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Preface

This thesis consists of the following nine selected refereed articles [1, 2, 3, 4, 5, 6, 7, 8, 9],
previously published in the period 2005–2012, preceded by an Introduction.

The following list provides the bibliographic information for the mentioned papers in
the order they are included in the thesis. The actual papers can be found after the
sections containing the Introduction and further relevant references.

Except [6, 7], all included articles constitute collaborations. I have contributed original
numerical code for the included papers [1, 2, 4, 5, 7, 9]. In particular, I have been
the initial principal developer of the numerical simulation software WIAS-HiTNIHS
(cf. Sec. 1.1.5 of Introduction). In my judgment, all coauthors have contributed about
equal shares to the joint papers [1, 2, 3, 4, 8]. My main contribution to [9] is [9, Sec. 3].
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1 Introduction

1.1 Conductive-Radiative Heat Transfer

1.1.1 Model Equations

Except for [6, 9], the included papers are all in some way related to the topic of mathe-
matical modeling of conductive-radiative heat transfer, with special focus on numerical
simulation and control. The need for modeling, simulation, and control of conductive-
radiative heat transfer arises from industrial applications such as single crystal growth
from vapor or melt (see references in the included papers, in particular in [1, 5, 7]).

Transient conductive heat transfer is modeled by

∂ε(x, θ)

∂t
− div

(
κ(x, θ)∇ θ

)
= f(t, x) in ]0, T [×Ω, (1)
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where T > 0 represents the final time, θ(x, t) represents absolute temperature depending
on the space variable x and the time variable t, ε > 0 represents internal energy, κ > 0
represents thermal conductivity, and f models heat sources or sinks. The stationary
variant of (1), where the term ∂ε(x,θ)

∂t
is missing and θ, f do not depend on t, namely

− div
(
κ(x, θ)∇ θ

)
= f(x) in Ω, (2)

is also of interest and is considered as well. The space domain Ω ⊆ R3 is assumed to
consist of two parts Ωs and Ωg, where Ωs represents an opaque solid and Ωg represents
a transparent gas:

Ω = Ωs ∪ Ωg, Ωs ∩ Ωg = ∅, Σ := Ωs ∩ Ωg. (3)

This decomposition of Ω is to facilitate the modeling of radiative heat transfer, where
nonlocal radiative heat transport is considered between points on the surface Σ of Ωg.
The open sets Ω, Ωs, Ωg need to satisfy a number of geometrical regularity assumptions,
see, e.g., [7, Sec. 2.1], which also has illustrating figures.
Continuity of the normal component of the heat flux on the interface Σ between solid
and gas, where one needs to account for radiosity R and for irradiation J , yields the
following interface condition for (2) (the same works for (1) after replacing the space
domains by the corresponding time-space cylinders):(

κ(x, θ)∇ θ
)
�Ωg

·ng +R(θ)− J(θ) =
(
κ(x, θ)∇ θ

)
�Ωs

·ng on Σ. (4)

Here, ng denotes the unit normal vector pointing from gas to solid and � denotes re-
striction (or trace). Thus, effectively, (2) consists of two equations, one on Ωs and one
on Ωg, coupled via (4) (and analogously for (1)).
In the context of diffuse-gray radiation, where reflection and emittance are taken to be
independent of the angle of incidence and independent of the wavelength, R is modeled
via the well-known radiosity equation(

Id−(1− ε)K
)
(R) = εσ|θ|3θ, (5)

where Id denotes the identity operator, σ ∈ R+ represents the Boltzmann radiation
constant, ε = ε(x, θ) ∈ [0, 1] represents the emissivity of the solid surface, and K
denotes the nonlocal integral radiation operator defined by

K(ρ)(x) :=

∫
Σ

V (x, y)ω(x, y) ρ(y) dy for a.e. x ∈ Σ, (6)

ω(x, y) :=

(
ns(y) · (x− y)

) (
ns(x) · (y − x)

)
π
(
(y − x) · (y − x)

)2 for a.e. (x, y) ∈ Σ× Σ, (7)

V (x, y) :=

{
0 if Σ∩ ]x, y[6= ∅,
1 if Σ∩ ]x, y[= ∅

for each (x, y) ∈ Σ× Σ, (8)
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where ω is called view factor, V is called visibility factor (being 1 if, and only if, x and
y are mutually visible), and ns denotes the outer unit normal to the solid domain Ωs,
existing almost everywhere if the interface Σ is Lipschitz.

If θ is to represent absolute temperature, then it must be always positive. However,
it is also mathematically interesting to study equations (1), (2), and (5) in situations,
where the solution θ can be negative. For that reason, it is often desirable to keep the
problem formulation sufficiently flexible, such that it makes sense even if θ ≥ 0 can
not be guaranteed. In particular, functions depending on θ should be (extended to be)
defined also for θ < 0, and, due to its monotonicity properties, using |θ|3θ in (5) instead
of θ4 is more suitable for the mathematical theory in situations, where θ can become
negative.

It is well-known that, for each 1 ≤ p ≤ ∞, the operator K : Lp(Σ) −→ Lp(Σ) given
by (6) is well-defined, linear, bounded, and positive with ‖K‖ = 1 (see [Tii97a, Lem.
1], [Tii97b, Lem. 2]). If the geometry of the domains is such that Σ is at least C1,α,
α > 0, then K is also known to be compact on Lp(Σ) (see [Tii97b, Dru08]). However,
compactness of K fails in many relevant cases:

Theorem 1. For Σ being polyhedral, K is noncompact on Lp(Σ) for each p ∈ [1,∞].
Moreover, for p < ∞, K can never be compact when reinterpreted as a linear bounded
operator K : Lp(0, T, Lp(Σ)) −→ Lp(0, T, Lp(Σ)) in a transient setting (regardless of
the regularity of Σ).

Proof. See [8, Ths. 2.1, 3.1, 3.2]. �

The following Th. 2 allows to solve the radiosity equation (5) for R.

Theorem 2. Let p ∈ [1,∞], assume [7, (A-1)–(A-3)] regarding Ω, Ωs, Ωg, and ε; and
assume [7, (A-4)] regarding K (where K compact or Σ polyhedral is sufficient for [7,
(A-4)] to hold). Then the operator Id−(1 − ε)K has an inverse in the Banach space
L(Lp(Σ), Lp(Σ)) of bounded linear operators, and the operator

G := (Id−K)
(
Id−(1− ε)K

)−1
ε (9)

is an element of L(Lp(Σ), Lp(Σ)).

Proof. For compact K, see [LT01, Lem. 2]; for noncompact K, see [8, Th. 2.4]. �

Corollary 3. Under the hypotheses of Th. 2, given θ ∈ L4(Σ), the radiosity equation
(5) has the unique solution R(θ) =

(
Id−(1 − ε)K

)−1
(εσ|θ|3θ) ∈ L1(Σ) (recall σ > 0

and ε ∈ L∞(Σ)). �
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Using (9) together with the Stefan-Boltzmann law and Kirchhoff’s law, one easily ob-
tains (cf. [7, (15)])

R(θ)− J(θ) = G(σ|θ|3θ) on Σ, (10)

such that (4) becomes(
κ(x, θ)∇ θ

)
�Ωg

·ng +G(σ|θ|3θ) =
(
κ(x, θ)∇ θ

)
�Ωs

·ng on Σ. (11)

Assuming the domain Ω to be exposed to a black body environment (e.g. a large isother-
mal room) radiating at θext (given absolute temperature), the Stefan-Boltzmann law
provides the outer boundary condition

κ(x, θ)∇ θ · ns − σ ε (θ4ext − |θ|3θ) = 0 on ∂Ω. (12)

