PROOF THEORY: From arithmetic to set theory

Michael Rathjen
Leverhulme Fellow

Proof, Truth, Computation

Summer School on the Interactions between Modern Foundations of Mathematics and Contemporary Philosophy

Fraueninsel den 23. Juli 2014
Plan of the Talks

• First Lecture
 1. From Hilbert to Gentzen.
 2. Gentzen’s Hauptsatz and applications
 3. The general form of ordinal analysis
 4. A brief history of early ordinal representation systems

• Second Lecture:
 1. Proof theory of (sub)systems of second order arithmetic.
 2. Applications of Ordinal Analysis
 3. Proof theory of systems of set theory.
Theory of Proofs

- Aristotle
- Frege
Beweistheorie (Proof Theory)

- Hilbert’s second problem (1900): Consistency of Analysis
- Hilbert’s Programme (1922, 1925)
The Origins of Proof theory?

• Dedekind 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain internal contradictions.

• Hilbert 1904 (Heidelberg talk): Syntactic consistency proof for a weak system of arithmetic.

• Hilbert 1917 (Axiomatisches Denken): we must turn the concept of a specifically mathematical proof itself into an object of investigation.

• In 1917/18 Hilbert flirted again with logicism. Presented analysis in ramified type theory with the axiom of reducibility.

• Hilbert's finitist consistency program only emerged in the winter term 1921/22.
The Origins of Proof theory?

- **Dedekind** 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain *internal contradictions*.
The Origins of Proof theory?

- **Dedekind** 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain *internal contradictions*.

- Hilbert 1904 (Heidelberg talk): Syntactic consistency proof for a weak system of arithmetic.
The Origins of Proof theory?

- **Dedekind** 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain internal contradictions.

- Hilbert 1904 (Heidelberg talk): Syntactic consistency proof for a weak system of arithmetic.

- Hilbert 1917 (Axiomatisches Denken): *we must turn the concept of a specifically mathematical proof itself into an object of investigation.*

...
The Origins of Proof theory?

- **Dedekind** 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain internal contradictions.

- Hilbert 1904 (Heidelberg talk): Syntactic consistency proof for a weak system of arithmetic.

- Hilbert 1917 (Axiomatisches Denken): *we must turn the concept of a specifically mathematical proof itself into an object of investigation.*

- In 1917/18 Hilbert flirted again with logicism. Presented analysis in ramified type theory with the axiom of reducibility.
Dedekind 1888, 1890. Canonical requirement for a structural definition: Prove the existence of a system of things falling under the notion to ensure it does not contain internal contradictions.

Hilbert 1904 (Heidelberg talk): Syntactic consistency proof for a weak system of arithmetic.

Hilbert 1917 (Axiomatisches Denken): we must turn the concept of a specifically mathematical proof itself into an object of investigation.

In 1917/18 Hilbert flirted again with logicism. Presented analysis in ramified type theory with the axiom of reducibility.

Hilbert’s finitist consistency program only emerged in the winter term 1921/22.
Hilbert’s Programme (1922,1925)

• I. Codify the whole of mathematical reasoning in a formal theory T.
Hilbert’s Programme (1922, 1925)

1. Codify the whole of mathematical reasoning in a formal theory T.

2. Prove the consistency of T by finitistic means.
I. Codify the whole of mathematical reasoning in a formal theory T.

II. Prove the consistency of T by finitistic means.

To carry out this task, Hilbert inaugurated a new mathematical discipline: Beweistheorie (Proof Theory).
Hilbert’s Programme (1922, 1925)

- I. Codify the whole of mathematical reasoning in a formal theory \(T \).

- II. Prove the consistency of \(T \) by finitistic means.

To carry out this task, Hilbert inaugurated a new mathematical discipline: Beweistheorie (Proof Theory).

In Hilbert’s Proof Theory, proofs become mathematical objects sui generis.
Gödel’s 1938 lecture at Zilsel’s

How then shall we extend? (Extension is necessary.)

Three ways are known up to now:

1. Higher types of functions (functions of functions of numbers, etc.).
2. The modal-logical route (introduction of an absurdity applied to universal sentences and a notion of “consequence”).
3. Transfinite induction, that is, inference by induction is added for certain concretely defined ordinal numbers of the second number class.
Gödel’s 1938 lecture at Zilsel’s

Gödel explored several routes for extending finitism.
Gödel’s 1938 lecture at Zilsel’s

Gödel explored several routes for extending finitism.

How then shall we extend? (Extension is necessary.)
Three ways are known up to now:

1. Higher types of functions (functions of functions of numbers, etc.).
2. The modal-logical route (introduction of an absurdity applied to universal sentences and a notion of "consequence").
3. Transfinite induction, that is, inference by induction is added for certain concretely defined ordinal numbers of the second number class.
Gödel’s 1938 lecture at Zilsel’s

Gödel explored several routes for extending finitism.

How then shall we extend? (Extension is necessary.)
Three ways are known up to now:

1. Higher types of functions (functions of functions of numbers, etc.).
Gödel’s 1938 lecture at Zilsel’s

Gödel explored several routes for extending finitism.

How then shall we extend? (Extension is necessary.)

Three ways are known up to now:

1. Higher types of functions (functions of functions of numbers, etc.).

2. The modal-logical route (introduction of an absurdity applied to universal sentences and a [notion of] "consequence").
Gödel explored several routes for extending finitism.

How then shall we extend? (Extension is necessary.)
Three ways are known up to now:

1. Higher types of functions (functions of functions of numbers, etc.).

2. The modal-logical route (introduction of an absurdity applied to universal sentences and a [notion of] "consequence").

3. Transfinite induction, that is, inference by induction is added for certain concretely defined ordinal numbers of the second number class.
Extended Hilbert Programs

(a) Arithmetical Predicativism.
(b) Theories of higher type functionals.
(c) Takeuti's "Hilbert-Gentzen finitist standpoint".
(d) Feferman's explicit mathematics.
(e) Martin-Löf's intuitionistic type theory.
(f) Constructive set theory (Myhill, Friedman, Beeson, Aczel).

From arithmetic to set theory
(a) Arithmetical Predicativism.
(a) Arithmetical Predicativism.

(b) Theories of higher type functionals.
(a) Arithmetical Predicativism.
(b) Theories of higher type functionals.
(c) Takeuti’s “Hilbert-Gentzen finitist standpoint”.
(a) Arithmetical Predicativism.
(b) Theories of higher type functionals.
(c) Takeuti’s “Hilbert-Gentzen finitist standpoint”.
(d) Feferman’s explicit mathematics.
Extended Hilbert Programs

(a) Arithmetical Predicativism.
(b) Theories of higher type functionals.
(c) Takeuti’s “Hilbert-Gentzen finitist standpoint”.
(d) Feferman’s explicit mathematics.
(e) Martin-Löf’s intuitionistic type theory.
(a) Arithmetical Predicativism.
(b) Theories of higher type functionals.
(c) Takeuti’s “Hilbert-Gentzen finitist standpoint”.
(d) Feferman’s explicit mathematics.
(e) Martin-Löf’s intuitionistic type theory.
(f) Constructive set theory (Myhill, Friedman, Beeson, Aczel).
Consistency proof for a second-order version of Primitive Recursive Arithmetic.

Uses a finitistic version of transfinite induction up to the ordinal ω^ω.
Gerhard Gentzen showed that transfinite induction up to the ordinal

\[\varepsilon_0 = \sup\{\omega, \omega^\omega, \omega^{\omega^\omega}, \ldots\} = \text{least } \alpha. \omega^\alpha = \alpha \]

suffices to prove the consistency of Peano Arithmetic, PA.
Gerhard Gentzen showed that transfinite induction up to the ordinal

\[\epsilon_0 = \sup\{\omega, \omega^\omega, \omega^{\omega^\omega}, \ldots\} = \text{least } \alpha. \omega^\alpha = \alpha \]

suffices to prove the consistency of Peano Arithmetic, PA.

Gentzen’s applied transfinite induction up to \(\epsilon_0 \) solely to primitive recursive predicates and besides that his proof used only finitistically justified means.
Gentzen’s Result in Detail

\[F + PR-TI(\varepsilon_0) \vdash \text{Con}(PA), \]

where \(F \) signifies a theory that is acceptable in finitism (e.g. \(F = \text{PRA} = \text{Primitive Recursive Arithmetic} \)) and \(PR-TI(\varepsilon_0) \) stands for transfinite induction up to \(\varepsilon_0 \) for primitive recursive predicates.
Gentzen’s Result in Detail

•

\[F + \text{PR-TI}(\varepsilon_0) \vdash \text{Con(PA)}, \]

where \(F \) signifies a theory that is acceptable in finitism (e.g. \(F = \text{PRA} = \text{Primitive Recursive Arithmetic} \)) and \(\text{PR-TI(\varepsilon_0)} \) stands for transfinite induction up to \(\varepsilon_0 \) for primitive recursive predicates.

• Gentzen also showed that his result is best possible: \(\text{PA} \) proves transfinite induction up to \(\alpha \) for arithmetic predicates for any \(\alpha < \varepsilon_0 \).
The non-finitist part of \(\text{PA} \) is encapsulated in \(\text{PR-TI}(\varepsilon_0) \) and therefore “measured” by \(\varepsilon_0 \), thereby tempting one to adopt the following definition of \textit{proof-theoretic ordinal} of a theory \(T \):

\[
\left| T \right|_{\text{Con}} = \text{least } \alpha. \quad \text{PRA} + \text{PR-TI}(\alpha) \vdash \text{Con}(T).
\]
We are interested in representing specific ordinals α as relations on \mathbb{N}.

