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CHAPTER 1

Proof theory of arithmetic

The goal of this chapter is to present some in a sense “most complex”
proofs that can be done in first-order arithmetic.

The main tool for proving theorems in arithmetic is clearly the induction
schema

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x).

Here A(x) is an arbitrary formula. An equivalent form of this schema is
“course-of-values” or cumulative induction

∀x(∀y<xA(y)→ A(x))→ ∀xA(x).

Both schemes refer to the standard ordering of the natural numbers. Now
it is tempting to try to strengthen arithmetic by allowing more general
induction schemas, e.g., with respect to the lexicographical ordering of N×N.
More generally, we might pick an arbitrary well-ordering ≺ over N and use
the schema of transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

This can be read as follows. Suppose the property A(x) is “progressive”,
i.e., from the validity of A(y) for all y ≺ x we can always conclude that A(x)
holds. Then A(x) holds for all x.

One might wonder for which well-orderings this schema of transfinite
induction is actually derivable in arithmetic. We will prove here a classic
result of Gentzen (1943) which in a sense answers this question completely.
However, in order to state the result we have to be more explicit about the
well-orderings used. This is done in the next section.

1.1. Ordinals below ε0

We want to discuss the derivability of initial cases of transfinite induction
in arithmetical systems. In order to do that we shall need some knowledge
and notations for ordinals. We do not want to assume set theory here; hence
we introduce a certain initial segment of the ordinals (the ordinals < ε0) in
a formal, combinatorial way, i.e., via ordinal notations. Our treatment is
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2 1. PROOF THEORY OF ARITHMETIC

based on the Cantor normal form for ordinals; cf. Bachmann (1955). We
also introduce some elementary relations and operations for such ordinal
notations, which will be used later. For brevity we from now on use the
word “ordinal” instead of “ordinal notation”.

1.1.1. Basic definitions. We define the two notions

• α is an ordinal
• α < β for ordinals α, β

simultaneously by induction:

(1) If αm, . . . , α0 are ordinals, m ≥ −1 and αm ≥ · · · ≥ α0 (where
α ≥ β means α > β or α = β), then

ωαm + · · ·+ ωα0

is an ordinal. Note that the empty sum denoted by 0 is allowed.
(2) If ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 are ordinals, then

ωαm + · · ·+ ωα0 < ωβn + · · ·+ ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i, αm−i+1 = βn−i+1, . . . ,
αm = βn, or else m < n and αm = βn, . . . , α0 = βn−m.

For proofs by induction on ordinals it is convenient to introduce the notion
of level of an ordinal α by the stipulations (a) if α is the empty sum 0,
lev(α) = 0, and (b) if α = ωαm + . . . + ωα0 with αm ≥ . . .≥ α0, then
lev(α) = lev(αm) + 1.

For ordinals of level k+1 we have ωk ≤ α < ωk+1, where ω0 = 0, ω1 = ω,
ωk+1 = ωωk .

We shall use the notation 1 for ω0, k for ω0 + · · ·+ ω0 with k copies of
ω0 and ωαk for ωα + · · ·+ ωα again with k copies of ωα.

It is easy to see (by induction on the levels) that < is a linear order with
0 being the smallest element.

We define addition for ordinals by

ωαm + · · ·+ ωα0 + ωβn + · · ·+ ωβ0 := ωαm + · · ·+ ωαi + ωβn + · · ·+ ωβ0

where i is minimal such that αi ≥ βn.
It is easy to see that + is an associative operation which is strictly mono-

tonic in the second argument and weakly monotonic in the first argument.
Note that + is not commutative: 1 + ω = ω 6= ω + 1.

There is also a commutative version on addition. The natural (or Hes-
senberg) sum of two ordinals is defined by

(ωαm + · · ·+ ωα0)#(ωβn + · · ·+ ωβ0) := ωγm+n + · · ·+ ωγ0 ,
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where γm+n, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0. It
is easy to see that # is associative, commutative and strictly monotonic in
both arguments.

We will also need to know how ordinals of the form β + ωα can be
approximated from below. First note that

δ < α→ β + ωδk < β + ωα.

Furthermore, for any γ < β + ωα we can find a δ < α and a k such that

γ < β + ωδk.

1.1.2. Enumerating ordinals. In order to work with ordinals in a
purely arithmetical system we set up some effective bijection between our
ordinals < ε0 and non-negative integers (i.e., a Gödel numbering). For its
definition it is useful to refer to ordinals in the form

ωαmkm + · · ·+ ωα0k0 with αm > · · · > α0 and ki 6= 0 (m ≥ −1).

(By convention, m = −1 corresponds to the empty sum.)
For every ordinal α we define its Gödel number pαq inductively by

pωαmkm + · · ·+ ωα0k0q :=
(∏
i≤m

pkipαiq

)
− 1,

where pn is the n-th prime number starting with p0 := 2. For every non-
negative integer x we define its corresponding ordinal notation o(x) induc-
tively by

o
((∏

i≤l
pqii
)
− 1
)

:=
∑
i≤l

ωo(i)qi,

where the sum is to be understood as the natural sum.

Lemma. (a) o(pαq) = α,
(b) po(x)q = x.

Proof. This can be proved easily by induction. �

Hence we have a simple bijection between ordinals and non-negative
integers. Using this bijection we can transfer our relations and operations
on ordinals to computable relations and operations on non-negative integers.
We use the following abbreviations.

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,

x⊕ y := po(x) + o(y)q,
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xk := po(x)kq,

ωk := pωkq.

We leave it to the reader to verify that ≺, λxω
x, λx,y(x ⊕ y), λx,k(xk)

and λkpωkq are all elementary.

1.2. Provability of initial cases of transfinite induction

We now derive initial cases of the principle of transfinite induction in
arithmetic, i.e., of

∀x(∀y≺xPy → Px)→ ∀x≺aPx
for some number a and a predicate symbol P , where ≺ is the standard order
of order type ε0 defined in the preceding section. One can show that our
results here are optimal in the sense that for the full system of ordinals < ε0
the principle

∀x(∀y≺xPy → Px)→ ∀xPx
of transfinite induction is underivable. All these results are due to Gentzen
(1943).

1.2.1. Arithmetical systems. By an arithmetical system Z we mean
a theory based on minimal logic in the ∀→-language (including equality
axioms), with the following properties. The language of Z consists of a fixed
(possibly countably infinite) supply of function and relation constants which
are assumed to denote fixed functions and relations on the non-negative
integers for which a computation procedure is known. Among the function
constants there must be a constant S for the successor function and 0 for
(the 0-place function) zero. Among the relation constants there must be
a constant = for equality and ≺ for the ordering of type ε0 of the natural
numbers, as introduced in section 1.1. In order to formulate the general
principle of transfinite induction we also assume that a unary relation symbol
P is present, which acts like a free set variable.

Terms are built up from object variables x, y, z by means of f(t1, . . . , tm),
where f is a function constant. We identify closed terms which have the
same value; this is a convenient way to express in our formal systems the as-
sumption that for each function constant a computation procedure is known.
Terms of the form S(S(. . . S0 . . . )) are called numerals. We use the notation
Sn0 or n or (only in this chapter) even n for them. Formulas are built up
from atomic formulas R(t1, . . . , tm), with R a relation constant or a relation
symbol, by means of A→ B and ∀xA.
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The axioms of Z include compatibility of equality

x = y → A(x)→ A(y),

the Peano axioms, i.e., the universal closures of

Sx = Sy → x = y,(1.1)

Sx = 0→ A,(1.2)

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x),(1.3)

with A(x) an arbitrary formula. We express our assumption that for every
relation constant R a decision procedure is known by adding the axiom R~n
whenever R~n is true. Concerning ≺ we require as axioms irreflexivity and
transitivity for ≺

x ≺ x→ A,

x ≺ y → y ≺ z → x ≺ z
and also – following Schütte – the universal closures of

x ≺ 0→ A,(1.4)

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A,(1.5)

x⊕ 0 = x,(1.6)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,(1.7)

0⊕ x = x,(1.8)

ωx0 = 0,(1.9)

ωx(Sy) = ωxy ⊕ ωx,(1.10)

z ≺ y ⊕ ωSx → z ≺ y ⊕ ωe(x,y,z)m(x, y, z),(1.11)

z ≺ y ⊕ ωSx → e(x, y, z) ≺ Sx,(1.12)

where ⊕, λx,y(ω
xy), e and m denote the appropriate function constants and

A is any formula. (The reader should check that e, m can be taken to be
elementary.) These axioms are formal counterparts to the properties of the
ordinal notations observed in the preceding section.

1.2.2. Gentzen’s proof.

Theorem (Provable initial cases of transfinite induction in Z). Trans-
finite induction up to ωn, i.e., for arbitrary A(x) the formula

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωn A(x),

is derivable in Z.
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Proof. To every formula A(x) we assign a formula A+(x) (with respect
to a fixed variable x) by

A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x(∀y≺xB(y) → B(x)). So assume that
A(x) is progressive and

(1.13) ∀y≺xA+(y).

We have to show A+(x). So assume further

(1.14) ∀z≺yA(z)

and z ≺ y ⊕ ωx. We have to show A(z).
Case x = 0. Then z ≺ y ⊕ ω0. By (1.5) it suffices to derive A(z) from

z ≺ y as well as from z = y. If z ≺ y, then A(z) follows from (1.14), and if
z = y, then A(z) follows from (1.14) and the progressiveness of A(x).

Case Sx. From z ≺ y ⊕ ωSx we obtain z ≺ y ⊕ ωe(x,y,z)m(x, y, z) by
(1.11) and e(x, y, z) ≺ Sx by (1.12). From (1.13) we obtain A+(e(x, y, z)).
By the definition of A+(x) we get

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺(y⊕ωe(x,y,z)v)⊕ωe(x,y,z)A(u)

and hence, using (1.7) and (1.10)

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺y⊕ωe(x,y,z)(Sv)A(u).

Also from (1.14) and (1.9), (1.6) we obtain

∀u≺y⊕ωe(x,y,z)0A(u).

Using an appropriate instance of the induction schema we can conclude

∀u≺y⊕ωe(x,y,z)m(x,y,z)A(u)

and hence A(z).
We now show, by induction on n, how for an arbitrary formula A(x) we

can obtain a derivation of

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωnA(x).

So assume the left hand side, i.e., assume that A(x) is progressive.
Case 0. Then x ≺ ω0 and hence x ≺ 0⊕ω0 by (1.8). By (1.5) it suffices

to derive A(x) from x ≺ 0 as well as from x = 0. Now x ≺ 0→ A(x) holds
by (1.4), and A(0) then follows from the progressiveness of A(x).
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Case n + 1. Since A(x) is progressive, by what we have shown above
A+(x) is also progressive. Applying the induction hypothesis to A+(x) yields
∀x≺ωnA+(x), and hence A+(ωn) by the progressiveness of A+(x). Now the
definition of A+(x) (together with (1.4) and (1.8)) yields ∀z≺ωωnA(z). �

Note that in the induction step of this proof we have derived transfinite
induction up to ωn+1 for A(x) from transfinite induction up to ωn for a
formula of level higher than the level of A(x). The level of a formula A is
defined by

lev(R~t ) := 0,

lev(A→ B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).





CHAPTER 2

Computability in higher types

In this chapter we will develop a somewhat general view of computability
theory, where not only numbers and functions appear as arguments, but also
functionals of any finite type.

