
CHAPTER 2

Computability in higher types

In this chapter we will develop a somewhat general view of computability
theory, where not only numbers and functions appear as arguments, but also
functionals of any finite type.

2.1. Abstract computability via information systems

There are two principles on which our notion of computability will be
based: finite support and monotonicity.

It is a fundamental property of computation that evaluation must be
finite. So in any evaluation of Φ(ϕ) the argument ϕ can be called upon only
finitely many times, and hence the value – if defined – must be determined
by some finite subfunction of ϕ. This is the principle of finite support.

Let us carry this discussion somewhat further and look at the situation
one type higher up. Let H be a partial functional of type-3, mapping type-2
functionals Φ to natural numbers. Suppose Φ is given and H(Φ) evaluates
to a defined value. Again, evaluation must be finite. Hence the argument Φ
can only be called on finitely many functions ϕ. Furthermore each such ϕ
must be presented to Φ in a finite form (explicitly say, as a set of ordered
pairs). In other words, H and also any type-2 argument Φ supplied to it
must satisfy the finite support principle, and this must continue to apply as
we move up through the types.

To describe this principle more precisely, we need to introduce the notion
of a “finite approximation” Φ0 of a functional Φ. By this we mean a finite
set X of pairs (ϕ0, n) such that (i) ϕ0 is a finite function, (ii) Φ(ϕ0) is defined
with value n, and (iii) if (ϕ0, n) and (ϕ′0, n

′) belong to X where ϕ0 and ϕ′0
are “consistent”, then n = n′. The essential idea here is that Φ should be
viewed as the union of all its finite approximations. Using this notion of a
finite approximation we can now formulate the

Principle of finite support . If H(Φ) is defined with value
n, then there is a finite approximation Φ0 of Φ such that
H(Φ0) is defined with value n.

9

10 2. COMPUTABILITY IN HIGHER TYPES

The monotonicity principle formalizes the simple idea that once H(Φ) is
evaluated, then the same value will be obtained no matter how the argument
Φ is extended. This requires the notion of “extension”. Φ′ extends Φ if for
any piece of data (ϕ0, n) in Φ there exists another (ϕ′0, n) in Φ′ such that ϕ0

extends ϕ′0 (note the contravariance!). The second basic principle is then

Monotonicity principle. If H(Φ) is defined with value n
and Φ′ extends Φ, then also H(Φ′) is defined with value
n.

An immediate consequence of finite support and monotonicity is that
the behaviour of any functional is indeed determined by its set of finite
approximations. For if Φ, Φ′ have the same finite approximations and H(Φ)
is defined with value n, then by finite support, H(Φ0) is defined with value n
for some finite approximation Φ0, and then by monotonicityH(Φ′) is defined
with value n. Thus H(Φ) = H(Φ′), for all H.

This observation now allows us to formulate a notion of abstract com-
putability:

Effectivity principle. An object is computable just in case
its set of finite approximations is (primitive) recursively
enumerable (or equivalently, Σ0

1-definable).

This is an “externally induced” notion of computability, and it is of definite
interest to ask whether one can find an “internal” notion of computability
coinciding with it. This can be done by means of a fixed point operator
introduced into this framework by Platek; and the result mentioned is due
to Plotkin (1978).

The general theory of computability concerns partial functions and par-
tial operations on them. However, we are primarily interested in total ob-
jects, so once the theory of partial objects is developed, we can look for
ways to extract the total ones. Then one can prove Kreisel’s density theo-
rem, wich says that the total functionals are dense in the space of all partial
“continuous” functionals.

2.1.1. Information systems. The basic idea of information systems
is to provide an axiomatic setting to describe approximations of abstract
objects (like functions or functionals) by concrete, finite ones. We do not
attempt to analyze the notion of “concreteness” or finiteness here, but rather
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 11

each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

Definition. An information system is a structure (A,Con,`) where A
is a countable set (the tokens), Con is a non-empty set of finite subsets of A
(the consistent sets) and ` is a subset of Con×A (the entailment relation),
which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U, V ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

For example the deductive closure U := { a ∈ A | U ` a } of U ∈ Con is an
ideal. The set of all ideals of A is denoted by |A|.

Examples. Every countable set A can be turned into a flat information
system by letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and
U ` a mean a ∈ U . In this case the ideals are just the elements of Con. For
A = N we have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .

12 2. COMPUTABILITY IN HIGHER TYPES

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ` (a, b) := (a, b) ∈ U.

It is not difficult to verify that this defines an information system whose
ideals are (the graphs of) all partial functions from A to B.

2.1.2. Function spaces. We now define the “function space” A→ B
between two information systems A and B.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I(
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB).

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.
From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Clearly application is monotone in the second argument, in the sense
that U `A U ′ implies (WU ′ ⊆ WU , hence also) WU `B WU ′. In fact,
application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma. If A and B are information systems, then so is A→ B defined
as above.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ` (U, b), i.e., { bj | U `A Uj } `B b.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 13

We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U `A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.

Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } `B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W `W ′ and W ′ ` (U, b).

We have to show W ` (U, b), i.e., WU `B b. We obtain WU `B W ′U by
monotonicity in the first argument, and W ′U ` b by definition. �

We shall now give two alternative characterizations of the function space:
firstly as “approximable maps”, and secondly as continuous maps w.r.t. the
so-called Scott topology.