Natural ordinal representation systems are frequently derived from structures of the form

$$\mathcal{A} = \langle \alpha, f_1, \ldots, f_n, <_{\alpha} \rangle$$

where α is an ordinal, $<_{\alpha}$ is the ordering of ordinals restricted to elements of α and the f_i are functions

$$f_i : \underbrace{\alpha \times \cdots \times \alpha}_{k_i \text{ times}} \rightarrow \alpha$$

for some natural number k_i.
A = ⟨A, g_1, \ldots, g_n, \prec⟩

is a **computable** (or **recursive**) representation of

\(A = \langle \alpha, f_1, \ldots, f_n, \prec_\alpha \rangle \) if the following conditions hold:

1. \(A \subseteq \mathbb{N} \) and \(A \) is a computable set.
Ordinal Representation Systems

\[\mathcal{A} = \langle A, g_1, \ldots, g_n, \prec \rangle \]

is a **computable** (or **recursive**) representation of
\[\mathcal{A} = \langle \alpha, f_1, \ldots, f_n, <_{\alpha} \rangle \]
if the following conditions hold:
1. \(A \subseteq \mathbb{N} \) and \(A \) is a computable set.
2. \(\prec \) is a computable total ordering on \(A \) and the functions \(g_i \)
 are computable.
\[\dot{\mathcal{A}} = \langle \mathcal{A}, g_1, \ldots, g_n, \prec \rangle \]

is a **computable** (or **recursive**) representation of \(\mathcal{A} = \langle \alpha, f_1, \ldots, f_n, <_\alpha \rangle \) if the following conditions hold:

1. \(A \subseteq \mathbb{N} \) and \(A \) is a computable set.
2. \(\prec \) is a computable total ordering on \(A \) and the functions \(g_i \) are computable.
3. \(\mathcal{A} \cong \dot{\mathcal{A}} \), i.e. the two structures are isomorphic.
Theorem (Cantor, 1897) For every ordinal $\beta > 0$ there exist unique ordinals $\beta_0 \geq \beta_1 \geq \cdots \geq \beta_n$ such that

$$\beta = \omega^{\beta_0} + \ldots + \omega^{\beta_n}. \quad (1)$$

The representation of β in (1) is called the Cantor normal form.

We shall write $\beta =_{\text{CNF}} \omega^{\beta_1} + \cdots \omega^{\beta_n}$ to convey that $\beta_0 \geq \beta_1 \geq \cdots \geq \beta_k$.

FROM ARITHMETIC TO SET THEORY
A Representation for ε_0

- ε_0 denotes the least ordinal $\alpha > 0$ such that

$$\beta < \alpha \implies \omega^\beta < \alpha.$$
A Representation for ε_0

- ε_0 denotes the least ordinal $\alpha > 0$ such that $\beta < \alpha \Rightarrow \omega^\beta < \alpha$.

- ε_0 is the least ordinal α such that $\omega^\alpha = \alpha$.
A Representation for ε_0

- ε_0 denotes the least ordinal $\alpha > 0$ such that
 \[\beta < \alpha \implies \omega^{\beta} < \alpha. \]

- ε_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.

- $\beta < \varepsilon_0$ has a Cantor normal form with exponents $\beta_i < \beta$ and these exponents have Cantor normal forms with yet again smaller exponents. As this process must terminate, ordinals $< \varepsilon_0$ can be coded by natural numbers.
Coding ε_0 in \mathbb{N}

Define a function

$$[.] : \varepsilon_0 \longrightarrow \mathbb{N}$$

by

$$[\delta] = \begin{cases} 0 & \text{if } \delta = 0 \\ \langle [\delta_1], \ldots, [\delta_n] \rangle & \text{if } \delta =_{\text{CNF}} \omega^{\delta_1} + \cdots + \omega^{\delta_n} \end{cases}$$

where $\langle k_1, \ldots, k_n \rangle := 2^{k_1+1} \cdot \ldots \cdot p_n^{k_n+1}$ with p_i being the ith prime number (or any other coding of tuples). Further define

$$A_0 := \text{ran}([.]),$$

$$[\delta] < [\beta] :\iff \delta < \beta,$$

$$[\delta] \hat{+} [\beta] := [\delta + \beta],$$

$$[\delta] \hat{\cdot} [\beta] := [\delta \cdot \beta],$$

$$\hat{\omega}[^{\delta}] := [\omega^{\delta}].$$
Then

\[\langle \varepsilon_0, +, \cdot, \delta \mapsto \omega^\delta, \prec \rangle \cong \langle A_0, +, \cdot, x \mapsto \hat{\omega}^x, \prec \rangle. \]

\(A_0, +, \cdot, x \mapsto \hat{\omega}^x, \prec \) are recursive, in point of fact, they are all elementary recursive.
Transfinite Induction

- Let \(\langle A, \prec, \ldots \rangle \) be a primitive recursive ordinal representation system.

\[\text{TI}_{qf}(A, \prec) \text{ is the schema} \]

\[\forall \alpha \in A [\forall \beta \prec \alpha P(\beta) \rightarrow P(\alpha)] \rightarrow \forall \alpha \in A P(\alpha) \]

with \(P \) quantifier-free.
Transfinite Induction

- Let \(\langle A, \prec, \ldots \rangle \) be a primitive recursive ordinal representation system.

 \(\text{TI}_{qf}(A, \prec) \) is the schema

 \[
 \forall \alpha \in A [\forall \beta \prec \alpha P(\beta) \rightarrow P(\alpha)] \rightarrow \forall \alpha \in A P(\alpha)
 \]

 with \(P \) quantifier-free.

- For \(\alpha \in A \) let \(\prec_\alpha \) be \(\prec \) restricted to \(A_\alpha := \{ \beta \in A \mid \beta \prec \alpha \} \).
Proof-theoretic reductions

Let T_1, T_2 be a pair of theories with languages L_1 and L_2, respectively, and let Φ be a (primitive recursive) collection of formulae common to both languages. Furthermore, Φ should contain the closed equations of the language of PRA.

T_1 is proof-theoretically Φ-reducible to T_2, written $T_1 \leq_{\Phi} T_2$, if there exists a primitive recursive function f such that $\text{PRA} \vdash \forall \phi \in \Phi \forall x [\text{Proof}_{T_1}(x, \phi) \rightarrow \text{Proof}_{T_2}(f(x), \phi)]$.

T_1 and T_2 are said to be proof-theoretically Φ-equivalent, written $T_1 \equiv_{\Phi} T_2$, if $T_1 \leq_{\Phi} T_2$ and $T_2 \leq_{\Phi} T_1$.
Let T_1, T_2 be a pair of theories with languages \mathcal{L}_1 and \mathcal{L}_2, respectively, and let Φ be a (primitive recursive) collection of formulae common to both languages. Furthermore, Φ should contain the closed equations of the language of PRA.
Proof-theoretic reductions

Let T_1, T_2 be a pair of theories with languages \mathcal{L}_1 and \mathcal{L}_2, respectively, and let Φ be a (primitive recursive) collection of formulae common to both languages. Furthermore, Φ should contain the closed equations of the language of PRA.

T_1 is proof-theoretically Φ-reducible to T_2 written $T_1 \leq_\Phi T_2$, if there exists a primitive recursive function f such that

$$\text{PRA} \vdash \forall \phi \in \Phi \forall x [\text{Proof}_{T_1}(x, \phi) \rightarrow \text{Proof}_{T_2}(f(x), \phi)]. \tag{2}$$

T_1 and T_2 are said to be proof-theoretically Φ-equivalent, written $T_1 \equiv_\Phi T_2$, if $T_1 \leq_\Phi T_2$ and $T_2 \leq_\Phi T_1$.

FROM ARITHMETIC TO SET THEORY
Proof-theoretic ordinals

• In practice, if \(T_1 \equiv T_2 \) is shown through an ordinal analysis this always entails that the two theories prove at least the same \(\Pi_0^2 \) sentences.

• Given a natural ordinal representation system \(\langle A, \prec, \ldots \rangle \) of order type \(\tau \) let \(\text{PRA} + \text{TI}^{\text{qf}}(<\tau) \) be \(\text{PRA} \) augmented by quantifier-free induction over all initial (externally indexed) segments of \(\prec \), i.e., \(\text{TI}^{\text{qf}}(A^\alpha, \prec^\alpha) \) for \(\alpha \in A \).

• We say that a theory \(T \) has proof-theoretic ordinal \(\tau \), written \(|T| = \tau \), if \(T \) can be proof-theoretically reduced to \(\text{PRA} + \text{TI}^{\text{qf}}(<\tau) \), i.e., \(T \equiv \Pi_0^2 \text{PRA} + \text{TI}^{\text{qf}}(<\tau) \).
In practice, if $T_1 \equiv T_2$ is shown through an ordinal analysis this always entails that the two theories prove at least the same Π^0_2 sentences.
Proof-theoretic ordinals

• In practice, if $T_1 \equiv T_2$ is shown through an ordinal analysis this always entails that the two theories prove at least the same Π^0_2 sentences.

• Given a natural ordinal representation system $\langle A, \prec, \ldots \rangle$ of order type τ let $\text{PRA} + \text{TI}_{qf}(\prec \tau)$ be PRA augmented by quantifier-free induction over all initial (externally indexed) segments of \prec, i.e.,

$$\text{TI}_{qf}(A_\alpha, \prec_\alpha)$$

for $\alpha \in A$.

FROM ARITHMETIC TO SET THEORY
Proof-theoretic ordinals

- In practice, if \(T_1 \equiv T_2 \) is shown through an ordinal analysis this always entails that the two theories prove at least the same \(\Pi_0^2 \) sentences.

- Given a natural ordinal representation system \(\langle A, \prec, \ldots \rangle \) of order type \(\tau \) let \(\text{PRA} + \text{TI}_{qf}(\prec \tau) \) be \(\text{PRA} \) augmented by quantifier-free induction over all initial (externally indexed) segments of \(\prec \), i.e.,
 \[
 \text{TI}_{qf}(A_\alpha, \prec_\alpha)
 \]
 for \(\alpha \in A \).

- We say that a theory \(T \) has proof-theoretic ordinal \(\tau \), written \(|T| = \tau \), if \(T \) can be proof-theoretically reduced to \(\text{PRA} + \text{TI}_{qf}(\prec \tau) \), i.e.,
 \[
 T \equiv_{\Pi_2^0} \text{PRA} + \text{TI}_{qf}(\prec \tau).
 \]
The two main strands of research are:

- **Cut Elimination** (and Proof Collapsing Techniques)
The two main strands of research are:

- **Cut Elimination** (and Proof Collapsing Techniques)

- Development of ever stronger **Ordinal Representation Systems**
A sequent is an expression \(\Gamma \Rightarrow \Delta \) where \(\Gamma \) and \(\Delta \) are finite sequences of formulae \(A_1, \ldots, A_n \) and \(B_1, \ldots, B_m \), respectively.
The Sequent Calculus

SEQUENTS

- A **sequent** is an expression $\Gamma \Rightarrow \Delta$ where Γ and Δ are finite sequences of formulae A_1, \ldots, A_n and B_1, \ldots, B_m, respectively.