2.1. Abstract computability via information systems

There are two principles on which our notion of computability will be
based: finite support and monotonicity.

It is a fundamental property of computation that evaluation must be
finite. So in any evaluation of Φ(ϕ) the argument ϕ can be called upon only
finitely many times, and hence the value – if defined – must be determined
by some finite subfunction of ϕ. This is the principle of finite support.

Let us carry this discussion somewhat further and look at the situation
one type higher up. Let H be a partial functional of type-3, mapping type-2
functionals Φ to natural numbers. Suppose Φ is given and H(Φ) evaluates
to a defined value. Again, evaluation must be finite. Hence the argument Φ
can only be called on finitely many functions ϕ. Furthermore each such ϕ
must be presented to Φ in a finite form (explicitly say, as a set of ordered
pairs). In other words, H and also any type-2 argument Φ supplied to it
must satisfy the finite support principle, and this must continue to apply as
we move up through the types.

To describe this principle more precisely, we need to introduce the notion
of a “finite approximation” Φ0 of a functional Φ. By this we mean a finite
set X of pairs (ϕ0, n) such that (i) ϕ0 is a finite function, (ii) Φ(ϕ0) is defined
with value n, and (iii) if (ϕ0, n) and (ϕ′0, n

′) belong to X where ϕ0 and ϕ′0
are “consistent”, then n = n′. The essential idea here is that Φ should be
viewed as the union of all its finite approximations. Using this notion of a
finite approximation we can now formulate the

Principle of finite support . If H(Φ) is defined with value
n, then there is a finite approximation Φ0 of Φ such that
H(Φ0) is defined with value n.

9
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The monotonicity principle formalizes the simple idea that once H(Φ) is
evaluated, then the same value will be obtained no matter how the argument
Φ is extended. This requires the notion of “extension”. Φ′ extends Φ if for
any piece of data (ϕ0, n) in Φ there exists another (ϕ′0, n) in Φ′ such that ϕ0

extends ϕ′0 (note the contravariance!). The second basic principle is then

Monotonicity principle. If H(Φ) is defined with value n
and Φ′ extends Φ, then also H(Φ′) is defined with value
n.

An immediate consequence of finite support and monotonicity is that
the behaviour of any functional is indeed determined by its set of finite
approximations. For if Φ, Φ′ have the same finite approximations and H(Φ)
is defined with value n, then by finite support, H(Φ0) is defined with value n
for some finite approximation Φ0, and then by monotonicityH(Φ′) is defined
with value n. Thus H(Φ) = H(Φ′), for all H.

This observation now allows us to formulate a notion of abstract com-
putability:

Effectivity principle. An object is computable just in case
its set of finite approximations is (primitive) recursively
enumerable (or equivalently, Σ0

1-definable).

This is an “externally induced” notion of computability, and it is of definite
interest to ask whether one can find an “internal” notion of computability
coinciding with it. This can be done by means of a fixed point operator
introduced into this framework by Platek; and the result mentioned is due
to Plotkin (1978).

The general theory of computability concerns partial functions and par-
tial operations on them. However, we are primarily interested in total ob-
jects, so once the theory of partial objects is developed, we can look for
ways to extract the total ones. Then one can prove Kreisel’s density theo-
rem, wich says that the total functionals are dense in the space of all partial
“continuous” functionals.

2.1.1. Information systems. The basic idea of information systems
is to provide an axiomatic setting to describe approximations of abstract
objects (like functions or functionals) by concrete, finite ones. We do not
attempt to analyze the notion of “concreteness” or finiteness here, but rather
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with
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each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

Definition. An information system is a structure (A,Con,`) where A
is a countable set (the tokens), Con is a non-empty set of finite subsets of A
(the consistent sets) and ` is a subset of Con×A (the entailment relation),
which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U, V ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

For example the deductive closure U := { a ∈ A | U ` a } of U ∈ Con is an
ideal. The set of all ideals of A is denoted by |A|.

Examples. Every countable set A can be turned into a flat information
system by letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and
U ` a mean a ∈ U . In this case the ideals are just the elements of Con. For
A = N we have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .
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A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ` (a, b) := (a, b) ∈ U.

It is not difficult to verify that this defines an information system whose
ideals are (the graphs of) all partial functions from A to B.

2.1.2. Function spaces. We now define the “function space” A→ B
between two information systems A and B.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I(
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB).

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.
From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Clearly application is monotone in the second argument, in the sense
that U `A U ′ implies (WU ′ ⊆ WU , hence also) WU `B WU ′. In fact,
application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma. If A and B are information systems, then so is A→ B defined
as above.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ` (U, b), i.e., { bj | U `A Uj } `B b.
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We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U `A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.

Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } `B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W `W ′ and W ′ ` (U, b).

We have to show W ` (U, b), i.e., WU `B b. We obtain WU `B W ′U by
monotonicity in the first argument, and W ′U ` b by definition. �

We shall now give two alternative characterizations of the function space:
firstly as “approximable maps”, and secondly as continuous maps w.r.t. the
so-called Scott topology.

The basic idea for approximable maps is the desire to study “information
respecting” maps from A into B. Such a map is given by a relation r between
ConA and B, where r(U, b) intuitively means that whenever we are given
the information U ∈ ConA, then we know that at least the token b appears
in the value.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if r(U, b1), . . . , r(U, bn), then {b1, . . . , bn} ∈ ConB;
(b) if r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b, then r(U, b);
(c) if r(U ′, b) and U `A U ′, then r(U, b).

We write r : A→ B to mean that r is an approximable map from A to B.
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Theorem. Let A and B be information systems. Then the ideals of
A→ B are exactly the approximable maps from A to B.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). If r ∈ |A →
B| then r ⊆ ConA × B is consistent and deductively closed. We have to
show that r satisfies the axioms for approximable maps.

(a) Let r(U, b1), . . . , r(U, bn). We must show that {b1, . . . , bn} ∈ ConB.
But this clearly follows from the consistency of r.

(b) Let r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b. We must show that
r(U, b). But

{(U, b1), . . . , (U, bn)} ` (U, b)

by the definition of the entailment relation ` in A→ B. Hence r(U, b) since
r is deductively closed.

(c) Let U `A U ′ and r(U ′, b). We must show that r(U, b). But

{(U ′, b)} ` (U, b)

since {(U ′, b)}U = {b} (which follows from U `A U ′). Hence r(U, b), again
since r is deductively closed.

For the other direction suppose that r : A→ B is an approximable map.
We must show that r ∈ |A→ B|.

Consistency of r. Let r(U1, b1), . . . , r(Un, bn) and U =
⋃
{Ui | i ∈ I } ∈

ConA for some I ⊆ {1, . . . , n}. We must show { bi | i ∈ I } ∈ ConB. From
r(Ui, bi) and U `A Ui we obtain r(U, bi) by axiom (c) for all i ∈ I, and hence
{ bi | i ∈ I } ∈ ConB by axiom (a).

Deductive closure of r. Let r(U1, b1), . . . , r(Un, bn) and

W := {(U1, b1), . . . , (Un, bn)} ` (U, b).

We must show r(U, b). By definition of ` for A → B we have WU `B b,
which is { bi | U `A Ui } `B b. Further by our assumption r(Ui, bi) we know
r(U, bi) by axiom (c) for all i with U `A Ui. Hence r(U, b) by axiom (b). �

Definition. Suppose A = (A,Con,`) is an information system and
U ∈ Con. Define OU ⊆ |A| by

OU := {x ∈ |A| | U ⊆ x }.

Note that, since the ideals x ∈ |A| are deductively closed, x ∈ OU
implies U ⊆ x.

Lemma. The system of all OU with U ∈ Con forms the basis of a topo-
logy on |A|, called the Scott topology.
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Proof. Suppose U, V ∈ Con and x ∈ OU ∩ OV . We have to find
W ∈ Con such that x ∈ OW ⊆ OU ∩ OV . Choose W = U ∪ V . �

Lemma. Let A be an information system and O ⊆ |A|. Then the fol-
lowing are equivalent.

(a) O is open in the Scott topology.
(b) O satisfies

(i) If x ∈ O and x ⊆ y, then y ∈ O (Alexandrov condition).
(ii) If x ∈ O, then U ∈ O for some U ⊆ x (Scott condition).

(c) O =
⋃
U∈OOU .

Hence open sets O may be seen as those determined by a (possibly
infinite) system of finitely observable properties, namely all U such that
U ∈ O.

Proof. (a)→ (b). If O is open, then O is the union of some OU ’s, U ∈
Con. Since each OU is upwards closed, also O is; this proves the Alexandrov
condition. For the Scott condition assume x ∈ O. Then x ∈ OU ⊆ O for
some U ∈ Con. Note that U ∈ OU , hence U ∈ O, and U ⊆ x since x ∈ OU .

(b) → (c). Assume that O ⊆ |A| satisfies the Alexandrov and Scott
conditions. Let x ∈ O. By the Scott condition, U ∈ O for some U ⊆ x, so
x ∈ OU for this U . Conversely, let x ∈ OU for some U ∈ O. Then U ⊆ x.
Now x ∈ O follows from U ∈ O by the Alexandrov condition.

(c) → (a). The OU ’s are the basic open sets of the Scott topology. �

We now give some simple characterizations of the continuous functions
f : |A| → |B|. Call f monotone if x ⊆ y implies f(x) ⊆ f(y).

Lemma. Let A and B be information systems and f : |A| → |B|. Then
the following are equivalent.

(a) f is continuous w.r.t. the Scott topology.
(b) f is monotone and satisfies the “principle of finite support” PFS: If

b ∈ f(x), then b ∈ f(U) for some U ⊆ x.
(c) f is monotone and commutes with directed unions: for every directed

D ⊆ |A| (i.e., for any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f(
⋃
x∈D

x) =
⋃
x∈D

f(x).

Note that in (c) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |A|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.
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Hence continuous maps f : |A| → |B| are those that can be completely
described from the point of view of finite approximations of the abstract
objects x ∈ |A| and f(x) ∈ |B|: Whenever we are given a finite approxi-
mation V to the value f(x), then there is a finite approximation U to the
argument x such that already f(U) contains the information in V ; note that
by monotonicity f(U) ⊆ f(x).

Proof. (a) → (b). Let f be continuous. Then for any basic open set
OV ⊆ |B| (so V ∈ ConB) the set f−1[OV ] = {x | V ⊆ f(x) } is open in
|A|. To prove monotonicity assume x ⊆ y; we must show f(x) ⊆ f(y). So
let b ∈ f(x), i.e., {b} ⊆ f(x). The open set f−1[O{b}] = { z | {b} ⊆ f(z) }
satisfies the Alexandrov condition, so from x ⊆ y we can infer {b} ⊆ f(y),
i.e., b ∈ f(y). To prove PFS assume b ∈ f(x). The open set { z | {b} ⊆ f(z) }
satisfies the Scott condition, so for some U ⊆ x we have {b} ⊆ f(U).

(b)→ (a). Assume that f satisfies monotonicity and PFS. We must show
that f is continuous, i.e., that for any fixed V ∈ ConB the set f−1[OV ] =
{x | V ⊆ f(x) } is open. We prove

{x | V ⊆ f(x) } =
⋃
{OU | U ∈ ConA and V ⊆ f(U) }.

Let V ⊆ f(x). Then by PFS V ⊆ f(U) for some U ∈ ConA such that U ⊆ x,
and U ⊆ x implies x ∈ OU . Conversely, let x ∈ OU for some U ∈ ConA such
that V ⊆ f(U). Then U ⊆ x, hence V ⊆ f(x) by monotonicity.

