CONTENTS

3.4 The Weierstrass Approximation Theorem ... 56
3.5 Spline Interpolation ... 59
 3.5.1 Introduction ... 59
 3.5.2 Linear Splines .. 60
 3.5.3 Cubic Splines .. 61

4 Numerical Integration ... 69
 4.1 Introduction ... 69
 4.2 Quadrature Rules Based on Interpolating Polynomials 73
 4.3 Newton-Cotes Formulas ... 76
 4.3.1 Definition, Weights, Degree of Accuracy 76
 4.3.2 Rectangle Rules \(n = 0 \) .. 79
 4.3.3 Trapezoidal Rule \(n = 1 \) .. 80
 4.3.4 Simpson’s Rule \(n = 2 \) ... 80
 4.3.5 Higher Order Newton-Cotes Formulas .. 82
 4.4 Convergence of Quadrature Rules .. 82
 4.5 Composite Newton-Cotes Quadrature Rules 85
 4.5.1 Introduction, Convergence .. 85
 4.5.2 Composite Rectangle Rules \(n = 0 \) .. 87
 4.5.3 Composite Trapezoidal Rules \(n = 1 \) ... 87
 4.5.4 Composite Simpson’s Rules \(n = 2 \) .. 88
 4.6 Gaussian Quadrature .. 89
 4.6.1 Introduction .. 89
 4.6.2 Orthogonal Polynomials ... 89
 4.6.3 Gaussian Quadrature Rules ... 93

5 Numerical Solution of Linear Systems .. 97
 5.1 Motivation .. 97
 5.2 Gaussian Elimination and LU Decomposition 98
 5.2.1 Pivot Strategies .. 98
 5.2.2 Gaussian Elimination via Matrix Multiplication and LU Decom-
 position ... 101
 5.2.3 The Algorithm of LU Decomposition ... 110
CONTENTS

5.3 Cholesky Decomposition .. 112
5.4 QR Decomposition ... 115
 5.4.1 Definition and Motivation 115
 5.4.2 QR Decomposition via Gram-Schmidt Orthogonalization 116
 5.4.3 QR Decomposition via Householder Reflections 120

6 Iterative Methods, Solution of Nonlinear Equations............. 125
 6.1 Motivation: Fixed Points and Zeros 125
 6.2 Banach Fixed Point Theorem 126
 6.3 Newton’s Method ... 127

A b-Adic Expansions of Real Numbers 133

B Operator Norms and Natural Matrix Norms 138

C \mathbb{R}^m-Valued Integration 142

D The Vandermonde Determinant 144

E Parameter-Dependent Integrals 146

F Inner Products and Orthogonality 146

G Baire Category and the Uniform Boundedness Principle 148

H Linear Algebra .. 151
 H.1 Gaussian Elimination Algorithm 151
 H.2 Orthogonal Matrices 154
 H.3 Positive Definite Matrices 155
 H.4 Cholesky Decomposition for Positive Semidefinite Matrices 156
 H.5 Jordan Normal Form 160

I Eigenvalues ... 161
 I.1 Introductory Remarks 161
 I.2 Estimates, Localization 164
 I.3 Power Method ... 168

1 Introduction and Motivation

The central motivation of Numerical Analysis is to provide constructive and effective methods (so-called algorithms, see Def. 1.1 below) that reliably compute solutions (or sufficiently accurate approximations of solutions) to classes of mathematical problems. Moreover, such methods should also be efficient, i.e. one would like the algorithm to be as quick as possible while one would also like it to use as little memory as possible. Frequently, both goals can not be achieved simultaneously: For example, one might decide to recompute intermediate results (which needs more time) to avoid storing them (which would require more memory) or vice versa. One typically also has a trade-off between accuracy and requirements for memory and execution time, where higher accuracy means use of more memory and longer execution times.

Thus, one of the main tasks of Numerical Analysis consists of proving that a given method is constructive, effective, and reliable. That a method is constructive, effective, and reliable means that, given certain hypotheses, it is guaranteed to converge to the solution. This means, it either finds the solution in a finite number of steps, or, more typically, given a desired error bound, within a finite number of steps, it approximates the true solution such that the error is less than the given bound. Proving error estimates is another main task of Numerical Analysis and so is proving bounds on an algorithm’s complexity, i.e. bounds on its use of memory (i.e. data) and run time (i.e. number of steps). Moreover, in addition to being convergent, for a method to be useful, it is of crucial importance that is also stable in the sense that a small perturbation of the input data does not destroy the convergence and results in, at most, a small increase of the error. This is of the essence as, for most applied problems, the input data will not be exact, and most algorithms are subject to round-off errors.

Instead of a method, we will usually speak of an algorithm, by which we mean a “useful” method. To give a mathematically precise definition of the notion algorithm is beyond the scope of this lecture (it would require an unjustifiably long detour into the field of logic), but the following definition will be sufficient for our purposes.

Definition 1.1. An algorithm is a finite sequence of instructions for the solution of a class of problems. Each instruction must be representable by a finite number of symbols. Moreover, an algorithm must be guaranteed to terminate after a finite number of steps.

Remark 1.2. Even though we here require an algorithm to terminate after a finite number of steps, in the literature, one sometimes omits this part from the definition. The question if a given method can be guaranteed to terminate after a finite number of steps is often tremendously difficult (sometimes even impossible) to answer.

Example 1.3. Let $a, a_0 \in \mathbb{R}^+$ and consider the sequence $(x_n)_{n \in \mathbb{N}_0}$ defined recursively by
\[x_0 := a_0, \quad x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \text{ for each } n \in \mathbb{N}_0. \] (1.1)

It can be shown that, for each $a, a_0 \in \mathbb{R}^+$, this sequence is well-defined (i.e. $x_n > 0$ for each $n \in \mathbb{N}_0$) and converges to \sqrt{a} (this is Newton’s method (cf. Sec. 6.3 below) for the
computation of the zero of the function \(f : \mathbb{R}^+ \rightarrow \mathbb{R}, f(x) := x^2 - a \). The \(x_n \) can be computed using the following finite sequence of instructions:

\begin{align*}
1 : & \quad x = a_0 \quad \% \text{store the number } a_0 \text{ in the variable } x \\
2 : & \quad x = \left(x + a/x \right)/2 \quad \% \text{compute } (x + a/x)/2 \text{ and replace the} \\
& \quad \% \text{contents of the variable } x \text{ with the computed value} \\
3 : & \quad \text{goto 2} \quad \% \text{continue with instruction 2}
\end{align*}

(1.2)

Even though the contents of the variable \(x \) will converge to \(\sqrt{a} \), (1.2) does not constitute an algorithm in the sense of Def. 1.1 since it does not terminate. To guarantee termination and to make the method into an algorithm, one might introduce the following modification:

\begin{align*}
1 : & \quad \epsilon = 10^{-10} \ast a \quad \% \text{store the number } 10^{-10}a \text{ in the variable } \epsilon \\
2 : & \quad x = a_0 \quad \% \text{store the number } a_0 \text{ in the variable } x \\
3 : & \quad y = x \quad \% \text{copy the contents of the variable } x \text{ to} \\
& \quad \% \text{the variable } y \text{ to save the value for later use} \\
4 : & \quad x = \left(x + a/x \right)/2 \quad \% \text{compute } (x + a/x)/2 \text{ and replace the} \\
& \quad \% \text{contents of the variable } x \text{ with the computed value} \\
5 : & \quad \text{if } |x - y| > \epsilon \\
& \quad \quad \text{then goto 3} \quad \% \text{if } |x - y| > \epsilon, \text{ then continue with instruction 3} \\
& \quad \quad \text{else quit} \quad \% \text{if } |x - y| \leq \epsilon, \text{ then terminate the method}
\end{align*}

(1.3)

Now the convergence of the sequence guarantees that the method terminates within finitely many steps.

Another problem with regard to algorithms, that we already touched on in Example 1.3, is the implicit requirement of Def. 1.1 for an algorithm to be well-defined. That means, for every initial condition, given a number \(n \in \mathbb{N} \), the method has either terminated after \(m \leq n \) steps, or it provides a (feasible!) instruction to carry out step number \(n + 1 \). Such methods are called complete. Methods that can run into situations, where they have not reached their intended termination point, but can not carry out any further instruction, are called incomplete. Algorithms must be complete! We illustrate the issue in the next example:

Example 1.4. Let \(a \in \mathbb{R} \setminus \{2\} \) and \(N \in \mathbb{N} \). Define the following finite sequence of instructions:

\begin{align*}
1 : & \quad n = 1; \quad x = a \\
2 : & \quad x = 1/(2 - x); \quad n = n + 1 \\
3 : & \quad \text{if } n \leq N \\
& \quad \quad \text{then goto 2} \quad \% \text{if } n \leq N, \text{ then continue with instruction 2} \\
& \quad \quad \text{else quit} \quad \% \text{if } n > N, \text{ then terminate the method}
\end{align*}

(1.4)
Consider what occurs for $N = 10$ and $a = \frac{5}{4}$. The successive values contained in the variable x are $\frac{5}{4}, \frac{4}{3}, \frac{3}{2}, 2$. At this stage $n = 4 \leq N$, i.e. instruction 3 tells the method to continue with instruction 2. However, the denominator has become 0, and the instruction has become meaningless. The following modification makes the method complete and, thereby, an algorithm:

\begin{align*}
1: & \quad n = 1; \quad x = a \\
2: & \quad \text{if } x \neq 2 \\
& \quad \quad \text{then } x = 1/(2 - x); \quad n = n + 1 \\
& \quad \quad \text{else } x = -5; \quad n = n + 1 \\
3: & \quad \text{if } n \leq N \\
& \quad \quad \text{then goto 2} \\
& \quad \quad \text{else quit}
\end{align*}

(1.5)

We can only expect to find stable algorithms if the underlying problem is sufficiently benign. This leads to the following definition:

Definition 1.5. We say that a mathematical problem is **well-posed** if, and only if, its solutions enjoy the three benign properties of **existence**, **uniqueness**, and **continuity** with respect to the input data. More precisely, given admissible input data, the problem must have a unique solution (output), thereby providing a map between the set of admissible input data and (a superset of) the set of possible solutions. This map must be continuous with respect to suitable norms or metrics on the respective sets (small changes of the input data must only cause small changes in the solution). A problem which is not well-posed is called **ill-posed**.

We can thus add to the important tasks of Numerical Analysis mentioned earlier the additional important tasks of investigating a problem’s well-posedness. Then, once well-posedness is established, the task is to provide a stable algorithm for its solution.

Example 1.6. (a) The problem “find a minimum of a given polynomial $p : \mathbb{R} \rightarrow \mathbb{R}$” is inherently ill-posed: Depending on p, the problem has no solution (e.g. $p(x) = x$), a unique solution (e.g. $p(x) = x^2$), finitely many solutions (e.g. $p(x) = x^2(x-1)^2(x+2)^2$) or infinitely many solutions (e.g. $p(x) = 1$).

(b) Frequently, one can transform an ill-posed problem into a well-posed problem, by choosing an appropriate setting: Consider the problem “find a zero of $f(x) = ax^2 + c"$. If, for example, one admits $a, c \in \mathbb{R}$ and looks for solutions in \mathbb{R}, then the problem is ill-posed as one has no solutions for $ac > 0$ and no solutions for $a = 0, c \neq 0$. Even for $ac < 0$, the problem is not well-posed as the solution is not always unique. However, in this case, one can make the problem well-posed by considering
1 INTRODUCTION AND MOTIVATION

solutions in \mathbb{R}^2. The correspondence between the input and the solution (sometimes referred to as the solution operator) is then given by the continuous map

$$S : \{(a, c) \in \mathbb{R}^2 : ac < 0\} \rightarrow \mathbb{R}^2, \quad S(a, c) := \left(\sqrt{-\frac{c}{a}}, -\sqrt{-\frac{c}{a}}\right). \quad (1.6a)$$

The problem is also well-posed when just requiring $a \neq 0$, but admitting complex solutions. The continuous solution operator is then given by

$$S : \{(a, c) \in \mathbb{R}^2 : a \neq 0\} \rightarrow \mathbb{C}^2,$$

$$S(a, c) := \begin{cases} \left(\sqrt{|c|/|a|}, -\sqrt{|c|/|a|}\right) & \text{for } ac \leq 0, \\ (i \sqrt{|c|/|a|}, -i \sqrt{|c|/|a|}) & \text{for } ac > 0. \end{cases} \quad (1.6b)$$

(c) The problem “determine if $x \in \mathbb{R}$ is positive” might seem simple at first glance, however it is ill-posed, as it is equivalent to computing the values of the function

$$S : \mathbb{R} \rightarrow \{0, 1\}, \quad S(x) := \begin{cases} 1 & \text{for } x > 0, \\ 0 & \text{for } x \leq 0. \end{cases} \quad (1.7)$$

which is discontinuous at 0.

As stated before, the analysis and control of errors is of central interest. Errors occur due to several causes:

(1) Modeling Errors: A mathematical model can only approximate the physical situation in the best of cases. Often models have to be further simplified in order to compute solutions and to make them accessible to mathematical analysis.

(2) Data Errors: Typically, there are errors in the input data. Input data often result from measurements of physical experiments or from calculations that are potentially subject to every type of error in the present list.

(3) Blunders: For example, logical errors and implementation errors.

One should always be aware that errors of the types just listed will or can be present. However, in the context of Numerical Analysis, one focuses mostly on the following error types:

(4) Truncation Errors: Such errors occur when replacing an infinite process (e.g. an infinite series) by a finite process (e.g. a finite summation).

(5) Round-Off Errors: Errors occurring when discarding digits needed for the exact representation of a (e.g. real or rational) number.
In an increasing manner, the functioning of our society relies on the use of numerical algorithms. In consequence, avoiding and controlling numerical errors is vital. Several examples of major disasters caused by numerical errors can be found on the following webpage of D.N. Arnold at the University of Minnesota:
http://www.ima.umn.edu/~arnold/disasters/
For a much more comprehensive list of numerical and related errors that had significant consequences, see the webpage of T. Huckle at TU Munich:
http://www5.in.tum.de/~huckle/bugse.html

2 Rounding and Error Analysis

2.1 Floating-Point Numbers Arithmetic, Rounding

All the numerical problems considered in this class are related to the computation of (approximations of) real numbers. The b-adic representations of real numbers (see Appendix A), in general, need infinitely many digits. However, computer memory can only store a finite amount of data. This implies the need to introduce representations that use only strings of finite length and only a finite number of symbols. Clearly, given a supply of $s \in \mathbb{N}$ symbols and strings of length $l \in \mathbb{N}$, one can represent a maximum of $s^l < \infty$ numbers. The representation of this form most commonly used to approximate real numbers is the so-called floating-point representation:

Definition 2.1. Let $b \in \mathbb{N}$, $b \geq 2$, $l \in \mathbb{N}$, and $N_-, N_+ \in \mathbb{Z}$ with $N_- \leq N_+$. Then, for each

$$\begin{align*}
(x_1, \ldots, x_l) &\in \{0, 1, \ldots, b - 1\}^l, \\
N &\in \mathbb{Z} \text{ satisfying } N_- \leq N \leq N_+,
\end{align*}$$

the strings

$$0.x_1x_2\ldots x_l \cdot b^N \quad \text{and} \quad -0.x_1x_2\ldots x_l \cdot b^N$$

are called floating-point representations of the (rational) numbers

$$x := b^N \sum_{\nu=1}^{l} x_{\nu} b^{-\nu} \quad \text{and} \quad -x,$$

respectively, provided that $x_1 \neq 0$ if $x \neq 0$. For floating-point representations, b is called the radix (or base), $0.x_1 \ldots x_l$ (i.e. $|x|/b^N$) is called the significand (or mantissa or coefficient), x_1, \ldots, x_l are called the significant digits, and N is called the exponent. The number l is sometimes called the precision. Let $\mathcal{fl}(b, N_-, N_+) \subseteq \mathbb{Q}$ denote the set of all rational numbers that have a floating point representation of precision l with respect to base b and exponent between N_- and N_+.

Remark 2.2. If one restricts Def. 2.1 to the case $N_- = N_+$, then one obtains what is known as fixed-point representations. However, for many applications, the required numbers vary over sufficiently many orders of magnitude to render fixed-point representations impractical.
Remark 2.3. Given the assumptions of Def. 2.1, for the numbers in (2.3), it always holds that
\[b^{N-1} \leq b^{N-1} \leq \sum_{\nu=1}^{l} x_{\nu} b^{N-\nu} = |x| \leq (b-1) \sum_{\nu=1}^{l} b^{N-\nu} =: \max(l, b, N_{+}) \overset{\text{Lem. A.2}}{<} b^{N_{+}}, \] (2.4)
promised that \(x \neq 0 \). In other words:
\[\text{fl}_{l}(b, N_{-}, N_{+}) \subseteq \mathbb{Q} \cap \left([-\max(l, b, N_{+}), -b^{N-1}] \cup \{0\} \cup [b^{N-1}, \max(l, b, N_{+})]\right). \] (2.5)
Obviously, \(\text{fl}_{l}(b, N_{-}, N_{+}) \) is not closed under arithmetic operations. A result of absolute value bigger than \(\max(l, b, N_{+}) \) is called an overflow, whereas a nonzero result of absolute value less than \(b^{N-1} \) is called an underflow. In practice, the result of an underflow is usually replaced by 0.

Definition 2.4. Let \(b \in \mathbb{N}, b \geq 2, l \in \mathbb{N}, N \in \mathbb{Z}, \) and \(\sigma \in \{-1, 1\} \). Then, given
\[x = \sigma b^{N} \sum_{\nu=1}^{\infty} x_{\nu} b^{-\nu}, \] (2.6)
where \(x_{\nu} \in \{0, 1, \ldots, b-1\} \) for each \(\nu \in \mathbb{N} \) and \(x_{1} \neq 0 \) for \(x \neq 0 \), define
\[\text{rd}_{l}(x) := \begin{cases} \sigma b^{N} \sum_{\nu=1}^{l} x_{\nu} b^{-\nu} & \text{for } x_{l+1} < b/2, \\ \sigma b^{N} (b^{-l} + \sum_{\nu=1}^{l} x_{\nu} b^{-\nu}) & \text{for } x_{l+1} \geq b/2. \end{cases} \] (2.7)
The number \(\text{rd}_{l}(x) \) is called \(x \) rounded to \(l \) digits.

Remark 2.5. We note that the notation \(\text{rd}_{l}(x) \) of Def. 2.4 is actually not entirely correct, since \(\text{rd}_{l} \) is actually a function of the sequence \((\sigma, N, x_{1}, x_{2}, \ldots) \) rather than of \(x \): It can actually occur that \(\text{rd}_{l} \) takes on different values for different representations of the same number \(x \) (for example, using decimal notation, consider \(x = 0.345 = 0.350 \), yielding \(\text{rd}_{1}(0.345) = 0.3 \) and \(\text{rd}_{1}(0.350) = 0.4 \)). However, from basic results on \(\sigma \)-adic expansions of real numbers (see Th. A.6), we know that \(x \) can have at most two different \(\sigma \)-adic representations and, for the same \(x \), \(\text{rd}_{l}(x) \) can vary at most \(b^{N} b^{-l} \). Since always writing \(\text{rd}_{l}(\sigma, N, x_{1}, x_{2}, \ldots) \) does not help with readability, and since writing \(\text{rd}_{l}(x) \) hardly ever causes confusion as to what is meant in a concrete case, the abuse of notation introduced in Def. 2.4 is quite commonly employed.

Lemma 2.6. Let \(b \in \mathbb{N}, b \geq 2, l \in \mathbb{N}. \) If \(x \in \mathbb{R} \) is given by (2.6), then \(\text{rd}_{l}(x) = \sigma b^{N} \sum_{\nu=1}^{l} x_{\nu} b^{-\nu}, \) where \(N' \in \{N, N+1\} \) and \(x_{\nu}' \in \{0, 1, \ldots, b-1\} \) for each \(\nu \in \mathbb{N} \) and \(x_{1}' \neq 0 \) for \(x \neq 0 \). In particular, \(\text{rd}_{l} \) maps \(\bigcup_{k=1}^{\infty} \text{fl}_{k}(b, N_{-}, N_{+}) \) into \(\text{fl}_{l}(b, N_{-}, N_{+} + 1) \).

Proof. For \(x_{l+1} < b/2 \), there is nothing to prove. Thus, assume \(x_{l+1} \geq b/2 \). Case (i): There exists \(\nu \in \{1, \ldots, l\} \) such that \(x_{\nu} < b-1 \). Then, letting \(\nu_{0} := \max\{\nu \in \{1, \ldots, l\} : x_{\nu} < b-1\} \), one finds \(N' = N \) and
\[x_{\nu}' = \begin{cases} x_{\nu} & \text{for } 1 \leq \nu < \nu_{0}, \\ x_{\nu_{0}} + 1 & \text{for } \nu = \nu_{0}, \\ 0 & \text{for } \nu_{0} < \nu \leq l. \end{cases} \] (2.8a)
Case (ii): $x_\nu = b - 1$ holds for each $\nu \in \{1, \ldots, l\}$. Then one obtains $N' = N + 1$,

\[
x'_\nu := \begin{cases}
1 & \text{for } \nu = 1, \\
0 & \text{for } 1 < \nu \leq l,
\end{cases} \tag{2.8b}
\]

thereby concluding the proof.

When composing floating point numbers of a fixed precision $l \in \mathbb{N}$ by means of arithmetic operations such as ‘+', ‘−', ‘·', and ‘:', the exact result is usually not representable as a floating point number with the same precision l: For example, $0.434 \cdot 10^4 + 0.705 \cdot 10^{-1} = 0.43400705 \cdot 10^4$, which is not representable exactly with just 3 significant digits. Thus, when working with floating point numbers of a fixed precision, rounding will generally be necessary.

The following Notation 2.7 makes sense for general real numbers x, y, but is intended to be used with numbers from some $\mathbb{fl}(b, N_-, N_+)$, i.e. numbers given in floating point representation (in particular, with a finite precision).

Notation 2.7. Let $b \in \mathbb{N}$, $b \geq 2$. Assume $x, y \in \mathbb{R}$ are given in a form analogous to (2.6). We then define, for each $l \in \mathbb{N}$,

\[
x \diamond_l y := \text{rd}_l(x \diamond y), \tag{2.9}
\]

where \diamond can stand for any of the operations ‘+', ‘−', ‘·', and ‘:'.

Remark 2.8. Consider $x, y \in \mathbb{fl}(b, N_-, N_+)$. If $x \diamond y \in \bigcup_{k=1}^{\infty} \mathbb{fl}_k(b, N_-, N_+)$, then, according to Lem. 2.6, $x \diamond_l y$ as defined in (2.9) is either in $\mathbb{fl}_l(b, N_-, N_+)$ or in $\mathbb{fl}_l(b, N_-, N_+ + 1)$ with the digits given by (2.8b) (which constitutes an overflow).

Remark 2.9. The definition of (2.9) should only be taken as an example of how floating-point operations can be realized. On concrete computer systems, the rounding operations implemented can be different from the one considered here. However, one would still expect a corresponding version of Rem. 2.8 to hold.

Caveat 2.10. Unfortunately, the associative laws of addition and multiplication as well as the law of distributivity are lost for arithmetic operations of floating-point numbers. More precisely, even if $x, y, z \in \mathbb{fl}_l(b, N_-, N_+)$ and one assumes that no overflow or underflow occurs, then there are examples, where $(x +_l y) +_l z \neq x +_l (y +_l z)$, $(x \cdot_l y) \cdot_l z \neq x \cdot_l (y \cdot_l z)$, and $x \cdot_l (y +_l z) \neq x \cdot_l y +_l x \cdot_l z$ (exercise).

Lemma 2.11. Let $b \in \mathbb{N}$, $b \geq 2$. Suppose

\[
x = b^N \sum_{\nu=1}^{\infty} x_\nu b^{-\nu}, \quad y = b^M \sum_{\nu=1}^{\infty} y_\nu b^{-\nu}, \tag{2.10}
\]

where $N, M \in \mathbb{Z}$; $x_\nu, y_\nu \in \{0, 1, \ldots, b - 1\}$ for each $\nu \in \mathbb{N}$; and $x_1, y_1 \neq 0$.

(a) If $N > M$, then $x \geq y$.

(b) If \(N = M \) and there is \(n \in \mathbb{N} \) such that \(x_n > y_n \) and \(x_\nu = y_\nu \) for each \(\nu \in \{1, \ldots, n-1\} \), then \(x \geq y \).

Proof. (a): One estimates

\[
x - y = b^N \sum_{\nu=1}^{\infty} x_\nu b^{-\nu} - b^M \sum_{\nu=1}^{\infty} y_\nu b^{-\nu} \geq b^{N-1} - b^{N-1} \sum_{\nu=1}^{\infty} (b-1) b^{-\nu} = b^{N-1} - b^{N-1} \left(\frac{1}{1 - b^{-1}} - 1 \right) = 0.
\]

(2.11a)

(b): One estimates

\[
x - y = b^N \sum_{\nu=1}^{\infty} x_\nu b^{-\nu} - b^M \sum_{\nu=1}^{\infty} y_\nu b^{-\nu} = b^N \sum_{\nu=n}^{\infty} x_\nu b^{-\nu} - b^N \sum_{\nu=n}^{\infty} y_\nu b^{-\nu} \geq b^{N-n} - b^{N-n} \sum_{\nu=1}^{\infty} (b-1) b^{-\nu} \text{ as in (2.11a)} = 0,
\]

(2.11b)

concluding the proof of the lemma. ■

Lemma 2.12. Let \(b \in \mathbb{N}, \ b \geq 2, \ l \in \mathbb{N} \). Then, for each \(x, y \in \mathbb{R} \):

(a) \(\text{rd}_l(x) = \text{sgn}(x) \text{rd}_l(|x|) \).

