
CHAPTER 3

Extracting computational content from proofs

3.1. A theory of computable functionals

3.1.1. Brouwer-Heyting-Kolmogorov and Gödel. The Brouwer-
Heyting-Kolmogorov interpretation (BHK-interpretation for short) of intui-
tionistic (and minimal) logic explains what it means to prove a logically
compound statement in terms of what it means to prove its components;
the explanations use the notions of construction and constructive proof as
unexplained primitive notions. For prime formulas the notion of proof is
supposed to be given. The clauses of the BHK-interpretation are:

(i) p proves A ∧ B if and only if p is a pair 〈p0, p1〉 and p0 proves A, p1
proves B;

(ii) p proves A → B if and only if p is a construction transforming any
proof q of A into a proof p(q) of B;

(iii) ⊥ is a proposition without proof;
(iv) p proves ∀x∈DA(x) if and only if p is a construction such that for all

d ∈ D, p(d) proves A(d);
(v) p proves ∃x∈DA(x) if and only if p is of the form 〈d, q〉 with d an element

of D, and q a proof of A(d).

The problem with the BHK-interpretation clearly is its reliance on the
unexplained notions of construction and constructive proof. Gödel was con-
cerned with this problem for more than 30 years. In 1941 he gave a lecture at
Yale university with the title “In what sense is intuitionistic logic construc-
tive?”. According to Kreisel, Gödel “wanted to establish that intuitionistic
proofs of existential theorems provide explicit realizers” (Feferman et al.,
1986, 1990, 1995, 2002, 2002, Vol II, p.219). Gödel published his “Dialec-
tica interpretation” in (1958), and revised this work over and over again;
its state in 1972 has been published in the same volume. Troelstra, in his
introductory note to the latter two papers writes (loc. cit., pp.220/221):

Gödel argues that, since the finististic methods considered
are not sufficient to carry out Hilbert’s program, one has

31

32 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

to admit at least some abstract notions in a consistency
proof; . . . However, Gödel did not want to go as far as
admitting Heyting’s abstract notion of constructive proof;
hence he tried to replace the notion of constructive proof
by something more definite, less abstract (that is, more
nearly finitistic), his principal candidate being a notion of
“computable functional of finite type” which is to be ac-
cepted as sufficiently well understood to justify the axioms
and rules of his system T, an essentially logic-free theory
of functionals of finite type.

We intend to utilize the notion of a computable functional of finite type
as an ideal in an information system, as explained in the previous chapter.
However, Gödel noted that his proof interpretation is largely independent of
a precise definition of computable functional; one only needs to know that
certain basic functionals are computable (including primitive recursion oper-
ators in finite types), and that they are closed under composition. Building
on Gödel (1958), we assign to every formula A a new one ∃xA1(x) with A1(x)
∃-free. Then from a derivation of A we want to extract a “realizing term” r
such that A1(r). Of course its meaning should in some sense be related to
the meaning of the original formula A. However, Gödel explicitly states in
(1958, p.286) that his Dialectica interpretation is not the one intended by
the BHK-interpretation.

3.1.2. Formulas and predicates. When we want to make proposi-
tions about computable functionals and their domains of partial continuous
functionals, it is perfectly natural to take, as initial propositions, ones formed
inductively or coinductively. However, for simplicity we omit the treatment
of coinductive definitions and deal with inductive definitions only. For ex-
ample, in the algebra N we can inductively define totality by the clauses

TN0, ∀n(TNn→ TN(Sn)).

Its least-fixed-point scheme will now be taken in the form

∀n(TNn→ A(0)→ ∀n(TNn→ A(n)→ A(Sn))→ A(n)).

The reason for writing it in this way is that it fits more conveniently with
the logical elimination rules, which will be useful in the proof of the sound-
ness theorem. It expresses that every “competitor” {n | A(n) } satisfying
the same clauses contains TN. This is the usual induction schema for natu-
ral numbers, which clearly only holds for “total” numbers (i.e., total ideals

3.1. A THEORY OF COMPUTABLE FUNCTIONALS 33

in the information system for N). Notice that we have used a “strength-
ened” form of the “step formula”, namely ∀n(TNn→ A(n)→ A(Sn)) rather
than ∀n(A(n)→ A(Sn)). In applications of the least-fixed-point axiom this
simplifies the proof of the “induction step”, since we have the additional
hypothesis T (n) available. Totality for an arbitrary algebra can be defined
similarly. Consider for example the non-finitary algebra O (cf. 2.1.3), with
constructors 0, successor S of type O → O and supremum Sup of type
(N→ O)→ O. Its clauses are

TO0, ∀x(TOx→ TO(Sx)), ∀f (∀n∈TNTO(fn)→ TO(Sup(f))),

and its least-fixed-point scheme is

∀x(TOx→ A(0)→
∀x(TOx→ A(x)→ A(Sx))→
∀f (∀n∈TTO(fn)→ ∀n∈TA(fn)→ A(Sup(f)))→
A(x)).

Generally, an inductively defined predicate I is given by k clauses, which
are of the form

Ki := ∀~x((Aν(I))ν<n → I~r) (i < k).