The basic idea for approximable maps is the desire to study “information
respecting” maps from A into B. Such a map is given by a relation r between
ConA and B, where r(U, b) intuitively means that whenever we are given
the information U ∈ ConA, then we know that at least the token b appears
in the value.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if r(U, b1), . . . , r(U, bn), then {b1, . . . , bn} ∈ ConB;
(b) if r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b, then r(U, b);
(c) if r(U ′, b) and U `A U ′, then r(U, b).

We write r : A→ B to mean that r is an approximable map from A to B.

14 2. COMPUTABILITY IN HIGHER TYPES

Theorem. Let A and B be information systems. Then the ideals of
A→ B are exactly the approximable maps from A to B.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). If r ∈ |A →
B| then r ⊆ ConA × B is consistent and deductively closed. We have to
show that r satisfies the axioms for approximable maps.

(a) Let r(U, b1), . . . , r(U, bn). We must show that {b1, . . . , bn} ∈ ConB.
But this clearly follows from the consistency of r.

(b) Let r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b. We must show that
r(U, b). But

{(U, b1), . . . , (U, bn)} ` (U, b)

by the definition of the entailment relation ` in A→ B. Hence r(U, b) since
r is deductively closed.

(c) Let U `A U ′ and r(U ′, b). We must show that r(U, b). But

{(U ′, b)} ` (U, b)

since {(U ′, b)}U = {b} (which follows from U `A U ′). Hence r(U, b), again
since r is deductively closed.

For the other direction suppose that r : A→ B is an approximable map.
We must show that r ∈ |A→ B|.

Consistency of r. Let r(U1, b1), . . . , r(Un, bn) and U =
⋃
{Ui | i ∈ I } ∈

ConA for some I ⊆ {1, . . . , n}. We must show { bi | i ∈ I } ∈ ConB. From
r(Ui, bi) and U `A Ui we obtain r(U, bi) by axiom (c) for all i ∈ I, and hence
{ bi | i ∈ I } ∈ ConB by axiom (a).

Deductive closure of r. Let r(U1, b1), . . . , r(Un, bn) and

W := {(U1, b1), . . . , (Un, bn)} ` (U, b).

We must show r(U, b). By definition of ` for A → B we have WU `B b,
which is { bi | U `A Ui } `B b. Further by our assumption r(Ui, bi) we know
r(U, bi) by axiom (c) for all i with U `A Ui. Hence r(U, b) by axiom (b). �

Definition. Suppose A = (A,Con,`) is an information system and
U ∈ Con. Define OU ⊆ |A| by

OU := {x ∈ |A| | U ⊆ x }.

Note that, since the ideals x ∈ |A| are deductively closed, x ∈ OU
implies U ⊆ x.

Lemma. The system of all OU with U ∈ Con forms the basis of a topo-
logy on |A|, called the Scott topology.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 15

Proof. Suppose U, V ∈ Con and x ∈ OU ∩ OV . We have to find
W ∈ Con such that x ∈ OW ⊆ OU ∩ OV . Choose W = U ∪ V . �

Lemma. Let A be an information system and O ⊆ |A|. Then the fol-
lowing are equivalent.

(a) O is open in the Scott topology.
(b) O satisfies

(i) If x ∈ O and x ⊆ y, then y ∈ O (Alexandrov condition).
(ii) If x ∈ O, then U ∈ O for some U ⊆ x (Scott condition).

(c) O =
⋃
U∈OOU .

Hence open sets O may be seen as those determined by a (possibly
infinite) system of finitely observable properties, namely all U such that
U ∈ O.

Proof. (a)→ (b). If O is open, then O is the union of some OU ’s, U ∈
Con. Since each OU is upwards closed, also O is; this proves the Alexandrov
condition. For the Scott condition assume x ∈ O. Then x ∈ OU ⊆ O for
some U ∈ Con. Note that U ∈ OU , hence U ∈ O, and U ⊆ x since x ∈ OU .

(b) → (c). Assume that O ⊆ |A| satisfies the Alexandrov and Scott
conditions. Let x ∈ O. By the Scott condition, U ∈ O for some U ⊆ x, so
x ∈ OU for this U . Conversely, let x ∈ OU for some U ∈ O. Then U ⊆ x.
Now x ∈ O follows from U ∈ O by the Alexandrov condition.

(c) → (a). The OU ’s are the basic open sets of the Scott topology. �

We now give some simple characterizations of the continuous functions
f : |A| → |B|. Call f monotone if x ⊆ y implies f(x) ⊆ f(y).

Lemma. Let A and B be information systems and f : |A| → |B|. Then
the following are equivalent.

(a) f is continuous w.r.t. the Scott topology.
(b) f is monotone and satisfies the “principle of finite support” PFS: If

b ∈ f(x), then b ∈ f(U) for some U ⊆ x.
(c) f is monotone and commutes with directed unions: for every directed

D ⊆ |A| (i.e., for any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f(
⋃
x∈D

x) =
⋃
x∈D

f(x).

Note that in (c) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |A|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.