(b) \(0 \leq x < y \) implies \(0 \leq \text{rd}_l(x) \leq \text{rd}_l(y) \).

(c) \(0 \geq x > y \) implies \(0 \geq \text{rd}_l(x) \geq \text{rd}_l(y) \).

Proof. (a): If \(x \) is given by (2.6), one obtains from (2.7):

\[
\text{rd}_l(x) = \sigma \text{rd}_l \left(b^N \sum_{\nu=1}^{\infty} x_\nu b^{-\nu} \right) = \text{sgn}(x) \text{rd}_l(|x|).
\]

(b): Suppose \(x \) and \(y \) are given as in (2.10). Then Lem. 2.11(a) implies \(N \leq M \).

Case \(x_{l+1} < b/2 \): In this case, according to (2.7),

\[
\text{rd}_l(x) = b^N \sum_{\nu=1}^{l} x_\nu b^{-\nu}.
\]

(2.12)

For \(N < M \), we estimate

\[
\text{rd}_l(y) \geq b^M \sum_{\nu=1}^{l} y_\nu b^{-\nu} \text{Lem. 2.11(a)} \geq b^N \sum_{\nu=1}^{l} x_\nu b^{-\nu} = \text{rd}_l(x),
\]

(2.13)

which establishes the case. We claim that (2.13) also holds for \(N = M \), now due to Lem. 2.11(b): This is clear if \(x_\nu = y_\nu \) for each \(\nu \in \{1, \ldots, l\} \). Otherwise, define

\[
n := \min \{ \nu \in \{1, \ldots, l\} : x_\nu \neq y_\nu \}.
\]

(2.14)
Then $x < y$ and Lem. 2.11(b) yield $x_n < y_n$. Moreover, another application of Lem. 2.11(b) then implies (2.13) for this case.

Case $x_{l+1} \geq b/2$: In this case, according to Lem. 2.6,

$$\text{rd}_l(x) = b^{N'} \sum_{\nu=1}^{l} x'_\nu b^{-\nu}, \quad (2.15)$$

where either $N' = N$ and the x'_ν are given by (2.8a), or $N' = N + 1$ and the x'_ν are given by (2.8b). For $N < M$, we obtain

$$\text{rd}_l(y) \geq b^{M} \sum_{\nu=1}^{l} y'_\nu b^{-\nu} = b^{N'} \sum_{\nu=1}^{l} x'_\nu b^{-\nu} = \text{rd}_l(x), \quad (2.16)$$

where, for $N' < M$, (*) holds by Lem. 2.11(a), and, for $N' = N + 1 = M$, (*) holds by (2.8b). It remains to consider $N = M$. If $x_{\nu} = y_{\nu}$ for each $\nu \in \{1, \ldots, l\}$, then $x < y$ and Lem. 2.11(b) yield $b/2 \leq x_{l+1} \leq y_{l+1}$, which, in turn, yields $\text{rd}_l(y) = \text{rd}_l(x)$.

Otherwise, once more define n according to (2.14). As before, $x < y$ and Lem. 2.11(b) yield $x_n < y_n$. From Lem. 2.6, we obtain $N' = N$ and that the x'_ν are given by (2.8a) with $\nu_0 \geq n$. Then the values from (2.8a) show that (2.16) holds true once again. (c) follows by combining (a) and (b).

Definition and Remark 2.13. Let $b \in \mathbb{N}$, $b \geq 2$, $l \in \mathbb{N}$, and $N_-, N_+ \in \mathbb{Z}$ with $N_- \leq N_+$. If there exists a smallest positive number $\epsilon \in \mathbb{N}(b, N_-, N_+)$ such that

$$1 + l \epsilon \neq 1, \quad (2.17)$$

then it is called the relative machine precision. It is an exercise to show that, for $N_+ < -l + 1$, one has $1 + l \epsilon = 1$ for every $0 < \epsilon \in \mathbb{N}(b, N_-, N_+)$, such that there is no positive number in $\mathbb{N}(b, N_-, N_+)$ satisfying (2.17), whereas, for $N_+ \geq -l + 1$:

$$\epsilon = \begin{cases}
 b^{N_- - 1} & \text{for } -l + 1 < N_-, \\
 \lceil b/2 \rceil b^{-l} & \text{for } -l + 1 \geq N_-
\end{cases}$$

(for $x \in \mathbb{R}$, $\lceil x \rceil := \min\{k \in \mathbb{Z} : x \leq k\}$ is called ceiling of x or x rounded up).

2.2 Rounding Errors

Definition 2.14. Let $v \in \mathbb{R}$ be the exact value and let $a \in \mathbb{R}$ be an approximation for v. The numbers

$$e_a := |v - a|, \quad e_r := \frac{e_a}{|v|} \quad (2.18)$$

are called the absolute error and the relative error, respectively, where the relative error is only defined for $v \neq 0$. It can also be useful to consider variants of the absolute and relative error, respectively, where one does not take the absolute value. Thus, in the literature, one finds the definitions with and without the absolute value.
Proposition 2.15. Let \(b \in \mathbb{N} \) be even, \(b \geq 2 \), \(l \in \mathbb{N} \), \(N \in \mathbb{Z} \), and \(\sigma \in \{-1,1\} \). Suppose \(x \in \mathbb{R} \) is given by (2.6), i.e.

\[
x = \sigma b^N \sum_{\nu=1}^{\infty} x_{\nu} b^{-\nu},
\]

where \(x_{\nu} \in \{0,1,\ldots,b-1\} \) for each \(\nu \in \mathbb{N} \) and \(x_1 \neq 0 \) for \(x \neq 0 \),

(a) The absolute error of rounding to \(l \) digits satisfies

\[
e_a(x) = | \text{rd}_l(x) - x | \leq \frac{b^{N-l} - 1}{2}.
\]

(b) The relative error of rounding to \(l \) digits satisfies, for each \(x \neq 0 \),

\[
e_r(x) = \frac{| \text{rd}_l(x) - x |}{| x |} \leq \frac{b^{-l+1}}{2}.
\]

(c) For each \(x \neq 0 \), one also has the estimate

\[
\frac{| \text{rd}_l(x) - x |}{| \text{rd}_l(x) |} \leq \frac{b^{-l+1}}{2}.
\]

Proof. (a): First, consider the case \(x_{l+1} < b/2 \): One computes

\[
e_a(x) = | \text{rd}_l(x) - x | = -\sigma (\text{rd}_l(x) - x) = b^N \sum_{\nu=l+1}^{\infty} x_{\nu} b^{-\nu}
\]

\[
= b^{N-l-1} x_{l+1} + b^N \sum_{\nu=l+2}^{\infty} x_{\nu} b^{-\nu}
\]

\[
b \text{ even, (A.3)} \leq b^{N-l-1} \left(\frac{b}{2} - 1 \right) + b^{N-l-1} = \frac{b^{N-l}}{2}.
\]

(2.20a)

It remains to consider the case \(x_{l+1} \geq b/2 \). In that case, one obtains

\[
\sigma(\text{rd}_l(x) - x) = b^{N-l} - b^N x_{l+1} b^{-l-1} - b^N \sum_{\nu=l+2}^{\infty} x_{\nu} b^{-\nu}
\]

\[
= b^{N-l-1} (b - x_{l+1}) - b^N \sum_{\nu=l+2}^{\infty} x_{\nu} b^{-\nu} \leq \frac{b^{N-l}}{2}.
\]

(2.20b)

Due to \(1 \leq b - x_{l+1} \), one has \(b^{N-l-1} \leq b^{N-l-1} (b - x_{l+1}) \). Therefore, \(b^N \sum_{\nu=l+2}^{\infty} x_{\nu} b^{-\nu} \leq b^{N-l-1} \) together with (2.20b) implies \(\sigma(\text{rd}_l(x) - x) \geq 0 \), i.e. \(e_a(x) = \sigma(\text{rd}_l(x) - x) \).

(b): Since \(x \neq 0 \), one has \(x_1 \geq 1 \). Thus, \(| x | \geq b^{N-1} \). Then (a) yields

\[
e_r(x) = \frac{e_a(x)}{| x |} \leq \frac{b^{N-l} b^{-N+1}}{2} = \frac{b^{-l+1}}{2}.
\]

(2.21)
(c): Again, \(x_1 \geq 1 \) as \(x \neq 0 \). Thus, (2.7) implies \(|\text{rd}_l(x)| \geq b^{N-1}\). This time, (a) yields

\[
\frac{e_a}{|\text{rd}_l(x)|} \leq \frac{b^{N-1}b^{-N+1}}{2} = \frac{b^{-l+1}}{2},
\]

establishing the case and completing the proof of the proposition.

\[\blacksquare\]

Corollary 2.16. In the situation of Prop. 2.15, let, for \(x \neq 0 \):

\[
\epsilon_l(x) := \frac{\text{rd}_l(x) - x}{x}, \quad \eta_l(x) := \frac{\text{rd}_l(x) - x}{\text{rd}_l(x)}.
\]

Then

\[
\max\{|\epsilon_l(x)|, |\eta_l(x)|\} \leq \frac{b^{-l+1}}{2} =: \tau_l.
\]

The number \(\tau_l \) is called the relative computing precision of floating-point arithmetic with \(l \) significant digits.

\[\blacksquare\]

Remark 2.17. From the definitions of \(\epsilon_l(x) \) and \(\eta_l(x) \) in (2.23), one immediately obtains the relations

\[
\text{rd}_l(x) = x(1 + \epsilon_l(x)) = \frac{x}{1 - \eta_l(x)} \quad \text{for} \ x \neq 0.
\]

In particular, according to (2.9), one has for floating-point operations (for \(x \diamond y \neq 0 \)):

\[
x \diamond_l y = \text{rd}_l(x \diamond y) = (x \diamond y)(1 + \epsilon_l(x \diamond y)) = \frac{x \diamond y}{1 - \eta_l(x \diamond y)}.
\]

One can use the formulas of Rem. 2.17 to perform what is sometimes called a *forward analysis* of the rounding error. This technique is illustrated in the next example.

Example 2.18. Let \(x := 0.9995 \cdot 10^0 \) and \(y := -0.9984 \cdot 10^0 \). Computing the sum with precision 3 yields

\[
\text{rd}_3(x) +_3 \text{rd}_3(y) = 0.100 \cdot 10^1 +_3 (-0.998 \cdot 10^0) = \text{rd}_3(0.2 \cdot 10^{-2}) = 0.2 \cdot 10^{-2}.
\]

Letting \(\epsilon := \epsilon_3(\text{rd}_3(x) + \text{rd}_3(y)) \), applying the formulas of Rem. 2.17 provides:

\[
\text{rd}_3(x) +_3 \text{rd}_3(y) \overset{(2.26)}{=} \left(\text{rd}_3(x) + \text{rd}_3(y) \right)(1 + \epsilon)
\]

\[
\overset{(2.25)}{=} \left(x(1 + \epsilon_3(x)) + y(1 + \epsilon_3(y)) \right)(1 + \epsilon)
\]

\[
= (x + y) + \epsilon_a,
\]

where

\[
e_a = x(\epsilon + \epsilon_3(x)(1 + \epsilon)) + y(\epsilon + \epsilon_3(y)(1 + \epsilon)).
\]
Using (2.23) and plugging in the numbers yields:

\[
\epsilon = \frac{rd_3(x) + 3 rd_3(y) - (rd_3(x) + rd_3(y))}{rd_3(x) + rd_3(y)} = \frac{0.002 - 0.002}{0.002} = 0,
\]

\[
\epsilon_3(x) = \frac{1 - 0.9995}{0.9995} = \frac{1}{1999} = 0.00050 \ldots,
\]

\[
\epsilon_3(y) = \frac{-0.998 + 0.9984}{-0.9984} = -\frac{1}{2496} = -0.00040 \ldots,
\]

\[
e_a = x\epsilon_3(x) + y\epsilon_3(y) = 0.0005 + 0.0004 = 0.0009.
\]

The corresponding relative error is

\[
e_r = \frac{|e_a|}{|x + y|} = \frac{0.0009}{0.0011} = \frac{9}{11} = 0.81.
\]

Thus, \(e_r \) is much larger than both \(e_r(x) \) and \(e_r(y) \). This is an example of subtractive cancellation of digits, which can occur when subtracting numbers that are almost identical. If possible, such situations should be avoided in practice (cf. Examples 2.19 and 2.20 below).

Example 2.19. Let us generalize the situation of Example 2.18 to general \(x, y \in \mathbb{R} \setminus \{0\} \) and a general precision \(l \in \mathbb{N} \). The formulas in (2.27) and (2.28) remain valid if one replaces 3 by \(l \). Moreover, with \(b = 10 \) and \(l \geq 2 \), one obtains from (2.24):

\[
|\epsilon| \leq 0.5 \cdot 10^{-l+1} \leq 0.5 \cdot 10^{-1} = 0.05.
\]

Thus,

\[
|e_a| \leq |x|(\epsilon + 1.05|\epsilon_l(x)|) + |y|(\epsilon + 1.05|\epsilon_l(y)|),
\]

and

\[
e_r = \frac{|e_a|}{|x + y|} \leq \frac{|x|}{|x + y|} (|\epsilon| + 1.05|\epsilon_l(x)|) + \frac{|y|}{|x + y|} (|\epsilon| + 1.05|\epsilon_l(y)|).
\]

One can now distinguish three (not completely disjoint) cases:

(a) If \(|x + y| < \max\{|x|,|y|\} \) (in particular, if \(\text{sgn}(x) = -\text{sgn}(y) \)), then \(e_r \) is typically larger (potentially much larger, as in Example 2.18) than \(|\epsilon_l(x)| \) and \(|\epsilon_l(y)| \). Subtractive cancellation falls into this case. If possible, this should be avoided (cf. Example 2.20 below).

(b) If \(\text{sgn}(x) = \text{sgn}(y) \), then \(|x + y| = |x| + |y| \), implying

\[
e_r \leq |\epsilon| + 1.05 \max \{|\epsilon_l(x)|,|\epsilon_l(y)|\}
\]

i.e. the relative error is at most of the same order of magnitude as the number

\[
|\epsilon| + \max \{|\epsilon_l(x)|,|\epsilon_l(y)|\}.
\]

(c) If \(|y| \ll |x| \) (resp. \(|x| \ll |y| \)), then the bound for \(e_r \) is predominantly determined by \(|\epsilon_l(x)| \) (resp. \(|\epsilon_l(y)| \)) (error *dampening*).
As the following Example 2.20 illustrates, subtractive cancellation can often be avoided by rearranging an expression into a mathematically equivalent formula that is numerically more stable.

Example 2.20. Given \(a, b, c \in \mathbb{R}\) satisfying \(a \neq 0\) and \(4ac \leq b^2\), the quadratic equation \(ax^2 + bx + c = 0\) has the solutions

\[
x_1 = \frac{1}{2a} \left(-b - \text{sgn}(b) \sqrt{b^2 - 4ac} \right), \quad x_2 = \frac{1}{2a} \left(-b + \text{sgn}(b) \sqrt{b^2 - 4ac} \right).
\]

If \(|4ac| \ll b^2\), then, for the computation of \(x_2\), one is in the situation of Example 2.19(a), i.e. the formula is numerically unstable. However, due to \(x_1 x_2 = c/a\), one can use the equivalent formula

\[
x_2 = \frac{2c}{-b - \text{sgn}(b) \sqrt{b^2 - 4ac}},
\]

where subtractive cancellation can not occur.

2.3 Landau Symbols

When calculating errors (and also when calculating the complexity of algorithms), one is frequently not so much interested in the exact value of the error (or the computing time and size of an algorithm), but only in the order of magnitude and in the asymptotics. The Landau symbols \(O\) (big \(O\)) and \(o\) (small \(o\)) are a notation in support of these facts. Here is the precise definition:

Definition 2.21. Let \(D \subseteq \mathbb{R}\) and consider functions \(f, g : D \rightarrow \mathbb{R}\), where we assume \(g(x) \neq 0\) for each \(x \in D\). Moreover, let \(x_0 \in \mathbb{R} \cup \{-\infty, \infty\}\) be a cluster point of \(D\) (note that \(x_0\) does not have to be in \(D\), and \(f\) and \(g\) do not have to be defined in \(x_0\)).

\(\text{(a)}\) \(f\) is called of order big \(O\) of \(g\) or just big \(O\) of \(g\) (denoted by \(f(x) = O(g(x))\)) for \(x \to x_0\) if, and only if,

\[
\limsup_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| < \infty. \tag{2.29}
\]

\(\text{(b)}\) \(f\) is called of order small \(o\) of \(g\) or just small \(o\) of \(g\) (denoted by \(f(x) = o(g(x))\)) for \(x \to x_0\) if, and only if,

\[
\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0. \tag{2.30}
\]

As mentioned before, \(O\) and \(o\) are known as Landau symbols.

Proposition 2.22. We consider the setting of Def. 2.21 and provide the following equivalent characterizations of the Landau symbols:
Proof. (a): First, suppose that (2.29) holds, and let $\lim_{x \to x_0} f(x) = g(x)$ for each $x \in D \setminus \{x_0\}$ with $|x - x_0| < \delta$ for $x_0 \in \mathbb{R}$, $x > \delta$ for $x_0 = \infty$, and $x < -\delta$ for $x_0 = -\infty$.

(b) $f(x) = o(g(x))$ for $x \to x_0$ if, and only if, for every $C > 0$, there exists $\delta > 0$ such that (2.31) holds.

Proof. (a): First, suppose that (2.29) holds, and let $M := \limsup_{x \to x_0} \left| \frac{f(x)}{g(x)} \right|$, $C := 1 + M$. Consider the case $x_0 \in \mathbb{R}$. If there were no $\delta > 0$ such that (2.31) holds, then, for each $\delta_n := 1/n$, $n \in \mathbb{N}$, there were some $x_n \in D \setminus \{x_0\}$ with $|x_n - x_0| < \delta_n$ and $y_n := \frac{f(x_n)}{g(x_n)} > C = 1 + M$, implying $\limsup_{n \to \infty} y_n \geq 1 + M > M$, in contradiction to (2.29). The cases $x_0 = \infty$ and $x_0 = -\infty$ are handled analogously (e.g., one can replace $\delta_n := 1/n$ by $\delta_n := n$ and $\delta_n := -n$, respectively). Conversely, if there exist $C, \delta > 0$ such that (2.31) holds true, then, for each sequence $(x_n)_{n \in \mathbb{N}}$ in $D \setminus \{x_0\}$ such that $\lim_{n \to \infty} x_n = x_0$, one has that the sequence $(y_n)_{n \in \mathbb{N}}$ with $y_n := \frac{f(x_n)}{g(x_n)}$ cannot have a cluster point larger than C (only finitely many of the x_n are not in the neighborhood of x_0 determined by δ). Thus $\limsup_{n \to \infty} y_n \leq C$, thereby implying (2.29).

Proposition 2.23. Again, we consider the setting of Def. 2.21. In addition, for use in some of the following assertions, we introduce functions $f_1, f_2, g_1, g_2 : D \to \mathbb{R}$, where we assume $g_1(x) \neq 0$ and $g_2(x) \neq 0$ for each $x \in D$.

(a) Suppose $|f| \leq |g|$ in some neighborhood of x_0, i.e. there exists $\epsilon > 0$ such that

$$|f(x)| \leq |g(x)| \quad \text{for each } x \in D \setminus \{x_0\} \quad \text{with} \quad \begin{cases} |x - x_0| < \epsilon & \text{for } x_0 \in \mathbb{R}, \\ x > \epsilon & \text{for } x_0 = \infty, \\ x < -\epsilon & \text{for } x_0 = -\infty. \end{cases}$$

Then $f(x) = O(g(x))$ for $x \to x_0$.

(b) $f(x) = O(f(x))$ for $x \to x_0$, but not $f(x) = o(f(x))$ for $x \to x_0$ (assuming $f \neq 0$).

(c) If $f(x) = O(g(x))$ (resp. $f(x) = o(g(x))$) for $x \to x_0$, and if $|f_1| \leq |f|$ and $|g| \leq |g_1|$ in some neighborhood of x_0 (i.e. if there exists $\epsilon > 0$ such that

$$|f_1(x)| \leq |f(x)|, \ |g(x)| \leq |g_1(x)| \quad \text{for each } x \in D \setminus \{x_0\} \quad \text{with} \quad \begin{cases} |x - x_0| < \epsilon & \text{for } x_0 \in \mathbb{R}, \\ x > \epsilon & \text{for } x_0 = \infty, \\ x < -\epsilon & \text{for } x_0 = -\infty. \end{cases},$$

then $f_1(x) = O(g_1(x))$ (resp. $f_1(x) = o(g_1(x))$) for $x \to x_0$.

(d) $f(x) = o(g(x))$ for $x \to x_0$ implies $f(x) = O(g(x))$ for $x \to x_0$.

(e) If $\alpha \in \mathbb{R} \setminus \{0\}$, then for $x \to x_0$:

\[
\begin{align*}
\alpha f(x) &= O(g(x)) \quad \Rightarrow \quad f(x) = O(g(x)), \\
\alpha f(x) &= o(g(x)) \quad \Rightarrow \quad f(x) = o(g(x)), \\
f(x) &= O(\alpha g(x)) \quad \Rightarrow \quad f(x) = O(g(x)), \\
f(x) &= o(\alpha g(x)) \quad \Rightarrow \quad f(x) = o(g(x)).
\end{align*}
\]

(f) For $x \to x_0$:

\[
\begin{align*}
f(x) &= O(g_1(x)) \quad \text{and} \quad g_1(x) = O(g_2(x)) \quad \Rightarrow \quad f(x) = O(g_2(x)), \\
f(x) &= o(g_1(x)) \quad \text{and} \quad g_1(x) = o(g_2(x)) \quad \Rightarrow \quad f(x) = o(g_2(x)).
\end{align*}
\]

(g) For $x \to x_0$:

\[
\begin{align*}
f_1(x) &= O(g(x)) \quad \text{and} \quad f_2(x) = O(g(x)) \quad \Rightarrow \quad f_1(x) + f_2(x) = O(g(x)), \\
f_1(x) &= o(g(x)) \quad \text{and} \quad f_2(x) = o(g(x)) \quad \Rightarrow \quad f_1(x) + f_2(x) = o(g(x)).
\end{align*}
\]

(h) For $x \to x_0$:

\[
\begin{align*}
f_1(x) &= O(g_1(x)) \quad \text{and} \quad f_2(x) = O(g_2(x)) \quad \Rightarrow \quad f_1(x)f_2(x) = O(g_1(x)g_2(x)), \\
f_1(x) &= o(g_1(x)) \quad \text{and} \quad f_2(x) = o(g_2(x)) \quad \Rightarrow \quad f_1(x)f_2(x) = o(g_1(x)g_2(x)).
\end{align*}
\]

(i) For $x \to x_0$:

\[
\begin{align*}
f(x) &= O(g_1(x)g_2(x)) \quad \Rightarrow \quad \frac{f(x)}{g_1(x)} = O(g_2(x)), \\
f(x) &= o(g_1(x)g_2(x)) \quad \Rightarrow \quad \frac{f(x)}{g_1(x)} = o(g_2(x)).
\end{align*}
\]

Proof. (a): The hypothesis implies

\[
\limsup_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| \leq \limsup_{x \to x_0} \left| \frac{g(x)}{g(x)} \right| = 1 < \infty.
\]

(b): If $f = g$, then

\[
\limsup_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = \lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 1.
\]

Since $0 \neq 1 < \infty$, one has $f(x) = O(f(x))$ for $x \to x_0$, but not $f(x) = o(f(x))$ for $x \to x_0$.
(c): The assertions follow, for example, by applying Prop. 2.22: Since \(\left| \frac{f_1(x)}{g_1(x)} \right| \leq \left| \frac{f(x)}{g(x)} \right| \) in the \(\epsilon \)-neighborhood of \(x_0 \) as given in the hypothesis, for \(f(x) = O(g(x)) \) (resp. \(f(x) = o(g(x)) \)), (2.31) is valid for \(f_1 \) and \(g_1 \) if one replaces \(\delta \) by \(\min\{\delta, \epsilon\} \) (where, for \(f(x) = o(g(x)) \), \(\delta \) does, in general, depend on \(C \)).

(d): If the limit in (2.30) exists, then it coincides with the limit superior. It is therefore immediate that (2.30) implies (2.29).

(e): Everything follows immediately from the fact that multiplication with \(\alpha \) and \(1/\alpha \), respectively, commutes with taking the limit and the limit superior in (2.30) and (2.29), respectively.