Our formulas will be defined by the operations of implication A → B

and universal quantification ∀xρA from inductively defined predicates µX ~K,
where X is a “predicate variable”, and the Ki are “clauses”. Every predicate
has an arity, which is a possibly empty list of types.

Definition (Formulas and predicates). By simultaneous induction we
define formula forms

A,B ::= P~r | A→ B | ∀xA
and predicate forms

P,Q ::= X | { ~x | A } | µX(∀~xi((Aiν)ν<ni → X~ri))i<k

with X a predicate variable, k ≥ 1 and ~xi all free variables in (Aiν)ν<ni →
X~ri (it is not necessary to allow object parameters in inductively defined
predicates, since they can be taken as extra arguments). Let C denote both
formula and predicate forms. Let FPV(C) denote the set of free predicate
variables in C. We define SP(Y,C) “Y occurs at most strictly positive in
C” by induction on C.

SP(Y, P)

SP(Y, P~r)

Y /∈ FPV(A) SP(Y,B)

SP(Y,A→ B)

SP(Y,A)

SP(Y, ∀xA)

34 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

SP(Y,X)
SP(Y,A)

SP(Y, { ~x | A })
SP(Y,Aiν) for all i<k, ν<ni

SP(Y, µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

Now we can define F(A) “A is a formula” and Pred(P) “P is a predicate”,
again by simultaneous induction.

Pred(P)

F(P~r)

F(A) F(B)

F(A→ B)

F(A)

F(∀xA)

Pred(X)
F(A)

Pred({ ~x | A })
F(Aiν) and SP(X,Aiν) for all i<k, ν<ni X /∈ FPV(A0ν) for all ν<n0

Pred(µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

We call
I := µX(∀~xi((Aiν)ν<ni → X~ri))i<k

an inductive (or inductively defined) predicate. Sometimes it is helpful to

display the predicate parameters and write I(~Y , ~Z), where ~Y , ~Z are all pre-

dicate variables free in some Aiν except X, and ~Y are the ones occuring
only strictly positive. If we write the i-th component of I in the form
∀~x((Aν(X))ν<n → X~r), then we call

(3.1) Ki := ∀~x((Aν(I))ν<n → I~r)

the i-th clause (or introduction axiom) of I, denoted I+i .

Here ~A → B means A0 → · · · → An−1 → B, associated to the right.
The terms ~r are those introduced in section 2.2, i.e., typed terms built from
variables and constants by abstraction and application, and (importantly)
those with a common reduct are identified. In ∀~x((Aν(X))ν<n → X~r) we
call Aν(X) a parameter premise if X does not occur in it, and a recursive
premise otherwise. A recursive premise Aν(X) is nested if it has an occur-
rence of X in a strictly positive parameter position of another (previously
defined) inductive predicate, and unnested otherwise. An inductive predi-
cate I is called nested if it has a clause with at least one nested recursive
premise, and unnested otherwise.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x) }~r with C(~r). The letter I will be used for predicates
of the form µX(K0, . . . ,Kk−1); they are called inductively defined predi-
cates. An inductively defined predicate is finitary if its clauses have recursive
premises of the form X~s only.

Definition (Theory of computable functionals, TCF). TCF is the sys-
tem in minimal logic for→ and ∀, whose formulas are those in F above, and

3.1. A THEORY OF COMPUTABLE FUNCTIONALS 35

whose axioms are the following. For each inductively defined predicate, there
are “closure” or introduction axioms, together with a “least-fixed-point” or
elimination axiom. In more detail, consider an inductively defined predicate
I := µX(K0, . . . ,Kk−1). For each of the k clauses we have the introduction
axiom (3.1). Moreover, we have an elimination axiom I−:

(3.2) ∀~x(I~x→ (∀~xi((Aiν(I ∧X))ν<ni → X~ri))i<k → X~x)

where I ∧X abbreviates { ~x | I~x∧X~x } with ∧ defined (inductively) below.
Here X can be thought of as a “competitor” predicate.

3.1.3. Examples of inductive predicates. We first deal with the
concept of an equality. A word of warning is in order here: we need to
distinguish four separate but closely related equalities.

(i) Firstly, defined function constants D are introduced by computation
rules, written l = r, but intended as left-to-right rewrites.

(ii) Secondly, we have Leibniz equality Eq inductively defined below.
(iii) Thirdly, pointwise equality between partial continuous functionals will

be defined inductively as well.
(iv) Fourthly, if l and r have a finitary algebra as their type, l = r can be

read as a boolean term, where = is the decidable equality defined in
2.2.3 as a boolean-valued binary function.

Leibniz equality. We define Leibniz equality by

Eq(ρ) := µX(∀xX(xρ, xρ)).

The introduction axiom is

∀xEq(xρ, xρ)

and the elimination axiom

∀x,y(Eq(x, y)→ ∀xXxx→ Xxy),

where Eq(x, y) abbreviates Eq(ρ)(xρ, yρ).

Lemma (Compatibility of Eq). ∀x,y(Eq(x, y)→ A(x)→ A(y)).

Proof. Exercise. �

Using compatibility of Eq one easily proves symmetry and transitivity.
Define falsity by F := Eq(ff, tt). Then we have

Theorem (Ex-falso-quodlibet). For every formula A without predicate
parameters we can derive F→ A.

