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A history of constructivism

I History
I Arithmetization of mathematics (Kronecker, 1887)
I Three kinds of intuition (Poincaré, 1905)
I French semi-intuitionism (Borel, 1914)
I Intuitionism (Brouwer, 1914)
I Predicativity (Weyl, 1918)
I Finitism (Skolem, 1923; Hilbert-Bernays, 1934)
I Constructive recursive mathematics (Markov, 1954)
I Constructive mathematics (Bishop, 1967)

I Logic
I Intuitionistic logic (Heyting, 1934; Kolmogorov, 1932)



Language

We use the standard language of (many-sorted) first-order
predicate logic based on

I primitive logical operators ∧,∨,→,⊥,∀,∃.

We introduce the abbreviations

I ¬A ≡ A→⊥;

I A↔ B ≡ (A→ B) ∧ (B → A).



The BHK interpretation

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of the
logical operators is the following.

I A proof of A ∧ B is given by presenting a proof of A and a
proof of B.

I A proof of A ∨ B is given by presenting either a proof of A or
a proof of B.

I A proof of A→ B is a construction which transform any proof
of A into a proof of B.

I Absurdity ⊥ has no proof.

I A proof of ∀xA(x) is a construction which transforms any t
into a proof of A(t).

I A proof of ∃xA(x) is given by presenting a t and a proof of
A(t).



Natural Deduction System

We shall use D, possibly with a subscript, for arbitrary deduction.

We write
Γ
D
A

to indicate that D is deduction with conclusion A and assumptions
Γ.



Deduction (Basis)

For each formula A,
A

is a deduction with conclusion A and assumptions {A}.



Deduction (Induction step, →I)

If
Γ
D
B

is a deduction, then
Γ
D
B

A→ B
→I

is a deduction with conclusion A→ B and assumptions Γ \ {A}.
We write

[A]
D
B

A→ B
→I



Deduction (Induction step, →E)

If
Γ1
D1

A→ B

Γ2
D2
A

are deductions, then
Γ1
D1

A→ B

Γ2
D2
A

B
→E

is a deduction with conclusion B and assumptions Γ1 ∪ Γ2.



Example

[¬¬A]

[¬¬(A→ B)]

[¬B]

[A→ B] [A]

B
→E

⊥ →E

¬(A→ B)
→I

⊥ →E

¬A →I

⊥ →E

¬¬B →I

¬¬A→¬¬B →I

¬¬(A→ B)→ (¬¬A→¬¬B)
→I



Minimal logic

[A]
D
B

A→ B
→I

D1
A→ B

D2
A

B
→E

D1
A
D2
B

A ∧ B
∧I

D
A ∧ B
A

∧Er

D
A ∧ B
B

∧El

D
A

A ∨ B
∨Ir

D
B

A ∨ B
∨Il

D1
A ∨ B

[A]
D2
C

[B]
D3
C

C
∨E



Minimal logic

D
A

∀yA[x/y ]
∀I

D
∀xA

A[x/t]
∀E

D
A[x/t]

∃xA ∃I

D1

∃yA[x/y ]

[A]
D2
C

C
∃E

I In ∀E and ∃I, t must be free for x in A.

I In ∀I, D must not contain assumptions containing x free, and
y ≡ x or y 6∈ FV(A).

I In ∃E, D2 must not contain assumptions containing x free
except A, x 6∈ FV(C ), and y ≡ x or y 6∈ FV(A).



Example

[(A→ B) ∧ (A→ C )]

A→ B
∧Er [A]

B
→E

[(A→ B) ∧ (A→ C )]

A→ C
∧El [A]

C
→E

B ∧ C
∧I

A→ B ∧ C
→I

(A→ B) ∧ (A→ C )→ (A→ B ∧ C )
→I



Example

[A ∨ B]

[(A→ C) ∧ (B→ C)]

A→ C
∧Er

[A]

C
→E

[(A→ C) ∧ (B→ C)]

B→ C
∧El

[B]

C
→E

C
∨E

A ∨ B→ C
→I

(A→ C) ∧ (B→ C)→ (A ∨ B→ C)
→I



Example

[A→∀xB] [A]

∀xB →E

B
∀E

A→ B
→I

∀x(A→ B)
∀I

(A→∀xB)→∀x(A→ B)
→I

where x 6∈ FV(A).



Example

[∃x(A→ B)]

[A→ B] [A]

B
→E

∃xB ∃I

∃xB ∃E
A→∃xB →I

∃x(A→ B)→ (A→∃xB)
→I

where x 6∈ FV(A).



Intuitionistic logic

Intuitionistic logic is obtained from minimal logic by adding the
intuitionistic absurdity rule (ex falso quodlibet).