(f): If, for \(x \to x_0 \), \(f(x) = O(g_1(x)) \) and \(g_1(x) = O(g_2(x)) \), then

\[
0 \leq M_1 := \limsup_{x \to x_0} \frac{f(x)}{g_1(x)} < \infty \quad \text{and} \quad 0 \leq M_2 := \limsup_{x \to x_0} \frac{g_1(x)}{g_2(x)} < \infty,
\]

implying

\[
\limsup_{x \to x_0} \frac{f(x)}{g_2(x)} = \limsup_{x \to x_0} \left(\frac{f(x)}{g_1(x)} \right) \frac{g_1(x)}{g_2(x)} \leq M_1 M_2 < \infty.
\]

If, for \(x \to x_0 \), \(f(x) = o(g_1(x)) \) and \(g_1(x) = o(g_2(x)) \), then

\[
\lim_{x \to x_0} \frac{f(x)}{g_2(x)} = \lim_{x \to x_0} \frac{f(x)}{g_1(x)} \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)} = 0.
\]

(g): If, for \(x \to x_0 \), \(f_1(x) = O(g(x)) \) and \(f_2(x) = O(g(x)) \), then

\[
\limsup_{x \to x_0} \left| \frac{f_1(x) + f_2(x)}{g(x)} \right| \leq \limsup_{x \to x_0} \frac{f_1(x)}{g(x)} + \limsup_{x \to x_0} \frac{f_2(x)}{g(x)} < \infty.
\]

If, for \(x \to x_0 \), \(f_1(x) = o(g(x)) \) and \(f_2(x) = o(g(x)) \), then

\[
\lim_{x \to x_0} \left| \frac{f_1(x) + f_2(x)}{g(x)} \right| = \lim_{x \to x_0} \frac{f_1(x)}{g(x)} + \lim_{x \to x_0} \frac{f_2(x)}{g(x)} = 0.
\]

(h): If, for \(x \to x_0 \), \(f_1(x) = O(g_1(x)) \) and \(f_2(x) = O(g_2(x)) \), then

\[
\limsup_{x \to x_0} \left| \frac{f_1(x)f_2(x)}{g_1(x)g_2(x)} \right| \leq \limsup_{x \to x_0} \frac{f_1(x)}{g_1(x)} \limsup_{x \to x_0} \frac{f_2(x)}{g_2(x)} < \infty.
\]

If, for \(x \to x_0 \), \(f_1(x) = o(g_1(x)) \) and \(f_2(x) = o(g_2(x)) \), then

\[
\lim_{x \to x_0} \left| \frac{f_1(x)f_2(x)}{g_1(x)g_2(x)} \right| = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = 0.
\]

(i): Trivial, since \(\frac{f_1(x)}{g_1(x)} \cdot \frac{g_2(x)}{f_2(x)} = \frac{f_1(x)}{g_1(x)} \cdot \frac{g_1(x)}{f_2(x)} \cdot \frac{f_2(x)}{g_2(x)} \).
Example 2.24. (a) Consider a polynomial, i.e. \((a_0, \ldots, a_n) \in \mathbb{R}^{n+1}, n \in \mathbb{N}_0\), and

\[
P : \mathbb{R} \rightarrow \mathbb{R}, \quad P(x) := \sum_{i=0}^{n} a_i x^i, \quad a_n \neq 0.
\]

(2.38)

Then, for \(x \in \mathbb{R}\),

\[
P(x) = O(x^p) \quad \text{for} \quad x \rightarrow \infty \quad \iff \quad p \geq n, \quad (2.39a)
\]

\[
P(x) = o(x^p) \quad \text{for} \quad x \rightarrow \infty \quad \iff \quad p > n. \quad (2.39b)
\]

For each \(x \neq 0\):

\[
\frac{P(x)}{x^p} = \sum_{i=0}^{n} a_i x^{i-p}.
\]

(2.40)

Since

\[
\lim_{x \rightarrow \infty} x^{i-p} = \begin{cases}
\infty & \text{for } i - p > 0, \\
1 & \text{for } i = p, \\
0 & \text{for } i - p < 0,
\end{cases}
\]

(2.41)

(2.40) implies (2.39). Thus, in particular, for \(x \rightarrow \infty\), each constant function is big \(O\) of 1: \(a_0 = O(1)\).

(b) In the situation of Ex. 2.19(b), we found that the relative error \(e_r\) of rounding could be estimated according to

\[
e_r \leq 0.05 + 1.05 \max \{|\epsilon_l(x)|, |\epsilon_l(y)|\}.
\]

Introducing \(\max \{|\epsilon_l(x)|, |\epsilon_l(y)|\}\) as a new variable \(\alpha \in \mathbb{R}_0^+\), one can restate the result as \(e_r(\alpha)\) is at most \(O(\alpha)\) (for \(\alpha \rightarrow \alpha_0\) for every \(\alpha_0 > 0\)).

Example 2.25. Recall the notion of differentiability: If \(G\) is an open subset of \(\mathbb{R}^n\), \(n \in \mathbb{N}\), \(\xi \in G\), then \(f : G \rightarrow \mathbb{R}^m, m \in \mathbb{N}\), is called differentiable in \(\xi\) if, and only if, there exists a linear map \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m\) and another (not necessarily linear) map \(r : \mathbb{R}^n \rightarrow \mathbb{R}^m\) such that

\[
f(\xi + h) - f(\xi) = L(h) + r(h)
\]

(2.42a)

for each \(h \in \mathbb{R}^n\) with sufficiently small \(\|h\|_2\), and

\[
\lim_{h \rightarrow 0} \frac{r(h)}{\|h\|_2} = 0.
\]

(2.42b)

Now, using the Landau symbol \(o\), (2.42b) can be equivalently expressed as

\[
\|r(h)\|_2 = o(\|h\|_2) \quad \text{for } \|h\|_2 \rightarrow 0.
\]

(2.42c)
Example 2.26. Let $I \subseteq \mathbb{R}$ be an open interval and $a, x \in I$, $x \neq a$. If $m \in \mathbb{N}_0$ and $f \in C^{m+1}(I)$, then

$$f(x) = T_m(x, a) + R_m(x, a), \quad (2.43a)$$

where

$$T_m(x, a) := \sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots + \frac{f^{(m)}(a)}{m!} (x-a)^m \quad (2.43b)$$

is the mth Taylor polynomial and

$$R_m(x, a) := \frac{f^{(m+1)}(\theta)}{(m+1)!} (x-a)^{m+1} \quad \text{with some suitable } \theta \in [x, a] \quad (2.43c)$$

is the Lagrange form of the remainder term. Since the continuous function $f^{(m+1)}$ is bounded on each compact interval $[a, y]$, $y \in I$, (2.43) imply

$$f(x) - T_m(x, a) = O((x-a)^{m+1}) \quad (2.44)$$

for $x \to x_0$ for each $x_0 \in I$.

2.4 Operator Norms and Natural Matrix Norms

When working in more general vector spaces than \mathbb{R}, errors are measured by more general norms than the absolute value (we already briefly encountered this in Example 2.25). A special class of norms of importance to us is the class of norms defined on linear maps between normed vector spaces. In terms of Numerical Analysis, we will mostly be interested in linear maps between \mathbb{R}^n and \mathbb{R}^m, i.e. in linear maps given by real matrices. However, introducing the relevant notions for linear maps between general normed vector spaces does not provide much additional difficulty, and, hopefully, even some extra clarity.

Definition 2.27. Let $A : X \to Y$ be a linear map between two normed vector spaces $(X, \| \cdot \|_X)$ and $(Y, \| \cdot \|_Y)$. Then A is called bounded if, and only if, A maps bounded sets to bounded sets, i.e. if, and only if, $A(B)$ is a bounded subset of Y for each bounded $B \subseteq X$. The vector space of all bounded linear maps between X and Y is denoted by $\mathcal{L}(X,Y)$.

Definition 2.28. Let $A : X \to Y$ be a linear map between two normed vector spaces $(X, \| \cdot \|_X)$ and $(Y, \| \cdot \|_Y)$. The number

$$\|A\| := \sup \left\{ \frac{\|Ax\|_Y}{\|x\|_X} : x \in X, \ x \neq 0 \right\}$$

$$= \sup \left\{ \|Ax\|_Y : x \in X, \ \|x\|_X = 1 \right\} \in [0, \infty] \quad (2.45)$$

is called the operator norm of A induced by $\| \cdot \|_X$ and $\| \cdot \|_Y$ (strictly speaking, the term operator norm is only justified if the value is finite, but it is often convenient to use the term in the generalized way defined here).
In the special case, where \(X = \mathbb{R}^n, Y = \mathbb{R}^m \), and \(A \) is given via a real \(m \times n \) matrix, the operator norm is also called a \textit{natural matrix norm}.

From now on, the space index of a norm will usually be suppressed, i.e. we write just \(\| \cdot \| \) instead of both \(\| \cdot \|_X \) and \(\| \cdot \|_Y \).

Remark 2.29. According to Th. B.1 of the Appendix, for a linear map \(A : X \rightarrow Y \) between two normed vector spaces \(X \) and \(Y \), the following statements are equivalent:

(a) \(A \) is bounded.

(b) \(\| A \| < \infty \).

(c) \(A \) is Lipschitz continuous.

(d) \(A \) is continuous.

(e) There is \(x_0 \in X \) such that \(A \) is continuous at \(x_0 \).

For linear maps between finite-dimensional spaces, the above equivalent properties always hold: Each linear map \(A : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \((n, m) \in \mathbb{N}^2\), is continuous (this follows, for example, from the fact that each such map is (trivially) differentiable, and every differentiable map is continuous). In particular, each linear map \(A : \mathbb{R}^n \rightarrow \mathbb{R}^m \), has all the above equivalent properties.

Theorem 2.30. Let \(X \) and \(Y \) be normed vector spaces.

(a) The operator norm does, indeed, constitute a norm on the set of bounded linear maps \(\mathcal{L}(X, Y) \).

(b) If \(A \in \mathcal{L}(X, Y) \), then \(\| A \| \) is the smallest Lipschitz constant for \(A \), i.e. \(\| A \| \) is a Lipschitz constant for \(A \) and \(\| Ax - Ay \| \leq L \| x - y \| \) for each \(x, y \in X \) implies \(\| A \| \leq L \).

Proof. (a): If \(A = 0 \), then, in particular, \(Ax = 0 \) for each \(x \in X \) with \(\| x \| = 1 \), implying \(\| A \| = 0 \). Conversely, \(\| A \| = 0 \) implies \(Ax = 0 \) for each \(x \in X \) with \(\| x \| = 1 \). But then \(Ax = \| x \| A(x/\| x \|) = 0 \) for every \(0 \neq x \in X \), i.e. \(A = 0 \). Thus, the operator norm is positive definite. If \(A \in \mathcal{L}(X, Y) \), \(\lambda \in \mathbb{R} \), and \(x \in X \), then

\[
\| (\lambda A)x \| = \| \lambda (Ax) \| = |\lambda| \| Ax \|, \tag{2.46}
\]

yielding

\[
\| \lambda A \| = \sup \{ \| (\lambda A)x \| : x \in X, \| x \| = 1 \} = \sup \{ |\lambda| \| Ax \| : x \in X, \| x \| = 1 \} = |\lambda| \| A \|, \tag{2.47}
\]
2 ROUNDING AND ERROR ANALYSIS

showing that the operator norm is homogeneous of degree 1. Finally, if \(A, B \in \mathcal{L}(X, Y) \)
and \(x \in X \), then
\[
\|(A + B)x\| = \|Ax + Bx\| \leq \|Ax\| + \|Bx\|,
\] (2.48)
yielding
\[
\|A + B\| = \sup \{ \|(A + B)x\| : x \in X, \|x\| = 1 \}
\leq \sup \{ \|Ax\| + \|Bx\| : x \in X, \|x\| = 1 \}
\leq \sup \{ \|Ax\| : x \in X, \|x\| = 1 \} + \sup \{ \|Bx\| : x \in X, \|x\| = 1 \}
= \|A\| + \|B\|,
\] (2.49)
showing that the operator norm also satisfies the triangle inequality, thereby completing
the verification that it is, indeed, a norm.

(b): To see that \(\|A\| \) is a Lipschitz constant for \(A \), we have to show
\[
\|Ax - Ay\| \leq \|A\| \|x - y\| \text{ for each } x, y \in X.
\] (2.50)
For \(x = y \), there is nothing to prove. Thus, let \(x \neq y \). One computes
\[
\frac{\|Ax - Ay\|}{\|x - y\|} = \left\| A \left(\frac{x - y}{\|x - y\|} \right) \right\| \leq \|A\|
\]
as \(\| \frac{x - y}{\|x - y\|} \| = 1 \), thereby establishing (2.50). Now let \(L \in \mathbb{R}_+^\circ \) be such that \(\|Ax - Ay\| \leq L \|x - y\| \) for each \(x, y \in X \). Specializing to \(y = 0 \) and \(\|x\| = 1 \) implies \(\|Ax\| \leq L \|x\| = L \), showing \(\|A\| \leq L \).

Lemma 2.31. If \(\text{Id} : X \rightarrow X \), \(\text{Id}(x) := x \), is the identity map on a normed vector space \(X \), then \(\|\text{Id}\| = 1 \) (in particular, the operator norm of a unit matrix is always 1).

Caveat: In principle, one can consider two different norms on \(X \) simultaneously, and then the operator norm of the identity can differ from 1.

Proof. If \(\|x\| = 1 \), then \(\|\text{Id}(x)\| = \|x\| = 1 \).

Lemma 2.32. Let \(X, Y, Z \) be normed vector spaces and consider linear maps \(A \in \mathcal{L}(X, Y) \), \(B \in \mathcal{L}(Y, Z) \). Then
\[
\|BA\| \leq \|B\| \|A\|.
\] (2.51)

Proof. Let \(x \in X \) with \(\|x\| = 1 \). If \(Ax = 0 \), then \(\|B(A(x))\| = 0 \leq \|B\| \|A\| \). If \(Ax \neq 0 \), then one estimates
\[
\|B(Ax)\| = \|Ax\| \left\| B \left(\frac{Ax}{\|Ax\|} \right) \right\| \leq \|A\| \|B\|,
\]
thereby establishing the case.
Example 2.33. Let \(m, n \in \mathbb{N} \) and let \(A : \mathbb{R}^n \to \mathbb{R}^m \) be the linear map given by the \(m \times n \) matrix \((a_{ij})_{(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}}\). Then

\[
\| A \|_\infty := \max \left\{ \sum_{j=1}^{n} |a_{ij}| : i \in \{1,\ldots,m\} \right\} \tag{2.52a}
\]

is called the row sum norm of \(A \), and

\[
\| A \|_1 := \max \left\{ \sum_{i=1}^{m} |a_{ij}| : j \in \{1,\ldots,n\} \right\} \tag{2.52b}
\]

is called the column sum norm of \(A \). It is an exercise to show that \(\| A \|_\infty \) is the operator norm induced if \(\mathbb{R}^n \) and \(\mathbb{R}^m \) are endowed with the \(\infty \)-norm, and \(\| A \|_1 \) is the operator norm induced if \(\mathbb{R}^n \) and \(\mathbb{R}^m \) are endowed with the 1-norm.

Notation 2.34. Let \(m, n \in \mathbb{N} \) and let \(A = (a_{ij})_{(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}} \) be a real \(m \times n \) matrix.

(a) By \(A^* \) we denote the adjoint matrix of \(A \), and by \(A^t := (a_{ij})_{(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,m\}} \) (an \(n \times m \) matrix) we denote the transpose of \(A \). Recall that, for real matrices, \(A^* \) and \(A^t \) are identical, but for complex matrices, one has \(A^* = (\overline{a}_{ij})_{(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,m\}} \), where \(\overline{a}_{ij} \) is the complex conjugate of \(a_{ij} \).

(b) If \(m = n \), then

\[
\text{tr } A := \sum_{i=1}^{n} a_{ii}
\]

denotes the trace of \(A \).

Remark 2.35. Let \(m, n \in \mathbb{N} \) and let \(A = (a_{ij})_{(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}} \) be a real \(m \times n \) matrix. Then:

\[
\text{tr}(A^*A) = \text{tr} \left(\sum_{k=1}^{m} a_{ki}a_{kj} \right) = \sum_{i=1}^{n} \sum_{k=1}^{m} |a_{ki}|^2, \tag{2.53a}
\]

\[
\text{tr}(AA^*) = \text{tr} \left(\sum_{k=1}^{n} a_{ik}a_{jk} \right) = \sum_{i=1}^{m} \sum_{k=1}^{n} |a_{ik}|^2. \tag{2.53b}
\]

Since the sums in (2.53a) and (2.53b) are identical, we have shown

\[
\text{tr}(A^*A) = \text{tr}(AA^*). \tag{2.54}
\]

Definition and Remark 2.36. Let \(m, n \in \mathbb{N} \). If \(A \) is a real \(m \times n \) matrix, then let \(\| A \|_2 \) denote the operator norm induced by the Euclidean norms on \(\mathbb{R}^m \) and \(\mathbb{R}^n \). This norm is also known as the spectral norm of \(A \) (cf. Th. 2.42 below).
Caveat: \(\|A\|_2 \) is not(!) the 2-norm on \(\mathbb{R}^{mn} \), which is known as the Frobenius norm or the Hilbert-Schmidt norm (see Example B.9). As it turns out, for \(n, m > 1 \), the Frobenius norm is not induced by norms on \(\mathbb{R}^m \) and \(\mathbb{R}^n \) at all (for a proof see Appendix B).

Unfortunately, there is no formula as simple as the ones in (2.52) for the computation of the operator norm \(\|A\|_2 \) induced by the Euclidean norms. However, \(\|A\|_2 \) is often important, which is related to the fact that the Euclidean norm is induced by the Euclidean scalar product. We will see below, that the value of \(\|A\|_2 \) is related to the eigenvalues of \(A^*A \).

We recall three important notions and then two important results from Linear Algebra:

Definition 2.37. Let \(n \in \mathbb{N} \) and let \(A = (a_{ij}) \) be a real \(n \times n \) matrix.

(a) \(A \) is called **symmetric** if, and only if, \(A = A^t \), i.e. if, and only if, \(a_{ij} = a_{ji} \) for each \((i, j) \in \{1, \ldots, n\}^2\).

(b) \(A \) is called **positive semidefinite** if, and only if, \(x^tAx \geq 0 \) for each \(x \in \mathbb{R}^n \).

(c) \(A \) is called **positive definite** if, and only if, \(A \) is positive semidefinite and \(x^tAx = 0 \iff x = 0 \), i.e. if, and only if, \(x^tAx > 0 \) for each \(0 \neq x \in \mathbb{R}^n \).

Theorem 2.38. If \(n \in \mathbb{N} \) and \(A \) is a real \(n \times n \) matrix, then \(A \) has precisely \(n \), in general complex, eigenvalues \(\lambda_i \in \mathbb{C} \) if every eigenvalue is counted with its (algebraic) multiplicity (i.e. the multiplicity of the corresponding zero of the characteristic polynomial \(\chi_A(\lambda) = \det(\lambda \text{Id} - A) \) of \(A \) – it equals the geometric multiplicity (i.e. the dimension of the eigenspace \(\ker(\lambda_i \text{Id} - A) \)) if, and only if, \(A \) is diagonalizable). \(\blacksquare \)

Theorem 2.39. If \(n \in \mathbb{N} \) and \(A \) is a real, symmetric, and positive semidefinite \(n \times n \) matrix, then all eigenvalues \(\lambda_i \) of \(A \) are real and nonnegative: \(\lambda_i \in \mathbb{R}^+_0 \). Moreover, there is an orthonormal basis \((v_1, \ldots, v_n)\) of \(\mathbb{R}^n \) such that \(v_i \) is an eigenvector for \(\lambda_i \), i.e., in particular,

\[
Av_i = \lambda_i v_i,
\]

\[
v_i^tv_j = v_i \cdot v_j = \begin{cases}
0 & \text{for } i \neq j, \\
1 & \text{for } i = j
\end{cases}
\]

for each \(i, j \in \{1, \ldots, n\} \).

\(\blacksquare \)

Lemma 2.40. Let \(m, n \in \mathbb{N} \) and let \(A = (a_{ij}) \) be a real \(m \times n \) matrix. Then \(A^*A \) is a symmetric and positive semidefinite \(n \times n \) matrix, whereas \(AA^* \) is a symmetric \(m \times m \) matrix.

Proof. Since \((A^*)^* = A\), it suffices to consider \(A^*A \). That \(A^*A \) is a symmetric \(n \times n \) matrix is immediately evident from the representation given in (2.53a) (since \(a_{kj}a_{kj} = a_{kj}a_{kj} \)). Moreover, if \(x \in \mathbb{R}^n \), then \(x^tA^*Ax = (Ax)^t(Ax) = \|Ax\|_2^2 \geq 0 \), showing that \(A^*A \) is positive semidefinite. \(\blacksquare \)
Definition 2.41. In view of Th. 2.38, we define, for each \(n \in \mathbb{N} \) and each real \(n \times n \) matrix \(A \):

\[
r(A) := \max \{ |\lambda| : \lambda \in \mathbb{C} \text{ and } \lambda \text{ is eigenvalue of } A \}.
\] (2.56)

The number \(r(A) \) is called the spectral radius of \(A \).

Theorem 2.42. Let \(m, n \in \mathbb{N} \). If \(A \) is a real \(m \times n \) matrix, then its spectral norm \(\| A \|_2 \) (i.e. the operator norm induced by the Euclidean norms on \(\mathbb{R}^m \) and \(\mathbb{R}^n \)) satisfies

\[
\| A \|_2 = \sqrt{r(A^*A)}.
\] (2.57a)

If \(m = n \) and \(A \) is symmetric (i.e. \(A^* = A \)), then \(\| A \|_2 \) is also given by the following simpler formula:

\[
\| A \|_2 = r(A).
\] (2.57b)

Proof. According to Lem. 2.40, \(A^*A \) is a symmetric and positive semidefinite \(n \times n \) matrix. Then Th. 2.39 yields real nonnegative eigenvalues \(\lambda_1, \ldots, \lambda_n \geq 0 \) and a corresponding orthonormal basis \((v_1, \ldots, v_n)\) of eigenvectors satisfying (2.55) with \(A \) replaced by \(A^*A \), in particular,

\[
A^*Av_i = \lambda_i v_i \quad \text{for each } i \in \{1, \ldots, n\}.
\] (2.58)

As \((v_1, \ldots, v_n)\) is a basis of \(\mathbb{R}^n \), for each \(x \in \mathbb{R}^n \), there are numbers \(x_1, \ldots, x_n \in \mathbb{R} \) such that \(x = \sum_{i=1}^n x_i v_i \). Thus, one computes

\[
\| Ax \|_2^2 = (Ax) \cdot (Ax) = x^t A^*A x = \left(\sum_{i=1}^n x_i v_i \right) \cdot \left(\sum_{i=1}^n x_i \lambda_i v_i \right) = \sum_{i=1}^n \lambda_i x_i^2 \leq r(A^*A) \sum_{i=1}^n x_i^2 = r(A^*A) \| x \|_2^2
\]

proving \(\| A \|_2 \leq \sqrt{r(A^*A)} \). To verify the remaining inequality, let \(\lambda := r(A^*A) \) be the largest of the nonnegative \(\lambda_i \), and let \(v := v_i \) be the corresponding eigenvector from the orthonormal basis. Then \(\| v \|_2 = 1 \) and choosing \(x = v \) in (2.59) yields \(\| Av \|_2^2 = r(A^*A) \), thereby proving \(\| A \|_2 \geq \sqrt{r(A^*A)} \) and completing the proof of (2.57a). It remains to consider the case where \(A = A^* \). Then \(A^*A = A^2 \) and since

\[
Av = \lambda v \Rightarrow A^2v = \lambda^2 v,
\]

Th. 2.38 implies

\[
r(A^2) = r(A)^2.
\]

Thus,

\[
\| A \|_2 = \sqrt{r(A^*A)} = \sqrt{r(A^2)} = r(A),
\]

thereby establishing the case. \(\blacksquare \)
Caveat 2.43. It is not admissible to use the simpler formula (2.57b) for nonsymmetric \(n \times n \) matrices: For example, for \(A := \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \), one has
\[
A^*A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix},
\]
such that \(1 = r(A) \neq \sqrt{2} = \sqrt{r(A^*A)} = \|A\|_2 \).

Lemma 2.44. Let \(n \in \mathbb{N} \). Then
\[
\|y\|_2 = \max \left\{ v \cdot y : v \in \mathbb{R}^n \text{ and } \|v\|_2 = 1 \right\} \text{ for each } y \in \mathbb{R}^n. \tag{2.60}
\]

Proof. Let \(v \in \mathbb{R}^n \) such that \(\|v\|_2 = 1 \). One estimates, using the Cauchy-Schwarz inequality [Phi16b, (1.41)],
\[
v \cdot y \leq |v \cdot y| \leq \|v\|_2 \|y\|_2 = \|y\|_2. \tag{2.61a}
\]
Note that (2.60) is trivially true for \(y = 0 \). If \(y \neq 0 \), then letting \(w := y/\|y\|_2 \) yields
\[
\|w\|_2 = 1 \text{ and } w \cdot y = y \cdot y/\|y\|_2 = \|y\|_2. \tag{2.61b}
\]
Together, (2.61a) and (2.61b) establish (2.60). \[\Box \]

Proposition 2.45. Let \(m,n \in \mathbb{N} \). If \(A \) is a real \(m \times n \) matrix, then \(\|A\|_2 = \|A^*A\|_2 \) and, in particular, \(r(A^*A) = r(AA^*) \). This allows to use the simpler (smaller) matrix of \(A^*A \) and \(AA^* \) to compute \(\|A\|_2 \) (see Example 2.47 below).

Proof. One calculates
\[
\|A\|_2 = \max \left\{ \|Ax\|_2 : x \in \mathbb{R}^n \text{ and } \|x\|_2 = 1 \right\}
= \max \left\{ v \cdot Ax : v, x \in \mathbb{R}^n \text{ and } \|v\|_2 = \|x\|_2 = 1 \right\}
= \max \left\{ (A^*v) \cdot x : v, x \in \mathbb{R}^n \text{ and } \|v\|_2 = \|x\|_2 = 1 \right\}
= \max \left\{ \|A^*v\|_2 : v \in \mathbb{R}^n \text{ and } \|v\|_2 = 1 \right\}
= \|A^*\|_2,
\]
proving the proposition. \[\Box \]

Remark 2.46. One can actually show more than we did in Prop. 2.45: The eigenvalues (including multiplicities) of \(A^*A \) and \(AA^* \) are always identical, except that the larger of the two matrices (if any) can have additional eigenvalues of value 0.

Example 2.47. Consider \(A := \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \). One obtains
\[
AA^* = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad A^*A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]
So one would tend to compute the eigenvalues using \(AA^* \). One finds \(\lambda_1 = 1 \) and \(\lambda_2 = 3 \). Thus, \(r(AA^*) = 3 \) and \(\|A\|_2 = \sqrt{3} \).
2 ROUNDING AND ERROR ANALYSIS

2.5 Condition of a Problem

We are now ready to exploit our acquired knowledge of operator norms to error analysis. The general setting is the following: The input is given in some normed vector space X (e.g. \mathbb{R}^n) and the output is likewise a vector lying in some normed vector space Y (e.g. \mathbb{R}^m). The solution operator, i.e. the map f between input and output, is some function f defined on an open subset of X. The goal in this section is to study the behavior of the output given small changes (errors) of the input.

