
CHAPTER 1

Proof theory of arithmetic

The goal of this chapter is to present some in a sense “most complex”
proofs that can be done in first-order arithmetic.

The main tool for proving theorems in arithmetic is clearly the induction
schema

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x).

Here A(x) is an arbitrary formula. An equivalent form of this schema is
“course-of-values” or cumulative induction

∀x(∀y<xA(y)→ A(x))→ ∀xA(x).

Both schemes refer to the standard ordering of the natural numbers. Now
it is tempting to try to strengthen arithmetic by allowing more general
induction schemas, e.g., with respect to the lexicographical ordering of N×N.
More generally, we might pick an arbitrary well-ordering ≺ over N and use
the schema of transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

This can be read as follows. Suppose the property A(x) is “progressive”,
i.e., from the validity of A(y) for all y ≺ x we can always conclude that A(x)
holds. Then A(x) holds for all x.

One might wonder for which well-orderings this schema of transfinite
induction is actually derivable in arithmetic. We will prove here a classic
result of Gentzen (1943) which in a sense answers this question completely.
However, in order to state the result we have to be more explicit about the
well-orderings used. This is done in the next section.

1.1. Ordinals below ε0

We want to discuss the derivability of initial cases of transfinite induction
in arithmetical systems. In order to do that we shall need some knowledge
and notations for ordinals. We do not want to assume set theory here; hence
we introduce a certain initial segment of the ordinals (the ordinals < ε0) in
a formal, combinatorial way, i.e., via ordinal notations. Our treatment is
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2 1. PROOF THEORY OF ARITHMETIC

based on the Cantor normal form for ordinals; cf. Bachmann (1955). We
also introduce some elementary relations and operations for such ordinal
notations, which will be used later. For brevity we from now on use the
word “ordinal” instead of “ordinal notation”.

1.1.1. Basic definitions. We define the two notions

• α is an ordinal
• α < β for ordinals α, β

simultaneously by induction:

(1) If αm, . . . , α0 are ordinals, m ≥ −1 and αm ≥ · · · ≥ α0 (where
α ≥ β means α > β or α = β), then

ωαm + · · ·+ ωα0

is an ordinal. Note that the empty sum denoted by 0 is allowed.
(2) If ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 are ordinals, then

ωαm + · · ·+ ωα0 < ωβn + · · ·+ ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i, αm−i+1 = βn−i+1, . . . ,
αm = βn, or else m < n and αm = βn, . . . , α0 = βn−m.

For proofs by induction on ordinals it is convenient to introduce the notion
of level of an ordinal α by the stipulations (a) if α is the empty sum 0,
lev(α) = 0, and (b) if α = ωαm + . . . + ωα0 with αm ≥ . . .≥ α0, then
lev(α) = lev(αm) + 1.

For ordinals of level k+1 we have ωk ≤ α < ωk+1, where ω0 = 0, ω1 = ω,
ωk+1 = ωωk .

We shall use the notation 1 for ω0, k for ω0 + · · ·+ ω0 with k copies of
ω0 and ωαk for ωα + · · ·+ ωα again with k copies of ωα.

It is easy to see (by induction on the levels) that < is a linear order with
0 being the smallest element.

We define addition for ordinals by

ωαm + · · ·+ ωα0 + ωβn + · · ·+ ωβ0 := ωαm + · · ·+ ωαi + ωβn + · · ·+ ωβ0

where i is minimal such that αi ≥ βn.
It is easy to see that + is an associative operation which is strictly mono-

tonic in the second argument and weakly monotonic in the first argument.
Note that + is not commutative: 1 + ω = ω 6= ω + 1.

There is also a commutative version on addition. The natural (or Hes-
senberg) sum of two ordinals is defined by

(ωαm + · · ·+ ωα0)#(ωβn + · · ·+ ωβ0) := ωγm+n + · · ·+ ωγ0 ,
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where γm+n, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0. It
is easy to see that # is associative, commutative and strictly monotonic in
both arguments.

We will also need to know how ordinals of the form β + ωα can be
approximated from below. First note that

δ < α→ β + ωδk < β + ωα.

Furthermore, for any γ < β + ωα we can find a δ < α and a k such that

γ < β + ωδk.

1.1.2. Enumerating ordinals. In order to work with ordinals in a
purely arithmetical system we set up some effective bijection between our
ordinals < ε0 and non-negative integers (i.e., a Gödel numbering). For its
definition it is useful to refer to ordinals in the form

ωαmkm + · · ·+ ωα0k0 with αm > · · · > α0 and ki 6= 0 (m ≥ −1).

(By convention, m = −1 corresponds to the empty sum.)
For every ordinal α we define its Gödel number pαq inductively by

pωαmkm + · · ·+ ωα0k0q :=
(∏
i≤m

pkipαiq

)
− 1,

where pn is the n-th prime number starting with p0 := 2. For every non-
negative integer x we define its corresponding ordinal notation o(x) induc-
tively by

o
((∏

i≤l
pqii
)
− 1
)

:=
∑
i≤l

ωo(i)qi,

where the sum is to be understood as the natural sum.

Lemma. (a) o(pαq) = α,
(b) po(x)q = x.

Proof. This can be proved easily by induction. �

Hence we have a simple bijection between ordinals and non-negative
integers. Using this bijection we can transfer our relations and operations
on ordinals to computable relations and operations on non-negative integers.
We use the following abbreviations.

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,

x⊕ y := po(x) + o(y)q,
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xk := po(x)kq,

ωk := pωkq.

We leave it to the reader to verify that ≺, λxω
x, λx,y(x ⊕ y), λx,k(xk)

and λkpωkq are all elementary.

