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There are m assets. Their value at time 0 (present) is known.
Their value at time 1 (future) is unknown. There are n cases and
we know the values in each case.

This information is contained in a Rm×n-matrix A.

The value of the entry aij is the price development (price at time 1
minus price at time 0) of asset i in case j .
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Set
P = {p ∈ Rn |

∑n
i=1 pi = 1 and 0 < pi for all i} .

p ∈ P is a martingale measure if A · p = 0

Under a martinagle measure the average profit is zero, that is
todays price of the assets is reasonable in the sense of being the
expected value of the assets tomorrow.
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For x ∈ Rn we define

x > 0 :⇔ ∀i (xi ≥ 0) ∧ ∃i (xi > 0) .

ξ ∈ Rm is an arbitrage trading strategy if ξ · A > 0

The existence of an arbitrage trading stategy implies the possibility
of risk-less profit.
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The fundamental theorem of asset pricing says that the absence of
an arbitrage trading strategy is equivalent to the existence of a
martingale measure.

FTAP Fix a Rm×n-matrix A. Then

¬∃ξ ∈ Rm (ξ · A > 0) ⇔ ∃p ∈ P (A · p = 0) .

“⇐” is clear (consider ξ · A · p)

Proposition 1

FTAP⇔ MP
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MP ⇒ FTAP

Fix a Rm×n-matrix A such that

¬∃ξ ∈ Rm (ξ · A > 0) .

Let Y be the linear subspace of Rn which is generated by the rows
of A. Let C be the convex hull of the unit vectors of Rn. By MP,
we obtain

∀c ∈ C , y ∈ Y (d(c, y) > 0) .

By the separation theorem, there exist p ∈ Rn and reals α, β such
that

∀y ∈ Y , c ∈ C (〈p, c〉 > α > β > 〈p, y〉) .

This implies that A · p = 0 and that all components of p are
positive. We can assume further that p1 + . . .+ pn = 1.
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FTAP ⇒ MP

Fix a real number a 6= 0. Apply FTAP to

A = (|a| ,−1).

The no-arbitrage condition is satisfied: the existence of ξ ∈ R with
(ξ · |a| ,−ξ) > 0 would imply a = 0.

Now FTAP yields the existence of a p ∈ P with

p1 · |a| = p2.

This implies that |a| > 0.
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We obtain the following constructive version of FTAP.

FTAP′ Fix a Rm×n-matrix A. Then

∀ξ ∈ Rm y ∈ Y d(ξ·A, y) > 0 ⇒ ∃p ∈ P (A · p = 0) .
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why?
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Part IV: Brouwer’s Fan Theorem

I {0, 1}∗ the set of finite binary sequences

I u, v ,w ∈ {0, 1}∗

I |u| the length of u

I un the restriction of u to the first n elements

I u ∗ v the concatenation of u and v

I i ∈ {0, 1}
I α, β infinite binary sequences
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B ⊆ {0, 1}∗ is

I detachable if ∀u (u ∈ B ∨ u /∈ B)

I a bar if ∀α ∃n (αn ∈ B)

I a uniform bar if ∃N ∀α ∃n ≤ N (αn ∈ B)

FAN∆ every detachable bar is a uniform bar

FAN every bar is a uniform bar

neither provable nor falsifiable in Bishop’s constructive
mathematics
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Lemma (Julian, Richman 1984)

The following are equivalent:

I FAN∆

I f : [0, 1]→ R+ u/c ⇒ inf f > 0

Lemma (B., Svindland 2016)

f : [0, 1]→ R+ u/c + convexity ⇒ inf f > 0

Is there a corresponding extra condition on bars such that FAN
becomes constructively valid?
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u < v :⇔ |u| = |v | ∧ ∃i < |u| (ui = v i ∧ ui = 0 ∧ vi = 1)

u ≤ v :⇔ u = v ∨ u < v .

A ⊆ {0, 1}∗ is co-convex if u ∈ A implies that either

{v | v ≤ u} ⊆ A

or
{v | u ≤ v} ⊆ A .
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Proposition. Every co-convex bar is a uniform bar.

Fix a co-convex bar B. We can assume that B is closed under
extension:

u ∈ B ⇒ u ∗ 0 ∈ B ∧ u ∗ 1 ∈ B

u is secure if
∃n ∀w ∈ {0, 1}n (u ∗ w ∈ B)
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Claim 1. For every u, either u ∗ 0 is secure or u ∗ 1 is secure.

There exists a function

F : {0, 1}∗ → {0, 1}

such that
∀u (u ∗ F (u) is secure) .
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Define α by
αn = 1− F (αn).

Claim 2. ∀n ∀u ∈ {0, 1}n (u 6= αn⇒ u is secure)

There exists n such that αn is secure. Therefore, every u of length
n is secure. Therefore, B is a uniform bar.

�
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Proof of Claim 1. For

β := 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .

there exists a positive l with βl ∈ B. Set m = l − 1. By
co-convexity of B, we either have{

v | v ≤ βl
}
⊆ B or

{
v | βl ≤ v

}
⊆ B.

In the first case,
0 ∗ w ∈ B

for every w of length m, which implies that 0 is secure. In the
second case,

1 ∗ w ∈ B

for every w of length m, which implies that 1 is secure.
�
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