16 2. COMPUTABILITY IN HIGHER TYPES

Hence continuous maps f : |A| → |B| are those that can be completely
described from the point of view of finite approximations of the abstract
objects x ∈ |A| and f(x) ∈ |B|: Whenever we are given a finite approxi-
mation V to the value f(x), then there is a finite approximation U to the
argument x such that already f(U) contains the information in V ; note that
by monotonicity f(U) ⊆ f(x).

Proof. (a) → (b). Let f be continuous. Then for any basic open set
OV ⊆ |B| (so V ∈ ConB) the set f−1[OV] = {x | V ⊆ f(x) } is open in
|A|. To prove monotonicity assume x ⊆ y; we must show f(x) ⊆ f(y). So
let b ∈ f(x), i.e., {b} ⊆ f(x). The open set f−1[O{b}] = { z | {b} ⊆ f(z) }
satisfies the Alexandrov condition, so from x ⊆ y we can infer {b} ⊆ f(y),
i.e., b ∈ f(y). To prove PFS assume b ∈ f(x). The open set { z | {b} ⊆ f(z) }
satisfies the Scott condition, so for some U ⊆ x we have {b} ⊆ f(U).

(b)→ (a). Assume that f satisfies monotonicity and PFS. We must show
that f is continuous, i.e., that for any fixed V ∈ ConB the set f−1[OV] =
{x | V ⊆ f(x) } is open. We prove

{x | V ⊆ f(x) } =
⋃
{OU | U ∈ ConA and V ⊆ f(U) }.

Let V ⊆ f(x). Then by PFS V ⊆ f(U) for some U ∈ ConA such that U ⊆ x,
and U ⊆ x implies x ∈ OU . Conversely, let x ∈ OU for some U ∈ ConA such
that V ⊆ f(U). Then U ⊆ x, hence V ⊆ f(x) by monotonicity.

For (b) ↔ (c) assume that f is monotone. Let f satisfy PFS, and
D ⊆ |A| be directed. f(

⋃
x∈D x) ⊇

⋃
x∈D f(x) follows from monotonicity.

For the reverse inclusion let b ∈ f(
⋃
x∈D x). Then by PFS b ∈ f(U) for some

U ⊆
⋃
x∈D x. From the directedness and the fact that U is finite we obtain

U ⊆ z for some z ∈ D. From b ∈ f(U) and monotonicity infer b ∈ f(z).
Conversely, let f commute with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. �

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem. Let A and B = (B,ConB,`B) be information systems.
Then the ideals of A → B are in a natural bijective correspondence with
the continuous functions from |A| to |B|, as follows.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 17

(a) With any approximable map r : A → B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z }.

We call |r|(z) the application of r to z.
(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ : A→ B by

f̂(U, b) := (b ∈ f(U)).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

Proof. Let r be an ideal of A → B; then by the theorem just proved
r is an approximable map. We first show that |r| is well-defined. So let
z ∈ |A|.
|r|(z) is consistent: let b1, . . . , bn ∈ |r|(z). Then there are U1, . . . , Un ⊆ z

such that r(Ui, bi). Hence U := U1 ∪ · · · ∪ Un ⊆ z and r(U, bi) by ax-
iom (c) of approximable maps. Now from axiom (a) we can conclude that
{b1, . . . , bn} ∈ ConB.
|r|(z) is deductively closed: let b1, . . . , bn ∈ |r|(z) and {b1, . . . , bn} `B b.

We must show b ∈ |r|(z). As before we find U ⊆ z such that r(U, bi). Now
from axiom (b) we can conclude r(U, b) and hence b ∈ |r|(z).

Continuity of |r| follows immediately from part (b) of the lemma above,
since by definition |r| is monotone and satisfies PFS.

Now let f : |A| → |B| be continuous. It is easy to verify that f̂ is indeed
an approximable map. Furthermore

b ∈ |f̂ |(z)↔ f̂(U, b) for some U ⊆ z
↔ b ∈ f(U) for some U ⊆ z
↔ b ∈ f(z) by monotonicity and PFS.

Finally, for any approximable map r : A→ B we have

r(U, b)↔ ∃V⊆Ur(V, b) by axiom (c) for approximable maps

↔ b ∈ |r|(U)

↔ |̂r|(U, b),

so r = |̂r|. �

Moreover, one can easily check that

r ◦ s := { (U, c) | ∃V ((U, V) ⊆ s ∧ (V, c) ∈ r) }

18 2. COMPUTABILITY IN HIGHER TYPES

is an approximable map (where (U, V) := { (U, b) | b ∈ V }), and

|r ◦ s| = |r| ◦ |s|, f̂ ◦ g = f̂ ◦ ĝ.

We usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It
should always be clear from the context where the mods and hats should be
inserted.

2.1.3. Algebras and types. We now consider concrete information
systems, our basis for continuous functionals.

Types will be built from base types by the formation of function types,
ρ → σ. As domains for the base types we choose non-flat and possibly
infinitary free algebras, given by their constructors. The main reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.

We inductively define type forms

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

with α, ξ type variables and k ≥ 1 (since we want our algebras to be inhab-
ited). Note that (ρν)ν<n → σ means ρ0 → . . . → ρn−1 → σ, associated to
the right.

