) > x# y) < WMP.

v

v

v



Cauchy completeness

Definition
A sequence (xp) of real numbers converges to x € R if

YkINYn > Ni[|x, — x| < 27K].
Definition
A sequence (x,) of real numbers is a Cauchy sequence if
VYKINGYmn > Ni[|xm — xa| < 27K].
Theorem

A sequence of real numbers converges if and only if it is a Cauchy
sequence.



Classical order completeness

Theorem
If S is an inhabited subset of R with an upper bound, then sup S
exists.

Proposition

If every inhabited subset S of R with an upper bound has a
supremum, then WLPO holds.

Proof.

Let a be a binary sequence. Then S = {a(n) | n € N} is an
inhabited subset of R with an upper bound 2. If sup S exists, then
either 0 < sup S or sup S < 1; in the former case, we have

——a # 0; in the latter case, we have —a # 0. O



Constructive order completeness

Theorem

Let S be an inhabited subset of R with an upper bound. If either
ds € S(a < s) orVs € S(s < b) for each a, b € R with a < b, then
sup S exists.

Proof.
Let sp € S and ug be an upper bound of S with sy < ug. Define
sequences (s,) and (up) of real numbers by

Snt1 = (2sn + un)/3, unt1 = u, if Is € S[(2s, + up)/3 < s;
Snt+1 = Sny Un+1 = (Sp + 2up)/3 if Vs € S[s < (sp + 2up)/3].

Note that s, < u,, 3s € S(s, < 's) and Vs € S(s < u,) for each n.
Then (sp) and (u,) converge to the same limit which is a
supremum of S. O



Constructive order completeness

Definition
A set S of real numbers is totally bounded if for each k there exist
$0,...,Sp—1 € S such that

Yy € §3m < n[|sm — y| < 27K].



Constructive order completeness

Proposition
An inhabited totally bounded set S of real numbers has a
supremum.

Proof.
Let a,b € R with a < b, and let k be such that 275 < (b — a)/2.
Then there exists sp,...,S,_1 € S such that

Yy € §3m < n[|sm — y| < 27K].

Either a < max{sm | m < n} or max{sy, | m < n} < (a+ b)/2. In
the former case, there exists s € S such that a < s. In the latter
case, for each s € S there exists m such that |s — s,,| < 27X, and
hence

s<Sm+|s—sm| <(a+b)/2+(b—a)/2=0b.

O



Classical intermediate value theorem

Definition
A function f from [0, 1] into R is uniformly continuous if

VkIMYxy € [0,1][|x — y| < 27Me = |f(x) — f(y)| < 27K].
Theorem

If f is a uniformly continuous function from [0, 1] into R with
f(0) <0 < f(1), then there exists x € [0, 1] such that f(x) = 0.



Classical intermediate value theorem

Proposition
The classical intermediate value theorem implies LLPO.

Proof.
Let a € R, and define a function f from [0, 1] into R by

f(x) = min{3(1 4+ a)x — 1,0} + max{0,3(1 —a)x + (3a —2)}.

Then f is uniformly continuous, and f(0) = —1 and f(1) = 1. If
there exists x € [0, 1] such that f(x) = 0, then either 1/3 < x or
x < 2/3; in the former case, we have a < 0; in the latter case, we
have 0 < a. []



Constructive intermediate value theorem

Theorem

If f is a uniformly continuous function from [0, 1] into R with

f(0) <0 < f(1), then for each k there exists x € [0,1] such that
[f(x)] <27k



Constructive intermediate value theorem

Proof.

For given a k, let Iy =0 and rp = 1, and define sequences (/,) and
(ra) by

In1 =+ 1n)/2, fos1 = if £((I, +r)/2) <0,
Ini1 = Iny g1 = (o + ) /2 if 0 < (I + ra)/2),
Il = (/ +10)/2, g1 = (I 4+ 1) /2 i [F((In 4 ra)/2)] < 2~ (D),

Note that f(/,) < 2=(k+1) and —2=(k+1) < f(r,) for each n. Then
(1) and (r,) converge to the same limit x € [0, 1]. Either

2= (k1) < |f(x)| or |f(x)| < 27K. In the former case, if

2= (k1) < £(x), then 2=(k+1) < £(1,) < 2=(k+1) for some n, a
contradiction; if f(x) < —2~(k+1)  then

—2= (k1) < f(r,) < —2=(+1) for some n, a contradiction.
Therefore the latter must be the case. O



Metric spaces

Definition
A metric space is a set X equipped with a metricd : X x X — R
such that

» d(x,y) =0 x =y,
> d(x,y) =d(y,x),
> d(x,y) < d(x,z) + d(z,y),
for each x,y,z € X.
For x,y € X, we write x # y for 0 < d(x, y).