- $\Gamma \Rightarrow \Delta$ is read, informally, as Γ yields Δ or, rather, the conjunction of the A_i yields the disjunction of the B_j.
The Sequent Calculus

LOGICAL INFERENCES I

Negation

\[
\Gamma \Rightarrow \Delta, A \\
\neg A, \Gamma \Rightarrow \Delta \\
\neg L
\]

\[
B, \Gamma \Rightarrow \Delta \\
\Gamma \Rightarrow \Delta, \neg B \\
\neg R
\]

Implication

\[
\Gamma \Rightarrow \Delta, A \\
B, \land \Rightarrow \Theta \\
A \rightarrow B, \Gamma, \land \Rightarrow \Delta, \Theta \\
\rightarrow L
\]

\[
A, \Gamma \Rightarrow \Delta, B \\
\Gamma \Rightarrow \Delta, A \rightarrow B \\
\rightarrow R
\]
Conjunction

\[
\begin{align*}
A, \Gamma & \Rightarrow \Delta \\
\hline
A \land B, \Gamma & \Rightarrow \Delta \\
\end{align*}
\]

\(\land L_1\)

\[
\begin{align*}
B, \Gamma & \Rightarrow \Delta \\
\hline
A \land B, \Gamma & \Rightarrow \Delta \\
\end{align*}
\]

\(\land L_2\)

\[
\begin{align*}
\Gamma & \Rightarrow \Delta, A \\
\hline
\Gamma & \Rightarrow \Delta, B \\
\end{align*}
\]

\(\land R\)

\[
\begin{align*}
\Gamma & \Rightarrow \Delta, A \land B \\
\hline
\end{align*}
\]

Disjunction

\[
\begin{align*}
A, \Gamma & \Rightarrow \Delta \\
\hline
B, \Gamma & \Rightarrow \Delta \\
\end{align*}
\]

\(\lor L\)

\[
\begin{align*}
\Gamma & \Rightarrow \Delta, A \lor B \\
\hline
\end{align*}
\]

\(\lor R_1\)

\[
\begin{align*}
\Gamma & \Rightarrow \Delta, B \\
\hline
\end{align*}
\]

\(\lor R_2\)
Quantifiers

\[
\frac{F(t), \Gamma \Rightarrow \Delta}{\forall x \ F(x), \Gamma \Rightarrow \Delta} \quad \forall L
\]

\[
\frac{\Gamma \Rightarrow \Delta, \ F(a)}{\Gamma \Rightarrow \Delta, \forall x \ F(x)} \quad \forall R
\]

\[
\frac{F(a), \Gamma \Rightarrow \Delta}{\exists x \ F(x), \Gamma \Rightarrow \Delta} \quad \exists L
\]

\[
\frac{\Gamma \Rightarrow \Delta, \ F(t)}{\Gamma \Rightarrow \Delta, \exists x \ F(x)} \quad \exists R
\]

In \(\forall L\) and \(\exists R\), \(t\) is an arbitrary term. The variable \(a\) in \(\forall R\) and \(\exists L\) is an eigenvariable of the respective inference, i.e. \(a\) is not to occur in the lower sequent.
Identity Axiom

\[A \Rightarrow A \]

where \(A \) is any formula.

One could limit this axiom to the case of atomic formulae \(A \).
The Sequent Calculus

CUTS

CUT

\[\Gamma \Rightarrow \Delta, A \quad A, \Lambda \Rightarrow \Theta \]

\[\Gamma, \Lambda \Rightarrow \Delta, \Theta \] \hspace{1cm} \text{Cut}

A is called the *cut formula* of the inference.

Example

\[B \Rightarrow A \quad A \Rightarrow C \]

\[B \Rightarrow C \] \hspace{1cm} \text{Cut}
The Sequent Calculus

STRUCTURAL RULES

Structural Rules

\[
\frac{\Gamma, A, B, \Lambda \Rightarrow \Delta}{\Gamma, B, A, \Lambda \Rightarrow \Delta} \quad \mathcal{X}_l
\]

\[
\frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad \mathcal{W}_l
\]

\[
\frac{\Gamma, A, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad \mathcal{C}_l
\]

Exchange, Weakening, Contraction

\[
\frac{\Gamma \Rightarrow \Delta, A, B, \Lambda}{\Gamma \Rightarrow \Delta, B, A, \Lambda} \quad \mathcal{X}_r
\]

\[
\frac{\Gamma \Rightarrow \Delta, B, A, \Lambda}{\Gamma \Rightarrow \Delta, A, \Lambda} \quad \mathcal{W}_r
\]

\[
\frac{\Gamma \Rightarrow \Delta, A, A}{\Gamma \Rightarrow \Delta, A} \quad \mathcal{C}_r
\]
The intuitionistic sequent calculus is obtained by requiring that all sequents be intuitionistic. A sequent $\Gamma \Rightarrow \Delta$ is said to be intuitionistic if Δ consists of at most one formula. Specifically, in the intuitionistic sequent calculus there are no inferences corresponding to contraction right or exchange right.
The intuitionistic sequent calculus is obtained by requiring that all sequents be intuitionistic.
The intuitionistic sequent calculus is obtained by requiring that all sequents be intuitionistic.

A sequent $\Gamma \Rightarrow \Delta$ is said to be intuitionistic if Δ consists of at most one formula.
The intuitionistic sequent calculus is obtained by requiring that all sequents be intuitionistic.

A sequent $\Gamma \Rightarrow \Delta$ is said to be intuitionistic if Δ consists of at most one formula.

Specifically, in the intuitionistic sequent calculus there are no inferences corresponding to contraction right or exchange right.
Classical Example

Our first example is a deduction of the law of excluded middle.

\[A \Rightarrow A \]

\[\neg R \Rightarrow A \]
\[\neg A \lor R \Rightarrow A \]
\[A \lor \neg A \]

\[r \Rightarrow A \lor \neg A \]
\[A \lor \neg A \]
\[C \Rightarrow A \lor \neg A \]

Notice that the above proof is not intuitionistic since it involves sequents that are not intuitionistic.
Our first example is a deduction of the law of excluded middle.
Our first example is a deduction of the law of excluded middle.

\[
\begin{align*}
A & \Rightarrow A \\
\Rightarrow & A, \neg A \\
\neg R & \\
\Rightarrow & A, A \lor \neg A \\
\lor R & \\
\Rightarrow & A \lor \neg A, A \\
\lor_r & \\
\Rightarrow & A \lor \neg A, A \lor \neg A \\
\lor R & \\
\Rightarrow & A \lor \neg A \\
\lor C_r &
\end{align*}
\]
Our first example is a deduction of the law of excluded middle.

\[
\begin{align*}
A & \Rightarrow A \\
\Rightarrow A, \neg A \\
\Rightarrow A, A \lor \neg A \\
\Rightarrow A \lor \neg A, A \\
\Rightarrow A \lor \neg A, A \lor \neg A \\
\Rightarrow A \lor \neg A \\
\Rightarrow A \lor \neg A
\end{align*}
\]

Notice that the above proof is not intuitionistic since it involves sequents that are not intuitionistic.
Gentzen’s Hauptsatz (1934)

Cut Elimination

If a sequent

\[\Gamma \Rightarrow \Delta \]

is provable, then it is provable \textit{without cuts}.
The Hauptsatz has an important corollary:
The Subformula Property

The Hauptsatz has an important corollary:

The **Subformula Property**

*If a sequent $\Gamma \Rightarrow \Delta$ is provable, then it has a deduction all of whose formulae are subformulae of the formulae in Γ and Δ.***
The Subformula Property

The Hauptsatz has an important corollary:

The **Subformula Property**

If a sequent $\Gamma \Rightarrow \Delta$ is provable, then it has a deduction all of whose formulae are subformulae of the formulae in Γ and Δ.

Corollary
A contradiction, i.e. the empty sequent, is not deducible.
Applications of the Haupsatz

• Herbrand's Theorem in LK (classical):
 $\vdash \exists x R(x)$ implies $\vdash R(t_1) \lor \ldots \lor R(t_n)$ for some t_i (R quantifier-free).

• Extended Herbrand's Theorem in LK:
 $\vdash \Gamma \Rightarrow \exists x R(x)$ implies $\vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n)$ for some t_i (R quantifier-free, Γ purely universal).

• In LI (intuitionistic predicate logic):
 $\vdash \Gamma \Rightarrow \exists x R(x)$ implies $\vdash R(t)$ for some term t where Γ is \lor and \exists free.

• Hilbert-Ackermann Consistency

• If T is a geometric theory and T classically proves a geometric implication A, then T intuitionistically proves A.

FROM ARITHMETIC TO SET THEORY
Applications of the Haupsatz

- Herbrand’s Theorem in LK (classical):

\[\vdash \exists x R(x) \quad \text{implies} \quad \vdash R(t_1) \lor \ldots \lor R(t_n) \]

some t_i (R quantifier-free).

- Extended Herbrand’s Theorem in LK:

\[\vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n) \]

some t_i (R quantifier-free, Γ purely universal).

- In LI (intuitionistic predicate logic):

\[\vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash R(t) \]

for some term t where Γ is \lor and \exists free.

- Hilbert-Ackermann Consistency

- If T is a geometric theory and T classically proves a geometric implication A then T intuitionistically proves A.

FROM ARITHMETIC TO SET THEORY
Applications of the Haupsatz

- **Herbrand’s Theorem** in LK (classical):
 \[
 \vdash \exists x R(x) \quad \text{implies} \quad \vdash R(t_1) \lor \ldots \lor R(t_n)
 \]
 some t_i (R quantifier-free).

- **Extended Herbrand’s Theorem** in LK:
 \[
 \vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n)
 \]
 some t_i (R quantifier-free, Γ purely universal).
Applications of the Haupsatz

- **Herbrand’s Theorem** in LK (classical):
 \[\vdash \exists x R(x) \quad \text{implies} \quad \vdash R(t_1) \lor \ldots \lor R(t_n) \]
 some t_i (R quantifier-free).

- **Extended Herbrand’s Theorem** in LK:
 \[\vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n) \]
 some t_i (R quantifier-free, Γ purely universal).

- In LI (intuitionistic predicate logic):
 \[\vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash R(t) \]
 for some term t where Γ is \lor and \exists free.
Applications of the Haupsatz

- **Herbrand’s Theorem** in LK (classical):
 \[
 \vdash \exists x R(x) \quad \text{implies} \quad \vdash R(t_1) \lor \ldots \lor R(t_n)
 \]
 some t_i (R quantifier-free).