Let FV(ρ) denote the set of type variables free in ρ. We define SP(α, ρ)
“α occurs at most strictly positive in ρ” by induction on ρ.

SP(α, β)
α /∈ FV(ρ) SP(α, σ)

SP(α, ρ→ σ)

SP(α, ρiν) for all i < k, ν < ni
SP(α, µξ((ρiν)ν<ni → ξ)i<k)

Now we can define Ty(ρ) “ρ is a type”, again by induction on ρ.

Ty(α)
Ty(ρ) Ty(σ)

Ty(ρ→ σ)

Ty(ρiν) and SP(ξ, ρiν) for all i < k, ν < ni ξ /∈ FV(ρ0ν) for all ν < n0
Ty(µξ((ρiν)ν<ni → ξ)i<k)

We call

ι := µξ((ρiν)ν<ni → ξ)i<k

an algebra. Sometimes it is helpful to display the type parameters and write

ι(~α, ~β), where ~α, ~β are all type variables except ξ free in some ρiν , and ~α
are the ones occuring only strictly positive. If we write the i-th component
of ι in the form (ρν(ξ))ν<n → ξ, then we call

(ρν(ι))ν<n → ι

the i-th constructor type of ι.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 19

In (ρν(ξ))ν<n → ξ we call ρν(ξ) a parameter argument type if ξ does
not occur in it, and a recursive argument type otherwise. A recursive argu-
ment type ρν(ξ) is nested if it has an occurrence of ξ in a strictly positive
parameter position of another (previously defined) algebra, and unnested
otherwise. An algebra ι is called nested if it has a constructor with at least
one nested recursive argument type, and unnested otherwise.

Every type ρ should have a total inhabitant , i.e., a closed term of this
type built solely from constructors, variables and assumed total inhabitants
of some of its (type) variables. To ensure this we have required that for
every algebra µξ((ρiν)ν<ni → ξ)i<k the initial (ρ0ν)ν<n0 → ξ has no recursive
argument types. Note that it might not be necessary to actually use assumed
total inhabitants for all variables of a type. An example is the list type L(α),
which has the Nil constructor as a total inhabitant. However, for the type
L(α)+ (:= µξ(α → ξ, α → ξ → ξ)) we need to assume a total inhabitant of
α.

Here are some examples of algebras.

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (trees).

Examples of algebras strictly positive in their type parameters are

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

An example of a nested algebra is

T := µξ(L(ξ)→ ξ) (finitely branching trees).

Note that T has a total inhabitant since L(α) has one (given by the Nil
constructor).

Let ρ be a type; we write ρ(~α) for ρ to indicate its dependence on
the type parameters ~α. We can substitute types ~σ for ~α, to obtain ρ(~σ).
Examples are L(B), the type of lists of booleans, and N ×N, the type of
pairs of natural numbers.

20 2. COMPUTABILITY IN HIGHER TYPES

Note that often there are many equivalent ways to define a particular
type. For instance, we could take U+U to be the type of booleans, L(U) to
be the type of natural numbers, and L(B) to be the type of positive binary
numbers.

For every constructor type of an algebra we provide a (typed) constructor
symbol Ci. In some cases they have standard names, for instance

ttB, ffB for the two constructors of the type B of booleans,

0N, SN→N for the type N of (unary) natural numbers,

1P, SP→P
0 ,SP→P

1 for the type P of (binary) positive numbers,

NilL(ρ),Consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(Inlρσ)ρ→ρ+σ, (Inrρσ)σ→ρ+σ for the sum type ρ+ σ,

Branch: L(T)→ T for the type T of finitely branching trees.

An algebra form ι is structure-finitary if all its argument types ρiν are
not of arrow form. It is finitary if in addition it has no type variables. In
the examples above U, B, N, P and D are all finitary, but O and Tn+1

are not. L(ρ), ρ × σ and ρ + σ are structure-finitary, and finitary if their
parameter types are. The nested algebra T above is finitary.

An algebra is explicit if all its constructor types have parameter argu-
ment types only (i.e., no recursive argument types). In the examples above
U, B, ρ× σ and ρ+ σ are explicit, but N, P, L(ρ), D, O, Tn+1 and T are
not.

We will also need the notion of the level of a type, which is defined by

lev(ι) := 0, lev(ρ→ σ) := max{lev(σ), 1 + lev(ρ)}.

Base types are types of level 0, and a higher type has level at least 1.

2.1.4. Partial continuous functionals. For every type ρ we define
the information system Cρ = (Cρ,Conρ,`ρ). The ideals x ∈ |Cρ| are the
partial continuous functionals of type ρ. Since we will have Cρ→σ = Cρ →
Cσ, the partial continuous functionals of type ρ→ σ will correspond to the
continuous functions from |Cρ| to |Cσ| w.r.t. the Scott topology. It will not
be possible to define Cρ by recursion on the type ρ, since we allow algebras
with constructors having function arguments (like O and Sup). Instead, we
shall use recursion on the “height” of the notions involved, defined below.

Definition (Information system of type ρ). We simultaneously define
Cι, Cρ→σ, Conι and Conρ→σ.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 21

(a) The tokens a ∈ Cι are the type correct constructor expressions Ca∗1 . . . a
∗
n

where a∗i is an extended token, i.e., a token or the special symbol ∗ which
carries no information.