Definition 2.48. Let X and Y be normed vector spaces, $U \subseteq X$ open, and $f : U \rightarrow Y$. Fix $x \in U \setminus \{0\}$ such that $f(x) \neq 0$ and $\delta > 0$ such that $B_\delta(x) = \{ \tilde{x} \in X : \|\tilde{x} - x\| < \delta \} \subseteq U$. We call (the problem represented by the solution operator) f well-conditioned in $B_\delta(x)$ if, and only if, there exists $K \geq 0$ such that

$$\|f(\tilde{x}) - f(x)\| \leq K \|\tilde{x} - x\| \quad \text{for every } \tilde{x} \in B_\delta(x). \quad (2.62)$$

If f is well-conditioned in $B_\delta(x)$, then we define $K(\delta) := K(f,x,\delta)$ to be the smallest number $K \in \mathbb{R}^+_0$ such that (2.62) is valid. If there exists $\delta > 0$ such that f is well-conditioned in $B_\delta(x)$, then f is called well-conditioned at x.

Definition and Remark 2.49. We remain in the situation of Def. 2.48 and notice that $0 < \alpha \leq \beta \leq \delta$ implies $B_\alpha(x) \subseteq B_\beta(x) \subseteq B_\delta(x)$, and, thus $0 \leq K(\alpha) \leq K(\beta) \leq K(\delta)$. In consequence, the following definition makes sense if f is well-conditioned at x:

$$k_{\text{rel}} := k_{\text{rel}}(f,x) := \lim_{\alpha \rightarrow 0} K(\alpha). \quad (2.63)$$

The number $k_{\text{rel}} \in \mathbb{R}^+_0$ is called the relative condition of (the problem represented by the solution operator) f at x.

Remark 2.50. The smaller k_{rel}, the more well-behaved is the problem in the vicinity of x, where stability corresponds more or less to $k_{\text{rel}} < 100$.

Remark 2.51. Let us compare the newly introduced notion of f being well-conditioned with some other regularity notions for f. For example, if f is Lipschitz continuous in $B_\delta(x)$, then f is well-conditioned in $B_\delta(x)$, but the converse is not true (exercise). On the other hand, (2.62) does imply continuity in x, and, once again, the converse is not true (another exercise). In particular, a problem can be well-posed in the sense of Def. 1.5 without being well-conditioned. On the other hand, if f is everywhere well-conditioned, then it is everywhere continuous, and, thus, well-posed. In that sense well-conditionedness is stronger than well-posedness. However, one should also note that we defined well-conditionedness as a local property and we didn’t allow $x = 0$ and $f(x) = 0$, whereas well-posedness was defined as a global property.

Theorem 2.52. Let $m,n \in \mathbb{N}$, let $U \subseteq \mathbb{R}^n$ be open, and assume that $f : U \rightarrow \mathbb{R}^m$ is continuously differentiable: $f \in C^1(U,\mathbb{R}^m)$. If $0 \neq x \in U$ and $f(x) \neq 0$, then f is well-conditioned at x and

$$k_{\text{rel}} = \|Df(x)\| \frac{\|x\|}{\|f(x)\|}, \quad (2.64)$$
where \(Df(x) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is the (total) derivative of \(f \) in \(x \) (a linear map represented by the Jacobian \(J_f(x) \)). In (2.64), any norm on \(\mathbb{R}^n \) and \(\mathbb{R}^m \) will work as long as \(\|Df(x)\| \) is the corresponding induced operator norm.

Proof. Choose \(\delta > 0 \) sufficiently small such that \(\overline{B}_\delta(x) \subseteq U \). Since \(f \in C^1(U, \mathbb{R}^m) \), we can apply Taylor’s theorem. Recall that its lowest order version with the remainder term in integral form states that, for each \(h \in B_\delta(0) \) (which implies \(x + h \in B_\delta(x) \)), the following holds (cf. [Phi16b, Th. 4.44], which can be applied to the components \(f_1, \ldots, f_m \) of \(f \)):

\[
f(x + h) = f(x) + \int_0^1 Df(x + th)(h) \, dt.
\]

(2.65)

If \(\tilde{x} \in B_\delta(x) \), then we can let \(h := \tilde{x} - x \), which permits to restate (2.65) in the form

\[
f(\tilde{x}) - f(x) = \int_0^1 Df((1-t)x + t\tilde{x})(\tilde{x} - x) \, dt.
\]

(2.66)

This allows to estimate the norm as follows:

\[
\|f(\tilde{x}) - f(x)\| = \left\| \int_0^1 Df((1-t)x + t\tilde{x})(\tilde{x} - x) \, dt \right\|
\]

Th. C.5

\[
\leq \int_0^1 \left\| Df((1-t)x + t\tilde{x})(\tilde{x} - x) \right\| \, dt
\]

\[
\leq \int_0^1 \left\| Df((1-t)x + t\tilde{x}) \right\| \|\tilde{x} - x\| \, dt
\]

\[
\leq \sup \left\{ \|Df(y)\| : y \in B_\delta(x) \right\} \|\tilde{x} - x\|
\]

\[
= S(\delta)\|\tilde{x} - x\|
\]

(2.67)

with \(S(\delta) := \sup \left\{ \|Df(y)\| : y \in B_\delta(x) \right\} \). This implies

\[
\frac{\|f(\tilde{x}) - f(x)\|}{\|f(x)\|} \leq \frac{\|x\|}{\|f(x)\|} S(\delta) \frac{\|\tilde{x} - x\|}{\|x\|}
\]

and, therefore,

\[
K(\delta) \leq \frac{\|x\|}{\|f(x)\|} S(\delta).
\]

(2.68)

The hypothesis that \(f \) is continuously differentiable implies \(\lim_{y \rightarrow x} Df(y) = Df(x) \), which implies \(\lim_{y \rightarrow x} \|Df(y)\| = \|Df(x)\| \) (continuity of the norm, cf. [Phi16b, Ex. 2.6(a)]), which, in turn, implies \(\lim_{\delta \rightarrow 0} S(\delta) = \|Df(x)\| \). Since, also, \(\lim_{\delta \rightarrow 0} K(\delta) = k_{\text{rel}} \), (2.68) yields

\[
k_{\text{rel}} \leq \|Df(x)\| \frac{\|x\|}{\|f(x)\|}.
\]

(2.69)

In still remains to prove the inverse inequality. To that end, choose \(v \in \mathbb{R}^n \) such that \(\|v\| = 1 \) and

\[
\|Df(x)(v)\| = \|Df(x)\|
\]

(2.70)
such a vector v must exist due to the fact that the continuous function $y \mapsto \|Df(x)(y)\|$ must attain its max on the compact unit sphere $S_1(0)$ – note that this argument does not work in infinite-dimensional spaces, where $S_1(0)$ is not compact. For $0 < \epsilon < \delta$ consider $\tilde{x} := x + \epsilon v$. Then $\|\tilde{x} - x\| = \epsilon < \delta$, i.e. $\tilde{x} \in B_\delta(x)$. In particular, \tilde{x} is admissible in (2.66), which provides

$$f(\tilde{x}) - f(x) = \epsilon \int_0^1 Df((1 - t)x + t\tilde{x})(v) \, dt$$

$$= \epsilon Df(x)(v) + \epsilon \int_0^1 \left(Df((1 - t)x + t\tilde{x}) - Df(x) \right)(v) \, dt.$$

(2.71)

Once again using $\|\tilde{x} - x\| = \epsilon$ as well as the triangle inequality in the form $\|a + b\| \geq \|a\| - \|b\|$, we obtain from (2.71) and (2.70):

$$\left\| \frac{f(\tilde{x}) - f(x)}{\|f(x)\|} \right\| \geq \frac{\|x\|}{\|f(x)\|} \left(\left\| Df(x) \right\| - \int_0^1 \left\| Df((1 - t)x + t\tilde{x}) - Df(x) \right\| \, dt \right) \frac{\|\tilde{x} - x\|}{\|x\|}.$$ \hspace{1cm} (2.72)

Thus,

$$K(\epsilon) \geq \frac{\|x\|}{\|f(x)\|} \left(\left\| Df(x) \right\| - T(\epsilon) \right),$$

(2.73)

where

$$T(\epsilon) := \sup \left\{ \int_0^1 \left\| Df((1 - t)x + t\tilde{x}) - Df(x) \right\| \, dt : \tilde{x} \in \overline{B}_\epsilon(x) \right\}.$$ \hspace{1cm} (2.74)

Since Df is continuous in x, for each $\alpha > 0$, there is $\epsilon > 0$ such that $\|y - x\| \leq \epsilon$ implies $\|Df(y) - Df(x)\| < \alpha$. Thus, since $\|(1 - t)x + t\tilde{x} - x\| = t \|\tilde{x} - x\| \leq \epsilon$ for $\tilde{x} \in \overline{B}_\epsilon(x)$ and $t \in [0, 1]$, one obtains

$$T(\epsilon) \leq \int_0^1 \alpha \, dt = \alpha,$$

implying

$$\lim_{\epsilon \to 0} T(\epsilon) = 0.$$ \hspace{1cm} (2.75)

In particular, we can take limits in (2.73) to get

$$k_{rel} \geq \frac{\|x\|}{\|f(x)\|} \left\| Df(x) \right\|.$$ \hspace{1cm} (2.76)

Finally, (2.75) together with (2.69) completes the proof of (2.64). \hspace{1cm} \blacksquare

Example 2.53. (a) Let us investigate the condition of the problem of multiplication, by considering

$$f : \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) := xy, \quad Df(x, y) = (y, x).$$ \hspace{1cm} (2.76)
Using the Euclidean norm on \mathbb{R}^2, one obtains (exercise) for each $(x, y) \in \mathbb{R}^2$ such that $xy \neq 0$,

$$k_{\text{rel}}(x, y) = \frac{|x|}{|y|} + \frac{|y|}{|x|}. \quad (2.77)$$

Thus, we see that the relative condition explodes if $|x| \gg |y|$ or $|x| \ll |y|$. Since one can also show (exercise) that f is well-conditioned in $B_\delta(x, y)$ for each $\delta > 0$, we see that multiplication is numerically stable if, and only if, $|x|$ and $|y|$ are roughly of the same order of magnitude.

(b) Analogous to (a), we now investigate division, i.e.

$$g : \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \rightarrow \mathbb{R}, \quad g(x, y) := \frac{x}{y}, \quad Dg(x, y) = \left(\frac{1}{y^2} - \frac{x}{y^2}\right). \quad (2.78)$$

Once again using the Euclidean norm on \mathbb{R}^2, one obtains from (2.64) that, for each $(x, y) \in \mathbb{R}^2$ such that $xy \neq 0$,

$$k_{\text{rel}}(x, y) = \|Dg(x, y)\|_2 \left\|\frac{(x, y)}{g(x, y)}\right\|_2 = \frac{|y|}{|x|} \sqrt{x^2 + y^2} \sqrt{\frac{1}{y^2} + \frac{x^2}{y^2}}$$

$$= \frac{1}{|x|} \sqrt{x^2 + y^2} \sqrt{1 + \frac{x^2}{y^2}} = \frac{x^2 + y^2}{|x||y|} = \frac{|x|}{|y|} + \frac{|y|}{|x|}. \quad (2.79)$$

i.e. the relative condition is the same as for multiplication. In particular, division also becomes unstable if $|x| \gg |y|$ or $|x| \ll |y|$, while $k_{\text{rel}}(x, y)$ remains small if $|x|$ and $|y|$ are of the same order of magnitude. However, we now again investigate if g is well-conditioned in $B_\delta(x, y)$, $\delta > 0$, and here we find an important difference between division and multiplication. For $\delta \geq |y|$, it is easy to see that g is not well-conditioned in $B_\delta(x, y)$: For each $n \in \mathbb{N}$, let $z_n := (x, \frac{y}{n})$. Then $\|(x, y) - z_n\|_2 = (1 - \frac{1}{n})|y| < |y| \leq \delta$, but

$$\left|\frac{x}{y} - \frac{xn}{y}\right| = (n - 1)\left|\frac{x}{y}\right| \rightarrow \infty \quad \text{for } n \rightarrow \infty.$$

For $0 < \delta < |y|$, the result is different: Suppose $|\tilde{y}| \leq |y| - \delta$. Then

$$\|(x, y) - (\tilde{x}, \tilde{y})\|_2 \geq |\tilde{y} - y| \geq |y| - |\tilde{y}| \geq \delta.$$

Thus, $(\tilde{x}, \tilde{y}) \in B_\delta(x, y)$ implies $|\tilde{y}| > |y| - \delta$. In consequence, one estimates, for each $(\tilde{x}, \tilde{y}) \in B_\delta(x, y),

$$|g(x, y) - g(\tilde{x}, \tilde{y})| = \left|\frac{x}{y} - \frac{\tilde{x}}{\tilde{y}}\right| \leq \left|\frac{x}{y} - \frac{x}{\tilde{y}}\right| + \left|\frac{x}{\tilde{y}} - \frac{\tilde{x}}{\tilde{y}}\right| = \frac{|x|}{|y|} |y - \tilde{y}| + \frac{1}{|y|} |x - \tilde{x}|$$

$$\leq \max\left\{\frac{|x|}{|y|(|y| - \delta)}, \frac{1}{|y| - \delta}\right\} \|(x, y) - (\tilde{x}, \tilde{y})\|_1$$

$$\leq C \max\left\{\frac{|x|}{|y|(|y| - \delta)}, \frac{1}{|y| - \delta}\right\} \|(x, y) - (\tilde{x}, \tilde{y})\|_2$$
for some suitable $C \in \mathbb{R}^+$, showing that g is well-conditioned in $B_\delta(x, y)$ for $0 < \delta < |y|$. The significance of the present example lies in its demonstration that the knowledge of $k_{\text{rel}}(x, y)$ alone is not enough to determine the numerical stability of g at (x, y): Even though $k_{\text{rel}}(x, y)$ can remain bounded for $y \to 0$, the problem is that the neighborhood $B_\delta(x, y)$, where division is well-conditioned, becomes arbitrarily small. Thus, without an effective bound (from below) on $B_\delta(x, y)$, the knowledge of $k_{\text{rel}}(x, y)$ can be completely useless and even misleading.

As another important example, we consider the problem of solving the linear system $Ax = b$ with an invertible real $n \times n$ matrix A. Before studying the problem systematically using the notion of well-conditionedness, let us look at a particular example that illustrates a typical instability that can occur:

Example 2.54. Consider the linear system

$$Ax = b$$

for the unknown $x \in \mathbb{R}^4$ with

$$A := \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}, \quad b := \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}.$$

One finds that the solution is

$$x := \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

If instead of b, we are given the following perturbed \tilde{b},

$$\tilde{b} := \begin{pmatrix} 32.1 \\ 22.9 \\ 33.1 \\ 30.9 \end{pmatrix},$$

where the absolute error is 0.1 and relative error is even smaller, then the corresponding solution is

$$\tilde{x} := \begin{pmatrix} 9.2 \\ -12.6 \\ 4.5 \\ -1.1 \end{pmatrix},$$

in no way similar to the solution to b. In particular, the absolute and relative errors have been hugely amplified.

One might suspect that the issue behind the instability lies in A being “almost” singular such that applying A^{-1} is similar to dividing by a small number. However, that is not
the case, as we have
\[A^{-1} = \begin{pmatrix} 25 & -41 & 10 & -6 \\ -41 & 68 & -17 & 10 \\ 10 & -17 & 5 & -3 \\ -6 & 10 & -3 & 2 \end{pmatrix}. \]

We will see shortly that the actual reason behind the instability is the range of eigenvalues of \(A \), in particular, the relation between the largest and the smallest eigenvalue. One has:
\[\lambda_1 \approx 0.010, \quad \lambda_2 \approx 0.843, \quad \lambda_3 \approx 3.86, \quad \lambda_4 \approx 30.3, \quad \frac{\lambda_1}{\lambda_4} \approx 2984. \]

For our systematic investigation of this problem, we now apply (2.64) to the general situation:

Example 2.55. Let \(A \) be an invertible real \(n \times n \) matrix, \(n \in \mathbb{N} \) and consider the problem of solving the linear system \(Ax = b \). Then the solution operator is
\[f : \mathbb{R}^n \longrightarrow \mathbb{R}^n, \quad f(b) := A^{-1}b, \quad Df(b) = A^{-1}. \]

Fixing some norm on \(\mathbb{R}^n \) and using the induced natural matrix norm, we obtain from (2.64) that, for each \(0 \neq b \in \mathbb{R}^n \):
\[k_{\text{rel}}(b) = \| Df(b) \| \frac{\| b \|}{\| f(b) \|} = \| A^{-1} \| \frac{\| b \|}{\| A^{-1}b \|} = A^{-1}b \| A^{-1} \| \frac{\| Ax \|}{\| x \|} \leq \| A \| \| A^{-1} \|. \quad (2.80) \]

Definition and Remark 2.56. In view of (2.80), we define the condition number \(\kappa(A) \) (also just called the condition) of an invertible real \(n \times n \) matrix \(A, n \in \mathbb{N} \), by
\[\kappa(A) := \| A \| \| A^{-1} \|, \quad (2.81) \]
where \(\| \cdot \| \) denotes a natural matrix norm induced by some norm on \(\mathbb{R}^n \). Then one immediately gets from (2.80) that
\[k_{\text{rel}}(b) \leq \kappa(A) \quad \text{for each } b \in \mathbb{R}^n \setminus \{0\}. \quad (2.82) \]

The condition number clearly depends on the underlying natural matrix norm. If the natural matrix norm is the spectral norm, then one calls the condition number the spectral condition and one sometimes writes \(\kappa_2 \) instead of \(\kappa \).

Notation 2.57. For each \(n \times n \) matrix \(A, n \in \mathbb{N} \), let
\[\lambda(A) := \{ \lambda \in \mathbb{C} : \lambda \text{ is eigenvalue of } A \}, \quad (2.83a) \]
\[|\lambda(A)| := \{ |\lambda| : \lambda \in \mathbb{C} \text{ is eigenvalue of } A \}, \quad (2.83b) \]
denote the set of eigenvalues of \(A \) and the set of absolute values of eigenvalues of \(A \), respectively.
Lemma 2.58. For the spectral condition of an invertible real $n \times n$ matrix A, one obtains

$$\kappa_2(A) = \sqrt{\frac{\max \lambda(A^*A)}{\min \lambda(A^*A)}}$$ \hspace{1cm} (2.84)

(recall that all eigenvalues of A^*A are real and positive). Moreover, if A is symmetric, then (2.84) simplifies to

$$\kappa_2(A) = \frac{\max |\lambda(A)|}{\min |\lambda(A)|}$$ \hspace{1cm} (2.85)

(note that $\min |\lambda(A)| > 0$ for each invertible A).

Proof. Exercise. □

Theorem 2.59. Let A be an invertible real $n \times n$ matrix, $n \in \mathbb{N}$. Assume that $x, b, \Delta x, \Delta b \in \mathbb{R}^n$ satisfy

$$Ax = b, \quad A(x + \Delta x) = b + \Delta b,$$

i.e. Δb can be seen as a perturbation of the input and Δx can be seen as the resulting perturbation of the output. One then has the following estimates for the absolute and relative errors:

$$\|\Delta x\| \leq \|A^{-1}\| \|\Delta b\|, \quad \frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|},$$ \hspace{1cm} (2.87)

where $x, b \neq 0$ is assumed for the second estimate (as before, it does not matter which norm on \mathbb{R}^n one uses, as long as one uses the induced operator norm for the matrix).

Proof. Since A is linear, (2.86) implies $A(\Delta x) = \Delta b$, i.e. $\Delta x = A^{-1}(\Delta b)$, which already yields the first estimate in (2.87). For $x, b \neq 0$, the first estimate together with $Ax = b$ easily implies the second:

$$\frac{\|\Delta x\|}{\|x\|} \leq \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|} \frac{\|Ax\|}{\|x\|},$$

thereby establishing the case. □

Example 2.60. Suppose we want to find out how much we can perturb b in the problem

$$Ax = b, \quad A := \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad b := \begin{pmatrix} 1 \\ 4 \end{pmatrix},$$

if the resulting relative error e_r in x is to be less than 10^{-2} with respect to the ∞-norm. From (2.87), we know

$$e_r \leq \kappa(A) \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}} = \kappa(A) \frac{\|\Delta b\|_{\infty}}{4}.$$

Moreover, since $A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$, from (2.81) and (2.52a), we obtain

$$\kappa(A) = \|A\|_{\infty}\|A^{-1}\|_{\infty} = 3 \cdot 3 = 9.$$

Thus, if the perturbation Δb satisfies $\|\Delta b\|_{\infty} < 4/900 \approx 0.0044$, then $e_r < \frac{\kappa(A)}{4} \cdot \frac{4}{900} = 10^{-2}$.

Remark 2.61. Note that (2.87) is a much stronger and more useful statement than the \(k_{\text{rel}}(b) \leq \kappa(A) \) of (2.80). The relative condition only provides a bound in the limit of smaller and smaller neighborhoods of \(b \) and without providing any information on how small the neighborhood actually has to be (one can estimate the amplification of the error in \(x \) provided that the error in \(b \) is very small). On the other hand, (2.87) provides an effective control of the absolute and relative errors without any restrictions with regard to the size of the error in \(b \) (it holds for each \(\Delta b \)).

Let us come back to the instability observed in Example 2.54 and determine its actual cause. Suppose \(A \) is any symmetric invertible real \(n \times n \) matrix, \(\lambda_{\min}, \lambda_{\max} \in \lambda(A) \) such that \(|\lambda_{\min}| = \min |\lambda(A)|, |\lambda_{\max}| = \max |\lambda(A)| \). Let \(v_{\min} \) and \(v_{\max} \) be eigenvectors for \(\lambda_{\min} \) and \(\lambda_{\max} \), respectively, satisfying \(\|v_{\min}\| = \|v_{\max}\| = 1 \). The most unstable behavior of \(Ax = b \) occurs if \(b = v_{\max} \) and \(b \) is perturbed in the direction of \(v_{\min} \), i.e. \(\tilde{b} := b + \epsilon v_{\min}, \epsilon > 0 \). The solution to \(Ax = b \) is \(x = \lambda_{\min}^{-1} v_{\max} \), whereas the solution to \(Ax = \tilde{b} \) is

\[
\tilde{x} = A^{-1}(v_{\max} + \epsilon v_{\min}) = \lambda_{\max}^{-1} v_{\max} + \epsilon \lambda_{\min}^{-1} v_{\min}.
\]

Thus, the resulting relative error in the solution is

\[
\frac{\|\tilde{x} - x\|}{\|x\|} = \epsilon \frac{|\lambda_{\max}|}{|\lambda_{\min}|},
\]

while the relative error in the input was merely

\[
\frac{\|\tilde{b} - b\|}{\|b\|} = \epsilon.
\]

This shows that, in the worst case, the relative error in \(b \) can be amplified by a factor of \(\kappa_2(A) = |\lambda_{\max}|/|\lambda_{\min}| \), and that is exactly what had occurred in Example 2.54.

Before concluding this section, we study a generalization of the problem from (2.86). Now, in addition to a perturbation of the right-hand side \(b \), we also allow a perturbation of the matrix \(A \) by a matrix \(\Delta A \):

\[
Ax = b, \quad (A + \Delta A)(x + \Delta x) = b + \Delta b.
\] (2.88)

We would now like to control \(\Delta x \) in terms of \(\Delta b \) and \(\Delta A \).

Remark 2.62. The set of invertible real \(n \times n \) matrices is open in the set of all real \(n \times n \) matrices (which is the same as \(\mathbb{R}^{n^2} \), where all norms are equivalent) – this follows, for example, from the determinant being a continuous map (even a polynomial) from \(\mathbb{R}^{n^2} \) into \(\mathbb{R} \), which implies that \(\text{det}^{-1}(\mathbb{R} \setminus \{0\}) \) must be open. Thus, if \(A \) in (2.88) is invertible and \(\|\Delta A\| \) is sufficiently small, then \(A + \Delta A \) must also be invertible.

Lemma 2.63. Let \(n \in \mathbb{N} \), consider some norm on \(\mathbb{R}^n \) and the induced natural matrix norm on the set of real \(n \times n \) matrices. If \(B \) is a real \(n \times n \) matrix such that \(\|B\| < 1 \), then \(\text{Id} + B \) is invertible and

\[
\|(\text{Id} + B)^{-1}\| \leq \frac{1}{1 - \|B\|}.
\] (2.89)
Proof. For each $x \in \mathbb{R}^n$:

$$
|((\text{Id} + B)x) - Bx| \geq \|x\| - \|Bx\| \geq \|x\| - \|B\| \|x\| = (1 - \|B\|) \|x\|,
$$

(2.90)

showing that $x \neq 0$ implies $(\text{Id} + B)x \neq 0$, i.e. $\text{Id} + B$ is invertible. Fixing $y \in \mathbb{R}^n$ and applying (2.90) with $x := (\text{Id} + B)^{-1}y$ yields

$$
\|((\text{Id} + B)^{-1}y) - Bx\| \leq \frac{1}{1 - \|B\|} \|y\|,
$$

thereby proving (2.89) and concluding the proof of the lemma.

Lemma 2.64. Let $n \in \mathbb{N}$, consider some norm on \mathbb{R}^n and the induced natural matrix norm on the set of real $n \times n$ matrices. If A and ΔA are real $n \times n$ matrices such A is invertible and $\|\Delta A\| < \|A^{-1}\|^{-1}$, then $A + \Delta A$ is invertible and

$$
\|(A + \Delta A)^{-1}\| \leq \frac{1}{\|A^{-1}\|^{-1} - \|\Delta A\|}.
$$

(2.91)

Moreover,

$$
\|\Delta A\| \leq \frac{1}{2\|A^{-1}\|} \Rightarrow \|(A + \Delta A)^{-1} - A^{-1}\| \leq C\|\Delta A\|,
$$

(2.92)

where the constant can be chosen as $C := 2\|A^{-1}\|^2$.