1.1.2 Optimal Control of Heat Sources

When modeling heat transfer for industrial applications such as crystal growth, one is
usually not merely interested in determining the temperature distribution θ, but one
aims at optimizing θ according to a suitable objective functional. For example, during
sublimation growth of silicon carbide, small horizontal temperature gradients in the gas
domain Ωg are desirable to avoid defects of the growing crystal, while sufficiently large
vertical temperature gradients are required to guarantee a material transport from the
silicon source to the seed crystal [SKM+00, MZPD02]. This background led to the
optimal control problem considered in [3]:

minimize J(θ, u) :=
1

2

∫
Ωg

‖∇ θ − z‖22 +
ν

2

∫
Ωs

u2 (13a)

subject to system (14) with f =

{
u on Ωs,

0 on Ωg,
(13b)

and 0 < ua ≤ u ≤ ub in Ωs, (13c)

where z : Ωg −→ R3 is a given desired distribution for the temperature gradient, ν > 0
is a regularization parameter, and system (14) is the summarized stationary model of
Sec. 1.1.1, namely

− div
(
κ(x, θ)∇ θ

)
= f(x) in Ω, (14a)(

κ(x, θ)∇ θ
)
�Ωg

·ng +G(σ|θ|3θ) =
(
κ(x, θ)∇ θ

)
�Ωs

·ng on Σ, (14b)

κ(x, θ)∇ θ · ns − σ ε (θ4ext − |θ|3θ) = 0 on ∂Ω, (14c)

an integro-differential boundary value problem for the unknown θ : Ω −→ R. In par-
ticular, (13b) imposes the condition of no heat sources in the gas region Ωg, motivated
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by the application of induction heating. The control constraints (13c) reflect the fact
that only heating (and no cooling) is considered, and they take into account that,
due to technical limitations, an actual heating device can not produce heat sources of
arbitrarily large values.

Actually, from the point of view of the application, a control problem like (13), where
the heat sources f are controlled directly, is only the first step. In practice, the heat
sources are generated by a heating mechanism such as induction heating, i.e. f itself is
again the solution to some equation. A coupled system, where f is obtained as a solution
to Maxwell’s equations describing induction heating has been solved numerically in the
context of industrial applications in [2, 5], which will be elaborated upon in Sections
1.1.3, 1.1.4, and 1.1.5 below. Moreover, a control problem for such a coupled system
has been solved numerically in [1], cf. Sec. 1.1.3 below.

The mathematical theory of (13) obviously requires a theory for the existence, unique-
ness, and regularity of solutions to (14). Results regarding the existence, uniqueness,
and regularity of solutions to (14) and also of solutions to the transient variant of (14)
are surveyed in [7]. The essence of these results is the existence and uniqueness of
weak solutions to (14) and its transient counterpart under suitable hypotheses, where
stronger hypotheses can guarantee, in particular, the continuity of the weak solution,
see [7, Ths. 9,12] for details. Here, only [7, Ths. 9] is reproduced as Th. 6 below, as it
is technically easier to state and relevant to the stationary control problem (13). Still,
we need some preparations:

Notation 4. For p, q ∈ [1,∞], let

V p,q(Ω) :=
{
u ∈ W 1,p(Ω) : u ∈ Lq(Σ ∪ ∂Ω)

}
, (15)

simply writing u instead of tr(u) when considering u on Σ ∪ ∂Ω, suppressing the trace
operator tr.

Definition 5. Define θ ∈ V s,4(Ω) for some s ∈ [1,∞] to be a weak solution to (14) if,
and only if,∫

Ω

κ(·, θ)∇ θ · ∇ψ +

∫
∂Ω

σε|θ|3θψ +

∫
Σ

G(σ|θ|3θ)ψ =

∫
Ω

fψ +

∫
∂Ω

σεθ4extψ (16)

for each ψ ∈ V s′,∞(Ω), where s′ ∈ [1,∞] is the conjugate exponent to s, i.e. 1
s
+ 1

s′
= 1.

Theorem 6. Assume [7, (A-1)–(A-4), (A-6)–(A-11)].

(a) If f ∈ Lp(Ω), where p > 9
7

or just p > 1 under the additional assumption that Σ
is C1,α, α > 0, then (14) has a weak solution θ. If f ≥ 0, then θ ≥ ess inf θext.
Moreover, regarding the regularity of θ, if p ≥ 3

2
and θext ∈ L8(∂Ω), then |θ|r ∈
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W 1,2(Ω) for each r ∈ [1,∞[. If p ∈]9
7
, 3
2
[ and θext ∈ L8p/(3−p)(∂Ω), then θ ∈

V 2,2p/(3−2p)(Ω) with 2p/(3 − 2p) > 6. If Σ is C1,α, α > 0, p ∈ [6
5
, 9
7
] and θext ∈

L8p/(3−p)(∂Ω), then θ ∈ V 2,(9−5p)/(3−2p)(Ω) with 5 ≤ (9− 5p)/(3− 2p) ≤ 6. If Σ is
C1,α, α > 0, p ∈]1, 6

5
[ and θext ∈ L8p/(3−p)(∂Ω), then θ ∈ V 3p/(3−p),(9−5p)/(3−2p)(Ω)

with 3
2
< 3p/(3− p) < 2.

(b) If f ∈ L1(Ω), Σ is C1,α, α > 0, and ε < 1, then (14) has a weak solution θ ∈⋂
s∈[1, 3

2
[ V

s,4(Ω).

(c) If θext ∈ L∞(∂Ω), f ∈ Lp(Ω) with p > 3
2
, and all ∂Ωi are C1, then (14) has a

weak solution θ ∈ W 1,q with q := 2p > 3 (in particular, the solution is Hölder
continuous, θ ∈ Cγ(Ω), γ > 0). This solution is unique provided κ is piecewise
Lipschitz continuous (cf. [7, (A-6), Th. 9(c)]).

Proof. For (a) see [Dru09, Th. 5.1], for (b) see [Dru09, Th. 6.1], and for (c) see [DKS+11,
Lem. 3.6] and its proof. �

Definition 7. Under the assumptions of Th. 6(c), define the control-to-state operator
S : L2(Ωs) −→ W 1,q(Ω) ⊆ Cγ(Ω) ⊆ L∞(Ω) (q > 3 as in Th. 6(c), γ > 0), u 7→ θ,

assigning to u ∈ L2(Ωs) the unique weak solution θ of (14) with f :=

{
u on Ωs,

0 on Ωg,

provided by Th. 6(c).

Definition 8. Employing the control-to-state operator of Def. 7, and letting

Uad :=
{
u ∈ L∞(Ωs) : ua ≤ u ≤ ub

}
, (17)

(θ̄, ū) ∈ W 1,q(Ω)×Uad (q > 3 as in Th. 6(c)) is called an optimal control for (13) if, and
only if, θ̄ = S(ū), and ū minimizes the reduced objective functional

j : L2(Ωs) −→ R+
0 , j(u) := J

(
S(u), u

)
(18)

on Uad.

—

The following theorem provides the existence of an optimal control for (13) under the
simplifying assumption of θ-independent κ:

Theorem 9. Under the assumptions of Th. 6(c) plus z ∈ L2(Ωg,R3), ua, ub ∈ L∞(Ωs),
0 < ua ≤ ub, κ θ-independent, and ess inf θext > 0, there exists an optimal control (θ̄, ū)
for (13).