(b) The tokens in Cρ→σ are the pairs (U, b) with U ∈ Conρ and b ∈ Cσ.
(c) A finite set U of tokens in Cι is consistent (i.e., ∈ Conι) if all its elements

start with the same constructor C, say of arity τ1 → . . .→ τn → ι, and
all Ui ∈ Conτi for i = 1, . . . , n, where Ui consists of all (proper) tokens

at the i-th argument position of some token in U = {C ~a∗1, . . . ,C ~a∗m}.
(d) { (Ui, bi) | i ∈ I } ∈ Conρ→σ is defined to mean ∀J⊆I(

⋃
j∈J Uj ∈ Conρ →

{ bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U `ρ a for U ∈ Conρ and a ∈ Cρ.
(e) {C ~a∗1, . . . ,C ~a∗m} `ι C′ ~a∗ is defined to mean C = C′, m ≥ 1 and Ui ` a∗i ,

with Ui as in (c) above (and U ` ∗ taken to be true).
(f) W `ρ→σ (U, b) is defined to mean WU `σ b, where application WU

of W = { (Ui, bi) | i ∈ I } ∈ Conρ→σ to U ∈ Conρ is defined to be
{ bi | U `ρ Ui }; recall that U ` V abbreviates ∀a∈V (U ` a).

If we define the height of the syntactic expressions involved by

|Ca∗1 . . . a∗n| := 1 + max{ |a∗i | | i = 1, . . . , n }, | ∗ | := 0,

|(U, b)| := max{1 + |U |, 1 + |b|},
|{ ai | i ∈ I }| := max{ 1 + |ai| | i ∈ I },
|U ` a| := max{1 + |U |, 1 + |a|},

these are definitions by recursion on the height.
It is easy to see that (Cρ,Conρ,`ρ) is an information system. Observe

that all the notions involved are computable: a ∈ Cρ, U ∈ Conρ and U `ρ a.

Definition (Partial continuous functionals). For every type ρ let Cρ be
the information system (Cρ,Conρ,`ρ). The set |Cρ| of ideals in Cρ is the set
of partial continuous functionals of type ρ. A partial continuous functional
x ∈ |Cρ| is computable if it is recursively enumerable when viewed as a set
of tokens.

Notice that Cρ→σ = Cρ → Cσ as defined generally for information
systems.

For example, the tokens for the algebra N are shown in Figure 1. For
tokens a, b we have {a} ` b if and only if there is a path from a (up) to
b (down). As another (more typical) example, consider the algebra D of
derivations with a nullary constructor 0 and a binary C. Then {C0∗,C∗0}
is consistent, and {C0∗,C∗0} ` C00.

22 2. COMPUTABILITY IN HIGHER TYPES

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Figure 1. Tokens and entailment for N

2.1.5. Constructors as continuous functions. Let ι be an algebra.
Every constructor C generates the following ideal in the function space:

rC := { (~U,C ~a∗) | ~U ` ~a∗ }.

Here (~U, a) abbreviates (U1, (U2, . . . (Un, a) . . .)).
According to the general definition of a continuous function associated

to an ideal in a function space the continuous map |rC| satisfies

|rC|(~x) = {C ~a∗ | ∃~U⊆~x(~U ` ~a∗) }.

An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint, which is what we
wanted to achieve by associating non-flat rather than flat information sys-
tems with algebras.

Lemma (Constructors are injective and have disjoint ranges). Let ι be
an algebra and C be a constructor of ι. Then

|rC|(~x) ⊆ |rC|(~y)↔ ~x ⊆ ~y.
If C1,C2 are distinct constructors of ι, then |rC1 |(~x) 6= |rC2 |(~y), since the
two ideals are non-empty and disjoint.

Proof. Immediate from the definitions. �

Remark. Notice that neither property holds for flat information sys-
tems, since for them, by monotonicity, constructors need to be strict (i.e.,
if one argument is the empty ideal, then the value is as well). But then we
have

|rC|(∅, y) = ∅ = |rC|(x, ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅)

where in the first case we have one binary and, in the second, two unary
constructors.

2.1. ABSTRACT COMPUTABILITY VIA INFORMATION SYSTEMS 23

2.1.6. Total and cototal ideals in a finitary algebra. In the infor-
mation system Cι associated with an algebra ι, the “total” and “cototal”
ideals are of special interest. Here we give an explicit definition for fini-
tary algebras. For general algebras totality can be defined inductively and
cototality coinductively (cf. 3.1.4).

Recall that a token in ι is a constructor tree P possibly containing the
special symbol ∗. Because of the possibility of parameter arguments we need
to distinguish between “structure-” and “fully” total and cototal ideals.
For the definition it is easiest to refer to a constructor tree P (∗) with a
distinguished occurrence of ∗. This occurrence is called non-parametric if
the path from it to the root does not pass through a parameter argument
of a constructor. For a constructor tree P (∗), an arbitrary P (C ~a∗) is called

one-step extension of P (∗), written P (C ~a∗) �1 P (∗).