Open and closed subsets

Definition
A subset S of a metric space X is
» open if Vx € S3kVy € X[d(x,y) <27k =y e S];
» closed if Vx € X[Vk3y € S(d(x,y) <27%) = x € S].

Definition
Let S be a subset of a metric space X. Then
> the interior S° of S is defined by

S°={xeS|3kVy e X[d(x,y) <27k >y eS|}
» the closure S of S is defined by

S={xe X|VkIy € S[d(x,y) <27}



Separable metric spaces

Definition
» A subset S of a metric space X is dense in X if S = X.

» A metric space is separable if there exists a countable dense
subset. (A set S is countable if there exists a mapping from N
onto S.)



Convergent sequences

Definition
A sequence (x,) of X converges to x € X if

VkIN YN > Ni[d(xn, x) < 274].
Remark

A subset S of a metric space X is closed if and only if x € S
whenever there exists a sequence (x,) of S converging to x.



Closed finite sets

Proposition
Let x,y € R. ThenVz € R(—x =z V -z =y) if and only if
—x =y and {x,y} is closed.

Proof.

For “only if part”, suppose that Vz € R(—x = zV =z = y). Then
trivially =x = y. Let (z,) is a sequence of {x,y} converging to

z € R. Then either =x = z or =z = y. In the former case, if

z # y, then there exists N such that Vn > N(z, # y), and hence
x = z, a contradiction. Therefore z = y. In the latter case,
similarly we have z = y.



Closed finite sets

Proof.
or “if part”, suppose that =x = y and {x, y} is closed. Define
binary sequences o and 3 with at most one nonzero term such that

a(n)=0—=|x—y|<27(MD  a(n)=1—x#y,
B(n)=0—a(n)=0Vx#z, pn=1—-aln)=1Az#y

for each n, and define a sequence (u,) of {x,y} by

(
x if Vk < n(af
(
(

k) =0),
up =< x if 3k < n(a(k) =1A B(k) =0),
y if 3k < n(a(k) =1AB(k)=1)

Then (uy) is a Cauchy sequence, and hence converges to

u € {x,y}. Therefore either u = x or u = y. In the former case,
assume that x = z. If x # y, then u =y, and hence x =y, a
contradiction. Therefore x = y, a contradiction, and so —=x = z. In
the latter case, similarly we have -z = y. O



Closed finite sets

Proposition (Mandelkern 1988)

» Vxy € R[-x =y — {x,y} is closed] & MP",
» Vxy € R[{x,y} is closed = (-x =y = x # y)| & WMP.



Strong extensionality and sequential continuity

Definition
A mapping f between metric spaces X and Y is

» strongly extensional if
Vxy € X[f(x) # f(y) = x # y];
» sequentially continuous if
f(xn) = f(x)

for each sequence (x,) converging to x.



Strong extensionality and sequential continuity

Proposition
If every mapping between metric spaces is strongly extensional,
then MP holds.

Proof.
Let x and y be real numbers such that —x = y, and define a
mapping from {x, y} into {0,1} by

f(x)=0, f(y)=1L1

Then, since -x =y, f is well defined. If f is strongly extensional,
then we have x # y.



Strong extensionality and sequential continuity

Proposition
Assume MP. Then every mapping between metric spaces is
strongly extensional.

Proof.
If d(x,y) =0 for x,y € X with f(x) # f(y), then we have a
contradiction, and —d(x,y) = 0; whence 0 < d(x,y), by MP. [



Strong extensionality and sequential continuity

Proposition
If every mapping from a complete metric space into a metric sapce
is strongly extensional, then WMP holds.

Proposition
Assume WMP. Then every mapping from a complete metric space
into a metric sapce is strongly extensional.



Strong extensionality and sequential continuity

Proposition
Every sequentially continuous mapping f between metric spaces X
and Y is strongly extensional.

Proof.
Let x,y € X with f(x) # f(y), and define a sequnece (x,) of X by

_ [y ifd(x,y) <27,
T x ifortl < d(x,y).

Then (x,) converges to x. Since f is sequentially continuous, there
exists N such that d(f(x), f(xn)) < d(f(x), f(y)).

If d(x,y) < 2N+1 then xy = v, a contradiction; whence

2N+ < d(x,y). O



Continuity and uniform continuity

Definition
A mapping f between metric spaces X and Y is

» (pointwise) continuous if
Vx € XVkIMYy € X[d(x,y) < 27M—d(f(x), f(y)) < 27X];
» uniformly continuous if

VkIMYxy € X[d(x,y) < 27Mk = d(f(x), f(y)) < 274].



