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Let A be a subset of R and x ∈ R. x is the infimum of A if

∀a ∈ A (x ≤ a) and ∀z (x < z ⇒ ∃a ∈ A (a < z)) .

In this case, we write x = inf A.

Let α be a binary sequence. Set

A = {αn | n ∈ N} .

Let x be the infimum of A. Then either x < 1, in this case there
exists an n with αn = 0. Or 0 < x , in this case αn = 1 for all n.

2 / 13



Josef Berger and Gregor Svindland, Convexity and constructive
infima, Archive for Mathematical Logic (2016)

http://link.springer.com/article/10.1007/s00153-016-0502-y

3 / 13

http://link.springer.com/article/10.1007/s00153-016-0502-y


I scalar product 〈x , y〉 =
∑n

i=1 xi · yi
I norm ‖x‖ =

√
〈x , x〉

I metric d(x , y) = ‖y − x‖

C ⊆ Rn is convex if

λ · x + (1− λ) · y ∈ C

for all x , y ∈ C and λ ∈ [0, 1].
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I Fix ε > 0 and sets D ⊆ C ⊆ Rn. D is an ε-approximation of
C if for every c ∈ C there exists d ∈ D with d(c , d) < ε.

I C is totally bounded if for every ε > 0 there exist elements
x1, . . . , xm of C such that {x1, . . . , xm} is an ε-approximation
of C .

I C is closed if

cn ∈ C ∧ cn → x ⇒ x ∈ C .

I C is compact if it is totally bounded and closed.
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Lemma 1
If X ⊆ Rn is totally bounded and f : X → R is uniformly
continuous, then

{f (x) | x ∈ X}

is totally bounded.

Lemma 2
If A ⊆ R is totally bounded, then inf A exists.

Lemma 3
If X ⊆ Rn is totally bounded and f : X → R is uniformly
continuous, then

inf f = inf {f (x) | x ∈ X}

exists.
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Lemma 4
Fix a compact convex set C ⊆ R2 and suppose that there are
y , z ∈ C with y1 < 0 < z1. Then the set

M = {x ∈ C | x1 = 0}

is convex and compact.
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Proof.
Set

L = {x ∈ C | x1 ≤ 0} and R = {x ∈ C | x1 ≥ 0} .

For
κ : R → R , s 7→ max(−s, 0)

f : Rn → Rn, x 7→ z1
z1 + κ(x1)

x +
κ(x1)

z1 + κ(x1)
z

I f is uniformly continuous

I f maps C onto R

I f maps L onto M
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Proposition 1

If C ⊆ Rn is compact and convex and

f : C → R+

is quasi-convex and uniformly continuous, then inf f > 0.

quasi-convex means:

∀x , y ∈ C ∀λ ∈ [0, 1] (f (λ · x + (1− λ) · y) ≤ max (f (x), f (y)))
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Lemma 5
Let C be an inhabited convex subset of Rn such that

δ = inf { ‖y‖ | y ∈ C}

exists. Then there exists a unique a ∈ C such that ‖a‖ = δ.
Furthermore, we have

〈a, c − a〉 ≥ 0

and therefore
〈a, c〉 ≥ δ2

for all c ∈ C .
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Proof.
Fix a sequence (cl) in C such that ‖cl‖ → δ. Then (cl) is Cauchy.
Let a be the limit of the sequence (cl).

For every λ ∈ (0, 1) and c ∈ Y we have

‖a‖ 2 ≤ ‖(1− λ) · a + λ · c‖ 2 = ‖a + λ · (c − a)‖ 2 =

‖a‖ 2 + λ2 · ‖c − a‖ 2 + 2 · λ · 〈a, c − a〉

and therefore
0 ≤ λ ‖c − a‖ 2 + 2〈a, c − a〉.

This implies
〈a, c − a〉 ≥ 0.
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Proposition 2

Let C ,Y ⊆ Rn such that

I C is convex and compact

I Y is convex, closed, and located

I d(c , y) > 0 for all c ∈ C and y ∈ Y .

Then there exist p ∈ Rn and reals α, β such that

〈p, c〉 < α < β < 〈p, y〉

for all c ∈ C and y ∈ Y .

located means that

d(x ,Y ) = inf {d(x , y) | y ∈ Y }

exist for all x ∈ Rn
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Proof.
The function f : C → R, c 7→ d(c ,Y ) is positive-valued, uniformly
continuous and convex. The set

Z = {y − c | y ∈ Y , c ∈ C}

is convex and
δ = d(0,Z ) = inf f > 0.

By Lemma 5, there exists p ∈ Rn with

〈p, y〉 ≥ δ2 + 〈p, c〉

for all c ∈ C and y ∈ Y . Setting

η = sup {〈p, c〉 | c ∈ C} , α = δ2

3 + η, β = δ2

2 + η,

we obtain
〈p, c〉 < α < β < 〈p, y〉

for all for all c ∈ C and y ∈ Y .
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