Proof. See [3, Th. 5.2]. �
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Next, the differentiability of the control-to-state operator is considered as well as first-
order necessary optimality conditions for (13), which are related to weak solutions to
the linearized form of (14):

Definition 10. Under the assumptions of Th. 6(c) plus ess inf θext > 0, let ū ∈ L2(Ωs),
ū ≥ 0, θ̄ := S(ū) ∈ W 1,q(Ω) with q > 3 as in Th. 6(c). Given F in the dual of W 1,q′(Ω)
(q′ the conjugate exponent to q), a function θ ∈ W 1,q(Ω) is called a weak solution to
the linearized form of (14) (or (16)) with right-hand side F if, and only if,∫

Ω

κ(·, θ̄)∇ θ · ∇ψ +

∫
Ω

∂κ

∂θ
(·, θ̄)θ∇ θ̄ · ∇ψ

+ 4

∫
∂Ω

σε|θ̄|3θψ + 4

∫
Σ

G(σ|θ̄|3θ)ψ = F(ψ) (19)

for each ψ ∈ W 1,q′(Ω) (recall G : L∞(Σ) −→ L∞(Σ) according to Th. 2).

Theorem 11. Under the assumptions of Th. 6(c) plus ess inf θext > 0, and κ being
piecewise C1 with bounded derivative in the sense of [7, (A-6), (A-15)] (θ-independence
is not needed here), the control-to-state operator of Def. 7 is Fréchet differentiable on
L2
+(Ωs) := {ū ∈ L2(Ωs) : ū > 0}. Moreover, for ū ∈ L2

+(Ωs), θ̄ = S(ū), and u ∈ L2(Ωs),
one has θ := S ′(ū)(u) given by the weak solution to the linearized form of (14) (i.e. of
(19)) with right-hand side F(ψ) := Fu(ψ) :=

∫
Ωs
uψ.

If z ∈ L2(Ωg,R3), ua, ub ∈ L∞(Ωs), 0 < ua ≤ ub, then (θ̄, ū) ∈ W 1,q(Ω)× Uad (q > 3 as
in Th. 6(c)) being an optimal control for (13) implies the necessary condition

j′(ū)(u− ū) = 〈∇ θ̄ − z,∇ θ〉L2(Ωg) + ν〈ū, (u− ū)〉L2(Ωs) ≥ 0 for each u ∈ Uad, (20)

with j as in (18), θ̄ = S(ū), and θ = S ′(ū)(u− ū).

Proof. See [3, Th. 7.1] and [7, Th. 18]. The proof is based on the implicit function
theorem and makes use of [DKS+11, Th. 4.4] which, under the above hypotheses, pro-
vides a unique weak solution θ ∈ W 1,q(Ω) to (19), where this solution also satisfies
‖θ‖W 1,q(Ω) ≤ c ‖F‖ for some c > 0. �

1.1.3 Induction Heating: Model and Control

As stated before, from the point of view of industrial applications such as crystal growth,
a control problem like (13), where the heat sources f are controlled directly, is only the
first step. In practice, the heat sources are generated by a heating mechanism such
as induction heating, i.e. f itself is again the solution to some equation. A control
problem, where f is obtained as a solution to Maxwell’s equations describing induction
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heating, has been treated numerically in [1] for axisymmetric geometries. In [1], the heat
sources f are obtained due to induction heating, generated by finitely many coil rings
located outside the domain Ω. The heat sources are numerically computed according to
the following model, where all materials in Ωs are considered as potential conductors,
whereas Ωg is treated as a perfect insulator (see [KPS04, Sec. 2.6] for details; due to
the axisymmetry, cylindrical coordinates (r, z) are used):

f(r, z) =
|j(r, z)|2

2σc(r, z)
, (21)

j =

{
−iω σc φ + σc vk

2πr
in the k-th coil ring,

−iω σc φ in Ωs,
(22)

where σc denotes the electrical conductivity, vk is the voltage imposed in the kth coil
ring, ω is the common angular frequency of the imposed voltages, and i is the imagi-
nary unit. The potential φ is determined from the following system of elliptic partial
differential equations:

− ν div
∇(rφ)

r2
= 0 in Ωg, (23a)

− ν div
∇(rφ)

r2
+
i ωσcφ

r
=
σc vk
2πr2

in the k-th coil ring, (23b)

− ν div
∇(rφ)

r2
+
i ωσcφ

r
= 0 in Ωs, (23c)

where ν denotes the magnetic reluctivity. The system (23) is completed by the interface
conditions (

ν�Ωi

r2
∇(rφ)�Ωi

)
• nΩi

=

(
ν�Ωj

r2
∇(rφ)�Ωj

)
• nΩi

, (24)

and the assumption that φ = 0 both on the symmetry axis r = 0 and sufficiently far
from the growth apparatus (imposed as Dirichlet boundary condition).

The domain used for the numerical computations of [1] represents an apparatus for
silicon carbide single crystal growth via sublimation by physical vapor transport. The
precise domain and its dimensions are provided in [1, Figs. 1,3]. During sublimation
growth of silicon carbide, small horizontal temperature gradients in the gas domain Ωg

(more precisely in the part of Ωg close to the surface of the growing crystal) are desirable
to avoid defects of the growing crystal, while sufficiently large vertical temperature
gradients are required to guarantee a material transport from the silicon source to the
seed crystal [SKM+00, MZPD02].

The control problem solved numerically in [1] is similar to (13). However, for the opti-
mization of the temperature field θ in [1], the heat sources were not controlled directly
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as in (13), but they were computed according to (21) – (24), whereas the quantities
heating power P , vertical upper rim zrim of the induction coil (cf. [1, Fig. 1]), and the
frequency f = ω/(2π) of the heating voltage were used as control parameters, which is
more realistic from the point of view of the considered crystal growth application. The
control parameters, thus, result in a temperature distribution θ(P, zrim, f) via (21) –
(24) and (14) (see [1] for details; one should not get confused by the fact that f = ω/(2π)
denotes the frequency in [1] and not, as in (21) and previous equations above, the heat
sources occurring on the right-hand side of the heat equation).

While [1, Fig. 7(a)] depicts the numerically computed temperature field for a generic,
unoptimized situation as a reference, the objective functional minimized in [1, Fig. 7(b)]
is

Fr(θ) :=

(∫
Γ

2π r ∂rθ(r, z)
2 dr

)1/2

, (25)

aiming at minimizing the radial temperature gradient on the lower surface Γ of the
growing SiC crystal. The objective functional minimized in [1, Fig. 7(c)] is

1

2
Fr(θ)−

1

2
Fz(θ), Fz(θ) :=

(∫
A

2π r ∂zθ(r, z)
2 d(r, z)

)1/2

, (26)

aiming at minimizing the radial temperature gradient on Γ, while simultaneously max-
imizing the vertical temperature gradient inside the region A between the SiC crystal
and the SiC powder, to guarantee material transport from the powder to the crystal
(cf. [1, Fig. 2]).

The optimization is subject to a number of state constraints on θ, motivated by the
crystal growth application: (a) The maximal temperature in the apparatus must not
surpass a prescribed bound θmax; (b) the temperature at the crystal surface Γ needs
to stay within a prescribed range [θmin,Γ, θmax,Γ]; (c) the temperature gradient between
source and seed must be negative, and must not surpass a prescribed value ∆max < 0:

max
Ω

(θ) ≤ θmax, (27a)

θmin,Γ ≤ min
Γ

(θ) ≤ max
Γ

(θ) ≤ θmax,Γ, (27b)

max
A

(∂zθ) ≤ ∆max < 0. (27c)

A Nelder-Mead method was used for the numerical optimization as described in [1, Sec.
3]. The simulation software WIAS-HiTNIHS (cf. Sec. 1.1.5 below) was used for the
required repeated numerical solution of the coupled state system (14), (21) – (24).