- **Extended Herbrand’s Theorem** in LK:
 \[
 \vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n)
 \]
 some t_i (R quantifier-free, Γ purely universal).

- In LI (intuitionistic predicate logic):
 \[
 \vdash \Gamma \Rightarrow \exists x R(x) \quad \text{implies} \quad \vdash R(t)
 \]
 for some term t where Γ is \lor and \exists free.

- **Hilbert-Ackermann Consistency**
Applications of the Haupsatz

- **Herbrand’s Theorem** in LK (classical):
 \[\vdash \exists x R(x) \text{ implies } \vdash R(t_1) \lor \ldots \lor R(t_n) \]
 some t_i (R quantifier-free).

- **Extended Herbrand’s Theorem** in LK:
 \[\vdash \Gamma \Rightarrow \exists x R(x) \text{ implies } \vdash \Gamma \Rightarrow R(t_1) \lor \ldots \lor R(t_n) \]
 some t_i (R quantifier-free, Γ purely universal).

- **In LI** (intuitionistic predicate logic):
 \[\vdash \Gamma \Rightarrow \exists x R(x) \text{ implies } \vdash R(t) \]
 for some term t where Γ is \lor and \exists free.

- **Hilbert-Ackermann Consistency**

- **If T is a geometric theory** and T classically proves a geometric implication A then T intuitionistically proves A.
Theories and Cut Elimination

• What happens when we try to apply the procedure of cut elimination to theories?
Theories and Cut Elimination

- What happens when we try to apply the procedure of cut elimination to theories?
- Axioms are detrimental to this procedure. It breaks down because the symmetry of the sequent calculus is lost. In general, we cannot remove cuts from deductions in a theory T when the cut formula is an axiom of T.

FROM ARITHMETIC TO SET THEORY
Theories and Cut Elimination

- What happens when we try to apply the procedure of cut elimination to theories?
- Axioms are detrimental to this procedure. It breaks down because the symmetry of the sequent calculus is lost. In general, we cannot remove cuts from deductions in a theory T when the cut formula is an axiom of T.
- However, sometimes the axioms of a theory are of bounded syntactic complexity. Then the procedure applies partially in that one can remove all cuts that exceed the complexity of the axioms of T.
Partial Cut Elimination

- Gives rise to **partial cut elimination**.
Partial Cut Elimination

- Gives rise to partial cut elimination.
- This is a very important tool in proof theory. For example, it works very well if the axioms of a theory can be presented as atomic intuitionistic sequents (also called Horn clauses), yielding the completeness of Robinsons resolution method.
Partial cut elimination also pays off in the case of fragments of PA and set theory with restricted induction schemes, be it induction on natural numbers or sets. This method can be used to extract bounds from proofs of Π^0_2 statements in such fragments.
Gentzen’s way out

• Gentzen defined an assignment of ordinals to derivations of PA such for every derivation D of PA in his sequent calculus, \(\text{ord}(D) < \varepsilon_0 \).
• He then defined a reduction procedure \(R \) such that whenever \(D \) is a derivation of the empty sequent in PA then \(R(D) \) is another derivation of the empty sequent in PA but with a smaller ordinal assigned to it, i.e., \(\text{ord}(R(D)) < \text{ord}(D) \).
• Moreover, both \(\text{ord} \) and \(R \) are primitive recursive functions and only finitist means are used in showing (3).
Gentzen’s way out

- Gentzen defined an assignment \(\text{ord} \) of ordinals to derivations of \(\text{PA} \) such for every derivation \(D \) of \(\text{PA} \) in his sequent calculus,

\[
\text{ord}(D) < \varepsilon_0.
\]
Gentzen’s way out

- Gentzen defined an assignment ord of ordinals to derivations of PA such for every derivation D of PA in his sequent calculus,

 $$\text{ord}(D) < \varepsilon_0.$$

- He then defined a reduction procedure \mathcal{R} such that whenever D is a derivation of the empty sequent in PA then $\mathcal{R}(D)$ is another derivation of the empty sequent in PA but with a smaller ordinal assigned to it, i.e.,

 $$\text{ord}(\mathcal{R}(D)) < \text{ord}(D). \quad (3)$$
Gentzen’s way out

- Gentzen defined an assignment \(\text{ord} \) of ordinals to derivations of \(\text{PA} \) such for every derivation \(D \) of \(\text{PA} \) in his sequent calculus,

\[
\text{ord}(D) < \varepsilon_0.
\]

- He then defined a reduction procedure \(R \) such that whenever \(D \) is a derivation of the empty sequent in \(\text{PA} \) then \(R(D) \) is another derivation of the empty sequent in \(\text{PA} \) but with a smaller ordinal assigned to it, i.e.,

\[
\text{ord}(R(D)) < \text{ord}(D). \tag{3}
\]

- Moreover, both \(\text{ord} \) and \(R \) are primitive recursive functions and only finitist means are used in showing (3).
If \(\text{PRWO}(\varepsilon_0) \) is the statement that there are no infinitely descending primitive recursive sequences of ordinals below \(\varepsilon_0 \), then the following are immediate consequences of Gentzen's work.

Theorem: (Gentzen 1936, 1938)

1. The theory of primitive recursive arithmetic, \(\text{PRA} \), proves that \(\text{PRWO}(\varepsilon_0) \) implies the 1-consistency of \(\text{PA} \).
2. Assuming that \(\text{PA} \) is consistent, \(\text{PA} \) does not prove \(\text{PRWO}(\varepsilon_0) \).

Theorem: (Goodstein 1944, almost)

Termination of primitive recursive Goodstein sequences is not provable in \(\text{PA} \).
If PRWO(\(\varepsilon_0\)) is the statement that there are no infinitely descending primitive recursive sequences of ordinals below \(\varepsilon_0\), then the following are immediate consequences of Gentzen’s work.

Theorem: (Gentzen 1936, 1938)

(i) The theory of primitive recursive arithmetic, PRA, proves that PRWO(\(\varepsilon_0\)) implies the 1-consistency of PA.

(ii) Assuming that PA is consistent, PA does not prove PRWO(\(\varepsilon_0\)).

Theorem: (Goodstein 1944, almost)
Termination of primitive recursive Goodstein sequences is not provable in PA.
If PRWO(ε_0) is the statement that there are no infinitely descending primitive recursive sequences of ordinals below ε_0, then the following are immediate consequences of Gentzen’s work.

Theorem: (Gentzen 1936, 1938)

(i) The theory of primitive recursive arithmetic, PRA, proves that PRWO(ε_0) implies the 1-consistency of PA.

(ii) Assuming that PA is consistent, PA does not prove PRWO(ε_0).
Gentzen’s way out cont’ed

- If $\text{PRWO}(\varepsilon_0)$ is the statement that there are no infinitely descending primitive recursive sequences of ordinals below ε_0, then the following are immediate consequences of Gentzen’s work.

Theorem: (Gentzen 1936, 1938)

(i) The theory of primitive recursive arithmetic, PRA, proves that $\text{PRWO}(\varepsilon_0)$ implies the 1-consistency of PA.

(ii) Assuming that PA is consistent, PA does not prove $\text{PRWO}(\varepsilon_0)$.

Theorem: (Goodstein 1944, almost)

Termination of primitive recursive Goodstein sequences is not provable in PA.
Gentzen worked on a consistency proof for analysis until 1945. In 1938 Gentzen summarized the situation as follows: "Indeed, it seems not entirely unreasonable to me to suppose that contradictions might possibly be concealed even in classical analysis." "but the most important [consistency] proof of all in practice, that for analysis, is still outstanding."
Gentzen worked on a consistency proof for analysis until 1945.
Gentzen worked on a consistency proof for analysis until 1945.

In 1938 Gentzen summarized the situation as follows:
Gentzen worked on a consistency proof for analysis until 1945.

In 1938 Gentzen summarized the situation as follows:

“Indeed, it seems not entirely unreasonable to me to suppose that contradictions might possibly be concealed even in classical analysis.”
Gentzen worked on a consistency proof for analysis until 1945. In 1938 Gentzen summarized the situation as follows:

“Indeed, it seems not entirely unreasonable to me to suppose that contradictions might possibly be concealed even in classical analysis."

“but the most important [consistency] proof of all in practice, that for analysis, is still outstanding."
Second Order Arithmetic, \mathbb{Z}_2
• \mathbb{Z}_2 is an extension of PA with quantifiers $\forall X$ and $\exists Y$ imagined to range over subsets of \mathbb{N} and full comprehension (CA):

$$\exists Y \forall x (x \in Y \leftrightarrow F(x))$$

for all formulae of L_2.
Second Order Arithmetic, \(\mathbb{Z}_2 \)

- \(\mathbb{Z}_2 \) is an extension of \(\text{PA} \) with quantifiers \(\forall X \) and \(\exists Y \) imagined to range over subsets of \(\mathbb{N} \) and full comprehension (CA):

\[
\exists Y \forall x (x \in Y \leftrightarrow F(x))
\]

for all formulae of \(L_2 \).

- Impredicativity

\[
Y = \{ n \mid \forall X \exists Z G(X, Z, n) \}
\]
Comments

Hermann Weyl 1946: “is a bold, an almost fantastic axiom; there is little justification for it in the real world in which we live, and none at all in the evidence on which our mind bases its constructions.”

Takeuti 1974: “In Hilbert’s day people really worried about contradictions in set theory. But today people have great confidence in set theory. This confidence is based partly on their experience and partly on habit and simply not thinking about the subject.”
Comments

• Hermann Weyl 1946:

“is a bold, an almost fantastic axiom; there is little justification for it in the real world in which we live, and none at all in the evidence on which our mind bases its constructions”.

• Takeuti 1974:

“In Hilbert’s day people really worried about contradictions in set theory. But today people have great confidence in set theory. This confidence is based partly on their experience and partly on habit and simply not thinking about the subject.”
Comments

- Hermann Weyl 1946:
 “is a bold, an almost fantastic axiom; there is little justification for it in the real world in which we live, and none at all in the evidence on which our mind bases its constructions”.

- Takeuti 1974:
 “In Hilbert’s day people really worried about contradictions in set theory. But today people have great confidence in set theory. This confidence is based partly on their experience and partly on habit and simply not thinking about the subject.”
Birth of Second Order Proof Theory: The Fundamental Conjecture on \textbf{GLC}

The Fundamental Conjecture \textbf{FC} for \textbf{GLC} asserts that the Hauptsatz holds for \textbf{GLC}.