For (b) ↔ (c) assume that f is monotone. Let f satisfy PFS, and
D ⊆ |A| be directed. f(

⋃
x∈D x) ⊇

⋃
x∈D f(x) follows from monotonicity.

For the reverse inclusion let b ∈ f(
⋃
x∈D x). Then by PFS b ∈ f(U) for some

U ⊆
⋃
x∈D x. From the directedness and the fact that U is finite we obtain

U ⊆ z for some z ∈ D. From b ∈ f(U) and monotonicity infer b ∈ f(z).
Conversely, let f commute with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. �

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem. Let A and B = (B,ConB,`B) be information systems.
Then the ideals of A → B are in a natural bijective correspondence with
the continuous functions from |A| to |B|, as follows.
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(a) With any approximable map r : A → B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z }.

We call |r|(z) the application of r to z.
(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ : A→ B by

f̂(U, b) := (b ∈ f(U)).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

Proof. Let r be an ideal of A → B; then by the theorem just proved
r is an approximable map. We first show that |r| is well-defined. So let
z ∈ |A|.
|r|(z) is consistent: let b1, . . . , bn ∈ |r|(z). Then there are U1, . . . , Un ⊆ z

such that r(Ui, bi). Hence U := U1 ∪ · · · ∪ Un ⊆ z and r(U, bi) by ax-
iom (c) of approximable maps. Now from axiom (a) we can conclude that
{b1, . . . , bn} ∈ ConB.
|r|(z) is deductively closed: let b1, . . . , bn ∈ |r|(z) and {b1, . . . , bn} `B b.

We must show b ∈ |r|(z). As before we find U ⊆ z such that r(U, bi). Now
from axiom (b) we can conclude r(U, b) and hence b ∈ |r|(z).

Continuity of |r| follows immediately from part (b) of the lemma above,
since by definition |r| is monotone and satisfies PFS.

Now let f : |A| → |B| be continuous. It is easy to verify that f̂ is indeed
an approximable map. Furthermore

b ∈ |f̂ |(z)↔ f̂(U, b) for some U ⊆ z
↔ b ∈ f(U) for some U ⊆ z
↔ b ∈ f(z) by monotonicity and PFS.

Finally, for any approximable map r : A→ B we have

r(U, b)↔ ∃V⊆Ur(V, b) by axiom (c) for approximable maps

↔ b ∈ |r|(U)

↔ |̂r|(U, b),

so r = |̂r|. �

Moreover, one can easily check that

r ◦ s := { (U, c) | ∃V ((U, V ) ⊆ s ∧ (V, c) ∈ r) }



18 2. COMPUTABILITY IN HIGHER TYPES

is an approximable map (where (U, V ) := { (U, b) | b ∈ V }), and

|r ◦ s| = |r| ◦ |s|, f̂ ◦ g = f̂ ◦ ĝ.

We usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It
should always be clear from the context where the mods and hats should be
inserted.

2.1.3. Algebras and types. We now consider concrete information
systems, our basis for continuous functionals.

Types will be built from base types by the formation of function types,
ρ → σ. As domains for the base types we choose non-flat and possibly
infinitary free algebras, given by their constructors. The main reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.

We inductively define type forms

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

with α, ξ type variables and k ≥ 1 (since we want our algebras to be inhab-
ited). Note that (ρν)ν<n → σ means ρ0 → . . . → ρn−1 → σ, associated to
the right.

Let FV(ρ) denote the set of type variables free in ρ. We define SP(α, ρ)
“α occurs at most strictly positive in ρ” by induction on ρ.

SP(α, β)
α /∈ FV(ρ) SP(α, σ)

SP(α, ρ→ σ)

SP(α, ρiν) for all i < k, ν < ni
SP(α, µξ((ρiν)ν<ni → ξ)i<k)

Now we can define Ty(ρ) “ρ is a type”, again by induction on ρ.

Ty(α)
Ty(ρ) Ty(σ)

Ty(ρ→ σ)

Ty(ρiν) and SP(ξ, ρiν) for all i < k, ν < ni ξ /∈ FV(ρ0ν) for all ν < n0
Ty(µξ((ρiν)ν<ni → ξ)i<k)

We call

ι := µξ((ρiν)ν<ni → ξ)i<k

an algebra. Sometimes it is helpful to display the type parameters and write

ι(~α, ~β ), where ~α, ~β are all type variables except ξ free in some ρiν , and ~α
are the ones occuring only strictly positive. If we write the i-th component
of ι in the form (ρν(ξ))ν<n → ξ, then we call

(ρν(ι))ν<n → ι

the i-th constructor type of ι.



2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 19

In (ρν(ξ))ν<n → ξ we call ρν(ξ) a parameter argument type if ξ does
not occur in it, and a recursive argument type otherwise. A recursive argu-
ment type ρν(ξ) is nested if it has an occurrence of ξ in a strictly positive
parameter position of another (previously defined) algebra, and unnested
otherwise. An algebra ι is called nested if it has a constructor with at least
one nested recursive argument type, and unnested otherwise.

Every type ρ should have a total inhabitant , i.e., a closed term of this
type built solely from constructors, variables and assumed total inhabitants
of some of its (type) variables. To ensure this we have required that for
every algebra µξ((ρiν)ν<ni → ξ)i<k the initial (ρ0ν)ν<n0 → ξ has no recursive
argument types. Note that it might not be necessary to actually use assumed
total inhabitants for all variables of a type. An example is the list type L(α),
which has the Nil constructor as a total inhabitant. However, for the type
L(α)+ (:= µξ(α → ξ, α → ξ → ξ)) we need to assume a total inhabitant of
α.

Here are some examples of algebras.

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (trees).

Examples of algebras strictly positive in their type parameters are

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

An example of a nested algebra is

T := µξ(L(ξ)→ ξ) (finitely branching trees).

Note that T has a total inhabitant since L(α) has one (given by the Nil
constructor).

Let ρ be a type; we write ρ(~α ) for ρ to indicate its dependence on
the type parameters ~α. We can substitute types ~σ for ~α, to obtain ρ(~σ ).
Examples are L(B), the type of lists of booleans, and N ×N, the type of
pairs of natural numbers.
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Note that often there are many equivalent ways to define a particular
type. For instance, we could take U+U to be the type of booleans, L(U) to
be the type of natural numbers, and L(B) to be the type of positive binary
numbers.

For every constructor type of an algebra we provide a (typed) constructor
symbol Ci. In some cases they have standard names, for instance

ttB, ffB for the two constructors of the type B of booleans,

0N, SN→N for the type N of (unary) natural numbers,

1P, SP→P
0 ,SP→P

1 for the type P of (binary) positive numbers,

NilL(ρ),Consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(Inlρσ)ρ→ρ+σ, (Inrρσ)σ→ρ+σ for the sum type ρ+ σ,

Branch: L(T)→ T for the type T of finitely branching trees.

An algebra form ι is structure-finitary if all its argument types ρiν are
not of arrow form. It is finitary if in addition it has no type variables. In
the examples above U, B, N, P and D are all finitary, but O and Tn+1

are not. L(ρ), ρ × σ and ρ + σ are structure-finitary, and finitary if their
parameter types are. The nested algebra T above is finitary.

An algebra is explicit if all its constructor types have parameter argu-
ment types only (i.e., no recursive argument types). In the examples above
U, B, ρ× σ and ρ+ σ are explicit, but N, P, L(ρ), D, O, Tn+1 and T are
not.

We will also need the notion of the level of a type, which is defined by

lev(ι) := 0, lev(ρ→ σ) := max{lev(σ), 1 + lev(ρ)}.

Base types are types of level 0, and a higher type has level at least 1.

2.1.4. Partial continuous functionals. For every type ρ we define
the information system Cρ = (Cρ,Conρ,`ρ). The ideals x ∈ |Cρ| are the
partial continuous functionals of type ρ. Since we will have Cρ→σ = Cρ →
Cσ, the partial continuous functionals of type ρ→ σ will correspond to the
continuous functions from |Cρ| to |Cσ| w.r.t. the Scott topology. It will not
be possible to define Cρ by recursion on the type ρ, since we allow algebras
with constructors having function arguments (like O and Sup). Instead, we
shall use recursion on the “height” of the notions involved, defined below.

Definition (Information system of type ρ). We simultaneously define
Cι, Cρ→σ, Conι and Conρ→σ.
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(a) The tokens a ∈ Cι are the type correct constructor expressions Ca∗1 . . . a
∗
n

where a∗i is an extended token, i.e., a token or the special symbol ∗ which
carries no information.

(b) The tokens in Cρ→σ are the pairs (U, b) with U ∈ Conρ and b ∈ Cσ.
(c) A finite set U of tokens in Cι is consistent (i.e., ∈ Conι) if all its elements

start with the same constructor C, say of arity τ1 → . . .→ τn → ι, and
all Ui ∈ Conτi for i = 1, . . . , n, where Ui consists of all (proper) tokens

at the i-th argument position of some token in U = {C ~a∗1, . . . ,C ~a∗m}.
(d) { (Ui, bi) | i ∈ I } ∈ Conρ→σ is defined to mean ∀J⊆I(

⋃
j∈J Uj ∈ Conρ →

{ bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U `ρ a for U ∈ Conρ and a ∈ Cρ.
(e) {C ~a∗1, . . . ,C ~a∗m} `ι C′ ~a∗ is defined to mean C = C′, m ≥ 1 and Ui ` a∗i ,

with Ui as in (c) above (and U ` ∗ taken to be true).
(f) W `ρ→σ (U, b) is defined to mean WU `σ b, where application WU

of W = { (Ui, bi) | i ∈ I } ∈ Conρ→σ to U ∈ Conρ is defined to be
{ bi | U `ρ Ui }; recall that U ` V abbreviates ∀a∈V (U ` a).

If we define the height of the syntactic expressions involved by

|Ca∗1 . . . a∗n| := 1 + max{ |a∗i | | i = 1, . . . , n }, | ∗ | := 0,

|(U, b)| := max{1 + |U |, 1 + |b|},
|{ ai | i ∈ I }| := max{ 1 + |ai| | i ∈ I },
|U ` a| := max{1 + |U |, 1 + |a|},

these are definitions by recursion on the height.
It is easy to see that (Cρ,Conρ,`ρ) is an information system. Observe

that all the notions involved are computable: a ∈ Cρ, U ∈ Conρ and U `ρ a.

Definition (Partial continuous functionals). For every type ρ let Cρ be
the information system (Cρ,Conρ,`ρ). The set |Cρ| of ideals in Cρ is the set
of partial continuous functionals of type ρ. A partial continuous functional
x ∈ |Cρ| is computable if it is recursively enumerable when viewed as a set
of tokens.

Notice that Cρ→σ = Cρ → Cσ as defined generally for information
systems.

For example, the tokens for the algebra N are shown in Figure 1. For
tokens a, b we have {a} ` b if and only if there is a path from a (up) to
b (down). As another (more typical) example, consider the algebra D of
derivations with a nullary constructor 0 and a binary C. Then {C0∗,C∗0}
is consistent, and {C0∗,C∗0} ` C00.
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•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Figure 1. Tokens and entailment for N

2.1.5. Constructors as continuous functions. Let ι be an algebra.
Every constructor C generates the following ideal in the function space:

rC := { (~U,C ~a∗ ) | ~U ` ~a∗ }.