The main difference between the generic solution of [1, Fig. 7(a)] and the optimized
solutions shown in [1, Figs. 7(b),(c)] is the gained homogeneity of the temperature inside
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the SiC crystal in the optimized solutions (favorable with respect to low thermal stress
and few crystal defects) as well as the isotherms below the crystal’s surface becoming
more parallel to that surface (as intended by the minimization of Fr(θ)). As expected,
in [1, Fig. 7(c)], the maximization of Fz(θ) leads to an increased number of isotherms
between the crystal and the source powder. Summarizing the results, the radial and
the vertical gradient can be effectively tuned simultaneously.

In [1, Figs. 4–6], the paper [1] also provides contour plots of the values of the objective
functionals depending on the control parameters θ(P, zrim, f), illustrating the effect of
the state constraints as well as the location of the numerically determined optimal
controls.

1.1.4 Anisotropic Thermal Conductivity

The included articles [2, 4] deal with the numerical simulation of conductive-radiative
heat transfer in the presence of anisotropic thermal conductivity. This is relevant to
crystal growth applications since it is not unusual for the thermal insulation of growth
apparatus to possess an anisotropic thermal conductivity (e.g. in the case of graphite
felt, where the fibers are aligned in one particular direction). In generalization of (2),
stationary heat conduction in anisotropic materials is described by

− div
(
Km(θ)∇ θ

)
= fm in Ωm (m ∈M), (28)

where the symmetric and positive definite matrix Km represents the thermal conduc-
tivity tensor in material m, fm represents heat sources in material m, Ωm is the domain
of material m, and M is a finite index set. The papers [2, 4] consider the case where
the thermal conductivity tensor is a diagonal matrix with temperature-independent
anisotropy, i.e.

Km(θ) =
(
κmi,j(θ)

)
, where κmi,j(θ) =

{
αm
i κ

m
iso(θ) for i = j,

0 for i 6= j,
(29)

κmiso(θ) > 0 being the thermal conductivity of the isotropic case (allowed to depend on
the temperature θ), and αm

i > 0 being anisotropy coefficients. The material domains
Ωm are supposed to satisfy the geometric assumptions [4, (A-1)], restated below:

Assumption 12. Ω =
⋃

m∈M Ωm, Ωm1 ∩ Ωm2 = ∅ for each (m1,m2) ∈ M2 such that
m1 6= m2, and each of the sets Ω, Ωm, m ∈ M , is a nonvoid, connected, polyhedral,
bounded, and open subset of R2 (even though (28) holds in three dimensions, in the
axisymmetric context of [2, 4], it suffices to consider the two-dimensional case, cf. [4,
Sec. 3.6]).
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The modification of the interface condition (4) for interfaces between anisotropic ma-
terials m1 and m2, m1 6= m2, reads(

Km1(θ)∇ θ
)
�Ωm1

•nm1 =
(
Km2(θ)∇ θ

)
�Ωm2

•nm1 on Ωm1 ∩ Ωm2 , (30)

where the anisotropic materials are taken as opaque, such that no radiative contribu-
tions R, J are present in (30). The unit normal vector nm1 in (30) points from material
m1 to material m2.

In [4], a finite-volume discretization suitable for the numerical solution of (29), (30) with
suitable boundary conditions is developed. The presented scheme was implemented in
the software WIAS-HiTNIHS and used to compute the numerical results in [2, 4]. An
admissible discretization of material domain Ωm, m ∈ M , consists of a finite family
Σm := (σm,i)i∈Im of subsets of Ωm satisfying the following Assumptions 13 and 15.

Assumption 13. For each m ∈M , Σm = (σm,i)i∈Im forms a finite conforming triangu-
lation of Ωm. In particular, for each i ∈ Im, σm,i is an open triangle. Moreover, letting
I :=

⋃
m∈M Im, Σ := (σi)i∈I forms a conforming triangulation of Ω.

—

For each σm,i, let V (σm,i) =
{
vmi,j : j ∈ {1, 2, 3}

}
denote the set of vertices of σm,i, and

let V :=
⋃

m∈M, i∈Im V (σm,i) be the set of all vertices in the triangulation. One can then
define the control volumes as the Voronoï cells with respect to the vertices. Using ‖ · ‖2
to denote Euclidean distance, define

for all v ∈ V : ωv :=
{
x ∈ Ω : ‖x− v‖2 < ‖x− z‖2 for each z ∈ V \ {v}

}
, (31a)

for all m ∈M : ωm,v := ωv ∩ Ωm, Vm := {z ∈ V : ωm,z 6= ∅}. (31b)

Letting T := (ωv)v∈V , Tm := (ωm,v)v∈Vm , m ∈ M , T forms a partition of Ω, and Tm

forms a partition of Ωm.

Remark 14. Since T is a Voronoï discretization, each intersection ∂ωv ∩ ∂ωz, (v, z) ∈
V 2, v 6= z, is contained in the set {x ∈ Ω : ‖v − x‖2 = ‖z − x‖2}. In particular,
z−v

‖z−v‖2 = nωv �∂regωv∩∂regωz , where ∂reg denotes the regular boundary of a polyhedral
set, i.e. the points of the boundary, where a unique outer unit normal vector exists,
∂reg∅ := ∅; and nωv �∂regωv∩∂regωz is the outer unit normal to ωv restricted to the face
∂regωv ∩ ∂regωz (see [4, Fig. 2]).

Assumption 15. For each m ∈M , the triangulation Σm has the constrained Delaunay
property: If Ṽm :=

⋃
i∈Im V (σm,i); then, for each (v, z) ∈ Ṽ 2

m such that v 6= z, the
following conditions (a) and (b) are satisfied:

(a) If the boundaries of the Voronoï cells corresponding to v and z have a one-dimen-
sional intersection, then the line segment [v, z] is an edge of at least one σ ∈ Σm.
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(b) If [v, z] is an edge of at least one σ ∈ Σm, then the boundaries of the corresponding
Voronoï cells have a nonempty intersection.

Due to the two-dimensional setting, the constrained Delaunay property can be expressed
equivalently in terms of the angles in the triangulation: For each m ∈ M , if γ is an
interior edge of the triangulation Σm, and α and β are the angles opposite to γ, then
α + β ≤ π. If γ ⊆ ∂Ωm is a boundary edge of Σm, and α is the angle opposite γ, then
α ≤ π/2. Also see [4, Fig. 2].

Remark 16. Using Rem. 14, it is not hard to show that Assumptions 13 and 15 imply
the following assertions (a) and (b):

(a) For each m ∈ M , the set Vm defined in (31b) is identical to the set Ṽm defined in
Assumption 15.

(b) Let Γ be a one-dimensional material interface: Γ = ∂Ωm ∩ ∂Ωm̃. For each v ∈ V ,
if some ωv has a one-dimensional intersection with the interface Γ, then it lies on
both sides of the intersection; in other words, ∂regωm,v ∩ Γ = ∂regωm̃,v ∩ Γ.

—

As usual, the finite volume scheme for (28), (30) is constructed by integrating (28) over
ωm,v, applying the Gauss-Green integration theorem to obtain

−
∫
∂ωm,v

(Km(θ)∇ θ) • nωm,v =

∫
ωm,v

fm (32)

(where nωm,v denotes the outer unit normal vector to ωm,v), and by using (30) followed
by suitable approximations for the integrals. In the context of (14), the construction and
further references can be found in [7, Sec. 4]. The novelty of [4] lies in the approximation
of the heat flux integrals

∫
∂ωm,v∩Ωm

(Km(θ)∇ θ) • nωm,v in the presence of anisotropic
thermal conductivity, so only the main particularities of this approximation are briefly
included below.

Notation 17. For each m ∈ M and each (v, w) ∈ M2, let γm,v,w := ∂ωm,v ∩ ∂ωm,w

denote the interface of the two Voronoï cells inside the material domain Ωm (of course,
in general, γm,v,w can be empty).