1.2. Provability of initial cases of transfinite induction

We now derive initial cases of the principle of transfinite induction in
arithmetic, i.e., of

∀x(∀y≺xPy → Px)→ ∀x≺aPx
for some number a and a predicate symbol P , where ≺ is the standard order
of order type ε0 defined in the preceding section. One can show that our
results here are optimal in the sense that for the full system of ordinals < ε0
the principle

∀x(∀y≺xPy → Px)→ ∀xPx
of transfinite induction is underivable. All these results are due to Gentzen
(1943).

1.2.1. Arithmetical systems. By an arithmetical system Z we mean
a theory based on minimal logic in the ∀→-language (including equality
axioms), with the following properties. The language of Z consists of a fixed
(possibly countably infinite) supply of function and relation constants which
are assumed to denote fixed functions and relations on the non-negative
integers for which a computation procedure is known. Among the function
constants there must be a constant S for the successor function and 0 for
(the 0-place function) zero. Among the relation constants there must be
a constant = for equality and ≺ for the ordering of type ε0 of the natural
numbers, as introduced in section 1.1. In order to formulate the general
principle of transfinite induction we also assume that a unary relation symbol
P is present, which acts like a free set variable.

Terms are built up from object variables x, y, z by means of f(t1, . . . , tm),
where f is a function constant. We identify closed terms which have the
same value; this is a convenient way to express in our formal systems the as-
sumption that for each function constant a computation procedure is known.
Terms of the form S(S(. . . S0 . . . )) are called numerals. We use the notation
Sn0 or n or (only in this chapter) even n for them. Formulas are built up
from atomic formulas R(t1, . . . , tm), with R a relation constant or a relation
symbol, by means of A→ B and ∀xA.
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The axioms of Z include compatibility of equality

x = y → A(x)→ A(y),

the Peano axioms, i.e., the universal closures of

Sx = Sy → x = y,(1.1)

Sx = 0→ A,(1.2)

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x),(1.3)

with A(x) an arbitrary formula. We express our assumption that for every
relation constant R a decision procedure is known by adding the axiom R~n
whenever R~n is true. Concerning ≺ we require as axioms irreflexivity and
transitivity for ≺

x ≺ x→ A,

x ≺ y → y ≺ z → x ≺ z
and also – following Schütte – the universal closures of

x ≺ 0→ A,(1.4)

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A,(1.5)

x⊕ 0 = x,(1.6)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,(1.7)

0⊕ x = x,(1.8)

ωx0 = 0,(1.9)

ωx(Sy) = ωxy ⊕ ωx,(1.10)

z ≺ y ⊕ ωSx → z ≺ y ⊕ ωe(x,y,z)m(x, y, z),(1.11)

z ≺ y ⊕ ωSx → e(x, y, z) ≺ Sx,(1.12)

where ⊕, λx,y(ω
xy), e and m denote the appropriate function constants and

A is any formula. (The reader should check that e, m can be taken to be
elementary.) These axioms are formal counterparts to the properties of the
ordinal notations observed in the preceding section.

1.2.2. Gentzen’s proof.

Theorem (Provable initial cases of transfinite induction in Z). Trans-
finite induction up to ωn, i.e., for arbitrary A(x) the formula

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωn A(x),

is derivable in Z.
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Proof. To every formula A(x) we assign a formula A+(x) (with respect
to a fixed variable x) by

A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x(∀y≺xB(y) → B(x)). So assume that
A(x) is progressive and

(1.13) ∀y≺xA+(y).

We have to show A+(x). So assume further

(1.14) ∀z≺yA(z)

and z ≺ y ⊕ ωx. We have to show A(z).
Case x = 0. Then z ≺ y ⊕ ω0. By (1.5) it suffices to derive A(z) from

z ≺ y as well as from z = y. If z ≺ y, then A(z) follows from (1.14), and if
z = y, then A(z) follows from (1.14) and the progressiveness of A(x).

Case Sx. From z ≺ y ⊕ ωSx we obtain z ≺ y ⊕ ωe(x,y,z)m(x, y, z) by
(1.11) and e(x, y, z) ≺ Sx by (1.12). From (1.13) we obtain A+(e(x, y, z)).
By the definition of A+(x) we get

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺(y⊕ωe(x,y,z)v)⊕ωe(x,y,z)A(u)

and hence, using (1.7) and (1.10)

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺y⊕ωe(x,y,z)(Sv)A(u).

Also from (1.14) and (1.9), (1.6) we obtain

∀u≺y⊕ωe(x,y,z)0A(u).

Using an appropriate instance of the induction schema we can conclude

∀u≺y⊕ωe(x,y,z)m(x,y,z)A(u)

and hence A(z).
We now show, by induction on n, how for an arbitrary formula A(x) we

can obtain a derivation of

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωnA(x).

So assume the left hand side, i.e., assume that A(x) is progressive.
Case 0. Then x ≺ ω0 and hence x ≺ 0⊕ω0 by (1.8). By (1.5) it suffices

to derive A(x) from x ≺ 0 as well as from x = 0. Now x ≺ 0→ A(x) holds
by (1.4), and A(0) then follows from the progressiveness of A(x).
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Case n + 1. Since A(x) is progressive, by what we have shown above
A+(x) is also progressive. Applying the induction hypothesis to A+(x) yields
∀x≺ωnA+(x), and hence A+(ωn) by the progressiveness of A+(x). Now the
definition of A+(x) (together with (1.4) and (1.8)) yields ∀z≺ωωnA(z). �

Note that in the induction step of this proof we have derived transfinite
induction up to ωn+1 for A(x) from transfinite induction up to ωn for a
formula of level higher than the level of A(x). The level of a formula A is
defined by

lev(R~t ) := 0,

lev(A→ B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).