36 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

Proof. We first show that F→ Eq(xρ, yρ). To see this, we first obtain
Eq(RρBffxy,R

ρ
Bffxy) from the introduction axiom. Then from Eq(ff, tt) we

get Eq(RρBttxy,R
ρ
Bffxy) by compatibility. Now RρBttxy converts to x and

RρBffxy converts to y. Hence Eq(xρ, yρ), since we identify terms with a
common reduct.

The claim can now be proved by induction on A ∈ F. Case I~s. Let
Ki be the nullary clause, with final conclusion I~t. By induction hypothesis
from F we can derive all parameter premises. Hence I~t. From F we also
obtain Eq(si, ti), by the remark above. Hence I~s by compatibility. The
cases A→ B and ∀xA are obvious. �

A crucial use of the equality predicate Eq is that it allows us to lift a
boolean term rB to a formula, using atom(rB) := Eq(rB, tt). This opens
up a convenient way to deal with equality on finitary algebras. The com-
putation rules ensure that, for instance, the boolean term Sr =N Ss, or
more precisely =N(Sr, Ss), is identified with r =N s. We can now turn this
boolean term into the formula Eq(Sr =N Ss, tt), which again is abbreviated
by Sr =N Ss, but this time with the understanding that it is a formula.
Then (importantly) the two formulas Sr =N Ss and r =N s are identified
because the latter is a reduct of the first. Consequently there is no need to
prove the implication Sr =N Ss→ r =N s explicitly.

Existence, conjunction and disjunction. One of the main points of TCF
is that it allows the logical connectives existence, conjunction and disjunc-
tion to be inductively defined as predicates. This was first discovered by
Martin-Löf (1971).

Ex(Y) := µX(∀x(Y xρ → X)),

And(Y1, Y2) := µX(Y1 → Y2 → X),

Or(Y1, Y2) := µX(Y1 → X, Y2 → X).

We will use the abbreviations

∃xA := Ex({xρ | A }),
A ∧B := And({ | A }, { | B }),
A ∨B := Or({ | A }, { | B }),

The introduction axioms are

∀x(Y x→ ∃xY x),

Y1 → Y2 → Y1 ∧ Y2,
Y1 → Y1 ∨ Y2, Y2 → Y1 ∨ Y2.

3.2. REALIZABILITY INTERPRETATION 37

The elimination axioms are

∃xY x→ ∀x(Y x→ X)→ X,

Y1 ∧ Y2 → (Y1 → Y2 → X)→ X,

Y1 ∨ Y2 → (Y1 → X)→ (Y2 → X)→ X.

We give some more familiar examples of inductively defined predicates.
The even numbers. The introduction axioms are

Even(0), ∀n(Even(n)→ Even(S(Sn)))

and the elimination axiom is

∀n(Even(n)→ X0→ ∀n(Even(n)→ Xn→ X(S(Sn)))→ Xn).

Transitive closure. Let ≺ be a predicate variable representing a binary
relation. The transitive closure TC≺ of ≺ is inductively defined as follows.
The introduction axioms are

∀x,y(x ≺ y → TC≺(x, y)),

∀x,y,z(x ≺ y → TC≺(y, z)→ TC≺(x, z))

and the elimination axiom is

∀x,y(TC≺(x, y)→ ∀x,y(x ≺ y → Xxy)→
∀x,y,z(x ≺ y → TC≺(y, z)→ Xyz → Xxz)→
Xxy).

3.2. Realizability interpretation

At this point we come to the crucial step of identifying “computational
content” in proofs, which can then be extracted. Recall that the BHK-
interpretation (described in 3.1.1) left open what a proof of a prime formula
is. However, in TCF we can be more definite, since a closed prime formula
must be of the form I~r with I an inductive predicate. The obvious idea is
to view a proof of I~r as a “generation tree”, witnessing how the arguments
~r were put into I. For example, let Even be defined by the clauses Even(0)
and ∀n(Even(n) → Even(S(Sn))). A generation tree for Even(6) should
consist of a single branch with nodes Even(0), Even(2), Even(4) and Even(6).
More formally, such a generation tree can seen as an ideal in an algebra ιI
associated naturally with I.

Consider the more general situation when parameters are involved, i.e.,

when we have a proof (in TCF) of a closed formula ∀~x(~A → I~r). It is of

obvious interest which of the variables ~x and assumptions ~A are actually used

38 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

in the “solution” provided by the proof (in the sense of Kolmogorov (1932)).
To be able to express dependence on and independence of such parameters
we split each of our (only!) logical connectives →,∀ into two variants, a
“computational” one ∀c,→c and a “non-computational” one ∀nc,→nc. This
distinction (for the universal quantifier) is due to Berger (1993, 2005). Then

a proof of ∀nc~x ∀
c
~y(
~A →nc ~B →c I~r) provides a construction of an ideal in ιI

independent of ~x and assumed proofs of ~A. One can view this “decoration”
of →, ∀ as turning our (minimal) logic into a “computational logic”, which
is able to express dependence on and independence of parameters. The rules
for →nc,∀nc are similar to the ones for →c,∀c; they will be given in 3.2.2.

