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t ∈ [0, 1] is a minimum point of f : [0, 1]→ R if

∀s ∈ [0, 1] (f (t) ≤ f (s)) .

Lemma 1
Every continuous function f : [0, 1]→ R has a minimum point.

Proof.
Let (tn) be a sequence such that

f (tn)→ inf {f (t) | t ∈ [0, 1]} .

This sequence has a convergent subsequence, its limit is a
minimum point.
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good points:

I strong statement

I easy proof

bad point:

I no algorithm

In Constructive Mathematics, we avoid to use the law of excluded
middle. When we prove the existence of an object, we really can
construct it.
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How to learn Constructive Mathematics?

I avoid indirect proofs of undecidable statements

I be careful with infima, comparing reals, compactness

I the intuition for constructive reasoning comes automatically
and quickly

Constructive Reverse Mathematics investigates how constructive a
theorem is.
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Why combining Logic and Financial Mathematics?

I Finance depends on Stochastics, Stochastics is highly
non-constructive

I people in Finance like algorithms (how should I invest?)

I Optimization Theory is a promising area for Constructive
(Reverse) Mathematics

I project CORE Constructive Operations Research

I LMUexcellent start-up grant
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for f : [0, 1]→ R the implications

uniform continuity

⇓

pointwise continuity

⇓

sequentially continuity

are strict
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A sequence (In) of subintervals In = [an, bn] ⊆ [0, 1] is well
behaved if

I an, bn ∈ Q
I I0 = [0, 1]

I 0 < b1 − a1 < 1

I In+1 ⊆ In
I bn − an = (b1 − a1)n.

Lemma 2
Suppose that (In) is well behaved.

I There exists a unique t ∈ ∩In.
I For all rational s ∈ [0, 1] with |s − t| > 0 there exist n with

s ∈ In \ In+1.
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f : [0, 1]→ R is strictly quasi-convex if

r < s < t ⇒ f (s) < max (f (r), f (t)) .

This is equivalent to

r < s < t ⇒ f (s) < f (r) ∨ f (s) < f (t).
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Lemma 3
Suppose that f : [0, 1]→ R is sequentially continuous and strictly
quasi-convex. Then f has a minimum point.

Proof. If f (12) < f (13), set

[a1, b1] =
[
1
3 , 1

]
and if f (12) < f (23), set

[a1, b1] =
[
0, 23

]
.

In both cases, we have

s ∈ [0, 1] \ [a1, b1] ⇒ f (12) < f (s).
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Iterating this, we obtain a well behaved sequence of intervals
In = [an, bn] with midpoints tn such that

I tn ∈ In+1

I s ∈ In \ In+1 ⇒ f (tn) < f (s).

Let t be in ∩In. Note that

s ∈ In ∩Q ∧ f (s) < f (t)→ ∃m ≥ n (f (tm) < f (s)) .

We can conclude

I f (t) ≤ f (tn)

I t is a minimum point of f .

�
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We assume that Lemma 3 can be easily generalised as follows.

Lemma 4
Suppose that C ⊆ Rn is compact and f : C → R is sequentially
continuous and strictly quasi-convex. Then f has a minimum
point.
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A function f : [0, 1]→ R is convex if

f (λ · s + (1− λ) · t) ≤ λ · f (s) + (1− λ) · f (t).

for all s, t, λ ∈ [0, 1].

Lemma 5
Suppose that f : [0, 1]→ R is pointwise continuous and convex.
Then there exists δ > 0 such that

f (t) ≥ δ

for all t ∈ [0, 1].
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Proof.
There exist a subinterval [a, b] of [0, 1] with b − a = 2

3 and δ > 0
such that

f (s) < δ ⇒ s ∈ [a, b] .

Iterating this, we obtain a well behaved sequence (In) and a
sequence (δn) with

f (s) < δn ⇒ s ∈ In.

Let t be in ∩In. Let n be large enough such that

s ∈ In → f (s) ≥ f (t)
2

and set δ = min
(
f (t)
2 , δn

)
.
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We do not assume that Lemma 5 can be easily generalised as
follows.

Lemma 6
Suppose that C ⊆ Rn is compact and f : C → R is pointwise
continuous and convex. Then there exists δ > 0 such that

f (t) ≥ δ

for all t ∈ C.
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