Here (~U, a) abbreviates (U1, (U2, . . . (Un, a) . . . )).
According to the general definition of a continuous function associated

to an ideal in a function space the continuous map |rC| satisfies

|rC|(~x ) = {C ~a∗ | ∃~U⊆~x(~U ` ~a∗) }.

An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint, which is what we
wanted to achieve by associating non-flat rather than flat information sys-
tems with algebras.

Lemma (Constructors are injective and have disjoint ranges). Let ι be
an algebra and C be a constructor of ι. Then

|rC|(~x ) ⊆ |rC|(~y )↔ ~x ⊆ ~y.
If C1,C2 are distinct constructors of ι, then |rC1 |(~x ) 6= |rC2 |(~y ), since the
two ideals are non-empty and disjoint.

Proof. Immediate from the definitions. �

Remark. Notice that neither property holds for flat information sys-
tems, since for them, by monotonicity, constructors need to be strict (i.e.,
if one argument is the empty ideal, then the value is as well). But then we
have

|rC|(∅, y) = ∅ = |rC|(x, ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅)

where in the first case we have one binary and, in the second, two unary
constructors.
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2.1.6. Total and cototal ideals in a finitary algebra. In the infor-
mation system Cι associated with an algebra ι, the “total” and “cototal”
ideals are of special interest. Here we give an explicit definition for fini-
tary algebras. For general algebras totality can be defined inductively and
cototality coinductively (cf. 3.2.4).

Recall that a token in ι is a constructor tree P possibly containing the
special symbol ∗. Because of the possibility of parameter arguments we need
to distinguish between “structure-” and “fully” total and cototal ideals.
For the definition it is easiest to refer to a constructor tree P (∗) with a
distinguished occurrence of ∗. This occurrence is called non-parametric if
the path from it to the root does not pass through a parameter argument
of a constructor. For a constructor tree P (∗), an arbitrary P (C ~a∗) is called

one-step extension of P (∗), written P (C ~a∗) �1 P (∗).

Definition. Let ι be an algebra, and Cι its associated information
system. An ideal x ∈ |Cι| is cototal if every constructor tree P (∗) ∈ x has a
�1-predecessor P (C~∗ ) ∈ x; it is called total if it is cototal and the relation
�1 on x is well-founded. It is called structure-cototal (structure-total) if the
same holds with �1 defined w.r.t. P (∗) with a non-parametric distinguished
occurrence of ∗.

If there are no parameter arguments, we shall simply speak of total
and cototal ideals. For example, for the algebra N every total ideal is
the deductive closure of a token S(S . . . (S0) . . . ), and the set of all tokens
S(S . . . (S∗) . . . ) is a cototal ideal. For the algebra L(N) of lists of natural
numbers the total ideals are the finite lists and the cototal ones the finite
or infinite lists. For the algebra D of derivations the total ideals can be
viewed as the finite derivations, and the cototal ones as the finite or infinite
“locally correct” derivations of Mints (1978); arbitrary ideals can be viewed
as “partial” or “incomplete” derivations, with “holes”.

Remark. From a categorical perspective (as in Hagino (1987); Rutten
(2000)) finite lists of natural numbers can be seen as making up the initial
algebra of the functor TX = 1 + (N × X), and infinite lists (or streams)
of natural numbers as making up the terminal coalgebra of the functor
TX = N×X. In the present setting both finite and infinite lists of natural
numbers appear as cototal ideals in the algebra L(N), with the finite ones
the total ideals. However, to properly deal with computability we need
to accommodate partiality, and hence there are more ideals in the algebra
L(N).
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2.2. Denotational and operational semantics

For every type ρ, we have defined what a partial continuous functional of
type ρ is: an ideal consisting of tokens at this type. These tokens or rather
the formal neighborhoods formed from them are syntactic in nature; they are
reminiscent to Kreisel’s “formal neighborhoods” (Kreisel, 1959; Martin-Löf,
1983; Coquand and Spiwack, 2006). However – in contrast to Martin-Löf
(1983) – we do not have to deal separately with a notion of consistency for
formal neighborhoods: this concept is built into information systems.

Let us now turn our attention to a formal (functional programming)
language, in the style of Plotkin’s PCF (1977), and see how we can provide a
denotational semantics (that is, a “meaning”) for the terms of this language.
A closed term M of type ρ will denote a partial continuous functional of this
type, that is, a consistent and deductively closed set of tokens of type ρ. We
will define this set inductively.

It will turn out that these sets are recursively enumerable. In this sense
every closed term M of type ρ denotes a computable partial continuous
functional of type ρ. However, it is not a good idea to define a computable
functional in this way, by providing a recursive enumeration of its tokens.
We rather want to be able to use recursion equations for such definitions.
Therefore we extend the term language by constants D defined by certain
“computation rules”, as in (Berger et al., 2003; Berger, 2005). Our semantics
will cover these as well. The resulting term system can be seen as a common
extension of Gödel’s T (1958) and Plotkin’s PCF; we call it T+.

2.2.1. Structural recursion operators and Gödel’s T. We begin
with a discussion of particularly important examples of such constants D,
the (structural) higher type recursion operators Rτι introduced by Hilbert
(1925) and Gödel (1958). They are used to construct maps from the algebra
ι to τ , by recursion on the structure of ι. For instance, RτN has type N →
τ → (N→ τ → τ)→ τ . The first argument is the recursion argument, the
second one gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the next value.
For example, RN

Nnmλn,p(Sp) defines addition m+ n by recursion on n. For
λn,p(Sp) we often write λ ,p(Sp) since the bound variable n is not used.

Generally, we define the type of the recursion operatorRτι for the algebra
ι = µξ((ρiν(ξ))ν<ni → ξ)i<k and result type τ to be

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.
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Here ι is the type of the recursion argument, and each (ρiν(ι×τ))ν<ni → τ is
called a step type. Usage of ι× τ rather than τ in the step types can be seen
as a “strengthening”, since then one has more data available to construct
the value of type τ . Moreover, for unnested recursive argument types ~σ → τ
we avoid the product type in ~σ → ι × τ and take the two argument types
~σ → ι and ~σ → τ instead (“duplication”).

For some algebras we spell out the type of their recursion operators:

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτP : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

RτD : D→ τ → (D→ τ → D→ τ → τ)→ τ,

RτO : O→ τ → (O→ τ → τ)→ ((N→ O)→ (N→ τ)→ τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ,

RτT : T→ (L(T× τ)→ τ)→ τ.

There is an important variant of recursion, where no recursive calls oc-
cur. This variant is called the cases operator ; it distinguishes cases according
to the outer constructor form. For the algebra ι = µξ((ρiν(ξ))ν<ni → ξ)i<k
and result type τ the type of the cases operator Cτι is

ι→ ((ρiν(ι))ν<ni → τ)i<k → τ.

The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.

It can be used to define the predecessor function on N, i.e., P0 := 0 and
P(Sn) := n, by the term

Pm := CNNm0(λnn).

Remark. When computing the value of a cases term, we do not want
to (eagerly) evaluate all arguments, but rather compute the test argument
first and depending on the result (lazily) evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; for
instance, in Scheme the if-construct is called a special form (as opposed
to an operator). Therefore instead of taking the cases operator applied to a
full list of arguments, one rather uses a case-construct to build this term;
it differs from the former only in that it employs lazy evaluation. Hence the
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predecessor function is written in the form [case m of 0 | λnn]. If there are
exactly two cases, we also write λm[if m then 0 else λnn] instead.

We shall also need map operators. Let ρ(~α ) be a type and ~α strictly
positive type parameters. We define

M~σ→~τ
λ~αρ(~α ) : ρ(~σ )→ (~σ → ~τ )→ ρ(~τ )

(where (~σ → ~τ) → ρ(~τ ) means (σ1 → τ1) → . . . → (σn → τn) → ρ(~τ )). If
none of ~α appears free in ρ(~α ) let

M~σ→~τ
λ~αρ(~α )x

~f := x.

Otherwise we use an outer recursion on ρ(~α ) and if ρ(~α ) is ι(~α ) an inner
one on x. In case ρ(~α ) is ι(~α ) we abbreviate M~σ→~τ

λ~αι(~α ) by M~σ→~τ
ι or M~τ

ι(~σ ).

The immediate cases for the outer recursion are

M~σ→~τ
λ~ααi

x~f := fix, M~σ→~τ
λ~α(σ→ρ)h

~fx :=M~σ→~τ
λ~αρ

(hx)~f.

It remains to consider ι(~π(~α )). In case ~π(~α ) is not ~α let

M~σ→~τ
λ~αι(~π(~α ))x

~f :=M~π(~σ )→~π(~τ )
ι x(M~σ→~τ

λ~απi(~α ) · ~f )i<|~π |

with M~σ→~τ
λ~απi(~α ) · ~f := λxM~σ→~τ

λ~απi(~α )x
~f . In case ~π(~α ) is ~α we use recursion on

x and define for a constructor Ci : (ρν(~σ, ι(~σ )))ν<n → ι(~σ )

M~σ→~τ
ι (Ci~x )~f

to be the result of applying C′i of type (ρν(~τ , ι(~τ )))ν<n → ι(~τ ) (the same
constructor as Ci with only the type changed) to, for each ν < n,

M~σ,ι(~σ )→~τ,ι(~τ )
λ~α,βρν(~α,β)

xν ~f(M~σ→~τ
ι · ~f ).

Note that the final function argument provides the recursive call w.r.t. the
recursion on x.

Example.

Mτ
L(σ)Nilfσ→τ := Nil,

Mτ
L(σ)(x

σ :: lL(σ))fσ→τ := (fx) :: (M l f).

Definition. Terms of Gödel’s T for nested algebras are inductively de-
fined from typed variables xρ and constants for constructors Cι

i, recursion

operators Rτι and map operatorsM~ρ→~τ
λ~απ

by abstraction λxρM
σ and applica-

tion Mρ→σNρ.
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2.2.2. Conversion. We define a conversion relation 7→ρ between terms
of type ρ by

(λxM(x))N 7→M(N),(2.1)

λx(Mx) 7→M if x /∈ FV(M) (M not an abstraction),(2.2)

Rτι (Cι
i
~N) ~M 7→Mi(Mι→ι×τ

λαρν(α)
Nνλx〈xι,Rτι x ~M〉)ν<n(2.3)

where (ρν(ι))ν<n → ι is the type of the i-th constructor Ci.
In the special case ρν(α) = α we can avoid the product type and instead

of the pair

Mι→ι×τ
λαα

Nνλx〈xι,Rτι x ~M〉 i.e., 〈N ι
ν ,RτιNν

~M〉

take its two components N ι
ν and RτιNν

~M as separate arguments of Mi.
The rule (2.1) is called β-conversion, and (2.2) η-conversion; their left

hand sides are called β-redexes or η-redexes, respectively. The left hand side
of (2.3) is called R-redex ; it is a special case of a redex associated with a
constant D defined by “computation rules” (cf. 2.2.3), and hence also called
a D-redex .