Now the clauses of inductive predicates can and should be decorated as
well. Without loss of generality we can assume that they have the form

∀nc~x ∀
c
~y(
~A→nc ~B →c X~r).

This will lead to a different (i.e., simplified) algebra ιI associated with the
inductive predicate I.

Of special importance is the case when we only have→nc,∀nc, and there
is only one clause. Such inductive predicates are called “uniform one-clause
defined”, and their associated algebra is the unit algebra U. Examples are
Leibniz equality, existence and conjunction when defined with →nc, ∀nc:

Eq(ρ) := µX(∀ncx X(xρ, xρ)),

ExU(Y) := µX(∀ncx (Y xρ →nc X)),

AndU(Y1, Y2) := µX(Y1 →nc Y2 →nc X).

From now on we only use this uniform one-clause definition of Leibniz equa-
lity Eq, and use the abbreviations

∃uxA := ExU({xρ | A }).
A ∧u B := AndU({ | A }, { | B }).

Prime formulas I~r with ιI = U only have a trivial generation tree, and
in this sense are without computational content. Clearly this is also the
case for formulas with such an I~r as conclusion. These formulas are called
non-computational (n.c.) or Harrop formulas. Moreover, a Harrop formula
in a premise can be ignored when we are interested in the computational
content of a proof of this formula: its only contribution would be of unit
type. Therefore when defining the type of a formula in 3.2.5 we will use a
“cleaned” form of such a type, not involving the unit type.

The next thing to do is to properly accomodate the BHK-interpretation
and define what it means that a term t “realizes” the formula A, written

3.2. REALIZABILITY INTERPRETATION 39

t r A. In the prime formula case I~r this will involve a predicate “t realizes
I~r ”, which will be defined inductively as well, following the clauses of I. But
since this is a “meta” statement already containing the term t representing a
generation tree, we are not interested in the generation tree for such realizing
formulas and consider them as non-computational.

Finally we will define in 3.2.6 the “extracted term” et(M) of a proof M
of a formula A, and prove the soundness theorem et(M) r A.

Remark. We have encountered two situations where inductive defini-
tions do not have computational content: uniform one-clause defined pre-
dicates, and realizability predicates. There is a third occasion when this
can happen and is in fact rather useful, namely when the all clauses have
“invariant” premises A only; a formula A is called invariant if ∃x(x r A) is
equivalent to A. We write µncX (K0, . . . ,Kk−1) whenever an inductive predi-
cate is n.c. The soundness theorem continues to hold if we restrict usage of
the least-fixed-point (or elimination) axiom for such n.c. inductive predicates
to Harrop formulas.

3.2.1. An informal explanation. The ideas that we develop here are
illustrated by the following simple situation. The computational content
of an implication Pn →c P (Sn) is that demanded of an implication by the
BHK interpretation, namely a function from evidence for Pn to evidence for
P (Sn). The universal quantifier ∀n is non-computational if it merely supplies
n as an “input”, whereas to say that a universal quantifier is computational
means that a construction of input n is also supplied. Thus a realization of

∀ncn (Pn→c P (Sn))

will be a unary function f such that if r “realizes” Pn, then fr realizes
P (Sn), for every n. On the other hand, a realization of

∀cn(Pn→c P (Sn))

will be a binary function g which, given a number n and a realization r of
Pn, produces a realization g(n, r) of P (Sn). Therefore an induction with
basis and step of the form

P0, ∀ncn (Pn→c P (Sn))

will be realized by iterates f (n)(r0), whereas a computational induction

P0, ∀cn(Pn→c P (Sn))

will be realized by the primitive recusively defined h(n, r0) where h(0, r0) =
r0 and h(Sn, r0) = g(n, h(n, r0)).

40 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

Finally, a word about the non-computational implication: a realizer of
A →nc B will depend solely on the existence of a realizer of A, but will
be completely independent of which one it is. An example would be an
induction

P0, ∀cn(Pn→nc P (Sn))

where the realizer h(n, r0) is given by h(0, r0) = r0, h(Sn, r0) = g(n), without
recursive calls. The point is that in this case g does not depend on a realizer
for Pn, only upon the number n itself.

3.2.2. Decorating → and ∀. We adapt the definition in 3.1.2 of pre-
dicates and formulas to the newly introduced decorated connectives →c, ∀c
and →nc,∀nc. Let → denote either →c or →nc, and similarly ∀ either ∀c or
∀nc. Then the definition in 3.1.2 can be read as it stands.