Proof. We can write $A + \Delta A = A(\text{Id} + A^{-1}\Delta A)$. As $\|A^{-1}\Delta A\| \leq \|A^{-1}\| \|\Delta A\| < 1$, Lem. 2.63 yields that $\text{Id} + A^{-1}\Delta A$ is invertible. Since A is also invertible, so is $A + \Delta A$. Moreover,

$$
\|(A + \Delta A)^{-1}\| = \|(\text{Id} + A^{-1}\Delta A)^{-1}A^{-1}\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta A\|},
$$

(2.93)

proving (2.91). One easily verifies the identity

$$
(A + \Delta A)^{-1} - A^{-1} = -(A + \Delta A)^{-1}(\Delta A)A^{-1},
$$

(2.94)

which yields, for $\|\Delta A\| \leq \frac{1}{2\|A^{-1}\|}$,

$$
\|(A + \Delta A)^{-1} - A^{-1}\| \leq \|(A + \Delta A)^{-1}\| \|\Delta A\| \|A^{-1}\| \leq \frac{\|A^{-1}\| \|\Delta A\| \|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta A\|} \leq 2\|A^{-1}\|^2 \|\Delta A\|,
$$

proving (2.92).

Theorem 2.65. As in Lem. 2.64, let $n \in \mathbb{N}$, consider some norm on \mathbb{R}^n and the induced natural matrix norm on the set of real $n \times n$ matrices, and let A and ΔA be real $n \times n$ matrices such A is invertible and $\|\Delta A\| < \|A^{-1}\|^{-1}$. Moreover, assume $b, x, \Delta b, \Delta x \in \mathbb{R}^n$ satisfy

$$
Ax = b, \quad (A + \Delta A)(x + \Delta x) = b + \Delta b.
$$

(2.95)

Then, for $b, x \neq 0$, one has the following bound for the relative error:

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1 - \|A^{-1}\| \|\Delta A\|} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|} \right).
$$

(2.96)
Proof. The equations (2.95) imply
\[(A + \Delta A)(\Delta x) = \Delta b - (\Delta A)x.\] \hfill (2.97)
In consequence, from (2.91) and \(\|b\| \leq \|A\|\|x\|\), one obtains
\[\|\Delta x\| \leq \frac{1}{\|\Delta A\|^{-1} - \|\Delta A\|} \left(\|\Delta A\| + \frac{\|\Delta b\|\|A\|}{\|b\|}\right) = \kappa(A) \frac{\|\Delta A\| + \|\Delta b\|}{\|A\| + \|b\|},\]
thereby establishing the case. \hfill ■

3 Interpolation

3.1 Motivation

Given a finite number of points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\), so-called data points, supporting points, or tabular points, the goal is to find a function \(f\) such that \(f(x_i) = y_i\) for each \(i \in \{0, \ldots, n\}\). Then \(f\) is called an interpolate of the data points. We will restrict ourselves to the case of functions that map (a subset of) \(\mathbb{R}\) into \(\mathbb{R}\), even though the same problem is also of interest in other contexts, e.g. in higher dimensions. The data points can be measured values from a physical experiment or computed values (for example, it could be that \(y_i = g(x_i)\) and \(g(x)\) can, in principle, be computed, but it could be very difficult and computationally expensive (\(g\) could be the solution of a differential equation) – in that case, it can also be advantageous to interpolate the data points by an approximation \(f\) to \(g\) such that \(f\) is efficiently computable).

To have an interpolate \(f\) at hand can be desirable for many reasons, including

(a) \(f(x)\) can then be computed in an arbitrary point.
(b) If \(f\) is differentiable, derivatives can be computed in an arbitrary point.
(c) Computation of integrals of the form \(\int_a^b f(x) \, dx\).
(d) Determination of extreme points of \(f\).
(e) Determination of zeros of \(f\).

While a general function \(f\) on a nontrivial real interval is never determined by its values on finitely many points, the situation can be different if it is known that \(f\) has additional properties, for instance, that it has to lie in a certain set or that it can at
least be approximated by functions from a certain set. For example, we will see in the next section that polynomials are determined by finitely many data points.

The interpolate should be chosen such that it reflects properties expected from the exact solution (if any). For example, polynomials are not the best choice if one expects a periodic behavior or if the exact solution is known to have singularities. If periodic behavior is expected, then interpolation by trigonometric functions is usually advised, whereas interpolation by rational functions is often desirable if singularities are expected. Due to time constraints, we will only study interpolations related to polynomials in the present lecture, but one should keep in the back of one’s mind that there are other types of interpolates that might be more suitable, depending on the circumstances.

3.2 Polynomial Interpolation

3.2.1 Existence and Uniqueness

Definition and Remark 3.1. For \(n \in \mathbb{N}_0 \), let \(\mathcal{P}_n \) denote the set of all polynomials \(p : \mathbb{R} \rightarrow \mathbb{R} \) of degree at most \(n \). Then \(\mathcal{P}_n \) constitutes an \((n+1)\)-dimensional real vector space: A linear isomorphism is given by the map

\[
f : \mathbb{R}^{n+1} \rightarrow \mathcal{P}_n, \quad f(a_0, a_1, \ldots, a_n) := a_0 + a_1 x + \cdots + a_n x^n.
\]

(3.1)

Theorem 3.2. Let \(n \in \mathbb{N}_0 \). Given \(n+1 \) data points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2\), \(x_i \neq x_j \) for \(i \neq j \), there is a unique interpolating polynomial \(p \in \mathcal{P}_n \) satisfying

\[
p(x_i) = y_i \quad \text{for each } i \in \{0, 1, \ldots, n\}.
\]

(3.2)

Moreover, one can identify \(p \) as the Lagrange interpolating polynomial, which is given by the explicit formula

\[
p(x) = p_n(x) := \sum_{j=0}^{n} y_j L_j(x),
\]

(3.3a)

where, for each \(j \in \{0, 1, \ldots, n\} \),

\[
L_j(x) := \prod_{i=0 \atop i \neq j}^{n} \frac{x - x_i}{x_j - x_i}
\]

(3.3b)

are the so-called Lagrange basis polynomials.

Proof. If we write \(p \) in the form \(p(x) = a_0 + a_1 x + \cdots + a_n x^n \), then (3.2) is equivalent to the system

\[
\begin{align*}
a_0 + a_1 x_0 + \cdots + a_n x_0^n &= y_0 \\
a_0 + a_1 x_1 + \cdots + a_n x_1^n &= y_1 \\
& \quad \vdots \\
a_0 + a_1 x_n + \cdots + a_n x_n^n &= y_n,
\end{align*}
\]

(3.4)
which constitutes a linear system for the \(n + 1 \) unknowns \(a_0, \ldots, a_n \). This linear system has a unique solution if, and only if, the determinant

\[
D := \begin{vmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^n \\
\end{vmatrix}
\]

(3.5)

does not vanish. One observes that \(D \) is the well-known Vandermonde determinant, and its value is given by (see Th. D.1 of the Appendix)

\[
D = \prod_{i,j=0}^{n} (x_i - x_j).
\]

(3.6)

In particular, \(D \neq 0 \), as we assumed \(x_i \neq x_j \) for \(i \neq j \), proving both existence and uniqueness of \(p \). It remains to identify \(p \) with the Lagrange interpolating polynomial. To that end, denote the right-hand side of (3.3a) by \(p_n \). Since \(p_n \) is clearly of degree less than or equal to \(n \), it merely remains to show that \(p_n \) satisfies (3.2). Since the \(x_i \) are all distinct, we obtain, for each \(j, k \in \{0, \ldots, n\} \),

\[
L_j(x_k) = \delta_{jk} := \begin{cases}
1 & \text{for } k = j, \\
0 & \text{for } k \neq j,
\end{cases}
\]

(3.7)

which, in turn, yields

\[
p_n(x_k) = \sum_{j=0}^{n} y_j L_j(x_k) = \sum_{j=0}^{n} y_j \delta_{jk} = y_k.
\]

(3.8)

A second proof of the theorem can be conducted as follows, without making use of the Vandermonde determinant: As above, the direct verification that the Lagrange interpolating polynomial satisfies (3.2) proves existence. Then, for uniqueness, one considers an arbitrary polynomial \(q \in P_n \), satisfying (3.2). Since \(q(x_i) = y_i = p_n(x_i) \), the polynomial \(r := q - p_n \) is a polynomial of degree at most \(n \) having at least \(n + 1 \) zeros. The only such polynomial is \(r \equiv 0 \), showing \(q = p_n \). \(\blacksquare \)

Example 3.3. We compute the first three Lagrange polynomials. Thus, let

\[
(x_0, y_0), (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2
\]

be three distinct data points. For \(n = 0 \), the product in (3.3b) is empty, such that \(L_0(x) \equiv 1 \) and \(p_0 \equiv y_0 \). For \(n = 1 \), (3.3b) yields

\[
L_0(x) = \frac{x - x_1}{x_0 - x_1}, \quad L_1(x) = \frac{x - x_0}{x_1 - x_0},
\]

(3.9a)

and

\[
p_1(x) = y_0 L_0(x) + y_1 L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0} = y_0 \frac{y_1 - y_0}{x_1 - x_0} (x - x_0),
\]

(3.9b)
which is the straight line through \((x_0, y_0)\) and \((x_1, y_1)\). Finally, for \(n = 2\), (3.3b) yields
\[
L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}, \quad L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}, \quad L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)},
\]
and
\[
p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)
= y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0) + \frac{1}{x_2 - x_0} \left(\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0} \right) (x - x_0)(x - x_1).
\]

3.2.2 Newton’s Divided Difference Interpolation Formula

As (3.9b) and (3.10b), the interpolating polynomial can be built recursively. Having a recursive formula at hand can be advantageous in many circumstances. For example, even though the complexity of building the interpolating polynomial from scratch is \(O(n^2)\) in either case, if one already has the interpolating polynomial for \(x_0, \ldots, x_n\), then, using the recursive formula (3.11a) below, one obtains the interpolating polynomial for \(x_0, \ldots, x_n, x_{n+1}\) in just \(O(n)\) steps.

Looking at the structure of \(p_2\) in (3.10b), one sees that, while the first coefficient is just \(y_0\), the second one is a difference quotient, reminding one of the derivative \(y'(x)\), and the third one is a difference quotient of difference quotients, reminding one of the second derivative \(y''(x)\). Indeed, the same structure holds for interpolating polynomials of all orders:

Theorem 3.4. In the situation of Th. 3.2, the Lagrange interpolating polynomial \(p_n \in \mathcal{P}_n\) satisfying (3.2) can be written in the following form known as Newton’s divided difference interpolation formula:
\[
p_n(x) = \sum_{j=0}^{n} [y_0, \ldots, y_j] \omega_j(x), \quad (3.11a)
\]
where, for each \(j \in \{0, 1, \ldots, n\}\),
\[
\omega_j(x) := \prod_{i=0}^{j-1} (x - x_i) \quad (3.11b)
\]
are the so-called Newton basis polynomials, and the \([y_0, \ldots, y_j]\) are so-called divided differences, defined recursively by
\[
[y_j] := y_j \quad \text{for each } j \in \{0, 1, \ldots, n\},
[y_j, \ldots, y_{j+k}] := \frac{[y_{j+1}, \ldots, y_{j+k}] - [y_j, \ldots, y_{j+k-1}]}{x_{j+k} - x_j} \quad (3.11c)
\]
for each \(j \in \{0, 1, \ldots, n\}, 1 \leq k \leq n - j\).
(note that in the recursive part of the definition, one first omits \(y_j \) and then \(y_{j+k} \)).
In particular, (3.11a) means that the \(p_n \) satisfy the recursive relation
\[
\begin{align*}
p_0(x) &= y_0, \\
p_j(x) &= p_{j-1}(x) + [y_0, \ldots, y_j] \omega_j(x) \quad \text{for } 1 \leq j \leq n.
\end{align*}
\]

Before we can prove Th. 3.4, we need to study the divided differences in more detail.

Remark 3.5. In terms of practical computations, note that one can obtain the divided differences in \(O(n^2) \) steps from the following recursive scheme:
\[
\begin{align*}
y_0 &= [y_0] \quad \Rightarrow \quad [y_0, y_1] \quad \Rightarrow \quad [y_0, y_1, y_2] \\
&\vdots \quad \Rightarrow \quad \cdots \quad \Rightarrow \quad [y_0, \ldots, y_n] \\
y_{n-1} &= [y_{n-1}] \quad \Rightarrow \quad [y_{n-2}, y_{n-1}] \quad \Rightarrow \quad \cdots \quad \Rightarrow \quad [y_0, \ldots, y_n] \\
y_n &= [y_n] \quad \Rightarrow \quad [y_{n-1}, y_n] \quad \Rightarrow \quad \cdots \quad \Rightarrow \quad [y_0, \ldots, y_n]
\end{align*}
\]

Proposition 3.6. Let \(n \in \mathbb{N}_0 \) and consider \(n+1 \) data points
\[(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2,
\]
x\(i \neq x_j \) for \(i \neq j \).

(a) Then, for each pair \((j, k) \in \mathbb{N}_0 \times \mathbb{N}_0\) such that \(0 \leq j \leq j+k \leq n \), the divided differences defined in (3.11c) satisfy:
\[
[y_j, \ldots, y_{j+k}] = \sum_{i=j}^{j+k} y_i \prod_{\substack{m=j \\text{ to } k \\text{ steps}}}^{m \neq i} \frac{1}{x_i - x_m}.
\]
In particular, the value of \([y_j, \ldots, y_{j+k}]\) depends only on the data points
\[(x_j, y_j), \ldots, (x_{j+k}, y_{j+k}). \]

(b) The value of \([y_j, \ldots, y_{j+k}]\) does not depend on the order of the data points.

Proof. (a): The proof is carried out by induction with respect to \(k \). For \(k = 0 \) and each \(j \in \{0, \ldots, n\} \), one has
\[
\sum_{i=j}^{j} y_i \prod_{\substack{m=j \\text{ to } k \\text{ steps}}}^{m \neq i} \frac{1}{x_i - x_m} = y_j = [y_j],
\]
as desired. Thus, let \(k > 0 \).
Claim 1. It suffices to show that, for each $0 \leq j \leq n - k$, the following identity holds true:

$$
\sum_{i=j}^{j+k} y_i \prod_{m=j}^{j+k} \frac{1}{x_i - x_m} = \frac{1}{x_{j+k} - x_j} \left(\sum_{i=j+1}^{j+k} y_i \prod_{m=j+1}^{j+k} \frac{1}{x_i - x_m} - \sum_{i=j}^{j+k-1} y_i \prod_{m=j}^{j+k-1} \frac{1}{x_i - x_m} \right) .
$$

(3.14)

Proof. One computes as follows (where (3.13) is used, it holds by induction):

$$
\sum_{i=j}^{j+k} y_i \prod_{m=j}^{j+k} \frac{1}{x_i - x_m} = \frac{1}{x_{j+k} - x_j} \left(\sum_{i=j+1}^{j+k} y_i \prod_{m=j+1}^{j+k} \frac{1}{x_i - x_m} - \sum_{i=j}^{j+k-1} y_i \prod_{m=j}^{j+k-1} \frac{1}{x_i - x_m} \right) .
$$

(3.14)

$$
= \frac{1}{x_{j+k} - x_j} \left(\left[y_{j+1}, \ldots, y_{j+k} \right] - \left[y_j, \ldots, y_{j+k-1} \right] \right)
$$

(3.13)

$$
= \left[y_j, \ldots, y_{j+k} \right] ,
$$

showing that (3.14) does, indeed, suffice. ▲

So it remains to verify (3.14). We have to show that, for each $i \in \{ j, \ldots, j + k \}$, the coefficients of y_i on both sides of (3.14) are identical.

Case $i = j + k$: Since y_{j+k} occurs only in first sum on the right-hand side of (3.14), one has to show that

$$
\prod_{m=j}^{j+k} \frac{1}{x_{j+k} - x_m} = \frac{1}{x_{j+k} - x_j} \prod_{m=j+1}^{j+k} \frac{1}{x_i - x_m} .
$$

(3.15)

However, (3.15) is obviously true.

Case $i = j$: Since y_j occurs only in second sum on the right-hand side of (3.14), one has to show that

$$
\prod_{m=j}^{j+k} \frac{1}{x_j - x_m} = - \frac{1}{x_{j+k} - x_j} \prod_{m=j+1}^{j+k} \frac{1}{x_i - x_m} .
$$

(3.16)

Once again, (3.16) is obviously true.

Case $j < i < j + k$: In this case, one has to show

$$
\prod_{m=j}^{j+k} \frac{1}{x_m - x_m} = \frac{1}{x_{j+k} - x_j} \left(\prod_{m=j+1}^{j+k} \frac{1}{x_m - x_m} - \prod_{m=j+1}^{j+k} \frac{1}{x_m - x_m} \right) .
$$

(3.17)
Multiplying (3.17) by
\[\prod_{m=j \atop m \neq i, j+k}^{j+k} (x_i - x_m)\]
shows that it is equivalent to
\[\frac{1}{x_i - x_j} \cdot \frac{1}{x_i - x_{j+k}} = \frac{1}{x_{j+k} - x_j} \left(\frac{1}{x_i - x_{j+k}} - \frac{1}{x_i - x_j} \right),\]
which is also clearly valid.

(b): That the value does not depend on the order of the data points can be seen from the representation (3.13), since the value of the right-hand side remains the same when changing the order of factors in each product and when changing the order of the summands (in fact, if suffices to consider the case of switching the places of just two data points, as each permutation is the composition of finitely many transpositions). ■

Proof of Th. 3.4. We carry out the proof via induction on \(n\). In Example 3.3, we had already verified that \(p_n\) according to (3.11a) agrees with the Lagrange interpolating polynomial for \(n = 0, 1, 2\) (of course, \(n = 0\) suffices for our induction). Let \(n > 0\). Let \(p\) be the Lagrange interpolating polynomial according to (3.3a) and let \(p_n\) be the polynomial according to (3.11a). We have to show that \(p_n = p\). Clearly, each \(\omega_j\) is of degree \(j \leq n\), such that \(p_n\) is also of degree at most \(n\). Moreover, \(p_n = p_{n-1} + \left[y_0, \ldots, y_n \right] \omega_n\) and, by induction \(p_{n-1}\) is the interpolating polynomial for \((x_0, y_0), \ldots, (x_{n-1}, y_{n-1})\). Since \(\omega_n(x_k) = 0\) for each \(k \in \{0, \ldots, n-1\}\), we have \(p_n(x_k) = p_{n-1}(x_k) = y_k\). This implies that the polynomial \(q := p - p_n\) has \(n\) distinct zeros, namely \(x_0, \ldots, x_{n-1}\). Now the coefficient of \(x^n\) in \(p\) is
\[\sum_{j=0}^{n} y_j \prod_{i=0 \atop i \neq j}^{n} \frac{1}{x_j - x_i},\]
(3.18a)
and the coefficient of \(x^n\) in \(p_n\) is
\[\left[y_0, \ldots, y_n \right] = \sum_{i=0}^{n} y_i \prod_{m=0 \atop m \neq i}^{n} \frac{1}{x_i - x_m}.\]
(3.18b)

With the substitutions \(i \rightarrow m\) and \(j \rightarrow i\) in (3.18a), one obtains that both coefficients are identical, i.e. \(q\) is of degree at most \(n - 1\). As it also has \(n\) distinct zeros, it must vanish identically, showing \(p = p_n\). ■

Corollary 3.7. Let \(n \in \mathbb{N}_0\) and let \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2\) be data points such that \(x_i \neq x_j\) for \(i \neq j\). Suppose \(A \subseteq \mathbb{R}\) is some set containing \(x_0, \ldots, x_n\) and \(f : A \rightarrow \mathbb{R}\) satisfies \(f(x_i) = y_i\) for each \(i \in \{0, \ldots, n\}\). If \(p_n\) is the interpolating polynomial, then
\[f(x) = p_n(x) + \left[f(x), y_0, \ldots, y_n \right] \omega_{n+1}(x)\]
for each \(x \in A \setminus \{x_0, \ldots, x_n\}\).
(3.19)
3 INTERPOLATION

Proof. Fix \(x \in A \setminus \{x_0, \ldots, x_n\} \) and let \(p_{n+1} \) be the interpolating polynomial to

\[(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n), (x, f(x)).\]

One then obtains

\[p_n(x) + [f(x), y_0, \ldots, y_n] \omega_{n+1}(x) \overset{\text{Prop. 3.6(b)}}{=} p_n(x) + [y_0, \ldots, y_n, f(x)] \omega_{n+1}(x) \overset{(3.12b)}{=} p_{n+1}(x) = f(x),\]

thereby establishing the case.

3.2.3 Error Estimates and the Mean Value Theorem for Divided Differences

We will now further investigate the situation where the data points \((x_i, y_i)\) are given by some differentiable real function \(f\), i.e. \(y_i = f(x_i)\), which is to be approximated by the interpolating polynomials. The main goal is to prove an estimate that allows to control the error of such approximations. We begin by establishing a result that allows to generalize the well-known mean value theorem to the situation of divided differences.

Theorem 3.8. Let \(a, b \in \mathbb{R}, a < b\), and consider \(f \in C^{n+1}[a, b], n \in \mathbb{N}_0\). If

\[(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in [a, b] \times \mathbb{R}\]

are such that \(x_i \neq x_j\) for \(i \neq j\) and \(y_i = f(x_i)\) for each \(i \in \{0, \ldots, n\}\), then, for each \(x \in [a, b]\), there exists

\[\xi = \xi(x, x_0, \ldots, x_n) \in]m, M[, \quad m := \min\{x, x_0, \ldots, x_n\}, \quad M := \max\{x, x_0, \ldots, x_n\}, \quad (3.20)\]

such that

\[f(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \quad (3.21)\]

where \(p_n \in \mathcal{P}_n\) is the interpolating polynomial to the \(n+1\) data points and \(\omega_{n+1}\) is the Newton basis polynomial to \(x_0, \ldots, x_n, x\).

Proof. If \(x \in \{x_0, \ldots, x_n\}\), then \(\omega_{n+1}(x) = 0\) and, by the definition of \(p_n\), (3.21) trivially holds for every \(\xi \in [a, b]\). Now assume \(x \notin \{x_0, \ldots, x_n\}\). Then \(\omega_{n+1}(x) \neq 0\), and we can set

\[K := \frac{f(x) - p_n(x)}{\omega_{n+1}(x)}. \quad (3.22)\]

Define the auxiliary function

\[\psi : [a, b] \longrightarrow \mathbb{R}, \quad \psi(t) := f(t) - p_n(t) - K \omega_{n+1}(t). \quad (3.23)\]

Then \(\psi\) has the \(n+2\) zeros \(x, x_0, \ldots, x_n\) and Rolle’s theorem yields that \(\psi'\) has at least \(n+1\) zeros in \(]m, M[\), \(\psi''\) has at least \(n\) zeros in \(]m, M[\), and, inductively, \(\psi^{(n+1)}\) still has at least one zero \(\xi \in]m, M[\). Computing \(\psi^{(n+1)}\) from (3.23), one obtains

\[\psi^{(n+1)} : [a, b] \longrightarrow \mathbb{R}, \quad \psi^{(n+1)}(t) = f^{(n+1)}(t) - K(n+1)!.\]
Thus, $\psi^{(n+1)}(\xi) = 0$ implies
\[K = \frac{f^{(n+1)}(\xi)}{(n+1)!} \quad (3.24) \]
Combining (3.24) with (3.22) proves (3.21).

Recall the mean value theorem that states that, for $f \in C^1[a, b]$, there exists $\xi \in [a, b]$ such that
\[\frac{f(b) - f(a)}{b - a} = f'(\xi). \]
As a simple consequence of Th. 3.8, we are now in a position generalize the mean value theorem to higher derivatives, making use of divided differences.

Corollary 3.9 (Mean Value Theorem for Divided Differences). Let $a, b \in \mathbb{R}$, $a < b$, $f \in C^{n+1}[a, b]$, $n \in \mathbb{N}_0$. Then, given $n + 2$ distinct points $x, x_0, \ldots, x_n \in [a, b]$, there exists $\xi = \xi(x, x_0, \ldots, x_n) \in [m, M]$ (where M as in (3.20)) such that, with $y_i := f(x_i)$,
\[[f(x), y_0, \ldots, y_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}. \quad (3.25) \]

Proof. Theorem 3.8 provides $\xi \in [m, M]$ satisfying (3.21). Combining (3.21) with (3.19), results in
\[p_n(x) + [f(x), y_0, \ldots, y_n]\omega_{n+1}(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \]
proving (3.25) (note $\omega_{n+1}(x) \neq 0$).

One can compute $n!|y_0, \ldots, y_n|$ as a numerical approximation to $f^{(n)}(x)$. From Cor. 3.9, we obtain the following error estimate:

Corollary 3.10 (Numerical Differentiation). Let $a, b \in \mathbb{R}$, $a < b$, $f \in C^{n+1}[a, b]$, $n \in \mathbb{N}_0$, $x \in [a, b]$. Then, given $n + 1$ distinct points $x_0, \ldots, x_n \in [a, b]$ and letting $y_i := f(x_i)$ for each $i \in \{0, \ldots, n\}$, the following estimate holds:
\[|f^{(n)}(x) - n!|y_0, \ldots, y_n| \leq (M - m) \max \left\{ |f^{(n+1)}(s)| : s \in [m, M] \right\} \quad (3.26) \]
(m, M, once again, as in (3.20)).