2.2.3. A common extension T+ of Gödel’s T and Plotkin’s PCF.
Terms of T+ are built from (typed) variables and (typed) constants (con-
structors C or defined constants D, see below) by (type-correct) application
and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Definition (Computation rule). Every defined constant D comes with
a system of computation rules, consisting of finitely many equations

(2.4) D~Pi(~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi(~yi) and Mi among ~yi, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i 6= j ~Pi and ~Pj have disjoint free

variables, and either ~Pi and ~Pj are non-unifiable (i.e., there is no substitution

which identifies them), or else for the most general unifier ϑ of ~Pi and ~Pj
we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

~yi in Mi constructor patterns ~Rk(~z ) (k = i, j). A further requirement on a

system of computation rules D~Pi(~yi) = Mi is that the lengths of all ~Pi(~yi)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (2.4) is called a D-redex .
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More formally, constructor patterns are defined inductively by (we write
~P (~x ) to indicate all variables in ~P ):

(a) x is a constructor pattern.
(b) The empty list 〈〉 is a constructor pattern.

(c) If ~P (~x ) and Q(~y ) are constructor patterns whose variables ~x and ~y are

disjoint, then (~P ,Q)(~x, ~y ) is a constructor pattern.

(d) If C is a constructor and ~P a constructor pattern, then so is C~P , provided
it is of ground type.

Remark. The requirement of disjoint variables in constructor patterns
~Pi and ~Pj used in computation rules of a defined constant D is needed to
ensure that applying the most general unifier produces constructor patterns
again. However, for readability we take this as an implicit convention, and
write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant. In
particular, the map and (structural) recursion operators can be viewed as
defined by computation rules, which in this case are called conversion rules;
cf. 2.2.2.

The boolean connectives andb, impb and orb are defined by

tt andb y = y,

x andb tt = x,

ff andb y = ff,

x andb ff = ff,

ff impb y = tt,

tt impb y = y,

x impb tt = tt,

tt orb y = tt,

x orb tt = tt,

ff orb y = y,

x orb ff = x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a finitary algebra ι can be defined
easily by computation rules. For example,

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

For the algebra D of binary trees with constructors L (leaf) and C (construct
a new tree from two given ones) we have

(L =D L) = tt,

(L =D Cn) = ff,

(Cm =D L) = ff,

(Ca1a2 =D Cb1b2) = (a1 =D b1 andb a2 =D b2).
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2.2.4. Ideals as denotation of terms. How can we use computation
rules to define an ideal z in a function space? The general idea is to in-
ductively define the set of tokens (U, b) that make up z. It is convenient
to define the value [[λ~xM ]], where M is a term with free variables among
~x. Since this value is a token set, we can define inductively the relation

(~U, b) ∈ [[λ~xM ]].

For a constructor pattern ~P (~x ) and a list ~V of the same length and

types as ~x we define a list ~P (~V ) of formal neighborhoods of the same length

and types as ~P (~x ), by induction on ~P (~x ). x(V ) is the singleton list V ,

and for 〈〉 we take the empty list. (~P ,Q)(~V , ~W ) is covered by the induction
hypothesis. Finally

(C~P )(~V ) := {C~b∗ | b∗i ∈ Pi(~Vi) if Pi(~Vi) 6= ∅, and b∗i = ∗ otherwise }.

We use the following notation. (~U, b) means (U1, . . . (Un, b) . . . ), and

(~U, V ) ⊆ [[λ~xM ]] means (~U, b) ∈ [[λ~xM ]] for all (finitely many) b ∈ V .

Definition (Inductive, of a ∈ [[λ~xM ]]). Case λ~x,y,~zM with ~x free in M ,
but not y.

(~U, ~W, a) ∈ [[λ~x,~zM ]]

(~U, V, ~W, a) ∈ [[λ~x,y,~zM ]]
(K).

Case λ~xM with ~x the free variables in M .

U ` a
(U, a) ∈ [[λxx]]

(V ),
(~U, V, a) ∈ [[λ~xM ]] (~U, V ) ⊆ [[λ~xN ]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C ~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM ]] ~U ` ~P (~V )

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P (~x ) = M .

This “denotational semantics” has good properties; however, we do not
carry out the proofs here (cf. Schwichtenberg and Wainer (2012)). First of
all, one can prove that [[λ~xM ]] is an ideal . Moreover, our definition above
of the denotation of a term is reasonable in the sense that it is not changed
by an application of the standard (β- and η-) conversions or a computation
rule. For the β-conversion part of this proof it is helpful to first introduce a
more standard notation, which involves variable environments.

Definition. [[M ]]
~U
~x := { b | (~U, b) ∈ [[λ~xM ]] }, [[M ]]~u,

~V
~x,~y :=

⋃
~U⊆~u[[M ]]

~U,~V
~x,~y .
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We have a useful monotonicity property, which follows from the deduc-
tive closure of [[λ~xM ]].

Lemma. (a) If ~V ` ~U , b ` c and b ∈ [[M ]]
~U
~x , then c ∈ [[M ]]

~V
~x .

(b) If ~v ⊇ ~u, b ` c and b ∈ [[M ]]~u~x, then c ∈ [[M ]]~v~x.

Lemma. (a) [[xi]]
~U
~x = U i and [[xi]]

~u
~x = ui.

(b) [[λyM ]]
~U
~x = { (V, b) | b ∈ [[M ]]

~U,V
~x,y } and [[λyM ]]~u~x = { (V, b) | b ∈ [[M ]]~u,V~x,y }.

(c) [[MN ]]
~U
~x = [[M ]]

~U
~x [[N ]]

~U
~x and [[MN ]]~u~x = [[M ]]~u~x[[N ]]~u~x.

Corollary. [[λyM ]]~u~xv = [[M ]]~u,v~x,y.

Lemma (Substitution). [[M(z)]]
~u,[[N ]]~u~x
~x,z = [[M(N)]]~u~x.

Lemma (Preservation of values, β). [[(λyM(y))N ]]~u~x = [[M(N)]]~u~x.

Lemma (Preservation of values, η). [[λy(My)]]~u~x = [[M ]]~u~x if y /∈ FV(M).

Then it follows that values are preserved under computation rules:

Lemma. For every computation rule D~P (~y ) = M of a defined constant

D, [[λ~y(D~P (~y ))]]~u~x = [[λ~yM ]]~u~x.



CHAPTER 3

Extracting computational content from proofs

3.1. A theory of computable functionals

3.1.1. Brouwer-Heyting-Kolmogorov and Gödel. The Brouwer-
Heyting-Kolmogorov interpretation (BHK-interpretation for short) of intui-
tionistic (and minimal) logic explains what it means to prove a logically
compound statement in terms of what it means to prove its components;
the explanations use the notions of construction and constructive proof as
unexplained primitive notions. For prime formulas the notion of proof is
supposed to be given. The clauses of the BHK-interpretation are:

(i) p proves A ∧ B if and only if p is a pair 〈p0, p1〉 and p0 proves A, p1
proves B;

(ii) p proves A → B if and only if p is a construction transforming any
proof q of A into a proof p(q) of B;

(iii) ⊥ is a proposition without proof;
(iv) p proves ∀x∈DA(x) if and only if p is a construction such that for all

d ∈ D, p(d) proves A(d);
(v) p proves ∃x∈DA(x) if and only if p is of the form 〈d, q〉 with d an element

of D, and q a proof of A(d).

The problem with the BHK-interpretation clearly is its reliance on the
unexplained notions of construction and constructive proof. Gödel was con-
cerned with this problem for more than 30 years. In 1941 he gave a lecture at
Yale university with the title “In what sense is intuitionistic logic construc-
tive?”. According to Kreisel, Gödel “wanted to establish that intuitionistic
proofs of existential theorems provide explicit realizers” (Feferman et al.,
1986, 1990, 1995, 2002, 2002, Vol II, p.219). Gödel published his “Dialec-
tica interpretation” in (1958), and revised this work over and over again;
its state in 1972 has been published in the same volume. Troelstra, in his
introductory note to the latter two papers writes (loc. cit., pp.220/221):

Gödel argues that, since the finististic methods considered
are not sufficient to carry out Hilbert’s program, one has

31
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to admit at least some abstract notions in a consistency
proof; . . . However, Gödel did not want to go as far as
admitting Heyting’s abstract notion of constructive proof;
hence he tried to replace the notion of constructive proof
by something more definite, less abstract (that is, more
nearly finitistic), his principal candidate being a notion of
“computable functional of finite type” which is to be ac-
cepted as sufficiently well understood to justify the axioms
and rules of his system T, an essentially logic-free theory
of functionals of finite type.

We intend to utilize the notion of a computable functional of finite type
as an ideal in an information system, as explained in the previous chapter.
However, Gödel noted that his proof interpretation is largely independent of
a precise definition of computable functional; one only needs to know that
certain basic functionals are computable (including primitive recursion oper-
ators in finite types), and that they are closed under composition. Building
on Gödel (1958), we assign to every formula A a new one ∃xA1(x) with A1(x)
∃-free. Then from a derivation of A we want to extract a “realizing term” r
such that A1(r). Of course its meaning should in some sense be related to
the meaning of the original formula A. However, Gödel explicitly states in
(1958, p.286) that his Dialectica interpretation is not the one intended by
the BHK-interpretation.

3.1.2. Formulas and predicates. When we want to make proposi-
tions about computable functionals and their domains of partial continuous
functionals, it is perfectly natural to take, as initial propositions, ones formed
inductively or coinductively. However, for simplicity we omit the treatment
of coinductive definitions and deal with inductive definitions only. For ex-
ample, in the algebra N we can inductively define totality by the clauses

TN0, ∀n(TNn→ TN(Sn)).

Its least-fixed-point scheme will now be taken in the form

∀n(TNn→ A(0)→ ∀n(TNn→ A(n)→ A(Sn))→ A(n)).

The reason for writing it in this way is that it fits more conveniently with
the logical elimination rules, which will be useful in the proof of the sound-
ness theorem. It expresses that every “competitor” {n | A(n) } satisfying
the same clauses contains TN. This is the usual induction schema for natu-
ral numbers, which clearly only holds for “total” numbers (i.e., total ideals
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in the information system for N). Notice that we have used a “strength-
ened” form of the “step formula”, namely ∀n(TNn→ A(n)→ A(Sn)) rather
than ∀n(A(n)→ A(Sn)). In applications of the least-fixed-point axiom this
simplifies the proof of the “induction step”, since we have the additional
hypothesis T (n) available. Totality for an arbitrary algebra can be defined
similarly. Consider for example the non-finitary algebra O (cf. 2.1.3), with
constructors 0, successor S of type O → O and supremum Sup of type
(N→ O)→ O. Its clauses are

TO0, ∀x(TOx→ TO(Sx)), ∀f (∀n∈TNTO(fn)→ TO(Sup(f))),

and its least-fixed-point scheme is

∀x(TOx→ A(0)→
∀x(TOx→ A(x)→ A(Sx))→
∀f (∀n∈TTO(fn)→ ∀n∈TA(fn)→ A(Sup(f)))→
A(x)).

Generally, an inductively defined predicate I is given by k clauses, which
are of the form

Ki := ∀~x((Aν(I))ν<n → I~r ) (i < k).

Our formulas will be defined by the operations of implication A → B

and universal quantification ∀xρA from inductively defined predicates µX ~K,
where X is a “predicate variable”, and the Ki are “clauses”. Every predicate
has an arity, which is a possibly empty list of types.

Definition (Formulas and predicates). By simultaneous induction we
define formula forms

A,B ::= P~r | A→ B | ∀xA
and predicate forms

P,Q ::= X | { ~x | A } | µX(∀~xi((Aiν)ν<ni → X~ri))i<k

with X a predicate variable, k ≥ 1 and ~xi all free variables in (Aiν)ν<ni →
X~ri (it is not necessary to allow object parameters in inductively defined
predicates, since they can be taken as extra arguments). Let C denote both
formula and predicate forms. Let FPV(C) denote the set of free predicate
variables in C. We define SP(Y,C) “Y occurs at most strictly positive in
C” by induction on C.