We also need to adapt our definition of TCF to the decorated connec-
tives →c,→nc and ∀c, ∀nc. The introduction and elimination rules for →c

and ∀c remain as before, and also the elimination rules for →nc and ∀nc.
However, the introduction rules for →nc and ∀nc must be restricted: the
abstracted (assumption or object) variable must be “non-computational”,
in the following sense. Simultaneously with a derivation M we define the
sets CV(M) and CA(M) of computational object and assumption variables
of M , as follows. Let MA be a derivation. If A is non-computational (n.c.),
i.e., the type τ(A) of A (defined below in 3.2.5) is the “nulltype” symbol ◦,
then CV(MA) := CA(MA) := ∅. Otherwise

CV(cA) := ∅ (cA an axiom),

CV(uA) := ∅,
CV((λuAM

B)A→
cB) := CV((λuAM

B)A→
ncB) := CV(M),

CV((MA→cBNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxM
A)∀

c
xA) := CV((λxM

A)∀
nc
x A) := CV(M) \ {x},

CV((M∀
c
xA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀
nc
x A(x)r)A(r)) := CV(M),

and similarly

CA(cA) := ∅ (cA an axiom),

CA(uA) := {u},

3.2. REALIZABILITY INTERPRETATION 41

CA((λuAM
B)A→

cB) := CA((λuAM
B)A→

ncB) := CA(MA) \ {u},
CA((MA→cBNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxM
A)∀

c
xA) := CA((λxM

A)∀
nc
x A) := CA(M),

CA((M∀
c
xA(x)r)A(r)) := CA((M∀

nc
x A(x)r)A(r)) := CA(M).

The introduction rules for →nc and ∀nc then are

(i) If MB is a derivation and uA /∈ CA(M) then (λuAM
B)A→

ncB is a
derivation.

(ii) If MA is a derivation, x is not free in any formula of a free assumption
variable of M and x /∈ CV(M), then (λxM

A)∀
nc
x A is a derivation.

An alternative way to formulate these rules is simultaneously with the notion
of the “extracted term” et(M) of a derivation M . This will be done in 3.2.6.

3.2.3. Decorating inductive definitions. Now we can and should
decorate inductive definitions. The introduction axioms are

(3.3) Ki := ∀c/nc~x ((Aν(I))ν<n →c/nc I~r)

and the elimination axiom is

(3.4) ∀nc~x (I~x→c (∀c/nc~xi
((Aiν(I ∧d X))ν<ni →c/nc X~ri))i<k →c X~x)

where I ∧d X abbreviates { ~x | I~x ∧d X~x } with ∧d defined below.
Let us decorate the inductively defined predicates in 3.1.3, that is, take

computational aspects into account. For ∃, ∧ and ∨ we obtain ∃d, ∃l,∃r,∃u,
∧d,∧l,∧r,∧u ∨d,∨l,∨r,∨u with d for “double”, l for “left”, r for “right”
and u for “uniform”. They are defined by their introduction axioms, which
involve both →c, ∀c and →nc, ∀nc.

∀cx(A→c ∃dxA),

∀cx(A→nc ∃lxA),

∀ncx (A→c ∃rxA),

∀ncx (A→nc ∃uxA),

∃dxA→c ∀cx(A→c P)→c P,

∃lxA→c ∀cx(A→nc P)→c P,

∃rxA→c ∀ncx (A→c P)→c P,

∃uxA→c ∀ncx (A→nc P)→c P,

and similar for ∧:

A→c B →c A ∧d B,

A→c B →nc A ∧l B,
A→nc B →c A ∧r B,
A→nc B →nc A ∧u B,

A ∧d B →c (A→c B →c P)→c P,

A ∧l B →c (A→c B →nc P)→c P,

A ∧r B →c (A→nc B →c P)→c P

A ∧u B →c (A→nc B →nc P)→c P

42 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

and for ∨:

A→c A ∨d B,

A→c A ∨l B,
A→nc A ∨r B,
A→nc A ∨u B,

B →c A ∨d B,

B →nc A ∨l B,
B →c A ∨r B,
B →nc A ∨u B

with elimination schemes

A ∨d B →c (A→c P)→c (B →c P)→c P,

A ∨l B →c (A→c P)→c (B →nc P)→c P,

A ∨r B →c (A→nc P)→c (B →c P)→c P,

A ∨u B →c (A→nc P)→c (B →nc P)→c P.

Let ≺ be a predicate variable representing a binary relation. A compu-
tational variant of the inductively defined transitive closure TC≺ of ≺ has
introduction axioms

∀cx,y(x ≺ y →nc TC≺(x, y)),

∀cx,y∀ncz (x ≺ y →nc TC≺(y, z)→c TC≺(x, z)),

and the elimination scheme is

∀ncx,y(TC≺(x, y)→c ∀cx,y(x ≺ y →nc Pxy)→c

∀cx,y∀ncz (x ≺ y →nc TC≺(y, z)→c Pyz →c Pxz)→c

Pxy).

Consider the accessible part of a binary relation ≺. A computational
variant Acc≺ is determined by the introduction axioms

∀cx(F→nc Acc≺(x)),

∀ncx (∀cy≺xAcc≺(y)→c Acc≺(x)),

where ∀cy≺xA stands for ∀cy(y ≺ x→nc A). The elimination scheme is

∀ncx (Acc≺(x)→c ∀cx(F→nc Px)→c

∀ncx (∀cy≺xAcc≺(y)→c ∀cy≺xPy →c Px)→c

Px).

3.2. REALIZABILITY INTERPRETATION 43

3.2.4. Totality and induction. In 2.1.6 we have defined what the
total and structure-total ideals of a finitary algebra are. We now inductively
define general totality predicates. Let us first look at some examples. The
clauses defining totality for the algebra N are

TN0, ∀ncn (TNn→c TN(Sn)).