—

For the approximation of
∫
∂ωm,v∩Ωm

(Km(θ)∇ θ)• nωm,v , the set ∂ωm,v∩Ωm is partitioned
further, namely into the interfaces with all neighboring Voronoï cells. Up to null sets
with respect to one-dimensional Lebesgue measure λ1

∂ωm,v ∩ Ωm =
⋃

w∈nbm(v)

γm,v,w, (33)
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where nbm(v) := {w ∈ Vm \ {v} : λ1(γm,v,w) 6= 0} is the set of m-neighbors of v (cf. [4,
Fig. 3]).

Using (33), it remains to approximate (Km(θ)∇ θ) • nωm,v on γm,v,w. According to the
assumed form (29) of the Km(θ), the approximation can be broken down into two parts:
(a) Approximation of the temperature-dependent, isotropic part. (b) Approximation
of the temperature-independent, anisotropic part.

Approximation of the temperature-dependent, isotropic part

The quantity κmiso(θ) on γm,v,w is approximated by the mean

κmiso(θ)�γm,v,w≈
1

2

(
κmiso(θv) + κmiso(θw)

)
(34)

(cf. remark after [4, (14)]).

Approximation of the temperature-independent, anisotropic part

For the anisotropic part, it remains to approximate (Am∇ θ) • nωm,v on γm,v,w, where
Am is the constant diagonal matrix

Am = (ami,j), ami,j :=

{
αm
i for i = j,

0 for i 6= j.
(35)

The approximation of [4] is devised such that it is exact provided θ is affine on each
σ ∈ Σ and provided Σ has the strong Delaunay property (all angles are less than or
equal to π/2). If θ is affine on σ ∈ Σ, then

∇ θ�σ=
∑

v∈V (σ)

θ(v) ∇φσ,v, (36)

where φσ,v : σ −→ [0, 1], v ∈ V (σ), are the affine coordinates on the triangle σ with
respect to its 3 vertices.

Given m ∈M , (v, w) ∈ V 2
m, v 6= w, such that [v, w] is an edge of some σ ∈ Σm, let

Σm,v,w :=
{
σ ∈ Σm : {v, w} ⊆ V (σ)

}
(37)

be the set of triangles in Σm having [v, w] as an edge. Since Σm is a conforming
triangulation of Ωm by Assumption 13, if [v, w] is a boundary edge, then Σm,v,w has
precisely one element; otherwise, it has precisely two elements, lying on different sides
of [v, w]. For each σ ∈ Σm,v,w, let Hv,w,σ be the half-space that lies on the same side of
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the line through [v, w] as σ. Even though Assumption 15 guarantees λ1(γm,v,w) 6= 0, [4,
Fig. 3] shows that γm,v,w can lie entirely on one side of [v, w]. However, letting

Σγm,v,w :=
{
σ ∈ Σm,v,w : λ1(Hv,w,σ ∩ γm,v,w) 6= 0

}
, (38)

one can decompose γm,v,w according to (cf. [4, Fig. 3])

γm,v,w =
⋃

σ∈Σγm,v,w

σ ∩ γm,v,w. (39)

Using (36) together with Rem. 14 yields, for each σ ∈ Σγm,v,w :

(Am∇ θ)�σ •nωv �γm,v,w=
∑

ṽ∈V (σ)

θ(ṽ) (Am∇φσ,ṽ) •
w − v

‖w − v‖2
. (40)

Together with (34) and (39), (40) provides the approximation of the normal heat flux
across γm,v,w (cf. (41) below). Formula (40) constitutes the key difference to and im-
provement over previously published schemes (see Introduction and paragraphs follow-
ing (20) in [4]).

Combining the temperature-dependent and temperature-independent parts

Combining the approximations of the temperature-dependent and the temperature-in-
dependent parts, i.e. combining (34), (39), and (40) yields∫

γm,v,w

(Km(θ)∇ θ) • nωm,v

≈
∑

σ∈Σγm,v,w

1

2

(
κmiso(θv) + κmiso(θw)

)
∑

ṽ∈V (σ)

θṽ (Am∇φσ,ṽ) •
w − v

‖w − v‖2
λ1(Hv,w,σ ∩ γm,v,w).

(41)

Numerical Results Using the New Scheme

Numerical results verifying the new scheme in comparison with exactly computable
closed-form solutions can be found in [4, Sec. 4.2], showing second-order convergence in
a single-material domain and first-order convergence in a multi-material domain with
discontinuous thermal conductivity coefficients.

In [2], the new scheme is employed to compute temperature fields in realisticly modeled
crystal growth apparatus with thermally anisotropic insulation material. The numerical
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results in [2, Sections 4.2 and 5] show that, depending on the insulation’s orientation,
even a moderate anisotropy in the insulation can result in temperature variations of
more than 100 K at the growing crystal’s surface, which need to be taken into account
for an accurate simulation as well as for the design of the growth apparatus.

1.1.5 Numerical Simulation Software WIAS-HiTNIHS1

Except [3, 6, 8], all included papers present numerical simulation results computed
using the software WIAS-HiTNIHS. At WIAS Berlin, I was the head developer of
WIAS-HiTNIHS in the period 1997 – 2006. Since I left WIAS Berlin, the role of head
developer was taken over by Dr. Olaf Klein.

WIAS-HiTNIHS constitutes a tool for both stationary and transient simulations of
heat transport in axisymmetric technical systems that are subject to heating by in-
duction. The simulator accounts for heat transfer by radiation through cavities, and
it allows for changes in the material parameters due to the rising temperature, e.g.
employing temperature-dependent laws of thermal and electrical conductivity. Using
a band model, WIAS-HiTNIHS can treat materials as semi-transparent. Anisotropic
thermal conductivity can be accounted for during the computations as in [2, 4]. It
is also possible to use WIAS-HiTNIHS just to compute axisymmetric magnetic scalar
potentials and the resulting heat sources. An optimization module allows the control
of parameters such as heating power and coil position with the objective of minimizing
functionals such as the max-norm of the radial temperature gradient in a neighbor-
hood of the growing crystal’s surface as in [1]. The simulator is designed to deal with
complicated axisymmetric setups having a polygonal 2-dimensional projection.

From a more abstract perspective, WIAS-HiTNIHS is a solver for two-dimensional
potentially nonlinear elliptic and parabolic PDE in both Cartesian and cylindrical co-
ordinates. Multi-material, polyhedral domains are allowed, and all material functions
can depend nonlinearly on the solution. Fourier law type interface conditions are imple-
mented as well as nonlocal radiative interface conditions. Implemented outer boundary
conditions include time- and space-dependent Dirichlet conditions, Neumann and Robin
conditions, emission conditions, and nonlocal radiative conditions. A shape optimiza-
tion module enables numerical PDE-driven shape optimization via optimal control of a
shape function on a (larger) fixed domain as described in [9].

The PDE solver in WIAS-HiTNIHS employs a finite volume discretization [7, Sec. 4].
WIAS-HiTNIHS is based on the program package pdelib [FKL01], it employs the grid
generator Triangle [She96, She02] to produce constrained Delaunay triangulations of
the domains, and it uses the sparse matrix solver PARDISO [SG04, SGF00] to solve
the linear system arising from the finite volume scheme.

1High Temperature Numerical Induction Heating Simulator; pronunciation: ∼hit-nice.
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In the included paper [5], WIAS-HiTNIHS is used to aide the industrial application
of liquid encapsulated Czochralski crystal growth of GaAs under the influence of a
traveling magnetic field. It is used to compute electromagnetic fields as well as temper-
ature fields in realistic growth apparatus, assessing the influence of the Lorentz force on
the melt, e.g. regarding the damping of the temperature oscillations below the crystal,
desirable for high-quality growth.