Proof. Note that the max in (3.26) exists, since $f^{(n+1)}$ is continuous on the compact set $[m, M]$. According to the mean value theorem,
\[|f^{(n)}(x) - f^{(n)}(\xi)| \leq |x - \xi| \max \left\{ |f^{(n+1)}(s)| : s \in [m, M] \right\} \quad (3.27) \]
for each $\xi \in [m, M]$. For $n = 0$, the left-hand side of (3.26) is $|f(x) - f(x_0)|$ and (3.26) follows from (3.27). If $n \geq 1$ and $x \notin \{x_0, \ldots, x_n\}$, then we apply Cor. 3.9 with $n - 1$, yielding $n!|y_0, \ldots, y_n| = f^{(n)}(\xi)$ for some $\xi \in [m, M]$, such that (3.26) follows from (3.27) also in this case. Finally, (3.26) extends to $x \in \{x_0, \ldots, x_n\}$ by the continuity of $f^{(n)}$.
We would now like to provide a convergence result for the approximation of a (benign) \(C^\infty \) function by interpolating polynomials. In preparation, we recall the sup norm:

Definition and Remark 3.11. Let \(a, b \in \mathbb{R} \), \(a < b \), \(f \in C[a, b] \). Then
\[
\| f \|_\infty := \sup \{ |f(x)| : x \in [a, b] \}
\]
is called the sup norm of \(f \) (sup norm for short, also known as uniform norm (the norm of uniform convergence), max norm, or \(\| \cdot \|_\infty \)-norm). It constitutes, indeed, a norm on \(C[a, b] \).

Theorem 3.12. Let \(a, b \in \mathbb{R} \), \(a < b \), \(f \in C^\infty[a, b] \). If there exist \(K \in \mathbb{R}_0^+ \) and \(R < (b-a)^{-1} \) such that
\[
\| f^{(n)} \|_\infty \leq Kn!R^n \quad \text{for each } n \in \mathbb{N}_0,
\]
then, for each sequence of distinct numbers \((x_0, x_1, \ldots) \) in \([a, b] \), it holds that
\[
\lim_{n \to \infty} \| f - p_n \|_\infty = 0,
\]
where \(p_n \) denotes the interpolating polynomial of degree at most \(n \) for the first \(n + 1 \) points \((x_0, f(x_0)), \ldots , (x_n, f(x_n)) \).

Proof. Since \(\| \omega_{n+1} \|_\infty \leq (b-a)^{n+1} \), we obtain from (3.21):
\[
\| f - p_n \|_\infty \leq \frac{\| f^{(n+1)} \|_\infty}{(n+1)!} \| \omega_{n+1} \|_\infty \leq KR^{n+1}(b-a)^{n+1}.
\]
As \(R < (b-a)^{-1} \), (3.30) establishes (3.29). \(\blacksquare \)

Example 3.13. Suppose \(f \in C^\infty[a, b] \) is such that there exists \(C \geq 0 \) satisfying
\[
\| f^{(n)} \|_\infty \leq C^n \quad \text{for each } n \in \mathbb{N}_0.
\]
We claim that, in that case, there are \(K \in \mathbb{R}_0^+ \) and \(R < (b-a)^{-1} \) satisfying (3.28) (in particular, this shows that Th. 3.12 applies to all functions of the form \(f(x) = e^{lx} \), \(f(x) = \sin(kx) \), \(f(x) = \cos(kx) \)). To verify that (3.31) implies (3.28), set \(R := \frac{1}{2}(b-a)^{-1} \), choose \(N \in \mathbb{N} \) sufficiently large such that \(n! > (C/R)^n \) for each \(n > N \), and set \(K := \max\{(C/R)^m : 0 \leq m \leq N\} \). Then, for each \(n \in \mathbb{N}_0 \),
\[
\| f^{(n)} \|_\infty \leq C^n = (C/R)^n R^n \leq K n! R^n.
\]

Remark 3.14. When approximating \(f \in C^\infty[a, b] \) by an interpolating polynomial \(p_n \), the accuracy of the approximation depends on the choice of the \(x_j \). If one chooses equally-spaced \(x_j \), then \(\omega_{n+1} \) will be much larger in the vicinity of \(a \) and \(b \) than in the center of the interval. This behavior of \(\omega_{n+1} \) can be counteracted by choosing more data points in the vicinity of \(a \) and \(b \). This leads to the problem of finding data points such that \(\| \omega_{n+1} \|_\infty \) is minimized. If \(a = -1, b = 1 \), then one can show that the optimal choice for the data points is
\[
x_j := \cos \left(\frac{2j + 1}{2n + 2} \pi \right) \quad \text{for each } j \in \{0, \ldots , n\}.
\]
These \(x_j \) are precisely the zeros of the so-called Chebyshev polynomials of the first kind.
3.3 Hermite Interpolation

So far, we have determined an interpolating polynomial \(p \) of degree at most \(n \) from values at \(n + 1 \) distinct points \(x_0, \ldots, x_n \). Alternatively, one can prescribe the values of \(p \) at less than \(n + 1 \) points and, instead, additionally prescribe the values of derivatives of \(p \) at some of the same points, where the total number of pieces of data still needs to be \(n + 1 \). For example, to determine \(p \) of degree at most 7, one can prescribe \(p(1), p(2), p'(2), p(3), p'(3), p''(3), p'''(3) \), and \(p^{(4)}(3) \). One then says that \(x_1 = 2 \) is considered with multiplicity 2 and \(x_2 = 3 \) is considered with multiplicity 5.

This particular kind of interpolation is known as Hermite interpolation and is to be studied in the present section. The main tool is a generalized version of the divided differences that no longer requires the underlying \(x_j \) to be distinct. One can then still use Newton’s interpolation formula (3.11a).

The need to generalize the divided differences to situations of identical \(x_j \) emphasizes a certain notational dilemma that has its root in the fact that the divided differences depend both on the \(x_j \) and on the prescribed values at the \(x_j \). In the notation, it is common to either suppress the \(x_j \)-dependence (as we did in the previous sections, cf. (3.11c)) or to suppress the dependence on the values by writing, e.g., \([x_0, \ldots, x_n] \) or \(f[x_0, \ldots, x_n] \) instead of \([y_0, \ldots, y_n] \). In the situation of identical \(x_j \), the \(y_j \) represent derivatives of various orders, which is not reflected in the notation \([y_0, \ldots, y_n] \). Thus, if there are identical \(x_j \), we opt for the \(f[x_0, \ldots, x_n] \) notation (which has the disadvantage that it suggests that the values \(y_j \) are a priori given by an underlying function \(f \), which might or might not be the case). If the \(x_j \) are all distinct, then one can write \([y_0, \ldots, y_n]\) or \(f[x_0, \ldots, x_n] \) for the same divided difference.

The essential hint for how to generalize divided differences to identical \(x_j \) is given by the mean value theorem for divided differences (3.25), which is restated for the convenience of the reader: If \(f \in C^{n+1}[a, b] \), then

\[
f[x, x_0, \ldots, x_n] := [f(x), y_0, \ldots, y_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}.
\]

(3.32)

In the limit \(x_j \to x \) for each \(j \in \{0, \ldots, n\} \), the continuity of \(f^{(n+1)} \) implies that the expression in (3.32) converges to \(f^{(n+1)}(x)/(n+1)! \). Thus, \(f[x, \ldots, x] \) (\(x \) repeated \(n + 2 \) times) needs to represent \(f^{(n+1)}(x)/(n+1)! \). Thus, if we want to prescribe the first \(m \) \((m \in \mathbb{N}_0)\) derivatives \(y_j, y'_j, \ldots, y^{(m)}_j \), of the interpolating polynomial at \(x_j \), then, in generalization of the first part of the definition in (3.11c), we need to set

\[
f[x_j] := y_j, \quad f[x_j, x_j] := \frac{y'_j}{1!}, \quad \ldots, \quad f[x_j, \ldots, x_j] := \frac{y^{(m)}_j}{m!}.
\]

(3.33a)

The generalization of the recursive part of the definition in (3.11c) is given by

\[
f[x_0, \ldots, x_m] := \frac{f[x_0, \ldots, x_m] - f[x_0, \ldots, x_m]}{x_i - x_j}
\]

for each \(m \in \mathbb{N}_0 \) and \(0 \leq i, j \leq m \) such that \(x_i \neq x_j \).
(the hatted symbols \hat{x}_j and \hat{x}_i mean that the corresponding points are omitted).

Remark 3.15. Note that there is a choice involved in the definition of $f[x_0, \ldots, x_m]$ in (3.33b): The right-hand side depends on which x_i and x_j are used. We will see in the following, that the definition is actually independent of that choice and the $f[x_0, \ldots, x_m]$ are well-defined by (3.33). However, this will still need some work.

Example 3.16. Suppose, we have $x_0 \neq x_1$ and want to compute $f[x_0, x_1, x_1, x_1]$ according to (3.33). First, we obtain $f[x_0], f[x_1], f[x_1, x_1]$, and $f[x_1, x_1, x_1]$ from (3.33a). Then we use (3.33b) to compute, in succession,

\[
\begin{align*}
 f[x_0, x_1] &= \frac{f[x_1] - f[x_0]}{x_1 - x_0}, \\
 f[x_0, x_1, x_1] &= \frac{f[x_1, x_1] - f[x_0, x_1]}{x_1 - x_0}.
\end{align*}
\]

Before actually proving something, let us illustrate the algorithm of Hermite interpolation with the following example:

Example 3.17. Given the data

\[
\begin{align*}
x_0 &= 1, & x_1 &= 2, \\
y_0 &= 1, & y_0' &= 4, & y_1 &= 3, & y_1' &= 1, & y_1'' &= 2,
\end{align*}
\]

we seek the interpolating polynomial p of degree at most 4. Using Newton’s interpolation formula (3.11a) with the generalized divided differences according to (3.33) yields

\[
p(x) = f[1] + f[1,1](x - 1) + f[1,1,2](x - 1)^2 + f[1,1,2,2](x - 1)^3(x - 2) + f[1,1,2,2,2](x - 1)^4(2 - x).
\]

The generalized divided differences can be computed from a scheme analogous to the one in Rem. 3.5. For simplicity, it is advisable to order the data points such that identical x_j are adjacent. In the present case, we get $1, 1, 2, 2, 2$. This results in the scheme

\[
\begin{aligned}
f[1] &= y_0 = 1 \quad & \quad f[1] &= y_0 = 1 \quad & \quad f[1,1] &= y_0' = 4 \\
 f[2] &= y_1 = 3 \quad & \quad f[1,2] &= \frac{3 - 1}{2 - 1} = 2 \quad & \quad f[1,1,2] &= \frac{2 - 4}{2 - 1} = -2 \\
 f[2] &= y_1 = 3 \quad & \quad f[2,2] &= y_1' = 1 \quad & \quad f[1,2,2] &= \frac{1 - 2}{2 - 1} = -1 \quad & \quad f[1,1,2,2] &= \frac{1 - (-2)}{2 - 1} = 1 \\
 f[2] &= y_1 = 3 \quad & \quad f[2,2] &= y_1' = 1 \quad & \quad f[2,2,2] &= \frac{1}{2 - 1} = 1 \quad & \quad f[1,2,2,2] &= \frac{1 - (-1)}{2 - 1} = 2
\end{aligned}
\]

and, finally,

\[
\begin{aligned}
 f[1,1,2,2] &= 1 \\
 f[1,2,2,2] &= 2 \quad \rightarrow \quad f[1,1,2,2,2] &= \frac{2 - 1}{2 - 1} = 1.
\end{aligned}
\]
Hence, plugging the results of the scheme into (3.34),

\[p(x) = 1 + 4(x - 1) - 2(x - 1)^2 + (x - 1)^2(x - 2) + (x - 1)^2(x - 2)^2. \]

To proceed with the general theory, it will be useful to reintroduce the generalized divided differences \(f[x_0, \ldots, x_n] \) under the assumption that they, indeed, arise from a differentiable function \(f \). A posteriori, we will see that this does not constitute an actual restriction: As it turns out, if one starts out by constructing the \(f[x_0, \ldots, x_n] \) from (3.33), these divided differences define an interpolating polynomial \(p \) via Newton’s interpolation formula. If one then uses \(f := p \) and computes the \(f[x_0, \ldots, x_n] \) using the following definition based on \(f \), then one recovers the same \(f[x_0, \ldots, x_n] \) (defined by (3.33)) one had started out with (cf. the proof of Th. 3.25).

In preparation of the \(f \)-based definition of the generalized divided differences, the following notation is introduced:

Notation 3.18. For \(n \in \mathbb{N} \), the following notation is introduced:

\[\Sigma^n := \left\{ (s_1, \ldots, s_n) \in \mathbb{R}^n : \sum_{i=1}^n s_i \leq 1 \text{ and } 0 \leq s_i \text{ for each } i \in \{1, \ldots, n\} \right\}. \]

Remark 3.19. The set \(\Sigma^n \) introduced in Not. 3.18 is the convex hull of the set consisting of the origin and the \(n \) standard unit vectors, i.e. the convex hull of the \((n - 1)\)-dimensional standard simplex \(\Delta^{n-1} \) united with the origin:

\[\Sigma^n = \text{conv} \left(\{0\} \cup \{e_i : i \in \{1, \ldots, n\}\} \right) = \text{conv} \left(\{0\} \cup \Delta^{n-1} \right), \]

where

\[e_i := (0, \ldots, 1_i, \ldots, 0), \quad \Delta^{n-1} := \text{conv}\{e_i : i \in \{1, \ldots, n\}\}. \quad (3.35) \]

Theorem 3.20 (Hermite-Genocchi Formula). Let \(a, b \in \mathbb{R} \), \(a < b \), \(f \in C^n[a,b] \), \(n \in \mathbb{N} \). Then, given \(n + 1 \) distinct points \(x_0, \ldots, x_n \in [a,b] \), and letting \(y_i := f(x_i) \) for each \(i \in \{0, \ldots, n\} \), the divided differences satisfy the following relation, known as the Hermite-Genocchi formula:

\[[y_0, \ldots, y_n] = \int_{\Sigma^n} f^{(n)} \left(x_0 + \sum_{i=1}^n s_i(x_i - x_0) \right) \, ds, \quad (3.36) \]

where \(\Sigma^n \) is the set according to Not. 3.18.

Proof. First, note that, for each \(s \in \Sigma^n \),

\[a = x_0 + a - x_0 \leq x_0 + \sum_{i=1}^n s_i(a - x_0) \leq x_0 + \sum_{i=1}^n s_i(x_i - x_0) \]

\[\leq x_0 + \sum_{i=1}^n s_i(b - x_0) \leq x_0 + b - x_0 = b, \]
such that \(f^{(n)} \) is defined at \(x_s \).

We now proceed to verify (3.36) by showing inductively that the formula actually holds true not only for \(n \), but for each \(k = 1, \ldots, n \): For \(k = 1 \), (3.36) is an immediate consequence of the fundamental theorem of calculus (FTC) (note \(\Sigma^1 = [0, 1] \)):

\[
\int_0^1 f'(x_0 + s(x_1 - x_0)) \, ds = \left[\frac{f(x_0 + s(x_1 - x_0))}{x_1 - x_0} \right]_0^1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = [y_0, y_1].
\]

Thus, we may assume that (3.36) holds with \(n \) replaced by \(k \) for some \(k \in \{1, \ldots, n-1\} \). We must then show that it holds for \(k + 1 \). To that end, we compute

\[
\int_{\Sigma^{k+1}} f^{(k+1)} \left(x_0 + \sum_{i=1}^{k+1} s_i (x_i - x_0) \right) \, ds
\]

\[
= \int_{\Sigma^{k}} \int_{0}^{1-\sum_{i=1}^{k} s_i} f^{(k+1)} \left(x_0 + \sum_{i=1}^{k} s_i (x_i - x_0) + s_{k+1} (x_{k+1} - x_0) \right) \, ds_{k+1} \, d(s_1, \ldots, s_k)
\]

\[
= \frac{1}{x_{k+1} - x_0} \int_{\Sigma^{k}} f^{(k)} \left(x_{k+1} + \sum_{i=1}^{k} s_i (x_i - x_{k+1}) \right)
\]

\[
- f^{(k)} \left(x_0 + \sum_{i=1}^{k} s_i (x_i - x_0) \right) \, d(s_1, \ldots, s_k)
\]

\[
\text{ind.} = \left[y_1, \ldots, y_{k+1} \right] - \left[y_0, \ldots, y_k \right]
\]

\[
\frac{x_{k+1} - x_0}{x_{k+1} - x_0}
\]

\[
\text{(3.11c)} \quad \frac{\left[y_{0}, \ldots, y_{k+1} \right]}{x_{k+1} - x_0}
\]

thereby establishing the case. \(\square \)

One now notices that the Hermite-Genocchi formula naturally extends to the situation of nondistinct \(x_0, \ldots, x_n \), giving raise to the following definition:

Definition 3.21. Let \(a, b \in \mathbb{R} \), \(a < b \), \(f \in C^n[a, b] \), \(n \in \mathbb{N} \). Then, given \(n + 1 \) (not necessarily distinct) points \(x_0, \ldots, x_n \in [a, b] \), define

\[
f[x_0, \ldots, x_n] := \int_{\Sigma^n} f^{(n)} \left(x_0 + \sum_{i=1}^{n} s_i (x_i - x_0) \right) \, ds.
\]

Moreover, for \(x \in [a, b] \), define

\[
f[x] := f(x).
\]

Remark 3.22. The Hermite-Genocchi formula (3.36) says that, if \(x_0, \ldots, x_n \) are distinct and \(y_i = f(x_i) \), then \(f[x_0, \ldots, x_n] = [y_0, \ldots, y_n] \).
Before compiling some important properties of the generalized divided differences, we need to compute the volume of Σ^n.

Lemma 3.23. For each $n \in \mathbb{N}$:

\[
\text{vol}(\Sigma^n) := \int_{\Sigma^n} 1 \, ds = \frac{1}{n!}.
\] (3.38)

Proof. Consider the change of variables $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $t = T(s)$, where

\[
\begin{align*}
t_1 &:= s_1, & s_1 &:= t_1, \\
t_2 &:= s_1 + s_2, & s_2 &:= t_2 - t_1, \\
t_3 &:= s_1 + s_2 + s_3, & s_3 &:= t_3 - t_2, \\
&\vdots & &\vdots \\
t_n &:= s_1 + \cdots + s_n, & s_n &:= t_n - t_{n-1}.
\end{align*}
\] (3.39)

According to (3.39), T is clearly bijective, the change of variables is differentiable, $\det J_{T^{-1}} \equiv 1$, and

\[
T(\Sigma^n) = \{(t_1, \ldots, t_n) \in \mathbb{R}^n : 0 \leq t_1 \leq t_2 \leq \cdots \leq t_n \leq 1\}.
\] (3.40)

Thus, using the change of variables theorem (CVT) and the Fubini theorem (FT), we can compute $\text{vol}(\Sigma^n)$:

\[
\text{vol}(\Sigma^n) = \int_{\Sigma^n} 1 \, ds = \int_{T(\Sigma^n)} \det J_{T^{-1}}(t) \, dt = \int_{T(\Sigma^n)} 1 \, dt \\
\stackrel{(\text{CVT})}{=} \int_0^{t_1} \cdots \int_0^{t_2} \cdots \int_0^{t_n} dt_1 \, dt_2 \, \cdots \, dt_n = \int_0^{t_1} \cdots \int_0^{t_2} \cdots \, dt_2 \, \cdots \, dt_n \\
\stackrel{(\text{FT})}{=} \int_0^{t_1} \cdots \int_0^{t_2} \frac{t_2}{2!} \, dt_3 \cdots \, dt_n = \int_0^{t_n-1} \frac{t_n-1}{(n-1)!} \, dt_n = \frac{1}{n!},
\]

proving (3.38). \blacksquare

Proposition 3.24. Let $a, b \in \mathbb{R}$, $a < b$, $f \in C^n[a,b]$, $n \in \mathbb{N}$.

(a) The function from $[a,b]^{n+1}$ into \mathbb{R},

\[
(x_0, \ldots, x_n) \mapsto f[x_0, \ldots, x_n],
\]

defined by (3.37) is continuous, in particular, continuous in each x_k, $k \in \{0, \ldots, n\}$.

(b) Given $n + 1$ (not necessarily distinct) points $x_0, \ldots, x_n \in [a,b]$, the value of the generalized divided difference $f[x_0, \ldots, x_n]$ does not depend on the order of the x_k.

(c) For each $0 \leq k \leq n$ and $x \in [a,b]$:

\[
f\left[\frac{x, \ldots, x}{k+1}\right] = \frac{f^{(k)}(x)}{k!}.
\]
(d) Suppose \(x_0, \ldots, x_n \in [a, b] \), not necessarily distinct. Letting \(y_j^{(m)} := f^{(m)}(x_j) \) for each \(j, m \in \{0, \ldots, n\} \), one can use the recursive scheme (3.33) to compute the generalized divided difference \(f[x_0, \ldots, x_n] \).

Proof. (a): For \(n = 0 \), according to (3.37b), the continuity of \(x_0 \mapsto f[x_0] \) is merely the assumed continuity of \(f \). Let \(n > 0 \). Since \(f^{(n)} \) is continuous and the continuous function \(|f^{(n)}| \) is uniformly bounded on \([a, b] \) (namely by \(M := \|f^{(n)}\|_\infty \)), the continuity of the divided differences is an immediate consequence of (3.37a) and the continuity of parameter-dependent integrals (see Th. E.1 of the Appendix).

(b): Let \(x_0 := \left(x_0', \ldots, x_n' \right) \in [a, b]^{n+1} \) be a sequence such that \(\lim_{\nu \to \infty} x_0^\nu = (x_0, \ldots, x_n) \) and such that the \(x_0^\nu \) are distinct for each \(\nu \) (see the proof of Th. 3.25 below for an explicit construction of such a sequence). Then, for each permutation \(\pi \) of \(\{0, \ldots, n\} \):

\[
 f[x_0, \ldots, x_n]^{(a)} = \lim_{\nu \to \infty} f[x_0^\nu, \ldots, x_n^\nu] \quad \text{Prop. 3.6(b)}
\]

\[
 = \lim_{\nu \to \infty} f[x_{\pi(0)}^\nu, \ldots, x_{\pi(n)}^\nu] = f[x_{\pi(0)}, \ldots, x_{\pi(n)}].
\]

(c): For \(k = 0 \), there is nothing to prove. For \(k > 0 \), we compute

\[
 f[x_0, \ldots, \hat{x}_i, \ldots, x_n]^{(3.37a)} = \int_{\Sigma^k} f^{(k)} \left(x + \sum_{i=1}^k s_i (x - x_i) \right) \, ds = \int_{\Sigma^k} f^{(k)}(x) \, ds = \frac{f^{(k)}(x)}{k!}.
\]

(d): First, the setting \(y_j^{(m)} := f^{(m)}(x_j) \) guarantees that (3.33a) agrees with (c). If \(n > 0 \) and the \(x_0, \ldots, x_n \) are all distinct, then, for each \(i, j \in \{0, \ldots, n\} \) with \(i \neq j \),

\[
 f[x_0, \ldots, x_n] = \begin{cases}
 y_0, \ldots, y_n \quad \text{Prop. 3.6(b)} \\
 f[x_0, \ldots, \hat{x}_j, \ldots, x_n] = \left[y_0, \ldots, \hat{y}_j, \ldots, y_n \right] - \left[y_0, \ldots, \hat{y}_j, \ldots, y_n \right] \\
 \text{Prop. 3.6(b)} \\
 \frac{x_i - x_j}{x_i - x_j}
\end{cases}
\]

proving (3.33b) for the case, where all \(x_j \) are distinct. In the general case, where the \(x_j \) are not necessarily distinct, one, once again, approximates \((x_0, \ldots, x_n) \) by a sequence of distinct points. Then (3.33b) is implied by the distinct case together with (a).

The following Th. 3.25 shows that the algorithm of Hermite interpolation employed in Example 3.17 (i.e. using Newton’s interpolation formula with the generalized divided differences) is, indeed, valid: It results in the unique polynomial that satisfies the given \(n + 1 \) conditions.

Theorem 3.25. Let \(r, n \in \mathbb{N}_0 \). Given \(r + 1 \) distinct numbers \(\tilde{x}_0, \ldots, \tilde{x}_r \in \mathbb{R} \), natural numbers \(m_0, \ldots, m_r \in \mathbb{N} \) such that \(\sum_{k=0}^r m_k = n + 1 \), and values \(y_j^{(m)} \in \mathbb{R} \) for each
\[j \in \{0, \ldots, r\}, \ m \in \{0, \ldots, m_j - 1\}, \] there exists a unique polynomial \(p \in \mathcal{P}_n \) (of degree at most \(n \)) such that
\[
p^{(m)}(\tilde{x}_j) = y^{(m)}_j \quad \text{for each } j \in \{0, \ldots, r\}, \ m \in \{0, \ldots, m_j - 1\}. \tag{3.41}
\]
Moreover, letting, for each \(i \in \{0, \ldots, n\} \),
\[
x_i := \tilde{x}_j \quad \text{for } \sum_{k=0}^{j-1} m_k < i + 1 \leq \sum_{k=0}^{j} m_k,
\tag{3.42}
\]
p is given by Newton’s interpolation formula
\[
p(x) = \sum_{j=0}^{n} f[x_0, \ldots, x_j] \omega_j(x), \tag{3.43a}
\]
where, for each \(j \in \{0,1,\ldots,n\} \),
\[
\omega_j(x) = \prod_{i=0}^{j-1} (x - x_i), \tag{3.43b}
\]
and the \(f[x_0, \ldots, x_j] \) can be computed via the recursive scheme (3.33).