The least-fixed-point axiom is

∀ncn (TNn→c X0→c ∀ncn (TNn→c Xn→c X(Sn))→c Xn).

Clearly the partial continuous functionals with TN interpreted as the total
ideals for N provide a model of TCF extended by these axioms.

For the algebra D of derivations totality is inductively defined by the
clauses

TD0D, ∀ncx,y(TDx→c TDy →c TD(CD→D→Dxy)),

with least-fixed-point axiom

∀ncx (TDx→c X0D →c

∀ncx,y(TDx→c TDy →c Xx→c Xy →c X(CD→D→Dxy))→c

Xx).

Again, the partial continuous functionals with TD interpreted as the total
ideals for D (i.e., the finite derivations) provide a model.

Generally we define

(i) RTρ called relative totality , and its special cases
(ii) Tρ called (absolute) totality and
(iii) STρ called structural totality .

The least-fixed-point axiom for STι will provide us with the induction axiom
for the algebra ι.

The definition of RTρ is relative to an assigment of predicate variables
Y of arity (α) to type variables α.

Definition (Relative totality RT). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α)
with κi = (ρν(~α, ξ))ν<n → ξ. Then RTι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((RTρν (~Y ,X)xν)ν<n →c X(Ci~x))

and

RTαj (
~Y ,X) := Yj ,

RTξ(~Y ,X) := X,

RTσ→ρ(~Y ,X) := { f | ∀nc~x (RTσ~x→c RTρ(~Y ,X)(f~x)) }.

44 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

For important special cases of the parameter predicates ~Y we introduce
a separate notation. Suppose we want to argue about total ideals only. Note
that this only makes sense when when no type variables occur. However, to
allow a certain amount of abstract reasing (involving type variables to be
substituted later by concrete closed types), we introduce special predicate
variables Tα which under a substitution α 7→ ρ with ρ closed turn into the
inductively defined predicate Tρ. Using this convention we define totality
for an arbitrary algebra by specializing Y of arity (ρ) to Tρ.

Definition (Absolute totality T). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α)
with κi = (ρν(~α, ξ))ν<n → ξ. Then Tι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((Tρν (X)xν)ν<n →c X(Ci~x))

and

Tαj (X) := Tαj ,

Tξ(X) := X,

Tσ→ρ(X) := { f | ∀nc~x (Tσ~x→c Tρ(X)(f~x)) }.

Another important special case occurs when we substitute the predicate
variables Y by truth predicates. The resulting totality predicate is called
structural totality.

Definition (Structural totality ST). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α)
with κi = (ρν(~α, ξ))ν<n → ξ. Then STι := µX(K0, . . . ,Kk−1), with

Ki := ∀nc~x ((STρν (X)xν)ν<n →c X(Ci~x))

and

STαj (X) := {x | > } (omitted whenever possible),

STξ(X) := X,

STσ→ρ(X) := { f | ∀nc~x (STσ~x→c STρ(X)(f~x)) }.

For example, the main clause for the predicate STL(α) expressing struc-
tural totality of lists of elements of type α is

∀ncx,l(STα(X)x︸ ︷︷ ︸
>; omit

→c STξ(X)︸ ︷︷ ︸
X

l→c X(x :: l))

where x :: l is shorthand for Cons(x, l). It leads to the introduction axiom

∀ncx,l(STL(α)l→c STL(α)(x :: l))

with no assumptions on x.

3.2. REALIZABILITY INTERPRETATION 45

The least-fixed-point axiom for STL(α) is according to (3.4)

∀ncl (ST(l)→c X(Nil)→c ∀ncx,l((ST ∧d X)l→c X(x :: l))→c XlL(ρ)).

Written differently (with “duplication”) we obtain the induction axiom

∀ncl (ST(l)→c X(Nil)→ ∀ncx,l(ST(l)→c Xl→c X(x :: l))→c XlL(ρ))

denoted Indl,X .
Note that in all these definitions we allow usage of totality predicates for

previously introduced algebras ι′. An example is totality TT for the algebra
T of finitely branching trees. It is defined by the single clause

∀ncas (RTL(T)(TT)(as)→c TT(Branch(as))).

Clearly all three notions of totality coincide for algebras without type
parameters. Abbreviating ∀ncx (Tx →c A) by ∀cx∈T A we obtain from the
elimination axioms computational induction schemes, for example

Indp,P : ∀cp∈T (P tt→c P ff →c PpB),

Indn,P : ∀cn∈T (P0→c ∀cn∈T (Pn→c P (Sn))→c PnN).

The types of these formulas (as defined in 3.2.5) will be the types of the
recursion operators of the respective algebras.

3.2.5. The type of a formula, realizability and witnesses. For
every formula or predicate C we define τ(C) (a type or the “nulltype” symbol
◦). In case τ(C) = ◦ proofs of C have no computational content; such C
are called non-computational (n.c.) (or Harrop); the other ones are called
computationally relevant (c.r.). The definition can be conveniently written
if we extend the use of ρ→ σ to the nulltype symbol ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Definition (Type τ(C) of a formula or predicate C, and ιI). Assume
a global injective assignment of a type variable ξ to every predicate variable
X.

