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t €[0,1] is a minimum point of f : [0,1] — R if

Vs € [0,1] (f(t) < f(s)).

Lemma 1

Every continuous function f : [0,1] — R has a minimum point.

Proof.
Let (t,) be a sequence such that

f(t,) — inf{f(t) |t €][0,1]}.

This sequence has a convergent subsequence, its limit is a
minimum point.
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good points:
» strong statement
> easy proof

bad point:

> no algorithm

In Constructive Mathematics, we avoid to use the law of excluded
middle. When we prove the existence of an object, we really can
construct it.
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How to learn Constructive Mathematics?
» avoid indirect proofs of undecidable statements
> be careful with infima, comparing reals, compactness

» the intuition for constructive reasoning comes automatically
and quickly

Constructive Reverse Mathematics investigates how constructive a
theorem is.
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Why combining Logic and Financial Mathematics?

» Finance depends on Stochastics, Stochastics is highly
non-constructive

v

people in Finance like algorithms (how should | invest?)

v

Optimization Theory is a promising area for Constructive
(Reverse) Mathematics

v

project CORE Constructive Operations Research

v

LMUexcellent start-up grant
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for f :[0,1] — R the implications
uniform continuity

4

pointwise continuity

4

sequentially continuity

are strict

6

14



A sequence (I,) of subintervals I, = [ap, by] C [0, 1] is well
behaved if

> an, b, €Q
» lp =[0,1]
» 0< b —a1 <1
> Ihy1 C 1y
» by —ap= (b —a1)"
Lemma 2
Suppose that (I,) is well behaved.
» There exists a unique t € Nl,.

» For all rational s € [0,1] with |s — t| > O there exist n with
sE /n \ IIH‘]-'



f :[0,1] — R is strictly quasi-convex if

r<s<t = f(s)<max(f(r),f(t)).

This is equivalent to

r<s<t = f(s)<f(r) v f(s)<f(t).
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Lemma 3
Suppose that f : [0,1] — R is sequentially continuous and strictly
quasi-convex. Then f has a minimum point.

Proof. If £(3) < f(3). set

[317 bl] = [%a ]-]
and if £(3) < f(3), set

[a1, b1] = [0, 3] .
In both cases, we have

s€[0,1]\ [a, b1] = f(3) < f(s).
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Iterating this, we obtain a well behaved sequence of intervals
In = [an, bn] with midpoints t, such that

> th € Iny1
> s€ Iy \ Iny1 = f(tn) < f(s).
Let t be in N/,. Note that

selh,NQATf(s) < f(t) = 3Im>n(f(tm) < f(s)).

We can conclude
> f(t) < f(tn)

> tis a minimum point of f.
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We assume that Lemma 3 can be easily generalised as follows.

Lemma 4

Suppose that C C R" is compact and f : C — R is sequentially
continuous and strictly quasi-convex. Then f has a minimum
point.
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A function f : [0,1] — R is convex if
fA-s+(1—=X)-t) <A-f(s)+(1—=N)-f(2).

for all s, t, A € [0,1].

Lemma 5
Suppose that f : [0,1] — R is pointwise continuous and convex.
Then there exists 6 > 0 such that

f(t)>9

for all t € [0, 1].
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Proof.
There exist a subinterval [a, b] of [0,1] with b—a =% and § > 0
such that

f(s)<d=sec]ab].

Iterating this, we obtain a well behaved sequence (/,) and a
sequence (J,) with
f(s) <dp=se€l

Let t be in N/,. Let n be large enough such that

f
selnﬁf(s)z%

and set § = min <@,5n>.
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We do not assume that Lemma 5 can be easily generalised as
follows.

Lemma 6

Suppose that C C R" is compact and f : C — R is pointwise
continuous and convex. Then there exists § > 0 such that

f(t)>46

for all t € C.
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