SP(Y, P )

SP(Y, P~r )

Y /∈ FPV(A) SP(Y,B)

SP(Y,A→ B)

SP(Y,A)

SP(Y, ∀xA)
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SP(Y,X)
SP(Y,A)

SP(Y, { ~x | A })
SP(Y,Aiν) for all i<k, ν<ni

SP(Y, µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

Now we can define F(A) “A is a formula” and Pred(P ) “P is a predicate”,
again by simultaneous induction.

Pred(P )

F(P~r )

F(A) F(B)

F(A→ B)

F(A)

F(∀xA)

Pred(X)
F(A)

Pred({ ~x | A })
F(Aiν) and SP(X,Aiν) for all i<k, ν<ni X /∈ FPV(A0ν) for all ν<n0

Pred(µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

We call
I := µX(∀~xi((Aiν)ν<ni → X~ri))i<k

an inductive (or inductively defined) predicate. Sometimes it is helpful to

display the predicate parameters and write I(~Y , ~Z ), where ~Y , ~Z are all pre-

dicate variables free in some Aiν except X, and ~Y are the ones occuring
only strictly positive. If we write the i-th component of I in the form
∀~x((Aν(X))ν<n → X~r ), then we call

(3.1) Ki := ∀~x((Aν(I))ν<n → I~r )

the i-th clause (or introduction axiom) of I, denoted I+i .

Here ~A → B means A0 → · · · → An−1 → B, associated to the right.
The terms ~r are those introduced in section 2.2, i.e., typed terms built from
variables and constants by abstraction and application, and (importantly)
those with a common reduct are identified. In ∀~x((Aν(X))ν<n → X~r ) we
call Aν(X) a parameter premise if X does not occur in it, and a recursive
premise otherwise. A recursive premise Aν(X) is nested if it has an occur-
rence of X in a strictly positive parameter position of another (previously
defined) inductive predicate, and unnested otherwise. An inductive predi-
cate I is called nested if it has a clause with at least one nested recursive
premise, and unnested otherwise.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x ) }~r with C(~r ). The letter I will be used for predicates
of the form µX(K0, . . . ,Kk−1); they are called inductively defined predi-
cates. An inductively defined predicate is finitary if its clauses have recursive
premises of the form X~s only.

Definition (Theory of computable functionals, TCF). TCF is the sys-
tem in minimal logic for→ and ∀, whose formulas are those in F above, and
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whose axioms are the following. For each inductively defined predicate, there
are “closure” or introduction axioms, together with a “least-fixed-point” or
elimination axiom. In more detail, consider an inductively defined predicate
I := µX(K0, . . . ,Kk−1). For each of the k clauses we have the introduction
axiom (3.1). Moreover, we have an elimination axiom I−:

(3.2) ∀~x(I~x→ (∀~xi((Aiν(I ∧X))ν<ni → X~ri))i<k → X~x )

where I ∧X abbreviates { ~x | I~x∧X~x } with ∧ defined (inductively) below.
Here X can be thought of as a “competitor” predicate.

3.1.3. Examples of inductive predicates. We first deal with the
concept of an equality. A word of warning is in order here: we need to
distinguish four separate but closely related equalities.

(i) Firstly, defined function constants D are introduced by computation
rules, written l = r, but intended as left-to-right rewrites.

(ii) Secondly, we have Leibniz equality Eq inductively defined below.
(iii) Thirdly, pointwise equality between partial continuous functionals will

be defined inductively as well.
(iv) Fourthly, if l and r have a finitary algebra as their type, l = r can be

read as a boolean term, where = is the decidable equality defined in
2.2.3 as a boolean-valued binary function.

Leibniz equality. We define Leibniz equality by

Eq(ρ) := µX(∀xX(xρ, xρ)).

The introduction axiom is

∀xEq(xρ, xρ)

and the elimination axiom

∀x,y(Eq(x, y)→ ∀xXxx→ Xxy),

where Eq(x, y) abbreviates Eq(ρ)(xρ, yρ).

Lemma (Compatibility of Eq). ∀x,y(Eq(x, y)→ A(x)→ A(y)).

Proof. Exercise. �

Using compatibility of Eq one easily proves symmetry and transitivity.
Define falsity by F := Eq(ff, tt). Then we have

Theorem (Ex-falso-quodlibet). For every formula A without predicate
parameters we can derive F→ A.
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Proof. We first show that F→ Eq(xρ, yρ). To see this, we first obtain
Eq(RρBffxy,R

ρ
Bffxy) from the introduction axiom. Then from Eq(ff, tt) we

get Eq(RρBttxy,R
ρ
Bffxy) by compatibility. Now RρBttxy converts to x and

RρBffxy converts to y. Hence Eq(xρ, yρ), since we identify terms with a
common reduct.

The claim can now be proved by induction on A ∈ F. Case I~s. Let
Ki be the nullary clause, with final conclusion I~t. By induction hypothesis
from F we can derive all parameter premises. Hence I~t. From F we also
obtain Eq(si, ti), by the remark above. Hence I~s by compatibility. The
cases A→ B and ∀xA are obvious. �

A crucial use of the equality predicate Eq is that it allows us to lift a
boolean term rB to a formula, using atom(rB) := Eq(rB, tt). This opens
up a convenient way to deal with equality on finitary algebras. The com-
putation rules ensure that, for instance, the boolean term Sr =N Ss, or
more precisely =N(Sr, Ss), is identified with r =N s. We can now turn this
boolean term into the formula Eq(Sr =N Ss, tt), which again is abbreviated
by Sr =N Ss, but this time with the understanding that it is a formula.
Then (importantly) the two formulas Sr =N Ss and r =N s are identified
because the latter is a reduct of the first. Consequently there is no need to
prove the implication Sr =N Ss→ r =N s explicitly.

Existence, conjunction and disjunction. One of the main points of TCF
is that it allows the logical connectives existence, conjunction and disjunc-
tion to be inductively defined as predicates. This was first discovered by
Martin-Löf (1971).

Ex(Y ) := µX(∀x(Y xρ → X)),

And(Y1, Y2) := µX(Y1 → Y2 → X),

Or(Y1, Y2) := µX(Y1 → X, Y2 → X).

We will use the abbreviations

∃xA := Ex({xρ | A }),
A ∧B := And({ | A }, { | B }),
A ∨B := Or({ | A }, { | B }),

The introduction axioms are

∀x(Y x→ ∃xY x),

Y1 → Y2 → Y1 ∧ Y2,
Y1 → Y1 ∨ Y2, Y2 → Y1 ∨ Y2.
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The elimination axioms are

∃xY x→ ∀x(Y x→ X)→ X,

Y1 ∧ Y2 → (Y1 → Y2 → X)→ X,

Y1 ∨ Y2 → (Y1 → X)→ (Y2 → X)→ X.

We give some more familiar examples of inductively defined predicates.
The even numbers. The introduction axioms are

Even(0), ∀n(Even(n)→ Even(S(Sn)))

and the elimination axiom is

∀n(Even(n)→ X0→ ∀n(Even(n)→ Xn→ X(S(Sn)))→ Xn).

Transitive closure. Let ≺ be a predicate variable representing a binary
relation. The transitive closure TC≺ of ≺ is inductively defined as follows.
The introduction axioms are

∀x,y(x ≺ y → TC≺(x, y)),

∀x,y,z(x ≺ y → TC≺(y, z)→ TC≺(x, z))

and the elimination axiom is

∀x,y(TC≺(x, y)→ ∀x,y(x ≺ y → Xxy)→
∀x,y,z(x ≺ y → TC≺(y, z)→ Xyz → Xxz)→
Xxy).

3.2. Realizability interpretation

At this point we come to the crucial step of identifying “computational
content” in proofs, which can then be extracted. Recall that the BHK-
interpretation (described in 3.1.1) left open what a proof of a prime formula
is. However, in TCF we can be more definite, since a closed prime formula
must be of the form I~r with I an inductive predicate. The obvious idea is
to view a proof of I~r as a “generation tree”, witnessing how the arguments
~r were put into I. For example, let Even be defined by the clauses Even(0)
and ∀n(Even(n) → Even(S(Sn))). A generation tree for Even(6) should
consist of a single branch with nodes Even(0), Even(2), Even(4) and Even(6).
More formally, such a generation tree can seen as an ideal in an algebra ιI
associated naturally with I.

Consider the more general situation when parameters are involved, i.e.,

when we have a proof (in TCF) of a closed formula ∀~x( ~A → I~r ). It is of

obvious interest which of the variables ~x and assumptions ~A are actually used
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in the “solution” provided by the proof (in the sense of Kolmogorov (1932)).
To be able to express dependence on and independence of such parameters
we split each of our (only!) logical connectives →,∀ into two variants, a
“computational” one ∀c,→c and a “non-computational” one ∀nc,→nc. This
distinction (for the universal quantifier) is due to Berger (1993, 2005). Then

a proof of ∀nc~x ∀
c
~y(
~A →nc ~B →c I~r ) provides a construction of an ideal in ιI

independent of ~x and assumed proofs of ~A. One can view this “decoration”
of →, ∀ as turning our (minimal) logic into a “computational logic”, which
is able to express dependence on and independence of parameters. The rules
for →nc,∀nc are similar to the ones for →c,∀c; they will be given in 3.2.2.

Now the clauses of inductive predicates can and should be decorated as
well. Without loss of generality we can assume that they have the form

∀nc~x ∀
c
~y(
~A→nc ~B →c X~r ).

This will lead to a different (i.e., simplified) algebra ιI associated with the
inductive predicate I.

Of special importance is the case when we only have→nc,∀nc, and there
is only one clause. Such inductive predicates are called “uniform one-clause
defined”, and their associated algebra is the unit algebra U. Examples are
Leibniz equality, existence and conjunction when defined with →nc, ∀nc:

Eq(ρ) := µX(∀ncx X(xρ, xρ)),

ExU(Y ) := µX(∀ncx (Y xρ →nc X)),

AndU(Y1, Y2) := µX(Y1 →nc Y2 →nc X).

From now on we only use this uniform one-clause definition of Leibniz equa-
lity Eq, and use the abbreviations

∃uxA := ExU({xρ | A }).
A ∧u B := AndU({ | A }, { | B }).

Prime formulas I~r with ιI = U only have a trivial generation tree, and
in this sense are without computational content. Clearly this is also the
case for formulas with such an I~r as conclusion. These formulas are called
non-computational (n.c.) or Harrop formulas. Moreover, a Harrop formula
in a premise can be ignored when we are interested in the computational
content of a proof of this formula: its only contribution would be of unit
type. Therefore when defining the type of a formula in 3.2.5 we will use a
“cleaned” form of such a type, not involving the unit type.

The next thing to do is to properly accomodate the BHK-interpretation
and define what it means that a term t “realizes” the formula A, written
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t r A. In the prime formula case I~r this will involve a predicate “t realizes
I~r ”, which will be defined inductively as well, following the clauses of I. But
since this is a “meta” statement already containing the term t representing a
generation tree, we are not interested in the generation tree for such realizing
formulas and consider them as non-computational.

Finally we will define in 3.2.6 the “extracted term” et(M) of a proof M
of a formula A, and prove the soundness theorem et(M) r A.

