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Omniscience principles

I The limited principle of omniscience (LPO, Σ0
1-PEM):

∀α[α # 0 ∨ ¬α # 0]

I The weak limited principle of omniscience (WLPO, Π0
1-PEM):

∀α[¬¬α # 0 ∨ ¬α # 0]

I The lesser limited principle of omniscience (LLPO, Σ0
1-DML):

∀αβ[¬(α # 0 ∧ β # 0)→¬α # 0 ∨ ¬β # 0]



Markov’s principle

I Markov’s principle (MP, Σ0
1-DNE):

∀α[¬¬α # 0→ α # 0]

I Markov’s principle for disjunction (MP∨, Π0
1-DML):

∀αβ[¬(¬α # 0 ∧ ¬β # 0)→¬¬α # 0 ∨ ¬¬β # 0]

I Weak Markov’s principle (WMP):

∀α[∀β(¬¬β # 0 ∨ ¬¬β # α)→ α # 0]



Relationship among principles
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I LPO⇔WLPO + MP

I MP⇔WMP + MP∨



Apartness and equality

Proposition

I ∀xy ∈ R(x # y ∨ x = y)⇔ LPO,

I ∀xy ∈ R(¬x = y ∨ x = y)⇔WLPO,

I ∀xy ∈ R(x ≤ y ∨ y ≤ x)⇔ LLPO,

I ∀xy ∈ R(¬x = y → x # y)⇔MP,

I ∀xyz ∈ R(¬x = y →¬x = z ∨ ¬z = y)⇔MP∨,

I ∀xy ∈ R(∀z ∈ R(¬x = z ∨ ¬z = y)→ x # y)⇔WMP.



Cauchy completeness

Definition
A sequence (xn) of real numbers converges to x ∈ R if

∀k∃Nk∀n ≥ Nk [|xn − x | < 2−k ].

Definition
A sequence (xn) of real numbers is a Cauchy sequence if

∀k∃Nk∀mn ≥ Nk [|xm − xn| < 2−k ].

Theorem
A sequence of real numbers converges if and only if it is a Cauchy
sequence.



Classical order completeness

Theorem
If S is an inhabited subset of R with an upper bound, then sup S
exists.

Proposition

If every inhabited subset S of R with an upper bound has a
supremum, then WLPO holds.

Proof.
Let α be a binary sequence. Then S = {α(n) | n ∈ N} is an
inhabited subset of R with an upper bound 2. If sup S exists, then
either 0 < sup S or sup S < 1; in the former case, we have
¬¬α # 0; in the latter case, we have ¬α # 0.



Constructive order completeness

Theorem
Let S be an inhabited subset of R with an upper bound. If either
∃s ∈ S(a < s) or ∀s ∈ S(s < b) for each a, b ∈ R with a < b, then
sup S exists.

Proof.
Let s0 ∈ S and u0 be an upper bound of S with s0 < u0. Define
sequences (sn) and (un) of real numbers by

sn+1 = (2sn + un)/3, un+1 = un if ∃s ∈ S [(2sn + un)/3 < s];
sn+1 = sn, un+1 = (sn + 2un)/3 if ∀s ∈ S [s < (sn + 2un)/3].

Note that sn < un, ∃s ∈ S(sn ≤ s) and ∀s ∈ S(s ≤ un) for each n.
Then (sn) and (un) converge to the same limit which is a
supremum of S .



Constructive order completeness

Definition
A set S of real numbers is totally bounded if for each k there exist
s0, . . . , sn−1 ∈ S such that

∀y ∈ S∃m < n[|sm − y | < 2−k ].



Constructive order completeness

Proposition

An inhabited totally bounded set S of real numbers has a
supremum.

Proof.
Let a, b ∈ R with a < b, and let k be such that 2−k < (b − a)/2.
Then there exists s0, . . . , sn−1 ∈ S such that

∀y ∈ S∃m < n[|sm − y | < 2−k ].

Either a < max{sm | m < n} or max{sm | m < n} < (a + b)/2. In
the former case, there exists s ∈ S such that a < s. In the latter
case, for each s ∈ S there exists m such that |s − sm| < 2−k , and
hence

s < sm + |s − sm| < (a + b)/2 + (b − a)/2 = b.