Proof. Consider the map
\[A : \mathcal{P}_n \longrightarrow \mathbb{R}^{n+1}, \quad A(p) := (p(\tilde{x}_0), \ldots, p^{(m_0-1)}(\tilde{x}_0), \ldots, p(\tilde{x}_r), \ldots, p^{(m_r-1)}(\tilde{x}_r)). \]
The existence and uniqueness statement of the theorem is the same as saying that \(A \) is bijective. Since \(A \) is clearly linear and since \(\dim \mathcal{P}_n = \dim \mathbb{R}^{n+1} = n + 1 \), it suffices to show that \(A \) is one-to-one, i.e. \(\ker A = 0 \). Recall (exercise) that, for \(p \in \mathcal{P}_n \), if \(m \in \{0, \ldots, n - 1\} \) and \(p(x) = p'(x) = \cdots = p^{(m)}(x) = 0 \), then \(x \) is a zero of multiplicity at least \(m + 1 \) for \(p \). Thus, if \(A(p) = (0, \ldots, 0) \), then \(\tilde{x}_0 \) is a zero of \(p \) with multiplicity at least \(m_0 \), \ldots, \(\tilde{x}_r \) is a zero of \(p \) with multiplicity at least \(m_r \), such that \(p \) has at least \(n + 1 \) zeros. Since \(p \) has degree at most \(n \), it follows that \(p \equiv 0 \), showing \(\ker A = 0 \), thereby also establishing existence and uniqueness of the interpolating polynomial.

Now let \(f = p \in \mathcal{P}_n \) be the unique interpolating polynomial satisfying (3.41). Then the generalized divided differences are given by (3.37), and from Rem. 3.22 we know that \(f[x_0, \ldots, x_j] = [y_0, \ldots, y_j] \) if all the \(x_k \) are distinct. In particular, (3.43) holds if all the \(x_k \) are distinct. Thus, in the general case, let \(x^\nu := (x^\nu_0, \ldots, x^\nu_n) \in \mathbb{R}^{n+1} \) be a sequence such that \(\lim_{\nu \to \infty} x^\nu = (x_0, \ldots, x_n) \) and such that the \(x^\nu_i \) are distinct for each sufficiently large \(\nu \), say for \(\nu \geq N \in \mathbb{N} \) (for example, one can let \(x^\nu_i := \tilde{x}_j + \frac{\nu}{N} \) if, and only if, \(\sum_{k=0}^{i-1} m_k < i + 1 \leq \sum_{k=0}^{j} m_k \) and \(i + 1 = \alpha + \sum_{k=0}^{j-1} m_k \)). Then, for each \(x \in \mathbb{R} \) and each \(\nu \in \mathbb{N} \) with \(\nu \geq N \), one has
\[
p(x) = \sum_{j=0}^{n} [p(x^\nu_0), \ldots, p(x^\nu_j)] \prod_{i=0}^{j-1} (x - x^\nu_i). \tag{3.44}
\]
Taking the limit for \(\nu \to \infty \) in (3.44) yields
\[
p(x) = \lim_{\nu \to \infty} p(x) = \lim_{\nu \to \infty} \left(\sum_{j=0}^{n} \left[p(x_0^\nu), \ldots, p(x_j^\nu) \right] \prod_{i=0}^{j-1} (x - x_i^\nu) \right)
\]

by Prop. 3.24(a)
\[
= \sum_{j=0}^{n} f[x_0, \ldots, x_j] \omega_j(x),
\]
proving (3.43). Finally, since we have seen that the \(f[x_0, \ldots, x_j] \) are given by letting \(f = p \) be the interpolating polynomial, the validity of the recursive scheme (3.33) follows from Prop. 3.24(c),(d).

Theorem 3.26. Let \(a, b \in \mathbb{R}, a < b, f \in C^{n+1}[a, b], n \in \mathbb{N}, \) and let \(x_0, \ldots, x_n \in [a, b] \) (not necessarily distinct). Let \(p \in \mathcal{P}_n \) be the interpolating polynomial given by (3.43) with \(f[x_0, \ldots, x_j] \) according to (3.37).

(a) The following holds for each \(x \in [a, b] \):
\[
f(x) = p(x) + f[x, x_0, \ldots, x_n] \omega_{n+1}(x).
\]

(b) Let \(x \in [a, b] \). Letting \(m := \min\{x, x_0, \ldots, x_n\}, M := \max\{x, x_0, \ldots, x_n\} \), there exists \(\xi = \xi(x, x_0, \ldots, x_n) \in [m, M] \) such that
\[
f(x) = p(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x).
\]

(c) (Mean Value Theorem for Generalized Divided Differences) Given \(x \in [a, b] \), let \(m, M, \) and \(\xi \) be as in (b). Then
\[
f[x, x_0, \ldots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}.
\]

Proof. (a): For \(x \in [a, b] \), one obtains:
\[
p(x) + f[x, x_0, \ldots, x_n] \omega_{n+1}(x) = \sum_{j=0}^{n} f[x_0, \ldots, x_j] \omega_j(x) + f[x_0, \ldots, x_n, x] \omega_{n+1}(x)
= f(x).
\]

(b): For \(x \in \{x_0, \ldots, x_n\} \), (3.46) is clearly true for each \(\xi \in [m, M] \). Thus, assume \(x \notin \{x_0, \ldots, x_n\} \). We know from Th. 3.8 that (3.46) holds if the \(x_0, \ldots, x_n \) are all distinct. In the general case, we once again apply the technique of approximating \((x_0, \ldots, x_n) \) by a sequence \(x^\nu := (x_0^\nu, \ldots, x_n^\nu) \in [m, M]^{n+1} \) such that \(\lim_{\nu \to \infty} x^\nu = (x_0, \ldots, x_n) \) and such that the \(x_i^\nu \) are distinct for each \(\nu \). Then Th. 3.8 provides a sequence \(\xi(x^\nu) \in [m, M]\) such that, for each \(\nu \), (3.46) holds with \(\xi = \xi(x^\nu) \). Since \((\xi(x^\nu))_{\nu \in \mathbb{N}} \) is a sequence in the
compact interval \([m, M]\), there exists a subsequence \((\tilde{x}^\nu)_{\nu \in \mathbb{N}}\) of \((x^\nu)_{\nu \in \mathbb{N}}\) such that \(\xi(\tilde{x}^\nu)\) converges to some \(\xi \in [m, M]\). Finally, the continuity of \(f^{(n+1)}\) yields

\[
\frac{f^{(n+1)}(\xi)}{(n+1)!} = \lim_{\nu \to \infty} \frac{f^{(n+1)}(\xi(\tilde{x}^\nu))}{(n+1)!} = \lim_{\nu \to \infty} f[x, \tilde{x}_0^\nu, \ldots, \tilde{x}_n^\nu] = f[x, x_0, \ldots, x_n]
\]

proving (3.46).

(c): Analogous to the proof of Cor. 3.9, one merely has to combine (3.45) and (3.46). ■

3.4 The Weierstrass Approximation Theorem

An important result in the context of the approximation of continuous functions by polynomials, which we will need for subsequent use, is the following Weierstrass approximation Th. 3.27. Even though related, this topic is not strictly part of the theory of interpolation.

Theorem 3.27 (Weierstrass Approximation Theorem). Let \(a, b \in \mathbb{R}\) with \(a < b\). For each continuous function \(f \in C[a, b]\) and each \(\epsilon > 0\), there exists a polynomial \(p : \mathbb{R} \to \mathbb{R}\) such that \(\|f - p\|_{[a, b]} < \epsilon\), where \(p|_{[a, b]}\) denotes the restriction of \(p\) to \([a, b]\).

Theorem 3.27 will be a corollary of the fact that the Bernstein polynomials corresponding to \(f \in C[0, 1]\) (see Def. 3.28) converge uniformly to \(f\) on \([0, 1]\) (see Th. 3.29 below).

Definition 3.28. Given \(f : [0, 1] \to \mathbb{R}\), define the **Bernstein polynomials** \(B_n f\) corresponding to \(f\) by

\[
B_n f : \mathbb{R} \to \mathbb{R}, \quad (B_n f)(x) := \sum_{\nu=0}^{n} f\left(\frac{\nu}{n}\right) \binom{n}{\nu} x^\nu (1 - x)^{n-\nu} \quad \text{for each } n \in \mathbb{N}. \tag{3.48}
\]

Theorem 3.29. For each \(f \in C[0, 1]\), the sequence of Bernstein polynomials \((B_n f)_{n \in \mathbb{N}}\) corresponding to \(f\) according to Def. 3.28 converges uniformly to \(f\) on \([0, 1]\), i.e.

\[
\lim_{n \to \infty} \|f - (B_n f)\|_{[0, 1]} = 0. \tag{3.49}
\]

Proof. We begin by noting

\[
(B_n f)(0) = f(0) \quad \text{and} \quad (B_n f)(1) = f(1) \quad \text{for each } n \in \mathbb{N}. \tag{3.50}
\]

For each \(n \in \mathbb{N}\) and \(\nu \in \{0, \ldots, n\}\), we introduce the abbreviation

\[
q_{n\nu}(x) := \binom{n}{\nu} x^\nu (1 - x)^{n-\nu}. \tag{3.51}
\]
Then

\[1 = (x + (1 - x))^n = \sum_{\nu=0}^{n} q_{n\nu}(x) \quad \text{for each } n \in \mathbb{N} \] (3.52)

implies

\[f(x) - (B_n f)(x) = \sum_{\nu=0}^{n} \left(f(x) - f\left(\frac{\nu}{n}\right) \right) q_{n\nu}(x) \quad \text{for each } x \in [0,1], n \in \mathbb{N}, \]

and

\[|f(x) - (B_n f)(x)| \leq \sum_{\nu=0}^{n} |f(x) - f\left(\frac{\nu}{n}\right)| q_{n\nu}(x) \quad \text{for each } x \in [0,1], n \in \mathbb{N}. \] (3.53)

As \(f \) is continuous on the compact interval \([0,1]\), it is uniformly continuous, i.e. for each \(\epsilon > 0 \), there exists \(\delta > 0 \) such that, for each \(x \in [0,1], n \in \mathbb{N}, \nu \in \{0,\ldots,n\} \):

\[|x - \frac{\nu}{n}| < \delta \implies |f(x) - f\left(\frac{\nu}{n}\right)| < \frac{\epsilon}{2}. \] (3.54)

For the moment, we fix \(x \in [0,1] \) and \(n \in \mathbb{N} \) and define

\[N_1 := \left\{ \nu \in \{0,\ldots,n\} : |x - \frac{\nu}{n}| < \delta \right\}, \]
\[N_2 := \left\{ \nu \in \{0,\ldots,n\} : |x - \frac{\nu}{n}| \geq \delta \right\}. \]

Then

\[\sum_{\nu \in N_1} \left| f(x) - f\left(\frac{\nu}{n}\right) \right| q_{n\nu}(x) \leq \frac{\epsilon}{2} \sum_{\nu \in N_1} q_{n\nu}(x) \leq \frac{\epsilon}{2} \sum_{\nu=0}^{n} q_{n\nu}(x) = \frac{\epsilon}{2}, \] (3.55)

and with \(M := \|f\|_{\infty} \),

\[\sum_{\nu \in N_2} \left| f(x) - f\left(\frac{\nu}{n}\right) \right| q_{n\nu}(x) \leq \sum_{\nu \in N_2} \left| f(x) - f\left(\frac{\nu}{n}\right) \right| q_{n\nu}(x) \frac{(x - \frac{\nu}{n})^2}{\delta^2} \]
\[\leq \frac{2M}{\delta^2} \sum_{\nu=0}^{n} q_{n\nu}(x) \left(x - \frac{\nu}{n} \right)^2. \] (3.56)

To compute the sum on the right-hand side of (3.56), observe

\[\left(x - \frac{\nu}{n} \right)^2 = x^2 - 2x \frac{\nu}{n} + \left(\frac{\nu}{n} \right)^2 \] (3.57)

and

\[\sum_{\nu=0}^{n} \binom{n}{\nu} x^\nu (1 - x)^{n-\nu} \frac{\nu}{n} = x \sum_{\nu=1}^{n} \left(\frac{n-1}{\nu-1} \right) x^{\nu-1} (1 - x)^{(n-1)-(\nu-1)} \] (3.58)
as well as
\[\sum_{\nu=0}^{n} \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} \left(\frac{\nu}{n} \right)^2 = \frac{x}{n} \sum_{\nu=1}^{n} \binom{n-1}{\nu-1} x^{\nu-1} (1-x)^{(n-1)-(\nu-1)} + \frac{x}{n} \]
\[= \frac{x^2}{n} (n-1) \sum_{\nu=2}^{n} \binom{n-2}{\nu-2} x^{\nu-2} (1-x)^{(n-2)-(\nu-2)} + \frac{x}{n} \]
\[= x^2 \left(1 - \frac{1}{n} \right) + \frac{x}{n} = x^2 + \frac{x}{n} (1-x) . \]
(3.59)
Thus, we obtain
\[\sum_{\nu=0}^{n} q_{\nu n}(x) \left(x - \frac{\nu}{n} \right)^2 (3.57),(3.52),(3.58),(3.59) \]
\[= x^2 \cdot 1 - 2x \cdot x + x^2 + \frac{x}{n} (1-x) \]
\[\leq \frac{1}{4n} \text{ for each } x \in [0, 1], n \in \mathbb{N} , \]
and together with (3.56):
\[\sum_{\nu \in \mathbb{N}_2} \left| f(x) - f \left(\frac{\nu}{n} \right) \right| q_{\nu n}(x) \leq \frac{2M}{\delta^2} \frac{1}{4n} < \frac{\epsilon}{2} \text{ for each } x \in [0, 1], n > M \frac{\delta^2}{\epsilon} . \]
(3.60)
Combining (3.53), (3.55), and (3.60) yields
\[|f(x) - (B_n f)(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \text{ for each } x \in [0, 1], n > M \frac{\delta^2}{\epsilon} , \]
proving the claimed uniform convergence.

Proof of Th. 3.27. Define
\[\phi : [a,b] \longrightarrow [0,1], \quad \phi(x) := \frac{x-a}{b-a} , \]
\[\phi^{-1} : [0,1] \longrightarrow [a,b], \quad \phi^{-1}(x) := (b-a)x + a . \]
Given \(\epsilon > 0 \), and letting
\[g : [0,1] \longrightarrow \mathbb{R}, \quad g(x) := f(\phi^{-1}(x)) , \]
Th. 3.29 provides a polynomial \(q : \mathbb{R} \longrightarrow \mathbb{R} \) such that \(\| g - q \|_{[0,1]} \|_{\infty} < \epsilon \). Defining
\[p : \mathbb{R} \longrightarrow \mathbb{R}, \quad p(x) := q(\phi(x)) = q \left(\frac{x-a}{b-a} \right) \]
(having extended \(\phi \) in the obvious way) yields a polynomial \(p \) such that
\[|f(x) - p(x)| = |g(\phi(x)) - q(\phi(x))| < \epsilon \text{ for each } x \in [a,b] \]
as needed.
3.5 Spline Interpolation

3.5.1 Introduction

In the previous sections, we have used a single polynomial to interpolate given data points. If the number of data points is large, then the degree of the interpolating polynomial is likewise large. If the data points are given by a function, and the goal is for the interpolating polynomial to approximate that function, then, in general, one might need many data points to achieve a desired accuracy. We have also seen that the interpolating polynomials tend to be large in the vicinity of the outermost data points, where strong oscillations are typical. One possibility to counteract that behavior is to choose an additional number of data points in the vicinity of the boundary of the considered interval (cf. Rem. 3.14).

The advantage of the approach of the previous sections is that the interpolating polynomial is C^∞ (i.e. it has derivatives of all orders) and one can make sure (by Hermite interpolation) that, in a given point x_0, the derivatives of the interpolating polynomial p agree with the derivatives of a given function in x_0 (which, again, will typically increase the degree of p). The disadvantage is that one often needs interpolating polynomials of large degrees, which can be difficult to handle (e.g. numerical problems resulting from large numbers occurring during calculations).

Spline interpolations follow a different approach: Instead of using one single interpolating polynomial of potentially large degree, one uses a piecewise interpolation, fitting together polynomials of low degree (e.g. 1 or 3). The resulting function s will typically not be of class C^∞, but merely of class C^1 or C^2, and the derivatives of s will usually not agree with the derivatives of a given f (only the values of f and s will agree in the data points). The advantage is that one only needs to deal with polynomials of low degree. If one does not need high differentiability of the interpolating function and one is mostly interested in a good approximation with respect to the sup-norm $\|\cdot\|_\infty$, then spline interpolation is usually a good option.

Definition 3.30. Let $a, b \in \mathbb{R}$, $a < b$. Then, given $N \in \mathbb{N}$,

$$\Delta := (x_0, \ldots, x_N) \in \mathbb{R}^{N+1}$$

(3.61)

is called a knot vector for $[a, b]$ if, and only if, it corresponds to a partition $a = x_0 < x_1 < \cdots < x_N = b$ of $[a, b]$. The x_k are then also called knots. Let $l \in \mathbb{N}$. A spline of order l for Δ is a function $s \in C^{l-1}[a, b]$ such that, for each $k \in \{0, \ldots, N-1\}$, there exists a polynomial $p_k \in P_l$ that coincides with s on $[x_k, x_{k+1}]$. The set of all such splines is denoted by $S_{\Delta,l}$:

$$S_{\Delta,l} := \left\{ s \in C^{l-1}[a, b] : \forall k \in \{0, \ldots, N-1\} \exists p_k \in P_l \text{ s.t. } p_k |_{[x_k, x_{k+1}]} = s |_{[x_k, x_{k+1}]} \right\}.$$

(3.62)

Of particular importance are the elements of $S_{\Delta,1}$ (linear splines) and of $S_{\Delta,3}$ (cubic splines).
3 INTERPOLATION

Remark 3.31. $S_{\Delta,l}$ is a real vector space of dimension $N + l$. Without any continuity restrictions, one had the freedom to choose N arbitrary polynomials of degree at most l, giving dimension $N(l + 1)$. However, the continuity requirements for the derivatives of order $0, \ldots, l - 1$ yield l conditions at each of the $N - 1$ interior knots, such that $\dim S_{\Delta,l} = N(l + 1) - (N - 1)l = N + l$.

3.5.2 Linear Splines

Given a node vector as in (3.61), and values $y_0, \ldots, y_N \in \mathbb{R}$, a corresponding linear spline is a continuous, piecewise linear function s satisfying $s(x_k) = y_k$. In this case, existence, uniqueness, and an error estimate are still rather simple to obtain:

Theorem 3.32. Let $a, b \in \mathbb{R}$, $a < b$. Then, given $N \in \mathbb{N}$, a knot vector $\Delta := (x_0, \ldots, x_N) \in \mathbb{R}^{N + 1}$ for $[a, b]$, and values $(y_0, \ldots, y_N) \in \mathbb{R}^{N + 1}$, there exists a unique interpolating linear spline $s \in S_{\Delta,1}$ satisfying

$$s(x_k) = y_k \quad \text{for each } k \in \{0, \ldots, N\}. \quad (3.63)$$

Moreover s is explicitly given by

$$s(x) = y_k + \frac{y_{k+1} - y_k}{x_{k+1} - x_k} (x - x_k) \quad \text{for each } x \in [x_k, x_{k+1}]. \quad (3.64)$$

If $f \in C^2[a, b]$ and $y_k = f(x_k)$, then the following error estimate holds:

$$\|f - s\|_\infty \leq \frac{1}{8} \|f''\|_\infty h^2, \quad (3.65)$$

where

$$h := h(\Delta) := \max \{x_{k+1} - x_k : k \in \{0, \ldots, N - 1\}\}$$

is the mesh size of the partition Δ.

Proof. Since s defined by (3.64) clearly satisfies (3.63), is continuous on $[a, b]$, and, for each $k \in \{0, \ldots, N\}$, the definition of (3.64) extends to a unique polynomial in P_1, we already have existence. Uniqueness is equally obvious, since, for each k, the prescribed values in x_k and x_{k+1} uniquely determine a polynomial in P_1 and, thus, s. For the error estimate, consider $x \in [x_k, x_{k+1}]$, $k \in \{0, \ldots, N - 1\}$. Note that, due to the inequality $\alpha \beta \leq \left(\frac{\alpha + \beta}{2}\right)^2$ valid for all $\alpha, \beta \in \mathbb{R}$, one has

$$(x - x_k)(x_{k+1} - x) \leq \left(\frac{(x - x_k) + (x_{k+1} - x)}{2}\right)^2 \leq \frac{h^2}{4}. \quad (3.66)$$

Moreover, on $[x_k, x_{k+1}]$, s coincides with the interpolating polynomial $p \in P_1$ with $p(x_k) = f(x_k)$ and $p(x_{k+1}) = f(x_{k+1})$. Thus, we can use (3.21) to compute

$$|f(x) - s(x)| = |f(x) - p(x)| \leq \frac{\|f''\|_\infty}{2!} (x - x_k)(x_{k+1} - x) \leq \frac{1}{8} \|f''\|_\infty h^2,$$

thereby proving (3.65).
3 INTERPOLATION

3.5.3 Cubic Splines

Given a knot vector
\[\Delta = (x_0, \ldots, x_N) \in \mathbb{R}^{N+1} \] and values \((y_0, \ldots, y_N) \in \mathbb{R}^{N+1}\),
the task is to find an interpolating cubic spline, i.e. an element \(s\) of \(S_{\Delta,3}\) satisfying
\[s(x_k) = y_k \quad \text{for each } k \in \{0, \ldots, N\}. \]

As we require \(s \in S_{\Delta,3}\), according to (3.62), for each \(k \in \{0, \ldots, N - 1\}\), we must find \(p_k \in P_3\) such that \(p_k |_{[x_k, x_{k+1}]} = s |_{[x_k, x_{k+1}]}\). To that end, for each \(k \in \{0, \ldots, N - 1\}\), we employ the ansatz
\[p_k(x) = a_k + b_k(x - x_k) + c_k(x - x_k)^2 + d_k(x - x_k)^3 \] with suitable \((a_k, b_k, c_k, d_k) \in \mathbb{R}^4\); (3.69b)
to then define \(s\) by
\[s(x) = p_k(x) \quad \text{for each } x \in [x_k, x_{k+1}]. \] (3.69c)

It is immediate that \(s\) is well-defined by (3.69c) and an element of \(S_{\Delta,3}\) (cf. (3.62)) satisfying (3.68) if, and only if,

\[
\begin{align*}
p_0(x_0) &= y_0, \\
p_{k-1}(x_k) &= y_k = p_k(x_k) \quad \text{for each } k \in \{1, \ldots, N - 1\}, \\
p_{N-1}(x_N) &= y_N, \\
p'_k(x_k) &= p'_k(x_k) \quad \text{for each } k \in \{1, \ldots, N - 1\}, \\
p''_k(x_k) &= p''_k(x_k) \quad \text{for each } k \in \{1, \ldots, N - 1\},
\end{align*}
\]
using the convention \(\{1, \ldots, N - 1\} = \emptyset\) for \(N - 1 < 1\). Note that (3.70) constitutes a system of \(2 + 4(N - 1) = 4N - 2\) conditions, while (3.69a) provides \(4N\) variables. This already indicates that one will be able to impose two additional conditions on \(s\). One typically imposes so-called boundary conditions, i.e. conditions on the values for \(s\) or its derivatives at \(x_0\) and \(x_N\) (see (3.81) below for commonly used boundary conditions).

In order to show that one can, indeed, choose the \(a_k, b_k, c_k, d_k\) such that all conditions of (3.70) are satisfied, the strategy is to transform (3.70) into an equivalent linear system. An analysis of the structure of that system will then show that it has a solution. The trick that will lead to the linear system is the introduction of
\[s''_k := s''(x_k), \quad k \in \{0, \ldots, N\}, \]
as new variables. As we will see in the following lemma, (3.70) is satisfied if, and only if, the \(s''_k\) satisfy the linear system (3.73):
Lemma 3.33. Given a knot vector and values according to (3.67), and introducing the abbreviations

\[h_k := x_{k+1} - x_k, \quad \text{for each } k \in \{0, \ldots, N - 1\}, \]

(3.72a)

\[g_k := \frac{6}{(h_k + h_{k-1})(y_{k+1} - y_{k-1})} \left(\frac{y_{k+1} - y_k}{h_k} - \frac{y_k - y_{k-1}}{h_{k-1}} \right) \quad \text{for each } k \in \{1, \ldots, N - 1\}, \]

(3.72b)

the \(p_k \in P_3 \) of (3.69a) satisfy (3.70) (and that means \(s \) given by (3.69c) is in \(S_{\Delta,3} \) and satisfies (3.68)) if, and only if, the \(N + 1 \) numbers \(s''_0, \ldots, s''_{N-1} \) defined by (3.71) solve the linear system consisting of the \(N - 1 \) equations

\[h_ks''_k + 2(h_k + h_{k+1})s''_{k+1} + h_{k+1}s''_{k+2} = g_{k+1}, \quad k \in \{0, \ldots, N - 2\}, \]

(3.73)

and the \(a_k, b_k, c_k, d_k \) are given in terms of the \(x_k, y_k \) and \(s''_k \) by

\[a_k = y_k \quad \text{for each } k \in \{0, \ldots, N - 1\}, \]

(3.74a)

\[b_k = \frac{y_{k+1} - y_k}{h_k} - \frac{h_k}{6} (s''_{k+1} + 2s''_k) \quad \text{for each } k \in \{0, \ldots, N - 1\}, \]

(3.74b)

\[c_k = \frac{s''_k}{2} \quad \text{for each } k \in \{0, \ldots, N - 1\}, \]

(3.74c)

\[d_k = \frac{s''_{k+1} - s''_k}{6h_k} \quad \text{for each } k \in \{0, \ldots, N - 1\}. \]

(3.74d)

Proof. First, for subsequent use, from (3.69a), we obtain the first two derivatives of the \(p_k \) for each \(k \in \{0, \ldots, N - 1\} \):

\[p'_k(x) = b_k + 2c_k(x - x_k) + 3d_k(x - x_k)^2, \]

(3.75a)

\[p''_k(x) = 2c_k + 6d_k(x - x_k). \]

(3.75b)

As usual, for the claimed equivalence, we prove two implications.