Remark. We have encountered two situations where inductive defini-
tions do not have computational content: uniform one-clause defined pre-
dicates, and realizability predicates. There is a third occasion when this
can happen and is in fact rather useful, namely when the all clauses have
“invariant” premises A only; a formula A is called invariant if ∃x(x r A) is
equivalent to A. We write µncX (K0, . . . ,Kk−1) whenever an inductive predi-
cate is n.c. The soundness theorem continues to hold if we restrict usage of
the least-fixed-point (or elimination) axiom for such n.c. inductive predicates
to Harrop formulas.

3.2.1. An informal explanation. The ideas that we develop here are
illustrated by the following simple situation. The computational content
of an implication Pn →c P (Sn) is that demanded of an implication by the
BHK interpretation, namely a function from evidence for Pn to evidence for
P (Sn). The universal quantifier ∀n is non-computational if it merely supplies
n as an “input”, whereas to say that a universal quantifier is computational
means that a construction of input n is also supplied. Thus a realization of

∀ncn (Pn→c P (Sn))

will be a unary function f such that if r “realizes” Pn, then fr realizes
P (Sn), for every n. On the other hand, a realization of

∀cn(Pn→c P (Sn))

will be a binary function g which, given a number n and a realization r of
Pn, produces a realization g(n, r) of P (Sn). Therefore an induction with
basis and step of the form

P0, ∀ncn (Pn→c P (Sn))

will be realized by iterates f (n)(r0), whereas a computational induction

P0, ∀cn(Pn→c P (Sn))

will be realized by the primitive recusively defined h(n, r0) where h(0, r0) =
r0 and h(Sn, r0) = g(n, h(n, r0)).
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Finally, a word about the non-computational implication: a realizer of
A →nc B will depend solely on the existence of a realizer of A, but will
be completely independent of which one it is. An example would be an
induction

P0, ∀cn(Pn→nc P (Sn))

where the realizer h(n, r0) is given by h(0, r0) = r0, h(Sn, r0) = g(n), without
recursive calls. The point is that in this case g does not depend on a realizer
for Pn, only upon the number n itself.

3.2.2. Decorating → and ∀. We adapt the definition in 3.1.2 of pre-
dicates and formulas to the newly introduced decorated connectives →c, ∀c
and →nc,∀nc. Let → denote either →c or →nc, and similarly ∀ either ∀c or
∀nc. Then the definition in 3.1.2 can be read as it stands.

We also need to adapt our definition of TCF to the decorated connec-
tives →c,→nc and ∀c, ∀nc. The introduction and elimination rules for →c

and ∀c remain as before, and also the elimination rules for →nc and ∀nc.
However, the introduction rules for →nc and ∀nc must be restricted: the
abstracted (assumption or object) variable must be “non-computational”,
in the following sense. Simultaneously with a derivation M we define the
sets CV(M) and CA(M) of computational object and assumption variables
of M , as follows. Let MA be a derivation. If A is non-computational (n.c.),
i.e., the type τ(A) of A (defined below in 3.2.5) is the “nulltype” symbol ◦,
then CV(MA) := CA(MA) := ∅. Otherwise

CV(cA) := ∅ (cA an axiom),

CV(uA) := ∅,
CV((λuAM

B)A→
cB) := CV((λuAM

B)A→
ncB) := CV(M),

CV((MA→cBNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxM
A)∀

c
xA) := CV((λxM

A)∀
nc
x A) := CV(M) \ {x},

CV((M∀
c
xA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀
nc
x A(x)r)A(r)) := CV(M),

and similarly

CA(cA) := ∅ (cA an axiom),

CA(uA) := {u},
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CA((λuAM
B)A→

cB) := CA((λuAM
B)A→

ncB) := CA(MA) \ {u},
CA((MA→cBNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxM
A)∀

c
xA) := CA((λxM

A)∀
nc
x A) := CA(M),

CA((M∀
c
xA(x)r)A(r)) := CA((M∀

nc
x A(x)r)A(r)) := CA(M).

The introduction rules for →nc and ∀nc then are

(i) If MB is a derivation and uA /∈ CA(M) then (λuAM
B)A→

ncB is a
derivation.

(ii) If MA is a derivation, x is not free in any formula of a free assumption
variable of M and x /∈ CV(M), then (λxM

A)∀
nc
x A is a derivation.

An alternative way to formulate these rules is simultaneously with the notion
of the “extracted term” et(M) of a derivation M . This will be done in 3.2.6.

3.2.3. Decorating inductive definitions. Now we can and should
decorate inductive definitions. The introduction axioms are

(3.3) Ki := ∀c/nc~x ((Aν(I))ν<n →c/nc I~r )

and the elimination axiom is

(3.4) ∀nc~x (I~x→c (∀c/nc~xi
((Aiν(I ∧d X))ν<ni →c/nc X~ri))i<k →c X~x )

where I ∧d X abbreviates { ~x | I~x ∧d X~x } with ∧d defined below.
Let us decorate the inductively defined predicates in 3.1.3, that is, take

computational aspects into account. For ∃, ∧ and ∨ we obtain ∃d, ∃l,∃r,∃u,
∧d,∧l,∧r,∧u ∨d,∨l,∨r,∨u with d for “double”, l for “left”, r for “right”
and u for “uniform”. They are defined by their introduction axioms, which
involve both →c, ∀c and →nc, ∀nc.

∀cx(A→c ∃dxA),

∀cx(A→nc ∃lxA),

∀ncx (A→c ∃rxA),

∀ncx (A→nc ∃uxA),

∃dxA→c ∀cx(A→c P )→c P,

∃lxA→c ∀cx(A→nc P )→c P,

∃rxA→c ∀ncx (A→c P )→c P,

∃uxA→c ∀ncx (A→nc P )→c P,

and similar for ∧:

A→c B →c A ∧d B,

A→c B →nc A ∧l B,
A→nc B →c A ∧r B,
A→nc B →nc A ∧u B,

A ∧d B →c (A→c B →c P )→c P,

A ∧l B →c (A→c B →nc P )→c P,

A ∧r B →c (A→nc B →c P )→c P

A ∧u B →c (A→nc B →nc P )→c P
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and for ∨:

A→c A ∨d B,

A→c A ∨l B,
A→nc A ∨r B,
A→nc A ∨u B,

B →c A ∨d B,

B →nc A ∨l B,
B →c A ∨r B,
B →nc A ∨u B

with elimination schemes

A ∨d B →c (A→c P )→c (B →c P )→c P,

A ∨l B →c (A→c P )→c (B →nc P )→c P,

A ∨r B →c (A→nc P )→c (B →c P )→c P,

A ∨u B →c (A→nc P )→c (B →nc P )→c P.

Let ≺ be a predicate variable representing a binary relation. A compu-
tational variant of the inductively defined transitive closure TC≺ of ≺ has
introduction axioms

∀cx,y(x ≺ y →nc TC≺(x, y)),

∀cx,y∀ncz (x ≺ y →nc TC≺(y, z)→c TC≺(x, z)),

and the elimination scheme is

∀ncx,y(TC≺(x, y)→c ∀cx,y(x ≺ y →nc Pxy)→c

∀cx,y∀ncz (x ≺ y →nc TC≺(y, z)→c Pyz →c Pxz)→c

Pxy).

Consider the accessible part of a binary relation ≺. A computational
variant Acc≺ is determined by the introduction axioms

∀cx(F→nc Acc≺(x)),

∀ncx (∀cy≺xAcc≺(y)→c Acc≺(x)),

where ∀cy≺xA stands for ∀cy(y ≺ x→nc A). The elimination scheme is

∀ncx (Acc≺(x)→c ∀cx(F→nc Px)→c

∀ncx (∀cy≺xAcc≺(y)→c ∀cy≺xPy →c Px)→c

Px).
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3.2.4. Totality and induction. In 2.1.6 we have defined what the
total and structure-total ideals of a finitary algebra are. We now inductively
define general totality predicates. Let us first look at some examples. The
clauses defining totality for the algebra N are

TN0, ∀ncn (TNn→c TN(Sn)).

The least-fixed-point axiom is

∀ncn (TNn→c X0→c ∀ncn (TNn→c Xn→c X(Sn))→c Xn).

Clearly the partial continuous functionals with TN interpreted as the total
ideals for N provide a model of TCF extended by these axioms.

For the algebra D of derivations totality is inductively defined by the
clauses

TD0D, ∀ncx,y(TDx→c TDy →c TD(CD→D→Dxy)),

with least-fixed-point axiom

∀ncx (TDx→c X0D →c

∀ncx,y(TDx→c TDy →c Xx→c Xy →c X(CD→D→Dxy))→c

Xx).

Again, the partial continuous functionals with TD interpreted as the total
ideals for D (i.e., the finite derivations) provide a model.

Generally we define

(i) RTρ called relative totality , and its special cases
(ii) Tρ called (absolute) totality and
(iii) STρ called structural totality .

The least-fixed-point axiom for STι will provide us with the induction axiom
for the algebra ι.

The definition of RTρ is relative to an assigment of predicate variables
Y of arity (α) to type variables α.

Definition (Relative totality RT). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then RTι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((RTρν (~Y ,X)xν)ν<n →c X(Ci~x ))

and

RTαj (
~Y ,X) := Yj ,

RTξ(~Y ,X) := X,

RTσ→ρ(~Y ,X) := { f | ∀nc~x (RTσ~x→c RTρ(~Y ,X)(f~x )) }.
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For important special cases of the parameter predicates ~Y we introduce
a separate notation. Suppose we want to argue about total ideals only. Note
that this only makes sense when when no type variables occur. However, to
allow a certain amount of abstract reasing (involving type variables to be
substituted later by concrete closed types), we introduce special predicate
variables Tα which under a substitution α 7→ ρ with ρ closed turn into the
inductively defined predicate Tρ. Using this convention we define totality
for an arbitrary algebra by specializing Y of arity (ρ) to Tρ.

Definition (Absolute totality T ). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then Tι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((Tρν (X)xν)ν<n →c X(Ci~x ))

and

Tαj (X) := Tαj ,

Tξ(X) := X,

Tσ→ρ(X) := { f | ∀nc~x (Tσ~x→c Tρ(X)(f~x )) }.

Another important special case occurs when we substitute the predicate
variables Y by truth predicates. The resulting totality predicate is called
structural totality.

Definition (Structural totality ST). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α )
with κi = (ρν(~α, ξ))ν<n → ξ. Then STι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((STρν (X)xν)ν<n →c X(Ci~x ))

and

STαj (X) := {x | > } (omitted whenever possible),

STξ(X) := X,

STσ→ρ(X) := { f | ∀nc~x (STσ~x→c STρ(X)(f~x )) }.

For example, the main clause for the predicate STL(α) expressing struc-
tural totality of lists of elements of type α is

∀ncx,l(STα(X)x︸ ︷︷ ︸
>; omit

→c STξ(X)︸ ︷︷ ︸
X

l→c X(x :: l))

where x :: l is shorthand for Cons(x, l). It leads to the introduction axiom

∀ncx,l(STL(α)l→c STL(α)(x :: l))

with no assumptions on x.
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The least-fixed-point axiom for STL(α) is according to (3.4)

∀ncl (ST(l)→c X(Nil)→c ∀ncx,l((ST ∧d X)l→c X(x :: l))→c XlL(ρ)).