Classical intermediate value theorem

Definition
A function f from [0, 1] into R is uniformly continuous if

∀k∃Mk∀xy ∈ [0, 1][|x − y | < 2−Mk → |f (x)− f (y)| < 2−k ].

Theorem
If f is a uniformly continuous function from [0, 1] into R with
f (0) ≤ 0 ≤ f (1), then there exists x ∈ [0, 1] such that f (x) = 0.



Classical intermediate value theorem

Proposition

The classical intermediate value theorem implies LLPO.

Proof.
Let a ∈ R, and define a function f from [0, 1] into R by

f (x) = min{3(1 + a)x − 1, 0}+ max{0, 3(1− a)x + (3a− 2)}.

Then f is uniformly continuous, and f (0) = −1 and f (1) = 1. If
there exists x ∈ [0, 1] such that f (x) = 0, then either 1/3 < x or
x < 2/3; in the former case, we have a ≤ 0; in the latter case, we
have 0 ≤ a.



Constructive intermediate value theorem

Theorem
If f is a uniformly continuous function from [0, 1] into R with
f (0) ≤ 0 ≤ f (1), then for each k there exists x ∈ [0, 1] such that
|f (x)| < 2−k .



Constructive intermediate value theorem

Proof.
For given a k, let l0 = 0 and r0 = 1, and define sequences (ln) and
(rn) by

ln+1 = (ln + rn)/2, rn+1 = rn if f ((ln + rn)/2) < 0,
ln+1 = ln, rn+1 = (ln + rn)/2 if 0 < f ((ln + rn)/2),

ln+1 = (ln + rn)/2, rn+1 = (ln + rn)/2 if |f ((ln + rn)/2)| < 2−(k+1).

Note that f (ln) < 2−(k+1) and −2−(k+1) < f (rn) for each n. Then
(ln) and (rn) converge to the same limit x ∈ [0, 1]. Either
2−(k+1) < |f (x)| or |f (x)| < 2−k . In the former case, if
2−(k+1) < f (x), then 2−(k+1) < f (ln) < 2−(k+1) for some n, a
contradiction; if f (x) < −2−(k+1), then
−2−(k+1) < f (rn) < −2−(k+1) for some n, a contradiction.
Therefore the latter must be the case.



Metric spaces

Definition
A metric space is a set X equipped with a metric d : X × X → R
such that

I d(x , y) = 0↔ x = y ,

I d(x , y) = d(y , x),

I d(x , y) ≤ d(x , z) + d(z , y),

for each x , y , z ∈ X .

For x , y ∈ X , we write x # y for 0 < d(x , y).



Open and closed subsets

Definition
A subset S of a metric space X is

I open if ∀x ∈ S∃k∀y ∈ X [d(x , y) < 2−k → y ∈ S ];

I closed if ∀x ∈ X [∀k∃y ∈ S(d(x , y) < 2−k)→ x ∈ S ].

Definition
Let S be a subset of a metric space X . Then

I the interior S◦ of S is defined by

S◦ = {x ∈ S | ∃k∀y ∈ X [d(x , y) < 2−k → y ∈ S ]};

I the closure S of S is defined by

S = {x ∈ X | ∀k∃y ∈ S [d(x , y) < 2−k ]}.



Separable metric spaces

Definition

I A subset S of a metric space X is dense in X if S = X .

I A metric space is separable if there exists a countable dense
subset. (A set S is countable if there exists a mapping from N
onto S .)



Convergent sequences

Definition
A sequence (xn) of X converges to x ∈ X if

∀k∃Nk∀n ≥ Nk [d(xn, x) < 2−k ].

Remark
A subset S of a metric space X is closed if and only if x ∈ S
whenever there exists a sequence (xn) of S converging to x .



Closed finite sets

Proposition

Let x , y ∈ R. Then ∀z ∈ R(¬x = z ∨ ¬z = y) if and only if
¬x = y and {x , y} is closed.

Proof.
For “only if part”, suppose that ∀z ∈ R(¬x = z ∨ ¬z = y). Then
trivially ¬x = y . Let (zn) is a sequence of {x , y} converging to
z ∈ R. Then either ¬x = z or ¬z = y . In the former case, if
z # y , then there exists N such that ∀n ≥ N(zn # y), and hence
x = z , a contradiction. Therefore z = y . In the latter case,
similarly we have z = y .