Definition. Let ι be an algebra, and Cι its associated information
system. An ideal x ∈ |Cι| is cototal if every constructor tree P (∗) ∈ x has a
�1-predecessor P (C~∗) ∈ x; it is called total if it is cototal and the relation
�1 on x is well-founded. It is called structure-cototal (structure-total) if the
same holds with �1 defined w.r.t. P (∗) with a non-parametric distinguished
occurrence of ∗.

If there are no parameter arguments, we shall simply speak of total
and cototal ideals. For example, for the algebra N every total ideal is
the deductive closure of a token S(S . . . (S0) . . .), and the set of all tokens
S(S . . . (S∗) . . .) is a cototal ideal. For the algebra L(N) of lists of natural
numbers the total ideals are the finite lists and the cototal ones the finite
or infinite lists. For the algebra D of derivations the total ideals can be
viewed as the finite derivations, and the cototal ones as the finite or infinite
“locally correct” derivations of Mints (1978); arbitrary ideals can be viewed
as “partial” or “incomplete” derivations, with “holes”.

Remark. From a categorical perspective (as in Hagino (1987); Rutten
(2000)) finite lists of natural numbers can be seen as making up the initial
algebra of the functor TX = 1 + (N × X), and infinite lists (or streams)
of natural numbers as making up the terminal coalgebra of the functor
TX = N×X. In the present setting both finite and infinite lists of natural
numbers appear as cototal ideals in the algebra L(N), with the finite ones
the total ideals. However, to properly deal with computability we need
to accommodate partiality, and hence there are more ideals in the algebra
L(N).

24 2. COMPUTABILITY IN HIGHER TYPES

2.2. Denotational and operational semantics

For every type ρ, we have defined what a partial continuous functional of
type ρ is: an ideal consisting of tokens at this type. These tokens or rather
the formal neighborhoods formed from them are syntactic in nature; they are
reminiscent to Kreisel’s “formal neighborhoods” (Kreisel, 1959; Martin-Löf,
1983; Coquand and Spiwack, 2006). However – in contrast to Martin-Löf
(1983) – we do not have to deal separately with a notion of consistency for
formal neighborhoods: this concept is built into information systems.

Let us now turn our attention to a formal (functional programming)
language, in the style of Plotkin’s PCF (1977), and see how we can provide a
denotational semantics (that is, a “meaning”) for the terms of this language.
A closed term M of type ρ will denote a partial continuous functional of this
type, that is, a consistent and deductively closed set of tokens of type ρ. We
will define this set inductively.

It will turn out that these sets are recursively enumerable. In this sense
every closed term M of type ρ denotes a computable partial continuous
functional of type ρ. However, it is not a good idea to define a computable
functional in this way, by providing a recursive enumeration of its tokens.
We rather want to be able to use recursion equations for such definitions.
Therefore we extend the term language by constants D defined by certain
“computation rules”, as in (Berger et al., 2003; Berger, 2005). Our semantics
will cover these as well. The resulting term system can be seen as a common
extension of Gödel’s T (1958) and Plotkin’s PCF; we call it T+.

2.2.1. Structural recursion operators and Gödel’s T. We begin
with a discussion of particularly important examples of such constants D,
the (structural) higher type recursion operators Rτι introduced by Hilbert
(1925) and Gödel (1958). They are used to construct maps from the algebra
ι to τ , by recursion on the structure of ι. For instance, RτN has type N →
τ → (N→ τ → τ)→ τ . The first argument is the recursion argument, the
second one gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the next value.
For example, RN

Nnmλn,p(Sp) defines addition m+ n by recursion on n. For
λn,p(Sp) we often write λ ,p(Sp) since the bound variable n is not used.

Generally, we define the type of the recursion operatorRτι for the algebra
ι = µξ((ρiν(ξ))ν<ni → ξ)i<k and result type τ to be

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.

2.2. DENOTATIONAL AND OPERATIONAL SEMANTICS 25

Here ι is the type of the recursion argument, and each (ρiν(ι×τ))ν<ni → τ is
called a step type. Usage of ι× τ rather than τ in the step types can be seen
as a “strengthening”, since then one has more data available to construct
the value of type τ . Moreover, for unnested recursive argument types ~σ → τ
we avoid the product type in ~σ → ι × τ and take the two argument types
~σ → ι and ~σ → τ instead (“duplication”).

For some algebras we spell out the type of their recursion operators:

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτP : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

RτD : D→ τ → (D→ τ → D→ τ → τ)→ τ,

RτO : O→ τ → (O→ τ → τ)→ ((N→ O)→ (N→ τ)→ τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ,

RτT : T→ (L(T× τ)→ τ)→ τ.

There is an important variant of recursion, where no recursive calls oc-
cur. This variant is called the cases operator ; it distinguishes cases according
to the outer constructor form. For the algebra ι = µξ((ρiν(ξ))ν<ni → ξ)i<k
and result type τ the type of the cases operator Cτι is

ι→ ((ρiν(ι))ν<ni → τ)i<k → τ.

The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.

It can be used to define the predecessor function on N, i.e., P0 := 0 and
P(Sn) := n, by the term

Pm := CNNm0(λnn).