1.2 Crack Propagation

The included paper [6] is aimed at improving the understanding of brittle fracture
formation and propagation in materials. While the classical theory of Griffith [Gri21]
constitutes the foundation of modern understanding of brittle fracture, it still has a
number of significant shortcomings: Griffith theory does not predict crack initiation
and path and it suffers from the presence of unphysical stress singularities. While
the former problem is addressed, e.g., in [FM98, DFT05], and the latter problem is
addressed, e.g., in [SMS05], [6] is directed at including the ideas of [SMS05] for the
removal of stress singularities into the framework of [FM98, DFT05].

The approach of [FM98, DFT05] has the advantage that it does not need to prescribe the
presence of a crack or its path a priori, but the potential crack as well as its path are part
of the problem’s solution. It is founded on the global minimization of energy functionals
acting on spaces of functions of bounded variations, where the cracks are related to
the discontinuity sets of such functions. The model of [6] formulates modified energy
functionals that account for molecular interactions in the vicinity of crack tips and the
cohesive forces in the spirit of [SMS05]. In contrast to [FM98, DFT05], the model also
allows for crack reversibility and considers local minimizers of the energy functionals,
employing different time scales. Solving the model for a simple one-dimensional example
with a dead load, it is shown that the local energy minimization yields the physically
expected result in a situation where the global minimization according to [FM98] fails.

The goal in [6] is to model a strained and cracked body quasistatically using a time- and
space-dependent function u, representing the body’s displacement field with respect to
an uncracked reference configuration Ω ⊆ RN , N ∈ {1, 2, 3}, assumed to be nonempty,
bounded, open, connected, with Lipschitz boundary ∂Ω. The considerations in [6]
culminate in the formulation of two versions of a quasistatic evolution model, one
based on global energy minimization in [6, Sec. 2.5.5] and one based on local energy
minimization in [6, Sec. 2.5.6]. Both versions will be restated here, followed in each case
by summaries of the involved concepts. Previously unexplained notation occurring in
the following Def. 18 will also be made clear after the definition statement below.

Definition 18. Let T > 0. A quasistatic evolution of globally minimizing energy
configurations (QEGMEC) is a function u : [0, T ] −→ SBV ∞(Ω,RN) satisfying the
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following conditions:

(a) For each t ∈ [0, T ]: u(t) ∈ AD(t).

(b) For each t ∈ [0, T ]: E(t)(uu(t)) ≤ E(t)(uv) for every v ∈ AD(t).

(c) Wext(t)(u)−Wext(s)(u) = E(t)(u)− E(s)(u) for each (s, t) ∈ [0, T ]2, s < t.

—

In Def. 18, the variables s, t ∈ [0, T ] represent time, SBV ∞(Ω,RN) := SBV (Ω,RN) ∩
L∞(Ω,RN), SBV (Ω,RN) denoting the space of special functions of bounded variation,
and the set AD(t) in Def. 18(a),(b) is the set of admissible displacement fields satisfying
a Dirichlet boundary condition on ∂DΩ ⊆ ∂Ω (see [6, Sec. 2.5.1, Sec. 2.3]):

AD(t) :=
{
u ∈ SBV ∞(Ω,RN) : tr∂DΩ u = uD(t) ∈ L∞(∂DΩ,RN) given

}
. (42)

The model requires u(t) ∈ L∞(Ω,RN), since unbounded displacements are not physi-
cally reasonable, and the requirement u(t) ∈ SBV (Ω,RN) is reasonable in the context
of crack modeling as explained in [6, Sec. 2.1.2]. In particular, for a fixed time t, the
set Γ(u, r) ⊆ Ω of present cracks can be defined by

Γ(u, r) := r−1{1} ∪
{
x ∈ Ju :

(
[u](x)

)
• nJu(x) > 0

}
, (43)

where Ju is the so-called jump set of u := u(t) ∈ SBV (Ω,RN), nJu denotes the normal
vector with respect to Ju,

[u] : Ju −→ RN , [u](x) := u+(x)− u−(x), (44)

u+ and u− being the one-sided limits of u with respect to Ju. Moreover, the crack
reversibility function r : Ω −→ {0, 1} occurring in (43) is an accounting tool that, for
each x ∈ Ω, records if there is an irreversible crack at x or not: r(x) = 1 if, and only
if, there is an irreversible crack at x (thus, if r(x) = 0, then there is either no crack at
x, or there is a reversible crack at x). According to the model of [6], irreversibility is
triggered by a crack having opened more than a threshold value ath > 0. Thus, more
precisely, r depends on time and space, r : [0, T ]× Ω → {0, 1}, and, given u and ath,

ru(t, x) =

{
0 if

(
[u](t, x)

)
• nJu(t)(x) < ath for all s ≤ t,

1 otherwise.
(45)

In consequence, ru can be seen as a memory function for u: The energy at time t does
not only depend on u(t), but also on ru(t), i.e. on the history of u. It is also noted that
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the crack (43) is determined by u and r, i.e. it does not have to be specified separately
as in Francfort-Marigo theory [FM98].

The functional E(t) in Def. 18(b),(c) represents the total energy at time t. As described
in [6, Sec. 2.4.5], there are several contributions to the total energy, namely the energy
of the crack, the bulk energy, the energy of the body forces, and the energy of the
surface forces. Only the formula for determining the energy of the crack is new in [6,
Sec. 2.4.1] and is summarized here (see [6, Sec. 2.4.2 – Sec. 2.4.4] for the remaining
contributions): The energy Ecr of the crack is defined by

Ecr(u, r) :=
∫
Γ(u,r)

κ
(
x,nΓ(x), [u](x), r(x)

)
dHN−1(x), (46)

where HN−1 denotes the restriction of (N−1)-dimensional Hausdorff measure to Γ(u, r),
and

κ : Ω× SN−1 × RN × {0, 1} −→ R+
0 ∪ {∞} (47)

is a function modeling the material’s toughness, SN−1 denoting the (N−1)-dimensional
unit sphere. The dependence of κ on x and nΓ(x) describes the location- and direction-
dependent toughness of the material. The dependence of κ on its third variable allows
to account for Barenblatt-type energies corresponding to cohesive forces depending on
the normal distance of the crack lips. Permitting κ to depend on the entire jump [u](x)
instead of just on the jump in the normal direction allows to include energy barriers for
slip dislocations (jumps of u parallel to the crack). The dependence on r(x) allows to
account for crack reversibility: The idea is to use this as a switch for the dependence
of κ on its third variable: As cohesive forces should play no role once the crack has
become irreversible, κ should depend nontrivially on the third variable if, and only if,
the fourth variable is 0. For an example of a toughness function κ based on a Lennard-
Jones potential, see [6, (10),(11)] and [6, Fig. 2]. According to the reasoning in [6, Sec.
2.4.1], κ should, at least, have the following properties:

(a) κ(x,n, z, r) <∞ for each (x,n, z, r) ∈ Ω× SN−1 ×RN ×{0, 1} such that z •n ≥ 0.

(b) κ(x,n, z1, 1) = κ(x,n, z2, 1) for each (x,n, z1, z2) ∈ Ω× SN−1 ×RN ×RN such that
z1 • n ≥ 0 and z2 • n ≥ 0.

(c) For each (x,n) ∈ Ω× SN−1, the function z 7→ κ(x,n, z, 0) is continuous on the set
{z ∈ RN : 0 ≤ z • n ≤ ath}.

(d) κ(x,n, z, 0) = κ(x,n, z, 1) for each (x,n, z) ∈ Ω× SN−1 ×RN such that z •n = ath.