Closed finite sets

Proof.
For “if part”, suppose that ¬x = y and {x , y} is closed. Define
binary sequences α and β with at most one nonzero term such that

α(n) = 0→ |x − y | < 2−(n+1), α(n) = 1→ x # y ,

β(n) = 0→ α(n) = 0 ∨ x # z , β(n) = 1→ α(n) = 1 ∧ z # y

for each n, and define a sequence (un) of {x , y} by

un =


x if ∀k ≤ n(α(k) = 0),
x if ∃k ≤ n(α(k) = 1 ∧ β(k) = 0),
y if ∃k ≤ n(α(k) = 1 ∧ β(k) = 1).

Then (un) is a Cauchy sequence, and hence converges to
u ∈ {x , y}. Therefore either u = x or u = y . In the former case,
assume that x = z . If x # y , then u = y , and hence x = y , a
contradiction. Therefore x = y , a contradiction, and so ¬x = z . In
the latter case, similarly we have ¬z = y .



Closed finite sets

Proposition (Mandelkern 1988)

I ∀xy ∈ R[¬x = y →{x , y} is closed]⇔MP∨,

I ∀xy ∈ R[{x , y} is closed→ (¬x = y → x # y)]⇔WMP.



Strong extensionality and sequential continuity

Definition
A mapping f between metric spaces X and Y is

I strongly extensional if

∀xy ∈ X [f (x) # f (y)→ x # y ];

I sequentially continuous if

f (xn)→ f (x)

for each sequence (xn) converging to x .



Strong extensionality and sequential continuity

Proposition

If every mapping between metric spaces is strongly extensional,
then MP holds.

Proof.
Let x and y be real numbers such that ¬x = y , and define a
mapping from {x , y} into {0, 1} by

f (x) = 0, f (y) = 1.

Then, since ¬x = y , f is well defined. If f is strongly extensional,
then we have x # y .



Strong extensionality and sequential continuity

Proposition

Assume MP. Then every mapping between metric spaces is
strongly extensional.

Proof.
If d(x , y) = 0 for x , y ∈ X with f (x) # f (y), then we have a
contradiction, and ¬d(x , y) = 0; whence 0 < d(x , y), by MP.



Strong extensionality and sequential continuity

Proposition

If every mapping from a complete metric space into a metric sapce
is strongly extensional, then WMP holds.

Proposition

Assume WMP. Then every mapping from a complete metric space
into a metric sapce is strongly extensional.



Strong extensionality and sequential continuity

Proposition

Every sequentially continuous mapping f between metric spaces X
and Y is strongly extensional.

Proof.
Let x , y ∈ X with f (x) # f (y), and define a sequnece (xn) of X by

xn =

{
y if d(x , y) < 2−n,
x if 2n+1 < d(x , y).

Then (xn) converges to x . Since f is sequentially continuous, there
exists N such that d(f (x), f (xN)) < d(f (x), f (y)).
If d(x , y) < 2N+1, then xN = y , a contradiction; whence
2N+1 ≤ d(x , y).



Continuity and uniform continuity

Definition
A mapping f between metric spaces X and Y is

I (pointwise) continuous if

∀x ∈ X∀k∃Mk∀y ∈ X [d(x , y) < 2−Mk→d(f (x), f (y)) < 2−k ];

I uniformly continuous if

∀k∃Mk∀xy ∈ X [d(x , y) < 2−Mk → d(f (x), f (y)) < 2−k ].



Continuity and uniform continuity

Definition
A subset S of N is pseudobounded if limn→∞ sn/n = 0 for each
sequence (sn) of S .

BD-N: Every countable pseudobounded subset of N is bounded.

Remark
BD-N does not hold in (Bishop’s) constructive mathematics, but
holds in classical mathematics, constructive recuresive
mathematics and intuitionism.



Continuity and uniform continuity

Proposition (I 1992)

If evey sequentially continuous mapping from a separable metric
space into a metric space is continuous, then BD-N holds.

Proof.
Let S = {sn | n ∈ N} be a countable pseudobounded subset of N,
and let X = {0} ∪ {2−sn | n ∈ N}. Then X is a separable metric
space. Defin a mapping f from X into {0, 1} by

f (0) = 0, f (2−sn) = 1.