Remark. When computing the value of a cases term, we do not want
to (eagerly) evaluate all arguments, but rather compute the test argument
first and depending on the result (lazily) evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; for
instance, in Scheme the if-construct is called a special form (as opposed
to an operator). Therefore instead of taking the cases operator applied to a
full list of arguments, one rather uses a case-construct to build this term;
it differs from the former only in that it employs lazy evaluation. Hence the

26 2. COMPUTABILITY IN HIGHER TYPES

predecessor function is written in the form [case m of 0 | λnn]. If there are
exactly two cases, we also write λm[if m then 0 else λnn] instead.

We shall also need map operators. Let ρ(~α) be a type and ~α strictly
positive type parameters. We define

M~σ→~τ
λ~αρ(~α) : ρ(~σ)→ (~σ → ~τ)→ ρ(~τ)

(where (~σ → ~τ) → ρ(~τ) means (σ1 → τ1) → . . . → (σn → τn) → ρ(~τ)). If
none of ~α appears free in ρ(~α) let

M~σ→~τ
λ~αρ(~α)x

~f := x.

Otherwise we use an outer recursion on ρ(~α) and if ρ(~α) is ι(~α) an inner
one on x. In case ρ(~α) is ι(~α) we abbreviate M~σ→~τ

λ~αι(~α) by M~σ→~τ
ι or M~τ

ι(~σ).

The immediate cases for the outer recursion are

M~σ→~τ
λ~ααi

x~f := fix, M~σ→~τ
λ~α(σ→ρ)h

~fx :=M~σ→~τ
λ~αρ

(hx)~f.

It remains to consider ι(~π(~α)). In case ~π(~α) is not ~α let

M~σ→~τ
λ~αι(~π(~α))x

~f :=M~π(~σ)→~π(~τ)
ι x(M~σ→~τ

λ~απi(~α) · ~f)i<|~π |

with M~σ→~τ
λ~απi(~α) · ~f := λxM~σ→~τ

λ~απi(~α)x
~f . In case ~π(~α) is ~α we use recursion on

x and define for a constructor Ci : (ρν(~σ, ι(~σ)))ν<n → ι(~σ)

M~σ→~τ
ι (Ci~x)~f

to be the result of applying C′i of type (ρν(~τ , ι(~τ)))ν<n → ι(~τ) (the same
constructor as Ci with only the type changed) to, for each ν < n,

M~σ,ι(~σ)→~τ,ι(~τ)
λ~α,βρν(~α,β)

xν ~f(M~σ→~τ
ι · ~f).

Note that the final function argument provides the recursive call w.r.t. the
recursion on x.

Example.

Mτ
L(σ)Nilfσ→τ := Nil,

Mτ
L(σ)(x

σ :: lL(σ))fσ→τ := (fx) :: (M l f).

Definition. Terms of Gödel’s T for nested algebras are inductively de-
fined from typed variables xρ and constants for constructors Cι

i, recursion

operators Rτι and map operatorsM~ρ→~τ
λ~απ

by abstraction λxρM
σ and applica-

tion Mρ→σNρ.

2.2. DENOTATIONAL AND OPERATIONAL SEMANTICS 27

2.2.2. Conversion. We define a conversion relation 7→ρ between terms
of type ρ by

(λxM(x))N 7→M(N),(2.1)

λx(Mx) 7→M if x /∈ FV(M) (M not an abstraction),(2.2)

Rτι (Cι
i
~N) ~M 7→Mi(Mι→ι×τ

λαρν(α)
Nνλx〈xι,Rτι x ~M〉)ν<n(2.3)

where (ρν(ι))ν<n → ι is the type of the i-th constructor Ci.
In the special case ρν(α) = α we can avoid the product type and instead

of the pair

Mι→ι×τ
λαα

Nνλx〈xι,Rτι x ~M〉 i.e., 〈N ι
ν ,RτιNν

~M〉

take its two components N ι
ν and RτιNν

~M as separate arguments of Mi.
The rule (2.1) is called β-conversion, and (2.2) η-conversion; their left

hand sides are called β-redexes or η-redexes, respectively. The left hand side
of (2.3) is called R-redex ; it is a special case of a redex associated with a
constant D defined by “computation rules” (cf. 2.2.3), and hence also called
a D-redex .

2.2.3. A common extension T+ of Gödel’s T and Plotkin’s PCF.
Terms of T+ are built from (typed) variables and (typed) constants (con-
structors C or defined constants D, see below) by (type-correct) application
and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Definition (Computation rule). Every defined constant D comes with
a system of computation rules, consisting of finitely many equations

(2.4) D~Pi(~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi(~yi) and Mi among ~yi, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i 6= j ~Pi and ~Pj have disjoint free

variables, and either ~Pi and ~Pj are non-unifiable (i.e., there is no substitution

which identifies them), or else for the most general unifier ϑ of ~Pi and ~Pj
we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

~yi in Mi constructor patterns ~Rk(~z) (k = i, j). A further requirement on a

system of computation rules D~Pi(~yi) = Mi is that the lengths of all ~Pi(~yi)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (2.4) is called a D-redex .

28 2. COMPUTABILITY IN HIGHER TYPES

More formally, constructor patterns are defined inductively by (we write
~P (~x) to indicate all variables in ~P):

(a) x is a constructor pattern.
(b) The empty list 〈〉 is a constructor pattern.