Written differently (with “duplication”) we obtain the induction axiom

∀ncl (ST(l)→c X(Nil)→ ∀ncx,l(ST(l)→c Xl→c X(x :: l))→c XlL(ρ))

denoted Indl,X .
Note that in all these definitions we allow usage of totality predicates for

previously introduced algebras ι′. An example is totality TT for the algebra
T of finitely branching trees. It is defined by the single clause

∀ncas (RTL(T)(TT)(as)→c TT(Branch(as))).

Clearly all three notions of totality coincide for algebras without type
parameters. Abbreviating ∀ncx (Tx →c A) by ∀cx∈T A we obtain from the
elimination axioms computational induction schemes, for example

Indp,P : ∀cp∈T (P tt→c P ff →c PpB),

Indn,P : ∀cn∈T (P0→c ∀cn∈T (Pn→c P (Sn))→c PnN).

The types of these formulas (as defined in 3.2.5) will be the types of the
recursion operators of the respective algebras.

3.2.5. The type of a formula, realizability and witnesses. For
every formula or predicate C we define τ(C) (a type or the “nulltype” symbol
◦). In case τ(C) = ◦ proofs of C have no computational content; such C
are called non-computational (n.c.) (or Harrop); the other ones are called
computationally relevant (c.r.). The definition can be conveniently written
if we extend the use of ρ→ σ to the nulltype symbol ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Definition (Type τ(C) of a formula or predicate C, and ιI). Assume
a global injective assignment of a type variable ξ to every predicate variable
X.

τ(P~r ) := τ(P ),

τ(A→c B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀cxρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A),

τ(X) := ξ,

τ({ ~x | A }) := τ(A),

τ(µncX (K0, . . . ,Kk−1)) := ◦,
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τ(µX(∀nc~xi∀
c
~yi

( ~Ai →nc ~Bi →c X~ri))i<k) := µξ(τ(~yi)→ τ( ~Bi)→ ξ)i<k.

We call ιI := µξ(τ(~yi) → τ( ~Bi) → ξ)i<k the algebra associated with the

inductive predicate I := µX(∀nc~xi∀
c
~yi

( ~Ai →nc ~Bi →c X~ri))i<k.

Hence

τ(I~r ) =

{
ιI if I is c.r.,

◦ if I is n.c.

We now define realizability . It will be convenient to introduce a special
“nullterm” symbol ε to be used as a “realizer” for n.c. formulas. We extend
term application to the nullterm symbol by

εt := ε, tε := t, εε := ε.

Definition (t realizes A). Let A be a formula and t either a term of
type τ(A) if the latter is a type, or the nullterm symbol ε for n.c. A. We
assume an injective global assignment, giving for every predicate variable X
of arity ~ρ a predicate variable Xr of arity (τ(X), ~ρ ).

t r X~r := Xrt~r,

t r (A→c B) := ∀ncx (x r A →nc tx r B),

t r (A→nc B) := ∀ncx (x r A →nc t r B),

t r ∀cxA := ∀ncx (tx r A),

t r ∀ncx A := ∀ncx (t r A),

t r (µX(∀nc~xi∀
c
~yi

((Aiν)ν<ni →nc (Biν)ν<mi →c X~ri))i<k)~s := Irt~s

with

Ir := {w, ~x | (µncX (∀nc~xi,~yi,~ui((∃uiνuiν r Aiν)ν<ni →nc (viν r Biν)ν<mi →nc

X(Ci~yi~vi)~ri))i<k)w~x }.

In case A is n.c., ∀ncx (x r A→nc B(x)) means ε r A→nc B(ε). For a general
n.c. inductively defined predicate (with restricted elimination scheme) we
define ε r I~s to be I~s. For the special n.c. inductively defined predicates Ir,
Eq, ∃u and ∧u introduced above realizability is defined by

ε r Irt~s := Irt~s,

ε r Eq(t, s) := Eq(t, s),

ε r ∃uxA := ∃ux,y(y r A),

ε r (A ∧u B) := ∃ux(x r A) ∧u ∃uy(y r B).
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Note. Call two formulas A and A′ computationally equivalent if each
of them computationally implies the other, and in addition the identity
realizes each of the two derivations of A′ →c A and of A →c A′. It is an
easy exercise to verify that for n.c. A, the formulas A →c B and A →nc B
are computationally equivalent, and hence can be identified. In the sequel
we shall simply write A→ B for either of them. Similarly, for n.c. A the two
formulas ∀cxA and ∀ncx A are n.c., and both ε r ∀cxA and ε r ∀ncx A are defined
to be ∀ncx (ε r A). Hence they can be identified as well, and we shall simply
write ∀xA for either of them. Since the formula t r A is n.c., under this
convention the →,∀-cases in the definition of realizability can be written

t r (A→c B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r ∀cxA := ∀x(tx r A),

t r ∀ncx A := ∀x(t r A).

Here are some examples. Consider the totality predicate T for N induc-
tively defined by the clauses

T0, ∀ncn (Tn→c T (Sn)).

More precisely T := µX(K0,K1) with K0 := X0, K1 := ∀ncn (Xn→c X(Sn)).
These clauses have types κ0 := τ(K0) = τ(X0) = ξ and κ1 := τ(K1) =
τ(∀ncn (Xn →c X(Sn))) = ξ → ξ. Therefore the algebra of witnesses is
ιT := µξ(ξ, ξ → ξ), that is, N again. The witnessing predicate T r is defined
by the clauses

T r00, ∀n,m(T rmn→ T r(Sm,Sn))

and it has as its elimination scheme

∀ncn ∀cm(T rmn→ Q(0, 0)→c

∀ncn,m(T rmn→ Qmn→c Q(Sm,Sn))→c

Qmn.

As an example involving parameters, consider the formula ∃dxA with a
c.r. formula A, and view ∃dxA as inductively defined by the clause

∀cx(A→c ∃dxA).

More precisely, Exd(Y ) := µX(K0) with K0 := ∀cx(Y xρ →c X). Then ∃dxA
abbreviates Exd({xρ | A }). The single clause has type κ0 := τ(K0) =
τ(∀cx(Y xρ →c X)) = ρ → α → ξ. Therefore the algebra of witnesses is
ι := ι∃dxA := µξ(ρ → α → ξ), that is, ρ × α. We write 〈x, u〉 for the values
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of the (only) constructor of ι, i.e., the pairing operator. The witnessing
predicate (∃dxA)r is defined by the clause Kr

0((∃dxA)r, {xρ | A }) :=

∀x,u(u r A→ (∃dxA)r〈x, u〉)
and its elimination scheme is

∀cw((∃dxA)rw → ∀ncx,u(u r A→ Q〈x, u〉)→c Qw).

Definition (Leibniz equality Eq and ∃u, ∧u). The introduction axioms
are

∀ncx Eq(x, x), ∀ncx (A→nc ∃uxA), A→nc B →nc A ∧u B,
and the elimination schemes are

∀ncx,y(Eq(x, y)→ ∀ncx Pxx→c Pxy),

∃uxA→ ∀ncx (A→nc P )→c P,

A ∧u B → (A→nc B →nc P )→c P.

An important property of the realizing formulas t r A is that they are
invariant .

Proposition. ε r (t r A) is the same formula as t r A.

Proof. By induction on the simultaneous inductive definition of for-
mulas and predicates in 3.1.2.

Case t r I~s. By definition the formulas ε r (t r I~s ), ε r Irt~s, Irt~s and
t r I~s are identical.

Case Irt~s. By definition ε r (ε r Irt~s ) and ε r Irt~s are identical.
Case Eq(t, s). By definition ε r (ε r (Eq(t, s))) and ε r (Eq(t, s)) are

identical.
Case ∃uxA. The following formulas are identical.

ε r (ε r ∃uxA),

ε r ∃ux∃uy(y r A),

∃ux(ε r ∃uy(y r A)),

∃ux∃uy(ε r (y r A)),

∃ux∃uy(y r A) by induction hypothesis,

ε r ∃uxA.
Case A ∧u B. The following formulas are identical.

ε r (ε r (A ∧u B)),

ε r (∃ux(x r A) ∧u ∃uy(y r B)),
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ε r ∃ux(x r A) ∧u ε r ∃uy(y r B)),

∃ux(ε r (x r A)) ∧u ∃uy(ε r (y r B)),

∃ux(x r A) ∧u ∃uy(y r B) by induction hypothesis,

ε r (A ∧u B).

Case A→c B. The following formulas are identical.

ε r (t r (A→c B)),

ε r ∀x(x r A → tx r B),

∀x(ε r (x r A) → ε r (tx r B)),

∀x(x r A → tx r B) by induction hypothesis,

t r (A→c B).

Case A→nc B. The following formulas are identical.

ε r (t r (A→nc B)),

ε r ∀x(x r A → t r B),

∀x(ε r (x r A) → ε r (t r B)),

∀x(x r A → t r B) by induction hypothesis,

t r (A→nc B).

Case ∀cxA. The following formulas are identical.

ε r (t r ∀cxA),

ε r ∀x(tx r A),

∀x(ε r (tx r A)),

∀x(tx r A) by induction hypothesis,

t r ∀cxA.

Case ∀ncx A. The following formulas are identical.

ε r (t r ∀ncx A),

ε r ∀x(t r A),

∀x(ε r (t r A)),

∀x(t r A) by induction hypothesis,

t r ∀ncx A.

This completes the proof. �
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3.2.6. Extracted terms. For a derivation M of a formula A we define
its extracted term et(M), of type τ(A). This definition is relative to a fixed
assignment of object variables to assumption variables: to every assumption
variable uA for a formula A we assign an object variable xu of type τ(A).

Definition (Extracted term et(M) of a derivation M). For derivations
MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := xτ(A)u (x
τ(A)
u uniquely associated with uA),

et((λuAM
B)A→

cB) := λ
x
τ(A)
u

et(M),

et((MA→cBNA)B) := et(M)et(N),

et((λxρM
A)∀

c
xA) := λxρet(M),

et((M∀
c
xA(x)r)A(r)) := et(M)r,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

Here λ
x
τ(A)
u

et(M) means just et(M) if A is n.c.

It remains to define extracted terms for the axioms. Consider a (c.r.)
inductively defined predicate I. For its introduction axioms (3.3) and eli-
mination axiom (3.4) define et(I+i ) := Ci and et(I−) := R, where both the
constructor Ci and the recursion operator R refer to the algebra ιI associ-
ated with I.

Now consider the special non-computational inductively defined predi-
cates. Since they are n.c., we only need to define extracted terms for their
elimination axioms. For the witnessing predicate Ir we define et((Ir)−) := R
(referring to the algebra ιI again), and for Leibniz equality Eq, the n.c. ex-
istential quantifier ∃uxA and conjunction A ∧u B we take identities of the
appropriate type.

Remark. If derivations M are defined simultaneously with their ex-
tracted terms et(M), we can formulate the introduction rules for →nc and
∀nc by

(i) If MB is a derivation and xuA /∈ FV(et(M)), then (λuAM
B)A→

ncB is
a derivation.
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(ii) If MA is a derivation, x is not free in any formula of a free assumption
variable of M and x /∈ FV(et(M)), then (λxM

A)∀
nc
x A is a derivation.

3.2.7. Soundness. One can prove that every theorem in TCF + Axnci

has a realizer: the extracted term of its proof. Here (Axnci) is an arbitrary
set of non-computational invariant formulas viewed as axioms.

Theorem (Soundness). Let M be a derivation of A from assumptions
ui : Ci (i < n). Then we can derive et(M) r A from assumptions xui r Ci
(with xui := ε in case Ci is n.c.).

For the proof is (by induction on M) we have to refer to the literature.
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