τ(P~r) := τ(P),

τ(A→c B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀cxρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A),

τ(X) := ξ,

τ({ ~x | A }) := τ(A),

τ(µncX (K0, . . . ,Kk−1)) := ◦,

46 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

τ(µX(∀nc~xi∀
c
~yi

(~Ai →nc ~Bi →c X~ri))i<k) := µξ(τ(~yi)→ τ(~Bi)→ ξ)i<k.

We call ιI := µξ(τ(~yi) → τ(~Bi) → ξ)i<k the algebra associated with the

inductive predicate I := µX(∀nc~xi∀
c
~yi

(~Ai →nc ~Bi →c X~ri))i<k.

Hence

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.

We now define realizability . It will be convenient to introduce a special
“nullterm” symbol ε to be used as a “realizer” for n.c. formulas. We extend
term application to the nullterm symbol by

εt := ε, tε := t, εε := ε.

Definition (t realizes A). Let A be a formula and t either a term of
type τ(A) if the latter is a type, or the nullterm symbol ε for n.c. A. We
assume an injective global assignment, giving for every predicate variable X
of arity ~ρ a predicate variable Xr of arity (τ(X), ~ρ).

t r X~r := Xrt~r,

t r (A→c B) := ∀ncx (x r A →nc tx r B),

t r (A→nc B) := ∀ncx (x r A →nc t r B),

t r ∀cxA := ∀ncx (tx r A),

t r ∀ncx A := ∀ncx (t r A),

t r (µX(∀nc~xi∀
c
~yi

((Aiν)ν<ni →nc (Biν)ν<mi →c X~ri))i<k)~s := Irt~s

with

Ir := {w, ~x | (µncX (∀nc~xi,~yi,~ui((∃uiνuiν r Aiν)ν<ni →nc (viν r Biν)ν<mi →nc

X(Ci~yi~vi)~ri))i<k)w~x }.

In case A is n.c., ∀ncx (x r A→nc B(x)) means ε r A→nc B(ε). For a general
n.c. inductively defined predicate (with restricted elimination scheme) we
define ε r I~s to be I~s. For the special n.c. inductively defined predicates Ir,
Eq, ∃u and ∧u introduced above realizability is defined by

ε r Irt~s := Irt~s,

ε r Eq(t, s) := Eq(t, s),

ε r ∃uxA := ∃ux,y(y r A),

ε r (A ∧u B) := ∃ux(x r A) ∧u ∃uy(y r B).

3.2. REALIZABILITY INTERPRETATION 47

Note. Call two formulas A and A′ computationally equivalent if each
of them computationally implies the other, and in addition the identity
realizes each of the two derivations of A′ →c A and of A →c A′. It is an
easy exercise to verify that for n.c. A, the formulas A →c B and A →nc B
are computationally equivalent, and hence can be identified. In the sequel
we shall simply write A→ B for either of them. Similarly, for n.c. A the two
formulas ∀cxA and ∀ncx A are n.c., and both ε r ∀cxA and ε r ∀ncx A are defined
to be ∀ncx (ε r A). Hence they can be identified as well, and we shall simply
write ∀xA for either of them. Since the formula t r A is n.c., under this
convention the →,∀-cases in the definition of realizability can be written

t r (A→c B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r ∀cxA := ∀x(tx r A),

t r ∀ncx A := ∀x(t r A).

Here are some examples. Consider the totality predicate T for N induc-
tively defined by the clauses

T0, ∀ncn (Tn→c T (Sn)).

More precisely T := µX(K0,K1) with K0 := X0, K1 := ∀ncn (Xn→c X(Sn)).
These clauses have types κ0 := τ(K0) = τ(X0) = ξ and κ1 := τ(K1) =
τ(∀ncn (Xn →c X(Sn))) = ξ → ξ. Therefore the algebra of witnesses is
ιT := µξ(ξ, ξ → ξ), that is, N again. The witnessing predicate T r is defined
by the clauses

T r00, ∀n,m(T rmn→ T r(Sm,Sn))

and it has as its elimination scheme

∀ncn ∀cm(T rmn→ Q(0, 0)→c

∀ncn,m(T rmn→ Qmn→c Q(Sm,Sn))→c

Qmn.

As an example involving parameters, consider the formula ∃dxA with a
c.r. formula A, and view ∃dxA as inductively defined by the clause

∀cx(A→c ∃dxA).

More precisely, Exd(Y) := µX(K0) with K0 := ∀cx(Y xρ →c X). Then ∃dxA
abbreviates Exd({xρ | A }). The single clause has type κ0 := τ(K0) =
τ(∀cx(Y xρ →c X)) = ρ → α → ξ. Therefore the algebra of witnesses is
ι := ι∃dxA := µξ(ρ → α → ξ), that is, ρ × α. We write 〈x, u〉 for the values

48 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

of the (only) constructor of ι, i.e., the pairing operator. The witnessing
predicate (∃dxA)r is defined by the clause Kr

0((∃dxA)r, {xρ | A }) :=

∀x,u(u r A→ (∃dxA)r〈x, u〉)
and its elimination scheme is

∀cw((∃dxA)rw → ∀ncx,u(u r A→ Q〈x, u〉)→c Qw).