(c) If ~P (~x) and Q(~y) are constructor patterns whose variables ~x and ~y are

disjoint, then (~P ,Q)(~x, ~y) is a constructor pattern.

(d) If C is a constructor and ~P a constructor pattern, then so is C~P , provided
it is of ground type.

Remark. The requirement of disjoint variables in constructor patterns
~Pi and ~Pj used in computation rules of a defined constant D is needed to
ensure that applying the most general unifier produces constructor patterns
again. However, for readability we take this as an implicit convention, and
write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant. In
particular, the map and (structural) recursion operators can be viewed as
defined by computation rules, which in this case are called conversion rules;
cf. 2.2.2.

The boolean connectives andb, impb and orb are defined by

tt andb y = y,

x andb tt = x,

ff andb y = ff,

x andb ff = ff,

ff impb y = tt,

tt impb y = y,

x impb tt = tt,

tt orb y = tt,

x orb tt = tt,

ff orb y = y,

x orb ff = x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a finitary algebra ι can be defined
easily by computation rules. For example,

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

For the algebra D of binary trees with constructors L (leaf) and C (construct
a new tree from two given ones) we have

(L =D L) = tt,

(L =D Cn) = ff,

(Cm =D L) = ff,

(Ca1a2 =D Cb1b2) = (a1 =D b1 andb a2 =D b2).

2.2. DENOTATIONAL AND OPERATIONAL SEMANTICS 29

2.2.4. Ideals as denotation of terms. How can we use computation
rules to define an ideal z in a function space? The general idea is to in-
ductively define the set of tokens (U, b) that make up z. It is convenient
to define the value [[λ~xM]], where M is a term with free variables among
~x. Since this value is a token set, we can define inductively the relation

(~U, b) ∈ [[λ~xM]].

For a constructor pattern ~P (~x) and a list ~V of the same length and

types as ~x we define a list ~P (~V) of formal neighborhoods of the same length

and types as ~P (~x), by induction on ~P (~x). x(V) is the singleton list V ,

and for 〈〉 we take the empty list. (~P ,Q)(~V , ~W) is covered by the induction
hypothesis. Finally

(C~P)(~V) := {C~b∗ | b∗i ∈ Pi(~Vi) if Pi(~Vi) 6= ∅, and b∗i = ∗ otherwise }.

We use the following notation. (~U, b) means (U1, . . . (Un, b) . . .), and

(~U, V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all (finitely many) b ∈ V .

Definition (Inductive, of a ∈ [[λ~xM]]). Case λ~x,y,~zM with ~x free in M ,
but not y.

(~U, ~W, a) ∈ [[λ~x,~zM]]

(~U, V, ~W, a) ∈ [[λ~x,y,~zM]]
(K).

Case λ~xM with ~x the free variables in M .

U ` a
(U, a) ∈ [[λxx]]

(V),
(~U, V, a) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C ~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P (~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P (~x) = M .

This “denotational semantics” has good properties; however, we do not
carry out the proofs here (cf. Schwichtenberg and Wainer (2012)). First of
all, one can prove that [[λ~xM]] is an ideal . Moreover, our definition above
of the denotation of a term is reasonable in the sense that it is not changed
by an application of the standard (β- and η-) conversions or a computation
rule. For the β-conversion part of this proof it is helpful to first introduce a
more standard notation, which involves variable environments.

Definition. [[M]]
~U
~x := { b | (~U, b) ∈ [[λ~xM]] }, [[M]]~u,

~V
~x,~y :=

⋃
~U⊆~u[[M]]

~U,~V
~x,~y .

30 2. COMPUTABILITY IN HIGHER TYPES

We have a useful monotonicity property, which follows from the deduc-
tive closure of [[λ~xM]].

Lemma. (a) If ~V ` ~U , b ` c and b ∈ [[M]]
~U
~x , then c ∈ [[M]]

~V
~x .

(b) If ~v ⊇ ~u, b ` c and b ∈ [[M]]~u~x, then c ∈ [[M]]~v~x.

Lemma. (a) [[xi]]
~U
~x = U i and [[xi]]

~u
~x = ui.

(b) [[λyM]]
~U
~x = { (V, b) | b ∈ [[M]]

~U,V
~x,y } and [[λyM]]~u~x = { (V, b) | b ∈ [[M]]~u,V~x,y }.

(c) [[MN]]
~U
~x = [[M]]

~U
~x [[N]]

~U
~x and [[MN]]~u~x = [[M]]~u~x[[N]]~u~x.

Corollary. [[λyM]]~u~xv = [[M]]~u,v~x,y.

Lemma (Substitution). [[M(z)]]
~u,[[N]]~u~x
~x,z = [[M(N)]]~u~x.

Lemma (Preservation of values, β). [[(λyM(y))N]]~u~x = [[M(N)]]~u~x.

Lemma (Preservation of values, η). [[λy(My)]]~u~x = [[M]]~u~x if y /∈ FV(M).

Then it follows that values are preserved under computation rules:

Lemma. For every computation rule D~P (~y) = M of a defined constant

D, [[λ~y(D~P (~y))]]~u~x = [[λ~yM]]~u~x.