—

Condition Def. 18(b) is the condition of global energy minimization (cf. [6, Sec. 2.5.2]):
For each t ∈ [0, T ], u(t) needs to be a minimizer of the total energy E(t) among all
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admissible v ∈ AD(t). Due to the presence of the reversibility function, to be able to
formulate the condition at time t, one has to make use of the function u already defined
for times smaller than t: Let v ∈ AD(t) be an admissible displacement field at time t,
and let u : [0, t[−→ SBV ∞(Ω,RN) be given. Then u can be extended to time t by v:

uv : [0, t] −→ SBV ∞(Ω,RN), uv(s) :=

{
u(s) for s < t,

v for s = t.
(48)

Finally, condition Def. 18(c) states the energy balance: For each time interval, the
increment in stored energy plus the energy spent in crack increase (or recovered by
crack closure) needs to equal the work Wext of the external forces, where, in general,
Wext has the three contributions listed in [6, Sec. 2.5.4].

We now come to the model of [6, Sec. 2.5.6], which is based on local energy minimization.
It is restated as Def. 19, followed by further explanations.

Definition 19. Let T > 0. A quasistatic evolution of locally minimizing energy config-
urations (QELMEC) is a function u : [0, T ] −→ SBV ∞(Ω,RN) satisfying the following
conditions:

(a) For each t ∈ [0, T ]: u(t) ∈ AD(t).

(b) For each t ∈ [0, T ], there is ε > 0 such that E(t)(uu(t)) ≤ E(t)(uv) for each v ∈ AD(t)
satisfying ‖u(t)− v‖∞,1 < ε.

(c) There exists a finite sequence of times 0 = t0 < · · · < tn = T such that u is con-
tinuous with respect to the ‖ · ‖∞,1-norm on each interval [tν−1, tν [, ν ∈ {1, . . . , n},
and, for each ν ∈ {1, . . . , n}, there is vν ∈ AD(tν) such that the map

uν : [tν−1, tν ] −→ SBV ∞(Ω,RN), uν(t) :=

{
u(t) for t < tν ,

vν for t = tν ,

is continuous with respect to the ‖·‖∞,1-norm on the entire closed interval [tν−1, tν ],
and such that there is an admissible path pν ∈ Ptν

(
vν , u(tν)

)
connecting vν and

u(tν).

(d) Wext(t)(u)−Wext(s)(u) = E(t)(u)− E(s)(u) for each (s, t) ∈ [0, T ]2, s < t.

—

Conditions Def. 19(a),(d) were already present in Def. 18. Condition Def. 19(b) is the
local analogue of the global minimization condition Def. 18(b): For each t ∈ [0, T ],
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u(t) now needs to be a local minimizer of the total energy E(t) among all admissible
v ∈ AD(t), local with respect to the norm

‖u‖∞,1 := ‖u‖∞ + ‖∇ u‖1, (49)

where ∇u denotes the absolutely continuous part of the distributional derivative of u
with respect to Lebesgue measure (see [6, Sec. 2.5.3] regarding the choice or norm).

Condition Def. 19(c) states that the quasistatic evolution must be energetically ad-
missible, where, for a fixed time t ∈ [0, T ], given u : [0, t[−→ SBV ∞(Ω,RN), the set
Pt(v1, v2) of admissible paths between states v1 and v2, (v1, v2) ∈ AD(t) × AD(t), is
defined as the set of maps p : [0, 1] −→ AD(t) continuous with respect to ‖ · ‖∞,1 such
that p(0) = v1, p(1) = v2, and such that the map a 7→ E(t)

(
up(a)

)
is nonincreasing on

[0, 1]. According to [6, Sec. 2.5.3], condition Def. 19(c) arises from considering different
scales for the time dependence: First, assume that the local minima in Def. 19(b) are
strict. Then, the macro time scale is active as long as u(t) “naturally” sits in a local
minimum for the energy according to Def. 19(b). This is the case inside each interval
[tν−1, tν [. The energy of u(t) can actually increase with t, but, at each t, it is smaller
than for any state in some ‖ · ‖∞,1-neighborhood of u(t). Since E(t) changes with time,
so does the energy landscape. At the times tν , ν ∈ {1, . . . , n}, it has changed so much
that what used to be a strict local minimum is no longer a strict local minimum, and
there exists an admissible path in AD(tν) to some state of lower energy. The assump-
tion of quasistatic evolution means that the system follows such a path on the micro
time scale, finding a new local energetic minimum. This happens instantaneously on
the macro time scale, namely at time tν . The consideration of nonstrict, plateau-type
local minima is somewhat more subtle and can be found in [6, Sec. 2.5.3].

In [6, Sec. 3], both the global and local version of the new model are solved for a
concrete one-dimensional example. The example considers a dead load of the type
[FM98, Sec. 5.2]. The issue discussed in [FM98, Sec. 5.2] is basically that the energy
minimization yields an unphysical result, namely failure for an arbitrarily small nonzero
load. This problem is due to the global energy minimization, and [6, Sec. 3.2] shows
that introducing reversibility and cohesive forces does nothing to change the situation.
However, the local version of the energy minimization considered in Sec. [6, Sec. 3.3]
yields the physically expected result that failure occurs only once the load surpasses a
critical value.

1.3 Shape Design

The included paper [9] formulates a fixed-domain method for the solution of shape
design problems governed by elliptic PDE, including a numerical algorithm and corre-
sponding numerical results.
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Let E ⊆ D ⊆ Rd, d ∈ N, be some given bounded domains with Lipschitz boundary.
Let Ω ⊆ D be some (unknown) set and y ∈ H1

0 (Ω) be the weak solution of the following
PDE defined in Ω:

∀
v∈H1

0 (Ω)

∫
Ω

(
d∑

i,j=1

aij
∂y

∂xi

∂v

∂xj
+ a0yv

)
=

∫
Ω

fv, (50)

where aij, a0 ∈ L∞(D), (aij)i,j=1,d elliptic and f ∈ L2(D).

A general shape optimization problem associated to (50) consists of the minimization
of a cost functional of the form

F (y,Ω) =

∫
Λ

j
(
x, y(x), ∇y(x)

)
dx , (51)

where Λ may be E, Ω, or D and y is the solution of the corresponding state equation
(50) (extended by 0 to the whole D for Λ = D). An important special case is the
quadratic functional

J(Ω) = α

∫
Λ

|y − yd|2 dx + β

∫
Λ

‖∇y −∇yd‖22, (52)

where α, β ∈ R+
0 , α+ β > 0, yd ∈ H1(D) are given.

Various constraints may be imposed as well. For instance, if Λ = E, then impose

Ω ⊇ E (53)

for any admissible domain Ω, such that (51), (52) make sense.

The domains Ω are encoded using so-called shape functions g according to

Ω = Ωg = int{x ∈ D : g(x) ≥ 0}. (54)

Using g one can put further constraints on the set of admissible domains by imposing
g ∈ X(D), X(D) being a subspace of piecewise continuous mappings defined inD. More
precisely, the piecewise continuity means there exists l ∈ N and Ωi ⊆ D, i ∈ {1, . . . , l},
open subsets such that Ωi

⋂
Ωj = ∅, i 6= j, D =

⋃l
i=1 Ωi, and gi ∈ C(D) such that

g�Ωi
= gi�Ωi

for each i ∈ {1, . . . , l}.
If the constraint (53) is to be imposed as well, then one requires

g ≥ 0 in E. (55)

Even though the shape functions g ∈ X(D) are also known as level functions, as
explained in [9], the fixed domain approach used in [9] and summarized below is quite
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different from the well-known methods of Sethian [Set96], Osher and Sethian [OS88].
An approximation property specific to PDE with Dirichlet boundary conditions is at
the base of the method used in [9]. Denote by Hε : R −→ R the following differentiable
regularization of the Yosida approximation of the maximal monotone extension in R×R
of the Heaviside function H:

Hε(r) :=


1 for r ≥ 0,

ε(r + ε)2 − 2r(r + ε)2

ε3
for −ε < r < 0,

0 for r ≤ −ε.