Formulated by Gaisi Takeuti in the late 1940's.

Having proposed the fundamental conjecture, I concentrated on its proof and spent several years in an anguished struggle trying to resolve the problem day and night.
The Fundamental Conjecture FC for GLC asserts that the Hauptsatz holds for GLC.

Formulated by Gaisi Takeuti in the late 1940's.

Having proposed the fundamental conjecture, I concentrated on its proof and spent several years in an anguished struggle trying to resolve the problem day and night.
The Fundamental Conjecture FC for GLC asserts that the Hauptsatz holds for GLC.

Formulated by Gaisi Takeuti in the late 1940’s.
The Fundamental Conjecture FC for GLC asserts that the Hauptsatz holds for GLC.

Formulated by Gaisi Takeuti in the late 1940’s.

Having proposed the fundamental conjecture, I concentrated on its proof and spent several years in an anguished struggle trying to resolve the problem day and night.
Quantifiers

\[
\frac{F(\{v \mid A(v)\}), \Gamma \Rightarrow \Delta}{\forall X F(X), \Gamma \Rightarrow \Delta} \quad \forall_2 \text{L}
\]

\[
\frac{\Gamma \Rightarrow \Delta, F(U)}{\Gamma \Rightarrow \Delta, \forall X F(X)} \quad \forall_2 \text{R}
\]

\[
\frac{F(U), \Gamma \Rightarrow \Delta}{\exists X F(X), \Gamma \Rightarrow \Delta} \quad \exists_2 \text{L}
\]

\[
\frac{\Gamma \Rightarrow \Delta, F(\{v \mid A(v)\})}{\Gamma \Rightarrow \Delta, \exists X F(X)} \quad \exists_2 \text{R}
\]

In \(\forall_2 \text{L}\) and \(\exists_2 \text{R}\), \(A(a)\) is an arbitrary formula. The variable \(U\) in \(\forall_2 \text{R}\) and \(\exists_2 \text{L}\) is an eigenvariable of the respective inference, i.e. \(U\) is not to occur in the lower sequent.
Non-constructive proofs of FC

Non-constructive proofs of FC

Non-constructive proofs of FC

Non-constructive proofs of FC

• However, their proofs rely on set theory, and so it cannot be regarded as an execution of Hilbert's program.
• With all that, the subsystems for which I have been able to prove the fundamental conjecture are the system with \(\Pi_{1} \) comprehension axiom and a slightly stronger system, \[\ldots\]

Mariko Yasugi and I tried to resolve the fundamental conjecture for the system with the \(\Delta_{1} \) comprehension axiom within our extended version of the finite standpoint. Ultimately, our success was limited to the system with provably \(\Delta_{1} \) comprehension axiom. This was my last successful result in this area.

Takeuti’s reaction

- However, their proofs rely on set theory, and so it cannot be regarded as an execution of Hilbert’s program.
Takeuti’s reaction

- However, their proofs rely on set theory, and so it cannot be regarded as an execution of Hilbert’s program.

- With all that, the subsystems for which I have been able to prove the fundamental conjecture are the system with Π^1_1 comprehension axiom and a slightly stronger system,[...] Mariko Yasugi and I tried to resolve the fundamental conjecture for the system with the Δ^1_2 comprehension axiom within our extended version of the finite standpoint. Ultimately, our success was limited to the system with provably Δ^1_2 comprehension axiom. This was my last successful result in this area.

Takeuti’s reaction

- However, their proofs rely on set theory, and so it cannot be regarded as an execution of Hilbert’s program.
- With all that, the subsystems for which I have been able to prove the fundamental conjecture are the system with Π_1 comprehension axiom and a slightly stronger system, [...] Mariko Yasugi and I tried to resolve the fundamental conjecture for the system with the Δ_2^1 comprehension axiom within our extended version of the finite standpoint. Ultimately, our success was limited to the system with provably Δ_2^1 comprehension axiom. This was my last successful result in this area.
A brief history of ordinal representation systems

1904-1950

Hardy (1904) wanted to "construct" a subset of \mathbb{R} of size \aleph_1. Hardy gives explicit representations for all ordinals $<\omega_2$.
Hardy (1904) wanted to “construct” a subset of \mathbb{R} of size \aleph_1.
Hardy (1904) wanted to “construct” a subset of \mathbb{R} of size \aleph_1.

Hardy gives explicit representations for all ordinals $< \omega^2$.

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
O. Veblen, 1908

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
 - Derivation
Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to \textbf{continuous increasing functions} on ordinals:
 - Derivation
 - Transfinite Iteration
Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
 - Derivation
 - Transfinite Iteration

- Let \(\text{ON} \) be the class of ordinals. A (class) function \(f : \text{ON} \rightarrow \text{ON} \) is said to be increasing if \(\alpha < \beta \) implies \(f(\alpha) < f(\beta) \) and continuous (in the order topology on \(\text{ON} \)) if

\[
\lim_{\xi<\lambda} f(\alpha_{\xi}) = \lim_{\xi<\lambda} f(\alpha_{\xi})
\]

holds for every limit ordinal \(\lambda \) and increasing sequence \((\alpha_{\xi})_{\xi<\lambda} \).
Derivations

- \(f \) is called **normal** if it is increasing and continuous.

\[
\begin{align*}
\beta &\mapsto \omega + \beta \\
\beta &\mapsto \beta + \omega
\end{align*}
\]

The function \(\beta \mapsto \omega + \beta \) is normal while \(\beta \mapsto \beta + \omega \) is not continuous at \(\omega \) since

\[
\lim_{\xi \to \omega} (\xi + \omega) = \omega \\
(\lim_{\xi \to \omega} \xi) + \omega = \omega + \omega
\]

- The derivative \(f' \) of a function \(f: \mathbb{N} \to \mathbb{N} \) is the function which enumerates in increasing order the solutions of the equation \(f(\alpha) = \alpha \), also called the **fixed points** of \(f \).

- If \(f \) is a normal function, \(\{ \alpha : f(\alpha) = \alpha \} \) is a proper class and \(f' \) will be a normal function, too.
Derivations

- f is called **normal** if it is increasing and continuous.
- The function $\beta \mapsto \omega + \beta$ is normal while $\beta \mapsto \beta + \omega$ is not continuous at ω since $\lim_{\xi<\omega}(\xi + \omega) = \omega$ but $(\lim_{\xi<\omega} \xi) + \omega = \omega + \omega$.
Derivations

- f is called **normal** if it is increasing and continuous.
- The function $\beta \mapsto \omega + \beta$ is normal while $\beta \mapsto \beta + \omega$ is not continuous at ω since $\lim_{\xi < \omega} (\xi + \omega) = \omega$ but $(\lim_{\xi < \omega} \xi) + \omega = \omega + \omega$.
- The **derivative** f' of a function $f : \text{ON} \rightarrow \text{ON}$ is the function which enumerates in increasing order the solutions of the equation
 \[f(\alpha) = \alpha, \]
 also called the **fixed points** of f.
Derivations

- f is called **normal** if it is increasing and continuous.
- The function $\beta \mapsto \omega + \beta$ is normal while $\beta \mapsto \beta + \omega$ is not continuous at ω since $\lim_{\xi<\omega} (\xi + \omega) = \omega$ but $(\lim_{\xi<\omega} \xi) + \omega = \omega + \omega$.
- The **derivative** f' of a function $f : \text{ON} \to \text{ON}$ is the function which enumerates in increasing order the solutions of the equation
 \[f(\alpha) = \alpha, \]
 also called the **fixed points** of f.
- If f is a normal function,
 \[\{ \alpha : f(\alpha) = \alpha \} \]
 is a proper class and f' will be a normal function, too.
A Hierarchy of Ordinal Functions

• Given a normal function $f : \text{ON} \rightarrow \text{ON}$, define a hierarchy of normal functions as follows:
Given a normal function \(f : \text{ON} \rightarrow \text{ON} \), define a hierarchy of normal functions as follows:

\(f_0 = f \)
A Hierarchy of Ordinal Functions

• Given a normal function $f : \text{ON} \rightarrow \text{ON}$, define a hierarchy of normal functions as follows:

 • $f_0 = f$
 • $f_{\alpha+1} = f_{\alpha}'$

 $f_\lambda(\xi) =$ ξth element of $\mathcal{P}_{\alpha<\lambda} \{\text{Fixed points of } f_\alpha\}$ for λ limit.
A Hierarchy of Ordinal Functions

- Given a normal function \(f : \text{ON} \rightarrow \text{ON} \), define a hierarchy of normal functions as follows:
 - \(f_0 = f \)
 - \(f_{\alpha+1} = f_\alpha' \)
 - \(f_\lambda(\xi) = \xi^{th} \text{ element of } \bigcap_{\alpha<\lambda} \{ \text{Fixed points of } f_\alpha \} \) for \(\lambda \) limit.
The Feferman-Schütte Ordinal Γ_0

- From the normal function f we get a two-place function,

$$\varphi_f(\alpha, \beta) := f_\alpha(\beta).$$

Veblen then discusses the hierarchy when

$$f = \ell, \quad \ell(\alpha) = \omega^\alpha.$$
The Feferman-Schütte Ordinal \(\Gamma_0 \)

- From the normal function \(f \) we get a two-place function,
 \[
 \varphi_f(\alpha, \beta) := f_\alpha(\beta).
 \]

 Veblen then discusses the hierarchy when
 \[
 f = \ell, \quad \ell(\alpha) = \omega^\alpha.
 \]

- The least ordinal \(\gamma > 0 \) closed under \(\varphi_\ell \), i.e. the least ordinal \(\gamma > 0 \) satisfying
 \[
 (\forall \alpha, \beta < \gamma) \varphi_\ell(\alpha, \beta) < \gamma
 \]

 is the famous ordinal \(\Gamma_0 \) which Feferman and Schütte determined to be the least ordinal ‘unreachable’ by predicative means.
Veblen extended this idea first to arbitrary **finite numbers of arguments**, but then also to **transfinite numbers of arguments**, with the proviso that in, for example

\[\Phi_f(\alpha_0, \alpha_1, \ldots, \alpha_\eta), \]

only a finite number of the arguments

\[\alpha_\nu \]

may be non-zero.
The Big Veblen Number

• Veblen extended this idea first to arbitrary finite numbers of arguments, but then also to transfinite numbers of arguments, with the proviso that in, for example

$$\Phi_f(\alpha_0, \alpha_1, \ldots, \alpha_\eta),$$

only a finite number of the arguments

$$\alpha_\nu$$

may be non-zero.