Then, since S is pseudobounded, we can show that f is
sequentially continuous. If f is continuous, then there exists M1

such that ∀y ∈ X [|y | < 2−M1 → |f (y)| < 2−1], and therefore
sn ≤ M1 for each n.



Continuity and uniform continuity

Proposition (I 1992)

Assume BD-N. Then evey sequentially continuous mapping from a
separable metric space into a metric space is continuous.



Complete metric spaces

Definition
A sequence (xn) of a metric space is a Cauchy sequence if

∀k∃Nk∀mn ≥ Nk [d(xm, xn) < 2−k ].

A metric space is complete if every Cauchy sequence converes.



Classical Baire theorem

Theorem (the Baire theorem)

If (Gn) is a sequence of closed subsets of a complete metric space
X such that X = ∪∞n=0Gn, then there exists n such that Gn has an
inhabited interior.

Proposition (I-Schuster 2008)

The classical Baire theorem implies BD-N.

Open Problem

Does BD-N imply the classical Baire theorem?



Constructive Baire theorem

Theorem
If (Un) is a sequence of open dense subsets of a complete metric
space X , then ∩∞n=0Un is dense in X .

Corollary

If (xn) is a sequence of real numbers, then there exists a ∈ R such
that xn # a for each n.

Proof.
Let Un = {x ∈ R | x # xn} for each n. Then Un is open and
dense. Therefore there exists a ∈ ∩∞n=0Un.



Totally bounded metric spaces

Definition
A metric space X is totally bounded if for each k there exist
x0, . . . , xn−1 ∈ X such that

∀y ∈ X∃m < n[d(xm, y) < 2−k ].

Note that every totally bounded metric space is separable.

Proposition

If f is a uniformly continuous mapping from a totally bounded
metric space X into a metric space, then

f (X ) = {f (x) | x ∈ X}

is totally bounded.



Totally bounded metric spaces

Proposition

If every subset S of a totally bounded metric space is totally
bounded, then LPO holds.

Proof.
Let α be a binary sequence. Then S = {α(n) | n ∈ N} is a subset
of a totally bounded metric space {0, 1}. If S is totally bounded,
then there exist s0, . . . , sn−1 ∈ S such that

∀y ∈ S∃m < n[|sm − y | < 2−1],

and therefore either 0 < max{sm | m < n} or
max{sm | m < n} < 2−1; in the former case, we have α # 0; in the
later case, we have ¬α # 0.



Located subsets

Definition
A subset S of a metric space X is located if

d(x , S) = inf{d(x , y) | y ∈ S}

exists for each x ∈ X .



Located subsets

Proposition

Every located subset S of a totally bounded metric space X is
totally bounded.

Proof.
For given a k, there exist x0, . . . , xn−1 ∈ X such that

∀y ∈ X∃m < n[d(xm, y) < 2−(k+2)].

Let s0, . . . , sn−1 ∈ S be such that d(xm, sm) < d(xm,S) + 2−(k+1)

for each m < n. Then for each y ∈ S there exists m < n such that
d(xm, y) < 2−(k+2), and therefore

d(sm, y) ≤ d(sm, xm) + d(xm, y) < d(xm,S) + 2−(k+1) + d(xm, y)

≤ d(xm, y) + 2−(k+1) + d(xm, y) < 2−k .



Located subsets

Proposition

A totally bounded subset S of a metric space X is located.

Proof.
Let x ∈ X . Then the mapping y 7→ d(x , y) is a uniformly
continuous mapping from S into R, and hence {d(x , y) | y ∈ S} is
totally bounded. Therefore inf{d(x , y) | y ∈ S} exists.



Compact metric spaces

Definition
A metric space is compact if it is totally bounded and complete.

Proposition

If for every sequence (Un) of open subsets of a compact metric
space X with X = ∪∞n=0Un there exists N such that X = ∪Nn=0Un,
then the fan theorem (FAN) holds.

Proposition

If every sequence (Gn) of closed subsets of a compact metric space
X with finite intersection property has an inhabited intersection,
then LLPO holds.



Compact metric spaces

Proposition

If every continuous mapping from a compact metric space into a
metric space is uniformly continuous, then FAN holds.
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