(56)

Then (50) is approximated by

∀
v∈H1

0 (D)

∫
D

(
d∑

i,j=1

aij
∂yε
∂xi

∂v

∂xj
+ a0yεv +

1

ε

(
1−Hε(g)

)
yεv

)
=

∫
D

fv, (57)

now always integrating over the larger fixed domain D, penalizing nonzero values of
yε ∈ H1

0 (D) in D \ Ωg via the additional term on the left-hand side of (57).

Results regarding the convergence yε|Ωg → yg for ε→ 0 are surveyed in [9, Sec. 2] as well
as results regarding the differentiability of the control-to-state mapping g 7→ yε = yε(g).
Only [9, Th. 3(i)] is reproduced here as Th. 20, as it provides the basis for the adjoint
equation and the descent directions used in the numerical algorithm.

Theorem 20. The mapping g 7→ yε = yε(g) defined by (57) is Gâteaux differentiable
between X(D) and H1

0 (D) and z = ∇yε(g)w ∈ H1
0 (D) satisfies the equation in varia-

tions:

∀
v∈H1

0 (D)

∫
D

(
d∑

i,j=1

aij
∂z

∂xi

∂v

∂xj
+ a0zv +

1

ε

(
1−Hε(g)

)
zv

)
=

1

ε

∫
D

(Hε)′(g)wyεv. (58)

—

The variations occurring in the directional derivatives of the above control-to-state map
are of the form g + λw, λ ∈ R; g, w ∈ X(D). They allow for simultaneous changes of
the boundary and of the topological characteristic of the searched domain.

All the numerical experiments of [9, Sec. 3] use the square fixed domain

D :=]− 1, 1[×]− 1, 1[⊆ R2 (59a)

with fixed subdomain

E :=]−1
2
, 1
2
[×]−1

2
, 1
2
[⊆ D (59b)
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in case the shape function constraint (55), restated as

g ∈ U(D) := {g ∈ X(D) : g ≥ 0 on E}, (60)

is used. In each experiment, the state equation for yε ∈ H1
0 (D) is a special case of (57),

having the form

∀
v∈H1

0 (D)

∫
D

(
∂yε
∂x1

∂v

∂x1
+
∂yε
∂x2

∂v

∂x2
+

1

ε

(
1−Hε(g)

)
yε v

)
=

∫
D

fv. (61)

The cost functionals considered for the shape optimization have the general form

J : X(D) −→ R, g 7→ J(g) = F (S(g), g), (62)

where F : H1
0 (D) × X(D) −→ R and S : X(D) −→ H1

0 (D), S(g) = yε(g), is the
control-to-state operator corresponding to (61).

The shape optimization algorithm of [9, Sec. 3.1] is summarized as follows (ε > 0 is
fixed throughout the algorithm):

Step 1 Set n := 0 and choose an admissible initial shape function g0 ∈ X(D).

Step 2 Compute the solution to the state equation yn = yε = S(gn).

Step 3 Compute the solution to the corresponding adjoint equation pn = pε.

Step 4 Compute a descent direction wd,n = wd,n(yn, pn).

Step 5 Set g̃n := gn + λnwd,n, where λn ≥ 0 is determined via line search, i.e. as a
solution to the minimization problem

λ 7→ J(gn + λwd,n) → min . (63)

(numerically accomplished by a golden section search for results in [9, Sec. 3]).

Step 6 Set gn+1 := πU(D)(g̃n), where πU(D) denotes the projection

πU(D) : X(D) −→ U(D), πU(D)(g)(x) :=

{
max{0, g(x)} for x ∈ E,

g(x) for x ∈ D \ E
(64)

(and U(D) = X(D), πU(D)(g) = g if no constraints are imposed).

Step 7 RETURN gfin := gn+1 if the change of g and/or the change of J(g) are below
some prescribed tolerance parameter (see [9, Sec. 3.1] for details). Otherwise:
Increment n, i.e. n := n+ 1 and GO TO Step 2.
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The state equations as well as the adjoint equations that need to be solved numerically
during the above algorithm are linear elliptic PDE with homogeneous Dirichlet bound-
ary conditions. For the numerical simulations in [9, Sec. 3], an augmented version of
the software WIAS-HiTNIHS (cf. Sec. 1.1.5) has been employed to this end.

In Example 1 of [9, Sec. 3.2] the cost functional J is as in (62) with

F (y, g) :=
1

2

∫
E

(y − yd)
2 dx , (65a)

yd(x1, x2) := −
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2

+
1

16
, (65b)

f ≡ 1 is used on the right-hand side of the state equation, the descent direction used
in Step 4 is wd(y, p) = −1

ε
yp (see [9, (20)] for the corresponding adjoint equation), and

g ≥ 0 on E is imposed.

The results depicted in [9, Figs. 1–3] show the convergence to the optimal shape Ωgfin =
E for three different initial shape functions g0. For a fixed g0, [9, Table 1], shows the
convergence of the final value J(gfin) of the objective functional for ε→ 0.

In Example 2 of [9, Sec. 3.2], a different objective functional is used: As before, J has
the form (62), but now with

F (y, g) :=

∫
D

Hε(g)(y − yd) dx , (66a)

yd(x1, x2) := −
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2

+
1

8
. (66b)

Note that (66a) is an approximation for
∫
Ω
(y − yd) dx . In this example ε = 10−5 is

fixed as well as f ≡ 1, and, for the descent direction of Step 4,

wd(y, p) = −
(
Hε(g)(y − yd) +

1

ε
yp

)
(67)

is used (see [9, (25)] for the corresponding adjoint equation).

The results in [9, Figs. 4–6] show a slight dependence of the final shape Ωgfin on the initial
shape function g0, which is not unexpected due to the nonconvexity of the situation and
since, in general, only local minima are found during the line searches of Step 5. It is
also noted that (66) and (67) are symmetric with respect to exchanging x1 and x2, and
this symmetry can be observed in the shapes in [9, Figs. 4,5], whereas the symmetry is
slightly broken in [9, Figs. 6] due to the initial condition.

In Example 3 of [9, Sec. 3.2], a nonconstant right-hand side is used, namely

f : D −→ R, f(x1, x2) := −x21 x22 + 1, (68)
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where J still has the form (62), this time with

F (y, g) :=
1

2

∫
D

(y − yd)
2 dx , (69a)

yd(x1, x2) := x21 x
2
2. (69b)

Note that yd is different from the yd in (65b) and, in contrast to (65a), the integration
in (69a) is over all of D. Once again, ε = 10−5 is fixed, and the employed descent
direction is wd(y, p) = −1

ε
yp (see [9, (29)] for the corresponding adjoint equation).

In this case, the nonconvexity of the problem is much more visible in the numerical
results than during previous examples. We observe a considerable dependence of the
final shape not only on the initial shape function g0, but also on the initial guess for λ
during the line searches, see the results depicted in [9, Figs. 7–9]. In Example 3 of [9,
Sec. 3.2], there is x1-x2-symmetry as well as symmetry with respect to the signs of x1
and x2, respectively, provided the initial shape function satisfies the same symmetry.
These symmetries are visible in [9, Fig. 7], slightly broken in the final shape due to the
discrete grid.
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For convenience, the following list includes, once again, the bibliographic information
for the included papers as well as the bibliographic information of further relevant
references.
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