• Veblen singled out the ordinal $E(0)$, where $E(0)$ is the least ordinal $\delta > 0$ which cannot be named in terms of functions

$$\Phi_\ell(\alpha_0, \alpha_1, \ldots, \alpha_\eta)$$

with $\eta < \delta$, and each $\alpha_\gamma < \delta$.
Bachmann’s novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization.
Bachmann’s novel idea: Use **uncountable ordinals** to keep track of the functions defined by **diagonalization**.

Define a set of ordinals \mathcal{B} closed under successor such that with each limit $\lambda \in \mathcal{B}$ is associated an increasing sequence $\langle \lambda[\xi] : \xi < \tau_\lambda \rangle$ of ordinals $\lambda[\xi] \in \mathcal{B}$ of length $\tau_\lambda \leq \mathcal{B}$ and $\lim_{\xi < \tau_\lambda} \lambda[\xi] = \lambda$.

Ω be the first uncountable ordinal. A hierarchy of functions $(\phi^B_\alpha(\beta))_{\alpha \in \mathcal{B}}$ is then obtained as follows:

$$\phi^B_0(\beta) = 1 + \beta \phi^B_{\alpha+1}(\beta) = (\phi^B_\alpha)'$$

ϕ^B_λ enumerates $\bigcap_{\xi < \tau_\lambda} \lambda[\xi]$ if λ is limit, $\tau_\lambda < \Omega$; ϕ^B_λ enumerates $\{\beta < \Omega : \phi^B_\lambda[\beta](0) = \beta\}$ if λ is limit, $\tau_\lambda = \Omega$.

From arithmetic to set theory
Bachmann’s novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization.

Define a set of ordinals \mathcal{B} closed under successor such that with each limit $\lambda \in \mathcal{B}$ is associated an increasing sequence $\langle \lambda[\xi] : \xi < \tau_\lambda \rangle$ of ordinals $\lambda[\xi] \in \mathcal{B}$ of length $\tau_\lambda \leq \mathcal{B}$ and $\lim_{\xi<\tau_\lambda} \lambda[\xi] = \lambda$.

Let Ω be the first uncountable ordinal. A hierarchy of functions $\left(\varphi_\alpha^\mathcal{B}\right)_{\alpha \in \mathcal{B}}$ is then obtained as follows:

$$\varphi_0^\mathcal{B}(\beta) = 1 + \beta \quad \varphi_{\alpha+1}^\mathcal{B} = \left(\varphi_\alpha^\mathcal{B}\right)'$$

$\varphi_\lambda^\mathcal{B}$ enumerates $\bigcap_{\xi<\tau_\lambda} (\text{Range of } \varphi_\lambda[\xi]) \quad \lambda \text{ limit, } \tau_\lambda < \Omega$

$\varphi_\lambda^\mathcal{B}$ enumerates $\{\beta < \Omega : \varphi_\lambda^\mathcal{B}(0) = \beta\} \quad \lambda \text{ limit, } \tau_\lambda = \Omega$.
After Bachmann, the story of ordinal representation systems becomes very complicated.

- **Isles, Bridge, Gerber, Pfeiffer, Schütte** extended Bachmann’s approach. Drawback: Horrendous computations.
After Bachmann, the story of ordinal representation systems becomes very complicated.

- **Isles, Bridge, Gerber, Pfeiffer, Schütte** extended Bachmann’s approach. Drawback: Horrendous computations.

- **Aczel** and **Weyhrauch** combined Bachmann’s approach with uses of higher type functionals.
After Bachmann, the story of ordinal representation systems becomes very complicated.

- **Isles, Bridge, Gerber, Pfeiffer, Schütte** extended Bachmann’s approach.
 Drawback: Horrendous computations.

- **Aczel** and **Weyhrauch** combined Bachmann’s approach with uses of higher type functionals.

- **Feferman**’s new proposal: Bachmann-type hierarchy without fundamental sequences.
1960-1974

After Bachmann, the story of ordinal representation systems becomes very complicated.

- **Isles, Bridge, Gerber, Pfeiffer, Schütte** extended Bachmann’s approach. Drawback: Horrendous computations.

- **Aczel** and **Weyhrauch** combined Bachmann’s approach with uses of higher type functionals.

- **Feferman**’s new proposal: Bachmann-type hierarchy without fundamental sequences.

- **Bridge** and **Buchholz** showed computability of systems obtained by Feferman’s approach.
How much of \mathbb{Z}_2 is needed?

How much of \mathbb{Z}_2 is needed?

- **Hermann Weyl** 1918 “Das Kontinuum" Predicative Analysis.
- **Hilbert, Bernays** 1938: \mathbb{Z}_2 sufficient for “Ordinary Mathematics"
How much of \mathbb{Z}_2 is needed?

- **Hermann Weyl** 1918 “Das Kontinuum" Predicative Analysis.
- **Hilbert, Bernays** 1938: \mathbb{Z}_2 sufficient for “Ordinary Mathematics"
- Minimal foundational frameworks for Ordinary Mathematics:
 Feferman, Lorenzen, Takeuti
- **Reverse Mathematics**, early 1970s-now
 H. Friedman, S. Simpson,

Given a specific theorem τ of ordinary mathematics, which set existence axioms are needed in order to prove τ?
Subsystems of \mathbb{Z}_2

- Basic arithmetical axioms in all subtheories of \mathbb{Z}_2 are: defining axioms for $0, 1, +, \times, E, <$ (as for PA) and the induction axiom

$$\forall X [0 \in X \land \forall n(n \in X \rightarrow n + 1 \in X) \rightarrow \forall n (n \in X)].$$
Subsystems of \(Z_2 \)

- Basic arithmetical axioms in all subtheories of \(Z_2 \) are: defining axioms for 0, 1, +, \(\times \), \(E \), < (as for \(\text{PA} \)) and the induction axiom

\[
\forall X \left[0 \in X \land \forall n (n \in X \rightarrow n + 1 \in X) \rightarrow \forall n (n \in X) \right].
\]

- For each axiom scheme \(\text{Ax} \), \((\text{Ax})_0 \) denotes the theory consisting of the basic arithmetical axioms plus the scheme \(\text{Ax} \).
Subsystems of \mathbb{Z}_2

- Basic arithmetical axioms in all subtheories of \mathbb{Z}_2 are: defining axioms for 0, 1, $+, \times, E, <$ (as for PA) and the \textit{induction axiom}

\[
\forall X \, [0 \in X \land \forall n (n \in X \rightarrow n + 1 \in X) \rightarrow \forall n (n \in X)].
\]

- For each axiom scheme Ax, $(Ax)_0$ denotes the theory consisting of the basic arithmetical axioms plus the scheme Ax.
- (Ax) stands for the theory $(Ax)_0$ augmented by the scheme of induction for all \mathcal{L}_2-formulae.
Subsystems of \mathbb{Z}_2

- Basic arithmetical axioms in all subtheories of \mathbb{Z}_2 are: defining axioms for $0, 1, +, \times, E, <$ (as for PA) and the induction axiom

 $$\forall X \left[0 \in X \land \forall n(n \in X \rightarrow n + 1 \in X) \rightarrow \forall n(n \in X) \right].$$

- For each axiom scheme \mathbf{Ax}, $(\mathbf{Ax})_0$ denotes the theory consisting of the basic arithmetical axioms plus the scheme \mathbf{Ax}.
- (\mathbf{Ax}) stands for the theory $(\mathbf{Ax})_0$ augmented by the scheme of induction for all \mathcal{L}_2-formulae.
- Let \mathcal{F} be a collection of formulae of \mathbb{Z}_2.
 Another important axiom scheme for formulae F in \mathcal{C} is

 $\mathcal{C} - \mathbf{AC} \quad \forall n \exists YF(n, Y) \rightarrow \exists Y \forall nF(x, Y_n),$

 where $Y_n := \{ m : 2^n 3^m \in Y \}$.

FROM ARITHMETIC TO SET THEORY
For many mathematical theorems τ, there is a weakest natural subsystem $S(\tau)$ of \mathbb{Z}_2 such that $S(\tau)$ proves τ. Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of \mathbb{Z}_2. Reverse Mathematics has singled out five subsystems of \mathbb{Z}_2:

- **RCA$_0$** Recursive Comprehension
For many mathematical theorems τ, there is a weakest natural subsystem $S(\tau)$ of \mathbb{Z}_2 such that $S(\tau)$ proves τ. Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of \mathbb{Z}_2. Reverse Mathematics has singled out five subsystems of \mathbb{Z}_2:

- RCA_0 Recursive Comprehension
- WKL_0 Weak König’s Lemma
Five Systems

For many mathematical theorems τ, there is a weakest natural subsystem $S(\tau)$ of \mathbb{Z}_2 such that $S(\tau)$ proves τ. Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of \mathbb{Z}_2. Reverse Mathematics has singled out five subsystems of \mathbb{Z}_2:

- RCA_0 Recursive Comprehension
- WKL_0 Weak König’s Lemma
- ACA_0 Arithmetic Comprehension
- ATR_0 Arithmetical Transfinite Recursion
- $(\Pi^1_1-\text{CA})_0$ Π^1_1-Comprehension

From arithmetic to set theory
For many mathematical theorems τ, there is a weakest natural subsystem $S(\tau)$ of \mathbb{Z}_2 such that $S(\tau)$ proves τ. Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of \mathbb{Z}_2. Reverse Mathematics has singled out five subsystems of \mathbb{Z}_2:

- **RCA_0** Recursive Comprehension
- **WKL_0** Weak König’s Lemma
- **ACA_0** Arithmetic Comprehension
- **ATR_0** Arithmetic Transfinite Recursion
Five Systems

For many mathematical theorems τ, there is a weakest natural subsystem $S(\tau)$ of \mathbb{Z}_2 such that $S(\tau)$ proves τ. Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of \mathbb{Z}_2. Reverse Mathematics has singled out five subsystems of \mathbb{Z}_2:

- RCA_0 Recursive Comprehension
- WKL_0 Weak König’s Lemma
- ACA_0 Arithmetic Comprehension
- ATR_0 Arithmetic Transfinite Recursion
- $\left(\Pi^1_1 - \text{CA}\right)_0$ Π^1_1-Comprehension
Mathematical Equivalences: Examples