Definition (Leibniz equality Eq and ∃u, ∧u). The introduction axioms
are

∀ncx Eq(x, x), ∀ncx (A→nc ∃uxA), A→nc B →nc A ∧u B,
and the elimination schemes are

∀ncx,y(Eq(x, y)→ ∀ncx Pxx→c Pxy),

∃uxA→ ∀ncx (A→nc P)→c P,

A ∧u B → (A→nc B →nc P)→c P.

An important property of the realizing formulas t r A is that they are
invariant .

Proposition. ε r (t r A) is the same formula as t r A.

Proof. By induction on the simultaneous inductive definition of for-
mulas and predicates in 3.1.2.

Case t r I~s. By definition the formulas ε r (t r I~s), ε r Irt~s, Irt~s and
t r I~s are identical.

Case Irt~s. By definition ε r (ε r Irt~s) and ε r Irt~s are identical.
Case Eq(t, s). By definition ε r (ε r (Eq(t, s))) and ε r (Eq(t, s)) are

identical.
Case ∃uxA. The following formulas are identical.

ε r (ε r ∃uxA),

ε r ∃ux∃uy(y r A),

∃ux(ε r ∃uy(y r A)),

∃ux∃uy(ε r (y r A)),

∃ux∃uy(y r A) by induction hypothesis,

ε r ∃uxA.
Case A ∧u B. The following formulas are identical.

ε r (ε r (A ∧u B)),

ε r (∃ux(x r A) ∧u ∃uy(y r B)),

3.2. REALIZABILITY INTERPRETATION 49

ε r ∃ux(x r A) ∧u ε r ∃uy(y r B)),

∃ux(ε r (x r A)) ∧u ∃uy(ε r (y r B)),

∃ux(x r A) ∧u ∃uy(y r B) by induction hypothesis,

ε r (A ∧u B).

Case A→c B. The following formulas are identical.

ε r (t r (A→c B)),

ε r ∀x(x r A → tx r B),

∀x(ε r (x r A) → ε r (tx r B)),

∀x(x r A → tx r B) by induction hypothesis,

t r (A→c B).

Case A→nc B. The following formulas are identical.

ε r (t r (A→nc B)),

ε r ∀x(x r A → t r B),

∀x(ε r (x r A) → ε r (t r B)),

∀x(x r A → t r B) by induction hypothesis,

t r (A→nc B).

Case ∀cxA. The following formulas are identical.

ε r (t r ∀cxA),

ε r ∀x(tx r A),

∀x(ε r (tx r A)),

∀x(tx r A) by induction hypothesis,

t r ∀cxA.

Case ∀ncx A. The following formulas are identical.

ε r (t r ∀ncx A),

ε r ∀x(t r A),

∀x(ε r (t r A)),

∀x(t r A) by induction hypothesis,

t r ∀ncx A.

This completes the proof. �

50 3. EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS

3.2.6. Extracted terms. For a derivation M of a formula A we define
its extracted term et(M), of type τ(A). This definition is relative to a fixed
assignment of object variables to assumption variables: to every assumption
variable uA for a formula A we assign an object variable xu of type τ(A).

Definition (Extracted term et(M) of a derivation M). For derivations
MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := xτ(A)u (x
τ(A)
u uniquely associated with uA),

et((λuAM
B)A→

cB) := λ
x
τ(A)
u

et(M),

et((MA→cBNA)B) := et(M)et(N),

et((λxρM
A)∀

c
xA) := λxρet(M),

et((M∀
c
xA(x)r)A(r)) := et(M)r,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

Here λ
x
τ(A)
u

et(M) means just et(M) if A is n.c.

It remains to define extracted terms for the axioms. Consider a (c.r.)
inductively defined predicate I. For its introduction axioms (3.3) and eli-
mination axiom (3.4) define et(I+i) := Ci and et(I−) := R, where both the
constructor Ci and the recursion operator R refer to the algebra ιI associ-
ated with I.

Now consider the special non-computational inductively defined predi-
cates. Since they are n.c., we only need to define extracted terms for their
elimination axioms. For the witnessing predicate Ir we define et((Ir)−) := R
(referring to the algebra ιI again), and for Leibniz equality Eq, the n.c. ex-
istential quantifier ∃uxA and conjunction A ∧u B we take identities of the
appropriate type.

Remark. If derivations M are defined simultaneously with their ex-
tracted terms et(M), we can formulate the introduction rules for →nc and
∀nc by

(i) If MB is a derivation and xuA /∈ FV(et(M)), then (λuAM
B)A→

ncB is
a derivation.

3.2. REALIZABILITY INTERPRETATION 51

(ii) If MA is a derivation, x is not free in any formula of a free assumption
variable of M and x /∈ FV(et(M)), then (λxM

A)∀
nc
x A is a derivation.

3.2.7. Soundness. One can prove that every theorem in TCF + Axnci

has a realizer: the extracted term of its proof. Here (Axnci) is an arbitrary
set of non-computational invariant formulas viewed as axioms.

Theorem (Soundness). Let M be a derivation of A from assumptions
ui : Ci (i < n). Then we can derive et(M) r A from assumptions xui r Ci
(with xui := ε in case Ci is n.c.).

For the proof is (by induction on M) we have to refer to the literature.

