Part II: Convexity and constructive infima

Josef Berger and Gregor Svindland

Autumn school "Proof and Computation"

5 October 2016

Let A be a subset of \mathbb{R} and $x \in \mathbb{R}$. x is the *infimum* of A if

$$\forall a \in A (x \leq a) \text{ and } \forall z (x < z \Rightarrow \exists a \in A (a < z)).$$

In this case, we write $x = \inf A$.

Let α be a binary sequence. Set

$$A = \{ \alpha_n \mid n \in \mathbb{N} \} \,.$$

Let x be the infimum of A. Then either x < 1, in this case there exists an n with $\alpha_n = 0$. Or 0 < x, in this case $\alpha_n = 1$ for all n.

Josef Berger and Gregor Svindland, *Convexity and constructive infima*, Archive for Mathematical Logic (2016)

http://link.springer.com/article/10.1007/s00153-016-0502-y

- scalar product $\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$
- norm $||x|| = \sqrt{\langle x, x \rangle}$

• metric
$$d(x,y) = \|y - x\|$$

 $C \subseteq \mathbb{R}^n$ is convex if

$$\lambda \cdot x + (1 - \lambda) \cdot y \in C$$

for all $x, y \in C$ and $\lambda \in [0, 1]$.

- Fix ε > 0 and sets D ⊆ C ⊆ ℝⁿ. D is an ε-approximation of C if for every c ∈ C there exists d ∈ D with d(c, d) < ε.</p>
- C is totally bounded if for every ε > 0 there exist elements x₁,..., x_m of C such that {x₁,..., x_m} is an ε-approximation of C.
- C is closed if

$$c_n \in C \land c_n \rightarrow x \Rightarrow x \in C.$$

• *C* is *compact* if it is totally bounded and closed.

Lemma 1 If $X \subseteq \mathbb{R}^n$ is totally bounded and $f : X \to \mathbb{R}$ is uniformly continuous, then

 $\{f(x) \mid x \in X\}$

is totally bounded.

Lemma 2 If $A \subseteq \mathbb{R}$ is totally bounded, then inf A exists.

Lemma 3 If $X \subseteq \mathbb{R}^n$ is totally bounded and $f : X \to \mathbb{R}$ is uniformly continuous, then

$$\inf f = \inf \{f(x) \mid x \in X\}$$

exists.

Lemma 4

Fix a compact convex set $C \subseteq \mathbb{R}^2$ and suppose that there are $y, z \in C$ with $y_1 < 0 < z_1$. Then the set

$$\mathcal{M} = \{x \in C \mid x_1 = 0\}$$

is convex and compact.

Proof.

Set

$$\mathcal{L} = \{x \in \mathcal{C} \mid x_1 \leq 0\}$$
 and $\mathcal{R} = \{x \in \mathcal{C} \mid x_1 \geq 0\}$.

For

$$\begin{split} \kappa: \mathbb{R} \ \to \ \mathbb{R}, \ s \ \mapsto \ \max(-s, 0) \\ f: \mathbb{R}^n \ \to \ \mathbb{R}^n, \ x \ \mapsto \ \frac{z_1}{z_1 + \kappa(x_1)} x + \frac{\kappa(x_1)}{z_1 + \kappa(x_1)} z \end{split}$$

- f is uniformly continuous
- f maps C onto \mathcal{R}
- f maps \mathcal{L} onto \mathcal{M}

Proposition 1 If $C \subseteq \mathbb{R}^n$ is compact and convex and

 $f: C \to \mathbb{R}^+$

is quasi-convex and uniformly continuous, then $\inf f > 0$.

quasi-convex means:

 $\forall x, y \in C \ \forall \lambda \in [0, 1] (f(\lambda \cdot x + (1 - \lambda) \cdot y) \leq \max (f(x), f(y)))$

Lemma 5 Let C be an inhabited convex subset of \mathbb{R}^n such that

$$\delta = \inf \left\{ \left\| y \right\| \, \mid y \in C \right\}$$

exists. Then there exists a unique $a \in \overline{C}$ such that $||a|| = \delta$. Furthermore, we have

$$\langle a, c - a \rangle \geq 0$$

and therefore

$$\langle a, c \rangle \geq \delta^2$$

for all $c \in C$.

Proof.

Fix a sequence (c_l) in C such that $||c_l|| \to \delta$. Then (c_l) is Cauchy. Let a be the limit of the sequence (c_l) .

For every $\lambda \in (0,1)$ and $c \in Y$ we have

$$\|a\|^{2} \leq \|(1-\lambda) \cdot a + \lambda \cdot c\|^{2} = \|a + \lambda \cdot (c-a)\|^{2} =$$
$$\|a\|^{2} + \lambda^{2} \cdot \|c-a\|^{2} + 2 \cdot \lambda \cdot \langle a, c-a \rangle$$

and therefore

$$0 \leq \lambda \|c - a\|^2 + 2\langle a, c - a \rangle.$$

This implies

$$\langle a, c - a \rangle \geq 0.$$

Proposition 2

Let $C, Y \subseteq \mathbb{R}^n$ such that

- C is convex and compact
- Y is convex, closed, and located
- d(c, y) > 0 for all $c \in C$ and $y \in Y$.

Then there exist $p \in \mathbb{R}^n$ and reals α, β such that

$$\langle \mathbf{p}, \mathbf{c} \rangle < \alpha < \beta < \langle \mathbf{p}, \mathbf{y} \rangle$$

for all $c \in C$ and $y \in Y$.

located means that

$$d(x, Y) = \inf \left\{ d(x, y) \mid y \in Y \right\}$$

exist for all $x \in \mathbb{R}^n$

Proof.

The function $f : C \to \mathbb{R}$, $c \mapsto d(c, Y)$ is positive-valued, uniformly continuous and convex. The set

$$Z = \{y - c \mid y \in Y, c \in C\}$$

is convex and

$$\delta = d(0, Z) = \inf f > 0.$$

By Lemma 5, there exists $p \in \mathbb{R}^n$ with

$$\langle \boldsymbol{p}, \boldsymbol{y} \rangle \geq \delta^2 + \langle \boldsymbol{p}, \boldsymbol{c} \rangle$$

for all $c \in C$ and $y \in Y$. Setting

$$\eta = \sup \left\{ \langle p, c \rangle \mid c \in C \right\}, \ \alpha = \frac{\delta^2}{3} + \eta, \ \beta = \frac{\delta^2}{2} + \eta,$$

we obtain

$$\langle \mathbf{p}, \mathbf{c} \rangle < \alpha < \beta < \langle \mathbf{p}, \mathbf{y} \rangle$$

for all for all $c \in C$ and $y \in Y$.