- **RCA**₀ “Every countable field has an algebraic closure"; “Every countable ordered field has a real closure"
Mathematical Equivalences: Examples

- **RCA$_0$** “Every countable field has an algebraic closure"; "Every countable ordered field has a real closure"
- **WKL$_0$** “Cauchy-Peano existence theorem for solutions of ordinary differential equations";
 “Hahn-Banch theorem for separable Banach spaces"
Mathematical Equivalences: Examples

- **RCA\(_0\)**
 “Every countable field has an algebraic closure";
 “Every countable ordered field has a real closure"

- **WKL\(_0\)**
 “Cauchy-Peano existence theorem for solutions of ordinary differential equations";
 “Hahn-Banach theorem for separable Banach spaces"

- **ACA\(_0\)**
 “Bolzano-Weierstrass theorem";
 “Every countable commutative ring with a unit has a maximal ideal"

- **ATR\(_0\)**
 “Every countable reduced abelian \(p\)-group has an Ulm resolution"

- **(Π\(_1\)_1−CA\(_0\))**
 “Every uncountable closed set of real numbers is the union of a perfect set and a countable set";
 “Every countable abelian group is a direct sum of a divisible group and a reduced group"
Mathematical Equivalences: Examples

- **RCA**₀ “Every countable field has an algebraic closure";
 “Every countable ordered field has a real closure"

- **WKL**₀ “Cauchy-Peano existence theorem for solutions of
 ordinary differential equations";
 “Hahn-Banch theorem for separable Banach spaces"

- **ACA**₀ “Bolzano-Weierstrass theorem";
 “Every countable commutative ring with a unit has a
 maximal ideal"

- **ATR**₀ “Every countable reduced abelian p-group has an
 Ulm resolution"
Mathematical Equivalences: Examples

- **RCA**₀ “Every countable field has an algebraic closure”; “Every countable ordered field has a real closure"
- **WKL**₀ “Cauchy-Peano existence theorem for solutions of ordinary differential equations”; “Hahn-Banch theorem for separable Banach spaces"
- **ACA**₀ “Bolzano-Weierstrass theorem”; “Every countable commutative ring with a unit has a maximal ideal"
- **ATR**₀ “Every countable reduced abelian p-group has an Ulm resolution"
- **(Π₁¹−CA)**₀ “Every uncountable closed set of real numbers is the union of a perfect set and a countable set”; “Every countable abelian group is a direct sum of a divisible group and a reduced group"
\[|\text{ATR}_0| = \Gamma_0 \]

\[|\text{ACA}_0| = \varepsilon_0 \]

\[|\text{RCA}_0| = \omega^\omega = |\text{WKL}_0| \]
\[|(\Sigma^1_2 - AC) + BI| = \psi_\Omega_1 \varepsilon_{i+1} \]

\[|(\Delta^1_2 - CA)| = \psi_\Omega_1 \Omega \varepsilon_0 \]

\[|(\Pi^1_1 - CA)_0| = \psi_\Omega_1 \Omega \omega \]

\[|ATR_0| = \Gamma_0 \]
\[|(\Sigma^1_2-\text{AC}) + \text{BI}| = \psi_1 \epsilon_{i+1} \]
\[|\text{KPM}| = \psi_{\Omega_1} \varepsilon_{M+1} \]
$|KP + \Pi_3\text{-Reflection}| = \psi_{\Omega_1} \varepsilon_{K+1}$
\[|(\Pi^1_2 - \text{CA})_0| = \psi_{\Omega_1} R_\omega \]
A Brief History of Ordinal Analysis

- Gentzen 1936
 theory PA
 ordinal ε_0

- Feferman, Schütte 1963
 Predicative Second Order Arithmetic
 ordinal Γ_0

- Takeuti 1967
 $(\Pi_1^1 - \text{CA})_0$, $(\Pi_1^1 - \text{CA})_0 + \text{BI}$
 ordinals $\psi_\Omega_1 \omega$, $\psi_\Omega_1 \varepsilon_\omega + 1$
 cardinal analogue: ω-many regular cardinals

- Takeuti, Yasugi 1983
 $(\Delta_1^2 - \text{CA})$
 ordinal $\psi_\Omega_1 \varepsilon_\omega$
 cardinal analogue: ε_0-many regular cardinals
A Brief History of Ordinal Analysis

- Gentzen 1936
 theory PA
 ordinal ε_0

- Feferman, Schütte 1963
 Predicative Second Order Arithmetic
 ordinal Γ_0
A Brief History of Ordinal Analysis

- Gentzen 1936
 theory PA
 ordinal ε_0

- Feferman, Schütte 1963
 Predicative Second Order Arithmetic
 ordinal Γ_0

- Takeuti 1967
 $(\Pi^1_1$-CA)$_0$, $(\Pi^1_1$-CA) + BI
 ordinals $\psi_{\Omega_1}\Omega_\omega$, $\psi_{\Omega_1}\varepsilon_{\Omega_\omega+1}$
 cardinal analogue: ω-many regular cardinals
A Brief History of Ordinal Analysis

- Gentzen 1936
 theory PA
 ordinal ε_0

- Feferman, Schütte 1963
 Predicative Second Order Arithmetic
 ordinal Γ_0

- Takeuti 1967
 $(\Pi^1_1\text{-CA})_0$, $(\Pi^1_1\text{-CA}) + \text{BI}$
 ordinals $\psi_{\Omega_1\Omega\omega}$, $\psi_{\Omega_1\varepsilon\Omega\omega + 1}$
 cardinal analogue: ω-many regular cardinals

- Takeuti, Yasugi 1983
 $(\Delta^1_2\text{-CA})$
 ordinal $\psi_{\Omega_1\Omega\varepsilon_0}$
 cardinal analogue: ε_0-many regular cardinals
Buchholz, Pohlers, Sieg 1977
Theories of Iterated Inductive Definitions
ordinals $\psi_{\Omega_1} \varepsilon_{\Omega_\nu+1}$
cardinal analogue: ν-many regular cardinals
Buchholz, Pohlers, Sieg 1977
Theories of Iterated Inductive Definitions
ordinals $\psi_{\Omega_1} \varepsilon_{\Omega_{\nu+1}}$
cardinal analogue: ν-many regular cardinals

Buchholz 1977
$\Omega_{\nu+1}$-rules
• Buchholz, Pohlers, Sieg 1977
 Theories of Iterated Inductive Definitions
 ordinals $\psi_{\Omega_1} \varepsilon_{\Omega_\nu+1}$
 cardinal analogue: ν-many regular cardinals

• Buchholz 1977
 $\Omega_{\nu+1}$-rules

• Pohlers
 Method of Local Predicativity
Buchholz, Pohlers, Sieg 1977
Theories of Iterated Inductive Definitions
ordinals $\psi_{\Omega_1} \varepsilon_{\Omega_\nu + 1}$
cardinal analogue: ν-many regular cardinals

Buchholz 1977
$\Omega_{\nu + 1}$-rules

Pohlers
Method of Local Predicativity

Girard 1979
Π^1_2-Logic
Buchholz, Pohlers, Sieg 1977
Theories of Iterated Inductive Definitions
ordinals $\psi_{\Omega_1} \varepsilon_{\Omega_{\nu+1}}$
cardinal analogue: ν-many regular cardinals

Buchholz 1977
$\Omega_{\nu+1}$-rules

Pohlers
Method of Local Predicativity

Girard 1979
Π^1_2-Logic

Jäger 1979
Constructible Hierarchy in Proof Theory
A Brief History of Ordinal Analysis cont’d

- Jäger, Pohlers 1982
 \((\Sigma^1_2 - \text{AC}) + \text{BI, KPi}\)
 ordinal \(\psi_{\Omega_1 \varepsilon_{l+1}}\)
 cardinal analogue: \(l\) inaccessible cardinal
Jäger, Pohlers 1982
$(\Sigma^1_2 \text{-} \text{AC}) + \text{BI, KPi}$
ordinal $\psi_{\Omega_1 \varepsilon_{l+1}}$
cardinal analogue: l inaccessible cardinal

1989
KPM
ordinal $\psi_{\Omega_1 \varepsilon_{M+1}}$
cardinal analogue: M Mahlo cardinal
Jäger, Pohlers 1982
$(\Sigma^1_2 \text{-AC}) + \text{BI, KPi}$
ordinal $\psi_{\Omega_1 \varepsilon_{\lambda+1}}$
cardinal analogue: λ inaccessible cardinal

1989
KPM
ordinal $\psi_{\Omega_1 \varepsilon_{\mu+1}}$
cardinal analogue: μ Mahlo cardinal

Buchholz 1990
Operator Controlled Derivations
1992

Π_3-reflection

ordinal $\psi_{\Omega_1} \varepsilon_{K+1}$

cardinal analogue: K weakly compact cardinal
A Brief History of Ordinal Analysis cont’d

• 1992
 \(\Pi_3 \)-reflection
 ordinal \(\psi_{\Omega_1 \varepsilon_{K+1}} \)
 cardinal analogue: \(K \) weakly compact cardinal

• 1992
 First-order reflection
 cardinal analogue: totally indescribable cardinal
• 1992
 \(\Pi_3 \)-reflection
 ordinal \(\psi_{\Omega_1 \varepsilon_{K+1}} \)
 cardinal analogue: \(K \) weakly compact cardinal

• 1992
 First-order reflection
 cardinal analogue: totally indescribable cardinal

• 1995
 \(\Pi^1_2 \)-Comprehension
 cardinal analogue: \(\omega \)-many reducible cardinals
A Brief History of Ordinal Analysis cont’d

- 1992
 \(\Pi_3 \)-reflection
 ordinal \(\psi_{\Omega_1 \varepsilon_{K+1}} \)
 cardinal analogue: \(K \) weakly compact cardinal

- 1992
 First-order reflection
 cardinal analogue: totally indescribable cardinal

- 1995
 \(\Pi_2^1 \)-Comprehension
 cardinal analogue: \(\omega \)-many reducible cardinals

- Arai
 Ordinal Analysis of Theories up to \(\Pi_2^1 \)-Comprehension
 using Reductions on Finite Proof Figures and Ordinal Diagrams.
Rewards of Ordinal Analyses

• I. Hilbert’s Programme Extended: Constructive Consistency Proofs
Rewards of Ordinal Analyses

- I. Hilbert’s Programme Extended: Constructive Consistency Proofs
- II. Equiconsistency, Conservativity and Independence Results
Rewards of Ordinal Analyses

- I. Hilbert’s Programme Extended: Constructive Consistency Proofs
- II. Equiconsistency, Conservativity and Independence Results
- III. Classification of Provable Functions and Functionals of Theories
Rewards of Ordinal Analyses

• I. Hilbert’s Programme Extended: Constructive Consistency Proofs
• II. Equiconsistency, Conservativity and Independence Results
• III. Classification of Provable Functions and Functionals of Theories
• IV. Combinatorial Independence Results
Examples

Theorem: (Jäger)

*Feferman’s intuitionistic T_0 is of the same strength as $(\Sigma^1_2\text{-AC}) + BI$.***
Examples

Theorem: (Jäger)

Feferman’s intuitionistic T_0 is of the same strength as $(\Sigma^1_2$-AC) + BI.