Continuity and uniform continuity

Definition
A subset S of N is pseudobounded if lim,_,o s,/n = 0 for each
sequence (s,) of S.

BD-N: Every countable pseudobounded subset of N is bounded.

Remark

BD-N does not hold in (Bishop's) constructive mathematics, but
holds in classical mathematics, constructive recuresive
mathematics and intuitionism.



Continuity and uniform continuity

Proposition (I 1992)

If evey sequentially continuous mapping from a separable metric
space into a metric space is continuous, then BD-N holds.

Proof.

Let S = {s, | n € N} be a countable pseudobounded subset of N,
and let X = {0} U {27 | n € N}. Then X is a separable metric
space. Defin a mapping f from X into {0,1} by

F(0)=0, f(2=)=1.

Then, since S is pseudobounded, we can show that f is
sequentially continuous. If f is continuous, then there exists M
such that Vy € X[|y| < 2=M: — |f(y)| < 271], and therefore

sp < My for each n. O



Continuity and uniform continuity

Proposition (I 1992)

Assume BD-N. Then evey sequentially continuous mapping from a
separable metric space into a metric space is continuous.



Complete metric spaces

Definition
A sequence (x,) of a metric space is a Cauchy sequence if

VKIANYmn > Ni[d(xm, xn) < 27X].

A metric space is complete if every Cauchy sequence converes.



Classical Baire theorem

Theorem (the Baire theorem)

If (G,) is a sequence of closed subsets of a complete metric space
X such that X = U;2,G,, then there exists n such that G, has an
inhabited interior.

Proposition (I-Schuster 2008)

The classical Baire theorem implies BD-N.

Open Problem
Does BD-N imply the classical Baire theorem?



Constructive Baire theorem

Theorem

If (Uy,) is a sequence of open dense subsets of a complete metric
space X, then N2 qU, is dense in X.

Corollary

If (xn) is a sequence of real numbers, then there exists a € R such
that x, # a for each n.

Proof.
Let U, = {x € R| x # x,} for each n. Then U, is open and
dense. Therefore there exists a € Ny, Uy. O



Totally bounded metric spaces

Definition
A metric space X is totally bounded if for each k there exist
X0, - - - s Xp—1 € X such that

Yy € X3m < n[d(xm, y) < 27].

Note that every totally bounded metric space is separable.

Proposition
If f is a uniformly continuous mapping from a totally bounded
metric space X into a metric space, then

FX) ={f(x) [ x e X}

is totally bounded.



Totally bounded metric spaces

Proposition
If every subset S of a totally bounded metric space is totally
bounded, then LPO holds.

Proof.

Let a be a binary sequence. Then S = {a(n) | n € N} is a subset
of a totally bounded metric space {0,1}. If S is totally bounded,
then there exist sy,...,5,_1 € S such that

Yy € SIm < n[|sm — y| < 271,

and therefore either 0 < max{s, | m < n} or
max{sy, | m < n} <271, in the former case, we have a # 0; in the
later case, we have —a # 0. O



Located subsets

Definition
A subset S of a metric space X is located if

d(x,S) =inf{d(x,y) |y € S}

exists for each x € X.



Located subsets

Proposition
Every located subset S of a totally bounded metric space X is
totally bounded.

Proof.
For given a k, there exist xp, ..., x,_1 € X such that

Yy € X3dm < n[d(xm,y) < 272

Let sp,...,5,_1 € S be such that d(xm, Sm) < d(xm, S) + 2~ (K1)
for each m < n. Then for each y € S there exists m < n such that
d(Xm,y) < 2-(k+2) "and therefore

(Sm7 Xm) + d(vay) < d(Xm7 5) + 2_(k+1) + d(Xmay)
(Xm7y) + 2_(k+1) + d(Xmu.y) < 2_k'

d(sm,y) <



Located subsets

Proposition
A totally bounded subset S of a metric space X is located.

Proof.

Let x € X. Then the mapping y — d(x,y) is a uniformly
continuous mapping from S into R, and hence {d(x,y) |y € S} is
totally bounded. Therefore inf{d(x,y) | y € S} exists. O



Compact metric spaces

Definition
A metric space is compact if it is totally bounded and complete.

Proposition

If for every sequence (U,) of open subsets of a compact metric
space X with X = U;2 U, there exists N such that X = U,’Yzo U,,
then the fan theorem (FAN) holds.

Proposition
If every sequence (G,) of closed subsets of a compact metric space

X with finite intersection property has an inhabited intersection,
then LLPO holds.



Compact metric spaces

Proposition

If every continuous mapping from a compact metric space into a
metric space is uniformly continuous, then FAN holds.
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