If
Γ
D
⊥

is a deduction, then
Γ
D
⊥
A
⊥i

is a deduction with conclusion A and assumptions Γ.



Example

[¬¬A→¬¬B]

[¬(A→ B)]

[¬A] [A]

⊥ →E

B
⊥i

A→ B
→I

⊥ →E

¬¬A →I

¬¬B →E

[¬(A→ B)]

[B]

A→ B
→I

⊥ →E

¬B →I

⊥
¬¬(A→ B)

→I

(¬¬A→¬¬B)→¬¬(A→ B)
→I



Example

[A ∨ B]

[¬A] [A]

⊥ →E

B
⊥i [B]

B
∨E

¬A→ B
→I

A ∨ B → (¬A→ B)
→I



Classical logic

Classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule (reductio ad
absurdum).

If
Γ
D
⊥

is a deduction, then
Γ
D
⊥
A
⊥c

is a deduction with conclusion A and assumption Γ \ {¬A}.



Example (classical logic)

The double negation elimination (DNE):

[¬¬A] [¬A]

⊥ →E

A
⊥c

¬¬A→ A
→I



Example (classical logic)

The principle of excluded middle (PEM):

[¬(A ∨ ¬A)]

[¬(A ∨ ¬A)]

[A]

A ∨ ¬A ∨Ir

⊥ →E

¬A →I

A ∨ ¬A ∨Il

⊥ →E

A ∨ ¬A ⊥c



Example (classical logic)

De Morgan’s law (DML):

[¬(¬A ∨ ¬B)]

[¬(¬A ∨ ¬B)]

[¬(A ∧ B)]

[A] [B]

A ∧ B
∧I

⊥ →E

¬A →I

¬A ∨ ¬B ∨Ir

⊥ →E

¬B →I

¬A ∨ ¬B ∨Il

⊥ →E

¬A ∨ ¬B ⊥c

¬(A ∧ B)→¬A ∨ ¬B →I



RAA vs →I

⊥c : deriving A by deducing absurdity (⊥) from ¬A.

[¬A]
D
⊥
A
⊥c

→I: deriving ¬A by deducing absurdity (⊥) from A.

[A]
D
⊥
¬A →I



Notations

I m, n, i , j , k , . . . ∈ N
I α, β, γ, δ, . . . ∈ NN

I 0 = λn.0
I α # β⇔∃n(α(n) 6= β(n))



Omniscience principles

I The limited principle of omniscience (LPO, Σ0
1-PEM):

∀α[α # 0 ∨ ¬α # 0]

I The weak limited principle of omniscience (WLPO, Π0
1-PEM):

∀α[¬¬α # 0 ∨ ¬α # 0]

I The lesser limited principle of omniscience (LLPO, Σ0
1-DML):

∀αβ[¬(α # 0 ∧ β # 0)→¬α # 0 ∨ ¬β # 0]



Markov’s principle

I Markov’s principle (MP, Σ0
1-DNE):

∀α[¬¬α # 0→ α # 0]

I Markov’s principle for disjunction (MP∨, Π0
1-DML):

∀αβ[¬(¬α # 0 ∧ ¬β # 0)→¬¬α # 0 ∨ ¬¬β # 0]

I Weak Markov’s principle (WMP):

∀α[∀β(¬¬β # 0 ∨ ¬¬β # α)→ α # 0]



Remark

We may assume without loss of generality that α (and β) are
ranging over

I binary sequences,

I nondecreasing sequences,

I sequences with at most one nonzero term, or

I sequences with α(0) = 0.



Relationship among principles

LPO

zzuu
uu
uu
uu
u

%%J
JJ

JJ
JJ

JJ

MP

�� $$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

WLPO

��

LLPO

��

WMP MP∨

I LPO⇔WLPO + MP

I MP⇔WMP + MP∨



Remark

I MP (and hencce WMP and MP∨) holds in constructive
recuresive mathematics.

I WMP holds in intuitionism.



CZF and choice axioms

The materials in the lectures could be formalized in

the constructive Zermelo-Fraenkel set theory (CZF)

without the powerset axiom and the full separation axiom, together
with the following choice axioms.

I The axiom of countable choice (AC0):

∀n∃y ∈ YA(n, y)→∃f ∈ YN∀nA(n, f (n))

I The axiom of dependent choice (DC):

∀x ∈ X∃y ∈ XA(x , y)→
∀x ∈ X∃f ∈ XN[f (0) = x ∧ ∀nA(f (n), f (n + 1))]



Number systems

I The set Z of integers is the set N×N with the equality

(n,m) =Z (n′,m′)⇔ n + m′ = n′ + m.