Theorem: (R; Setzer)

A consistency proof for $(\Sigma^1_2$-AC) + BI can be carried out in Martin-Löf Type Theory.

Combinatorial Independence Results

- A *finite tree* is a finite partially ordered set

\[\mathbb{B} = (B, \leq) \]

such that:

(i) \(B \) has a smallest element (called the *root* of \(\mathbb{B} \));
(ii) for each \(s \in B \) the set \(\{ t \in B : t \leq s \} \) is a totally ordered subset of \(B \).
A finite tree is a finite partially ordered set $\mathbb{B} = (B, \leq)$ such that:

(i) B has a smallest element (called the root of \mathbb{B});

(ii) for each $s \in B$ the set $\{ t \in B : t \leq s \}$ is a totally ordered subset of B.

For finite trees \mathbb{B}_1 and \mathbb{B}_2, an embedding of \mathbb{B}_1 into \mathbb{B}_2 is a one-to-one mapping $f : \mathbb{B}_1 \rightarrow \mathbb{B}_2$ such that

$$f(a \land b) = f(a) \land f(b)$$

for all $a, b \in \mathbb{B}_1$, where $a \land b$ denotes the infimum of a and b.
• **Kruskal’s Theorem.** For every infinite sequence of trees $(\mathcal{B}_k : k < \omega)$, there exist i and j such that $i < j < \omega$ and \mathcal{B}_i is embeddable into \mathcal{B}_j. (In particular, there is no infinite set of pairwise nonembeddable trees.)
• **Kruskal’s Theorem.** For every infinite sequence of trees
\((B_k : k < \omega)\), there exist \(i\) and \(j\) such that \(i < j < \omega\) and \(B_i\) is embeddable into \(B_j\).
(In particular, there is no infinite set of pairwise nonembeddable trees.)

• **Theorem** (H. Friedman, D. Schmidt) Kruskal’s Theorem is not provable in \(\text{ATR}_0\).
• **Kruskal’s Theorem.** For every infinite sequence of trees \((\mathcal{B}_k : k < \omega) \), there exist \(i \) and \(j \) such that \(i < j < \omega \) and \(\mathcal{B}_i \) is embeddable into \(\mathcal{B}_j \). (In particular, there is no infinite set of pairwise nonembeddable trees.)

• **Theorem** (H. Friedman, D. Schmidt) Kruskal’s Theorem is not provable in \(\text{ATR}_0 \).

• The proof utilizes that Kruskal’s Theorem implies that \(\Gamma_0 \) is well-founded.
The Extended Kruskal Theorem

- For $n < \omega$, let \mathcal{B}_n be the set of all finite trees with labels from n, i.e. $(\mathcal{B}, \ell) \in \mathcal{B}_n$ if \mathcal{B} is a finite tree and
 $\ell : B \to \{0, \ldots, n - 1\}$.

 The set \mathcal{B}_n is quasiordered by putting $(\mathcal{B}_1, \ell_1) \leq (\mathcal{B}_2, \ell_2)$ if there exists an embedding
 $f : \mathcal{B}_1 \to \mathcal{B}_2$ such that:

 - $\ell_1(b) = \ell_2(f(b))$ for each $b \in \mathcal{B}_1$;
 - if b is an immediate successor of $a \in \mathcal{B}_1$, then for each $c \in \mathcal{B}_2$ in the interval $f(a) < c < f(b)$,
 $\ell_2(c) \geq \ell_2(f(b))$.
The Extended Kruskal Theorem

- For $n < \omega$, let \mathcal{B}_n be the set of all finite trees with labels from n, i.e. $(\mathcal{B}, \ell) \in \mathcal{B}_n$ if \mathcal{B} is a finite tree and

 $$\ell : B \to \{0, \ldots, n-1\}.$$

 The set \mathcal{B}_n is quasiordered by putting $(\mathcal{B}_1, \ell_1) \leq (\mathcal{B}_2, \ell_2)$ if there exists an embedding

 $$f : \mathcal{B}_1 \to \mathcal{B}_2$$

 such that:

- $\ell_1(b) = \ell_2(f(b))$ for each $b \in B_1$;
• For $n < \omega$, let \mathcal{B}_n be the set of all finite trees with labels from n, i.e. $(B, \ell) \in \mathcal{B}_n$ if B is a finite tree and

$$\ell : B \to \{0, \ldots, n - 1\}.$$

The set \mathcal{B}_n is quasiordered by putting $(\mathcal{B}_1, \ell_1) \leq (\mathcal{B}_2, \ell_2)$ if there exists an embedding

$$f : \mathcal{B}_1 \to \mathcal{B}_2$$

such that:

• $\ell_1(b) = \ell_2(f(b))$ for each $b \in B_1$;
• if b is an immediate successor of $a \in B_1$, then for each $c \in B_2$ in the interval $f(a) < c < f(b)$,

$$\ell_2(c) \geq \ell_2(f(b)).$$

This condition is called a gap condition.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, \mathcal{B}_n is a well quasi ordering (abbreviated $\text{WQO}(\mathcal{B}_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, B_n is a well quasi ordering (abbreviated $WQO(B_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.

Theorem $\forall n < \omega \ WQO(B_n)$ is not provable in $\Pi^1_1 \text{-- CA}_0$.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, B_n is a **well quasi ordering** (abbreviated $WQO(B_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.

Theorem $\forall n < \omega \ WQO(B_n)$ is not provable in $\Pi^1_1 - CA_0$.

- The proof employs an ordinal representation system for the proof-theoretic ordinal of $\Pi^1_1 - CA_0$. The ordinal is $\psi_{\Omega_1}(\Omega_\omega)$.

From arithmetic to set theory
The Graph Minor Theorem

• G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.
The Graph Minor Theorem

- **G, H** graphs. If **H** is obtained from **G** by first deleting some vertices and edges, and then contracting some further edges, **H** is a minor of **G**.

GMT Theorem. *(Robertson and Seymour 1986-1997)* If \(G_0, G_1, G_2, \ldots \) is an infinite sequence of finite graphs, then there exist \(i < j \) so that \(G_i \) is isomorphic to a minor of \(G_j \).

- The proof of GMT uses the EKT.
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.

- The proof of GMT uses the EKT.

- Corollary. (Vázsonyi’s conjecture) If all the G_k are trivalent, then there exist $i < j$ so that G_i is embeddable into G_j.
The Graph Minor Theorem

- \(G, H \) graphs. If \(H \) is obtained from \(G \) by first deleting some vertices and edges, and then contracting some further edges, \(H \) is a **minor** of \(G \).

GMT Theorem. *(Robertson and Seymour 1986-1997)* If \(G_0, G_1, G_2, \ldots \) is an infinite sequence of finite graphs, then there exist \(i < j \) so that \(G_i \) is isomorphic to a minor of \(G_j \).

- The proof of GMT uses the EKT.

- **Corollary.** *(Vázsonyi’s conjecture)* If all the \(G_k \) are trivalent, then there exist \(i < j \) so that \(G_i \) is embeddable into \(G_j \).

- **Corollary.** *(Wagner’s conjecture)* For any 2-manifold \(M \) there are only finitely many graphs which are not embeddable in \(M \) and are minimal with this property.
• **Theorem.** (Friedman, Robertson, Seymour)
The Graph Minor Theorem

- **Theorem.** (Friedman, Robertson, Seymour)
 - GMT implies EKT within, say, RCA₀.
The Graph Minor Theorem

- **Theorem.** (Friedman, Robertson, Seymour)

 - GMT implies EKT within, say, RCA_0.

 - GMT is not provable in $\Pi^1_1 - \text{CA}_0$.
Future Work

- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
Future Work

- Simplify the Ordinal Representation Systems for Π_2^1-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π_2^1-Comprehension.
- Develop an abstract theory of ordinal representation that takes reflection configurations into account.
- Carry out ordinal analysis for $\Pi_{1^n}^1$-Comprehension for all n.
- Is Π_2^1-Comprehension the generic case?
- Conjecture: Π_3^1-Comprehension is the generic case.
Future Work

- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π^1_2-Comprehension.
- Develop an abstract theory of ordinal representation that takes reflection configurations into account.
Future Work

• Simplify the Ordinal Representation Systems for \(\Pi^1_2 \)-Comprehension

• Find new Combinatorial Principles related to Ordinal Representation System for \(\Pi^1_2 \)-Comprehension.

• Develop an abstract theory of ordinal representation that takes reflection configurations into account.

• Carry out ordinal analysis for \(\Pi^1_n \)-Comprehension for all \(n \), i.e. \(\mathbb{Z}_2 \).
Future Work

• Simplify the Ordinal Representation Systems for Π^1_2-Comprehension

• Find new Combinatorial Principles related to Ordinal Representation System for Π^1_1-Comprehension.

• Develop an abstract theory of ordinal representation that takes reflection configurations into account.

• Carry out ordinal analysis for Π^1_n-Comprehension for all n, i.e. \mathbb{Z}_2.

• Is Π^1_2-Comprehension the generic case?
Future Work

- Simplify the Ordinal Representation Systems for \(\Pi_2^1 \)-Comprehension

- Find new Combinatorial Principles related to Ordinal Representation System for \(\Pi_2^1 \)-Comprehension.

- Develop an abstract theory of ordinal representation that takes reflection configurations into account.

- Carry out ordinal analysis for \(\Pi_n^1 \)-Comprehension for all \(n \), i.e. \(\mathbb{Z}_2 \).

- Is \(\Pi_2^1 \)-Comprehension the generic case?

- Conjecture: \(\Pi_3^1 \)-Comprehension is the generic case.
Das Ende

Danke!