The arithmetical relations and operations are defined on Z in
a straightforwad way; natural numbers are embedded into Z
by the mapping n 7→ (n, 0).

I The set Q of rationals is the set Z×N with the equality

(a,m) =Q (b, n)⇔ a · (n + 1) =Z b · (m + 1).

The arithmetical relations and operations are defined on Q in
a straightforwad way; integers are embedded into Q by the
mapping a 7→ (a, 0).



Real numbers

Definition
A real number is a sequence (pn)n of rationals such that

∀mn
(
|pm − pn| < 2−m + 2−n

)
.

We shall write R for the set of real numbers as usual.

Remark
Rationals are embedded into R by the mapping p 7→ p∗ = λn.p.



Ordering relation

Definition
Let < be the ordering relation between real numbers x = (pn)n
and y = (qn)n defined by

x < y ⇔∃n
(
2−n+2 < qn − pn

)
.

Proposition

Let x , y , z ∈ R. Then

I ¬(x < y ∧ y < x),

I x < y → x < z ∨ z < y.



Ordering relation

Proof.
Let x = (pn)n, y = (qn)n and z = (rn)n, and suppose that x < y .
Then there exists n such that 2−n+2 < qn − pn. Setting N = n + 3,
either (pn + qn)/2 < rN or rN ≤ (pn + qn)/2. In the former case,
we have

2−N+2 < 2−n+1 − (2−(n+3) + 2−n) <
qn − pn

2
− (pN − pn)

=
pn + qn

2
− pN < rN − pN ,

and hence x < z . In the latter case, we have

2−N+2 < −(2−(n+3) + 2−n) + 2−n+1 < (qN − qn) +
qn − pn

2

= qN −
pn + qn

2
≤ qN − rN ,

and hence z < y .



Apartness and equality

Definition
We define the apartness #, the equality =, and the ordering
relation ≤ between real numbers x and y by

I x # y ⇔ (x < y ∨ y < x),

I x = y ⇔¬(x # y),

I x ≤ y ⇔¬(y < x).

Lemma
Let x , y , z ∈ R. Then

I x # y ↔ y # x,

I x # y → x # z ∨ z # y.



Apartness and equality

Proposition

Let x , y , z ∈ R. Then

I x = x,

I x = y → y = x,

I x = y ∧ y = z → x = z.

Proposition

Let x , x ′, y , y ′ ∈ R. Then

I x = x ′ ∧ y = y ′ ∧ x < y → x ′ < y ′,

I ¬¬(x < y ∨ x = y ∨ y < x),

I x < y ∧ y < z → x < z.



Apartness and equality

Corollary

Let x , x ′, y , y ′, z ∈ R. Then

I x = x ′ ∧ y = y ′ ∧ x # y → x ′ # y ′,

I x = x ′ ∧ y = y ′ ∧ x ≤ y → x ′ ≤ y ′,

I x ≤ y ↔¬¬(x < y ∨ x = y),

I ¬¬(x ≤ y ∨ y ≤ x),

I x ≤ y ∧ y ≤ x → x = y,

I x < y ∧ y ≤ z → x < z,

I x ≤ y ∧ y < z → x < z,

I x ≤ y ∧ y ≤ z → x ≤ z.



Apartness and equality

Proposition

∀xy ∈ R(x # y ∨ x = y)⇔ LPO,

Proof.
(⇐): Let x = (pn)n and y = (qn)n, and define a binary sequence α
by

α(n) = 1⇔ 2−n+2 < |qn − pn|.

Then α # 0↔ x # y , and hence x # y ∨ x = y , by LPO.
(⇒): Let α be a binary sequence α with at most one nonzero
term, and define a sequence (pn)n of rationals by

pn =
n∑

k=0

α(k) · 2−k .

Then x = (pn)n ∈ R, and x # 0↔ α # 0. Therefore
α # 0 ∨ ¬α # 0, by x # 0 ∨ x = 0.



Apartness and equality

Proposition

I ∀xy ∈ R(¬x = y ∨ x = y)⇔WLPO,

I ∀xy ∈ R(x ≤ y ∨ y ≤ x)⇔ LLPO,

I ∀xy ∈ R(¬x = y → x # y)⇔MP,

I ∀xyz ∈ R(¬x = y →¬x = z ∨ ¬z = y)⇔MP∨,

I ∀xy ∈ R(∀z ∈ R(¬x = z ∨ ¬z = y)→ x # y)⇔WMP.



Arithmetical operations

The arithmetical operations are defined on R in a straightforwad
way.

For x = (pn), y = (qn) ∈ R, define

I x + y = (pn+1 + qn+1);

I −x = (−pn);

I |x | = (|pn|);

I max{x , y} = (max{pn, qn});

I
...
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