(3.70) implies (3.73) and (3.74):

Plugging \(x = x_k \) into (3.69a) yields

\[p_k(x_k) = a_k \quad \text{for each } k \in \{0, \ldots, N - 1\}. \]

(3.76)

Thus, (3.74a) is a consequence of (3.70a) and (3.70b).

Plugging \(x = x_k \) into (3.75b) yields

\[s''_k = p''_k(x_k) = 2c_k \quad \text{for each } k \in \{0, \ldots, N - 1\}, \]

(3.77)

i.e. (3.74c).

Plugging (3.70e), i.e. \(p'_k(x_{k-1}) = p'_k(x_k) \), into (3.75b) yields

\[2c_{k-1} + 6d_{k-1}(x_k - x_{k-1}) = 2c_k \quad \text{for each } k \in \{1, \ldots, N - 1\}. \]

(3.78a)
When using (3.74c) and solving for d_{k-1}, one obtains
\[d_{k-1} = \frac{s''_k - s''_{k-1}}{6h_{k-1}} \quad \text{for each } k \in \{1, \ldots, N-1\}, \tag{3.78b} \]
i.e. the relation of (3.74d) for each $k \in \{0, \ldots, N-2\}$. Moreover, (3.71) and (3.75b) imply
\[s''_N = s''(x_N) = p''_{N-1}(x_N) = 2c_{N-1} + 6d_{N-1}h_{N-1}, \tag{3.78c} \]
which, after solving for d_{N-1}, shows that the relation of (3.74d) also holds for $k = N-1$.

Plugging the first part of (3.70b) and (3.70c), i.e. $p_{k-1}(x_k) = y_k$ into (3.69a) yields
\[a_{k+1} + b_{k+1}h_{k+1} - c_{k+1}h_{k+1}^2 + d_{k+1}h_{k+1}^3 = y_k \quad \text{for each } k \in \{1, \ldots, N\}. \tag{3.79a} \]

When using (3.74a), (3.74c), (3.74d), and solving for b_{k-1}, one obtains
\[b_{k-1} = \frac{y_k - y_{k-1}}{h_{k-1}} - \frac{s''_{k-1}h_{k-1}}{2} - \frac{s''_{k-1}}{6h_{k-1}}h_{k-1}^2 = \frac{y_k - y_{k-1}}{h_{k-1}} - \frac{h_{k-1}^2}{6} (s''_k + 2s''_{k-1}) \tag{3.79b} \]
for each $k \in \{1, \ldots, N\}$, i.e. (3.74b).

Plugging (3.70d), i.e. $p''_{k-1}(x_k) = p'_k(x_k)$, into (3.75a) yields
\[b_{k-1} + 2c_{k-1}h_{k-1} + 3d_{k-1}h_{k-1}^2 = b_k \quad \text{for each } k \in \{1, \ldots, N-1\}. \tag{3.80a} \]

Finally, applying (3.74b), (3.74c), and (3.74d), one obtains
\[\frac{y_k - y_{k-1}}{h_{k-1}} - \frac{h_{k-1}}{6} (s''_k + 2s''_{k-1}) + s''_{k-1}h_{k-1} + \frac{h_{k-1}}{2} = \frac{y_{k+1} - y_k}{h_k} - \frac{h_k}{6} (s''_k + 2s''_k), \tag{3.80b} \]
or, rearranged,
\[h_{k-1}s''_k + 2(h_{k-1} + h_k)s''_k + h_k s''_{k+1} = g_k, \quad k \in \{1, \ldots, N-1\}, \tag{3.80c} \]
which is (3.73).

(3.73) and (3.74) imply (3.70):

First, note that plugging $x = x_k$ into (3.75b) again yields $s''_k = p''_k(x_k)$. Using (3.74a) in (3.69a) yields (3.70a) and the $p_k(x_k) = y_k$ part of (3.70b). Since (3.74b) is equivalent to (3.79b), and (3.79b) (when using (3.74a), (3.74c), and (3.74d)) implies (3.79a), which, in turn, is equivalent to $p_{k-1}(x_k) = y_k$ for each $k \in \{1, \ldots, N\}$, we see that (3.74) implies (3.70c) and the $p_{k-1}(x_k) = y_k$ part of (3.70b). Since (3.73) is equivalent to (3.80c) and (3.80b), and (3.80b) (when using (3.74a) – (3.74d)) implies (3.80a), which, in turn, is equivalent to $p_{k-1}(x_k) = p'_k(x_k)$ for each $k \in \{1, \ldots, N-1\}$, we see that (3.73) and (3.74) implies (3.70d). Finally, (3.74d) is equivalent to (3.78b), which (when using (3.74c)) implies (3.78a). Since (3.78a) is equivalent to $p''_{k-1}(x_k) = p''_k(x_k)$ for each $k \in \{1, \ldots, N-1\}$, (3.74) also implies (3.70d), concluding the proof of the lemma. ■
As already mentioned after formulating (3.70), (3.70) yields two conditions less than there are variables. Not surprisingly, the same is true in the linear system (3.73), where there are \(N - 1 \) equations for \(N + 1 \) variables. As also mentioned before, this allows to impose two additional conditions. Here are some of the most commonly used additional conditions:

Natural boundary conditions:

\[
s''(x_0) = s''(x_N) = 0. \quad (3.81a)
\]

Periodic boundary conditions:

\[
s'(x_0) = s'(x_N) \quad \text{and} \quad s''(x_0) = s''(x_N). \quad (3.81b)
\]

Dirichlet boundary conditions for the first derivative:

\[
s'(x_0) = y'_0 \in \mathbb{R} \quad \text{and} \quad s'(x_N) = y'_N \in \mathbb{R}. \quad (3.81c)
\]

Due to time constraints, we will only investigate the most simple of these cases, namely natural boundary conditions, in the following.

Since (3.81a) fixes the values of \(s''_0 \) and \(s''_N \) as 0, (3.73) now yields a linear system consisting of \(N - 1 \) equations for the \(N - 1 \) variables \(s''_1 \) through \(s''_{N-1} \). We can rewrite this system in matrix form

\[
A s'' = g \quad (3.82a)
\]

by introducing the matrix

\[
A := \begin{pmatrix}
2(h_0 + h_1) & h_1 & & \\
h_1 & 2(h_1 + h_2) & h_2 & \\
& h_2 & 2(h_2 + h_3) & h_3 \\
& & & \ddots & \ddots & \ddots \\
& & & & h_{N-3} & 2(h_{N-3} + h_{N-2}) & h_{N-2} \\
& & & & & h_{N-2} & 2(h_{N-2} + h_{N-1}) \\
\end{pmatrix}
\]

and the vectors

\[
s'' := \begin{pmatrix} s''_1 \\ \vdots \\ s''_{N-1} \end{pmatrix}, \quad g := \begin{pmatrix} g_1 \\ \vdots \\ g_{N-1} \end{pmatrix}. \quad (3.82b)
\]

The matrix \(A \) from (3.82b) belongs to an especially benign class of matrices, so-called strictly diagonally dominant matrices:

Definition 3.34. Let \(A \) be a real \(N \times N \) matrix, \(N \in \mathbb{N} \). Then \(A \) is called **strictly diagonally dominant** if, and only if,

\[
\sum_{\substack{j=1 \atop j \neq k}}^{N} |a_{kj}| < |a_{kk}| \quad \text{for each} \ k \in \{1, \ldots, N\}. \quad (3.83)
\]
Theorem 3.37. Let κ be a real $N \times N$ matrix, $N \in \mathbb{N}$. If A is strictly diagonally dominant, then, for each $x \in \mathbb{R}^N$,

$$\|x\|_\infty \leq \max \left\{ \frac{1}{|a_{kk}| - \sum_{j=1, j \neq k}^N |a_{kj}|} : k \in \{1, \ldots, N\} \right\} \|Ax\|_\infty. \tag{3.84}$$

In particular, A is invertible with

$$\|A^{-1}\|_\infty \leq \max \left\{ \frac{1}{|a_{kk}| - \sum_{j=1, j \neq k}^N |a_{kj}|} : k \in \{1, \ldots, N\} \right\}, \tag{3.85}$$

where $\|A^{-1}\|_\infty$ denotes the row sum norm according to (2.52a).

Proof. Exercise. ■

Theorem 3.36. Given a knot vector and values according to (3.67), there is a unique cubic spline $s \in S_{\Delta,3}$ that satisfies (3.68) and the natural boundary conditions (3.81a). Moreover, s can be computed by first solving the linear system (3.82) for the s''_k (the h_k and the g_k are given by (3.72)), then determining the a_k, b_k, c_k, and d_k according to (3.74), and, finally, using (3.69) to get s.

Proof. Lemma 3.33 shows that the existence and uniqueness of s is equivalent to (3.82a) having a unique solution. That (3.82a) does, indeed, have a unique solution follows from Lem. 3.35, as A as defined in (3.82b) is clearly strictly diagonally dominant. It is also part of the statement of Lem. 3.33 that s can be computed in the described way. ■

Theorem 3.37. Let $a, b \in \mathbb{R}$, $a < b$, and $f \in C^4[a, b]$. Moreover, given $N \in \mathbb{N}$ and a knot vector $\Delta := (x_0, \ldots, x_N) \in \mathbb{R}^{N+1}$ for $[a, b]$, define

$$h_k := x_{k+1} - x_k \quad \text{for each } k \in \{0, \ldots, N-1\}, \tag{3.86a}$$

$$h_{\min} := \min \{ h_k : k \in \{0, \ldots, N-1\} \}, \tag{3.86b}$$

$$h_{\max} := \max \{ h_k : k \in \{0, \ldots, N-1\} \}. \tag{3.86c}$$

Let $s \in S_{\Delta,3}$ be any cubic spline function satisfying $s(x_k) = f(x_k)$ for each $k \in \{0, \ldots, N\}$. If there exists $C > 0$ such that

$$\max \left\{ \left| s''(x_k) - f''(x_k) \right| : k \in \{0, \ldots, N\} \right\} \leq C \| f^{(4)} \|_\infty h_{\max}^2, \tag{3.87}$$

then the following error estimates hold:

$$\|f - s\|_\infty \leq c \| f^{(4)} \|_\infty h_{\max}^4, \tag{3.88a}$$

$$\|f' - s'\|_\infty \leq 2c \| f^{(4)} \|_\infty h_{\max}^3, \tag{3.88b}$$

$$\|f'' - s''\|_\infty \leq 2c \| f^{(4)} \|_\infty h_{\max}^2, \tag{3.88c}$$

$$\|f''' - s'''\|_\infty \leq 2c \| f^{(4)} \|_\infty h_{\max}^1, \tag{3.88d}$$
where

\[c := \frac{h_{\text{max}}}{h_{\text{min}}} \left(C + \frac{1}{4} \right). \]

(3.89)

At the \(x_k \), the third derivative \(s'' \) does not need to exist. In that case, (3.88a) is to be interpreted to mean that the estimate holds for all values of one-sided third derivatives of \(s \) (which must exist, since \(s \) agrees with a polynomial on each \([x_k, x_{k+1}]\)).

Proof. Exercise.

Theorem 3.38. Once again, consider the situation of Th. 3.37, but, instead of (3.87), assume that the interpolating cubic spline \(s \) satisfies natural boundary conditions \(s''(a) = s''(b) = 0 \). If \(f \in C^4[a, b] \) satisfies \(f''(a) = f''(b) = 0 \), then it follows that \(s \) satisfies (3.87) with \(C = 3/4 \), and, in consequence, the error estimates (3.88) with \(c = h_{\text{max}}/h_{\text{min}} \).

Proof. We merely need to show that (3.87) holds with \(C = 3/4 \). Since \(s \) is the interpolating cubic spline satisfying natural boundary conditions, \(s'' \) satisfies the linear system (3.82a). Dividing, for each \(k \in \{1, \ldots, N-1\} \), the \((k-1)\)th equation of that system by \(3(h_{k-1} + h_k) \) yields the form

\[Bs'' = \hat{g}, \]

(3.90a)

with

\[
B := \begin{pmatrix}
\frac{2}{3} & \frac{h_1}{3(h_0 + h_1)} & \frac{h_2}{3(h_1 + h_2)} & \cdots & \frac{h_{N-2}}{3(h_{N-3} + h_{N-2})} & \frac{h_{N-2}}{3(h_{N-2} + h_{N-1})} \\
\frac{h_1}{3(h_1 + h_2)} & \frac{2}{3} & \frac{h_3}{3(h_2 + h_3)} & \cdots & \frac{h_{N-3}}{3(h_{N-4} + h_{N-3})} & \frac{h_{N-3}}{3(h_{N-3} + h_{N-2})} \\
\frac{h_2}{3(h_2 + h_3)} & \frac{h_3}{3(h_2 + h_3)} & \frac{2}{3} & \cdots & \frac{h_{N-4}}{3(h_{N-5} + h_{N-4})} & \frac{h_{N-4}}{3(h_{N-4} + h_{N-3})} \\
\vdots & \vdots & \vdots & \ddots & \frac{h_{N-2}}{3(h_{N-3} + h_{N-2})} & \frac{h_{N-2}}{3(h_{N-2} + h_{N-1})} \\
\frac{h_{N-2}}{3(h_{N-3} + h_{N-2})} & \frac{h_{N-3}}{3(h_{N-4} + h_{N-3})} & \frac{h_{N-4}}{3(h_{N-5} + h_{N-4})} & \cdots & \frac{2}{3} & \frac{h_{N-1}}{3(h_{N-2} + h_{N-1})} \\
\frac{h_{N-3}}{3(h_{N-4} + h_{N-3})} & \frac{h_{N-4}}{3(h_{N-5} + h_{N-4})} & \frac{h_{N-5}}{3(h_{N-6} + h_{N-5})} & \cdots & \frac{h_{N-2}}{3(h_{N-3} + h_{N-2})} & \frac{2}{3}
\end{pmatrix}
\]

(3.90b)

and

\[
\hat{g} := \begin{pmatrix}
\hat{g}_1 \\
\vdots \\
\hat{g}_{N-1}
\end{pmatrix}
:= \begin{pmatrix}
\frac{g_1}{3(h_0 + h_1)} \\
\vdots \\
\frac{g_{N-1}}{3(h_{N-2} + h_{N-1})}
\end{pmatrix}.
\]

(3.90c)

Taylor’s theorem applied to \(f'' \) provides, for each \(k \in \{1, \ldots, N-1\} \), \(\alpha_k \in [x_{k-1}, x_k] \) and \(\beta_k \in [x_k, x_{k+1}] \) such that the following equations (3.91) hold, where (3.91a) has been multiplied by \(\frac{h_{k-1}}{3(h_{k-1} + h_k)} \) and (3.91b) has been multiplied by \(\frac{h_k}{3(h_{k-1} + h_k)} \):

\[
\frac{h_{k-1}}{3(h_{k-1} + h_k)} f''(x_{k-1}) = \frac{h_{k-1}}{3(h_{k-1} + h_k)} f''(x_k) - \frac{h_{k-1}^2}{3(h_{k-1} + h_k)} f'''(x_k) + \frac{h_{k-1}^2}{6(h_{k-1} + h_k)} f^{(4)}(\alpha_k),
\]

(3.91a)

\[
\frac{h_k}{3(h_{k-1} + h_k)} f''(x_k) = \frac{h_k}{3(h_{k-1} + h_k)} f''(x_{k+1}) + \frac{h_k^2}{3(h_{k-1} + h_k)} f'''(x_k) + \frac{h_k^3}{6(h_{k-1} + h_k)} f^{(4)}(\beta_k).
\]

(3.91b)
Adding (3.91a) and (3.91b) results in
\[
\frac{h_{k-1}}{3(h_{k-1} + h_k)} f''(x_{k-1}) + \frac{2}{3} f''(x_k) + \frac{h_k}{3(h_{k-1} + h_k)} f''(x_{k+1}) = f''(x_k) + R_k + \delta_k, \quad (3.92a)
\]
where
\[
R_k := \frac{1}{3} (h_k - h_{k-1}) f'''(x_k), \quad (3.92b)
\]
\[
\delta_k := \frac{1}{6(h_{k-1} + h_k)} (h_{k-1}^3 f^{(4)}(\alpha_k) + h_k^3 f^{(4)}(\beta_k)). \quad (3.92c)
\]
Using the matrix \(B \) from (3.90b), (3.92a) takes the form
\[
B \begin{pmatrix} f''(x_1) \\ \vdots \\ f''(x_{N-1}) \end{pmatrix} = \begin{pmatrix} f''(x_1) \\ \vdots \\ f''(x_{N-1}) \end{pmatrix} + \begin{pmatrix} R_1 \\ \vdots \\ R_{N-1} \end{pmatrix} + \begin{pmatrix} \delta_1 \\ \vdots \\ \delta_{N-1} \end{pmatrix}. \quad (3.93)
\]
In the same way we applied Taylor’s theorem to \(f'' \) to obtain (3.91), we now apply Taylor’s theorem to \(f \) to obtain for each \(k \in \{1, \ldots, N-1\}, \xi_k \in]x_k, x_{k+1}[\) and \(\eta_k \in]x_{k-1}, x_k[\) such that
\[
\begin{align*}
 f(x_{k+1}) &= f(x_k) + h_k f'(x_k) + \frac{h_k^2}{2} f''(x_k) + \frac{h_k^3}{6} f'''(x_k) + \frac{h_k^4}{24} f^{(4)}(\xi_k), \quad (3.94a) \\
 f(x_{k-1}) &= f(x_k) - h_k f'(x_k) + \frac{h_k^2}{2} f''(x_k) - \frac{h_k^3}{6} f'''(x_k) + \frac{h_k^4}{24} f^{(4)}(\eta_k). \quad (3.94b)
\end{align*}
\]
Multiplying (3.94a) and (3.94b) by \(2/h_k \) and \(2/h_{k-1} \), respectively, leads to
\[
\begin{align*}
 2 \frac{f(x_{k+1}) - f(x_k)}{h_k} &= 2 f'(x_k) + h_k f''(x_k) + \frac{h_k^2}{3} f'''(x_k) + \frac{h_k^3}{12} f^{(4)}(\xi_k), \quad (3.95a) \\
 -2 \frac{f(x_{k-1}) - f(x_k)}{h_{k-1}} &= -2 f'(x_k) + h_{k-1} f''(x_k) - \frac{h_{k-1}^2}{3} f'''(x_k) + \frac{h_{k-1}^3}{12} f^{(4)}(\eta_k). \quad (3.95b)
\end{align*}
\]
Adding (3.95a) and (3.95b) followed by a division by \(h_{k-1} + h_k \) yields
\[
2 \frac{f(x_{k+1}) - f(x_k)}{h_k(h_{k-1} + h_k)} - 2 \frac{f(x_{k-1}) - f(x_k)}{h_{k-1}(h_{k-1} + h_k)} = f''(x_k) + R_k + \hat{\delta}_k, \quad (3.96)
\]
where \(R_k \) is as in (3.92b) and
\[
\hat{\delta}_k := \frac{1}{12(h_{k-1} + h_k)} (h_{k-1}^3 f^{(4)}(\eta_k) + h_k^3 f^{(4)}(\xi_k)).
\]
Observing that
\[
\hat{g}_k := \frac{g_k}{3(h_{k-1} + h_k)} \overset{(3.72b), y_0 = f(x_k)}{=} 2 \frac{f(x_{k+1}) - f(x_k)}{h_k(h_{k-1} + h_k)} - 2 \frac{f(x_{k-1}) - f(x_k)}{h_{k-1}(h_{k-1} + h_k)},
\]
we can write (3.96) as
\[
\begin{pmatrix}
 f''(x_1) \\
 \vdots \\
 f''(x_{N-1})
\end{pmatrix} = \begin{pmatrix}
 \hat{g}_1 \\
 \vdots \\
 \hat{g}_{N-1}
\end{pmatrix} - \begin{pmatrix}
 R_1 \\
 \vdots \\
 R_{N-1}
\end{pmatrix} - \begin{pmatrix}
 \hat{\delta}_1 \\
 \vdots \\
 \hat{\delta}_{N-1}
\end{pmatrix}.
\] (3.97)

Using (3.97) in the right-hand side of (3.93) and then subtracting (3.90a) from the result yields
\[
B \begin{pmatrix}
 f''(x_1) - s''(x_1) \\
 \vdots \\
 f''(x_{N-1}) - s''(x_{N-1})
\end{pmatrix} = \begin{pmatrix}
 \delta_1 - \hat{\delta}_1 \\
 \vdots \\
 \delta_{N-1} - \hat{\delta}_{N-1}
\end{pmatrix}.
\]

From
\[
\frac{2}{3} - \frac{h_{k-1}}{3(h_{k-1} + h_k)} - \frac{h_k}{3(h_{k-1} + h_k)} = \frac{1}{3}
\]
for \(k \in \{1, \ldots, N-1\} \), we conclude that \(B \) is strictly diagonally dominant, such that Lem. 3.35 allows us to estimate
\[
\max \{|f''(x_k) - s''(x_k)| : k \in \{0, \ldots, N\}\} \leq 3 \max \{|\delta_k| + |\hat{\delta}_k| : k \in \{1, \ldots, N-1\}\}
\]
\[
\leq \frac{3}{4} \frac{h^2}{h_{\max}} \|f^{(4)}\|_{\infty},
\] (3.98)

where
\[
|\delta_k| + |\hat{\delta}_k| \leq \left(\frac{1}{6} + \frac{1}{12} \right) \frac{h^2_{k-1} + h^2_k}{h_{k-1} + h_k} \|f^{(4)}\|_{\infty} \leq \frac{1}{4} \frac{h^2}{h_{\max}} \|f^{(4)}\|_{\infty}
\]
was used for the inequality at (*). The estimate (3.98) shows that \(s \) satisfies (3.87) with \(C = 3/4 \), thereby concluding the proof of the theorem.

\[\blacksquare\]

Note that (3.88) is, in more than one way, much better than (3.65): From (3.88) we get convergence of the first three derivatives, and the convergence of \(\|f - s\|_{\infty} \) is also much faster in (3.88) (proportional to \(h^2 \) rather than to \(h^2 \) in (3.65)). The disadvantage of (3.88), however, is that we needed to assume the existence of a continuous fourth derivative of \(f \).

Remark 3.39. A piecewise interpolation by cubic polynomials different from spline interpolation is given by carrying out a Hermite interpolation on each interval \([x_k, x_{k+1}]\) such that the resulting function satisfies \(f(x_k) = s(x_k) \) as well as
\[
f'(x_k) = s'(x_k).
\] (3.99)

The result will usually not be a spline, since \(s \) will usually not have second derivatives in the \(x_k \). On the other hand the corresponding cubic spline will usually not satisfy (3.99). Thus, one will prefer one or the other form of interpolation, depending on either (3.99) (i.e. the agreement of the first derivatives of the given and interpolating function) or \(s \in C^2 \) being more important in the case at hand.
We conclude the section by depicting different interpolations of the functions \(f(x) = 1/(x^2 + 1) \) and \(f(x) = \cos x \) on the interval \([-6, 6]\) in Figures 1 and 2, respectively. While \(f \) is depicted as a solid blue curve, the interpolating polynomial of degree 6 is shown as a dotted black curve, the interpolating linear spline as a solid red curve, and the interpolating cubic spline is shown as a dashed green curve. One clearly observes the large values and strong oscillations of the interpolating polynomial toward the boundaries of the interval.

Figure 1: Different interpolations of \(f(x) = 1/(x^2 + 1) \) with data points at \((x_0, \ldots, x_6) = (-6, -4, \ldots, 4, 6)\).

4 Numerical Integration

4.1 Introduction

The goal is the computation of (an approximation of) the value of definite integrals

\[
\int_a^b f(x) \, dx.
\]

(4.1)

Even if we know from the fundamental theorem of calculus that \(f \) has an antiderivative, even for simple \(f \), the antiderivative can often not be expressed in terms of so-called
elementary functions (such as polynomials, exponential functions, and trigonometric functions). An example is the important function

$$\Phi(y) := \int_0^y \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx ,$$

which can not be expressed by elementary functions.

On the other hand, as we will see, there are effective and efficient methods to compute accurate approximations of such integrals. As a general rule, one can say that numerical integration is easy, whereas symbolic integration is hard (for differentiation, one has the reverse situation – symbolic differentiation is easy, while numeric differentiation is hard).

A first approximative method for the evaluation of integrals is given by the very definition of the Riemann integral. We recall it in the form of the following Th. 4.3. First, let us formally introduce some notation that, in part, we already used when studying spline interpolation:

Notation 4.1. Given a real interval \([a, b]\), \(a < b\), \((x_0, \ldots, x_n) \in \mathbb{R}^{n+1}\), \(n \in \mathbb{N}\), is called a **partition** of \([a, b]\) if, and only if, \(a = x_0 < x_1 < \cdots < x_n = b\) (what was called a knot vector in the context of spline interpolation). A **tagged partition** of \([a, b]\) is a partition together with a vector \((t_1, \ldots, t_n) \in \mathbb{R}^n\) such that \(t_i \in [x_{i-1}, x_i]\) for each \(i \in \{1, \ldots, n\}\).
Given a partition \(\Delta \) (with or without tags) of \([a, b]\) as above, the number
\[
h(\Delta) := \max \left\{ h_i : i \in \{1, \ldots, n\} \right\}, \quad h_i := x_i - x_{i-1},
\]
is called the mesh size of \(\Delta \). Moreover, if \(f : [a, b] \rightarrow \mathbb{R} \), then
\[
\sum_{i=1}^{n} f(t_i)h_i
\]
is called the Riemann sum of \(f \) associated with a tagged partition of \([a, b]\).

Notation 4.2. Given a real interval \([a, b]\), \(a < b \), we denote the set of all Riemann integrable functions \(f : [a, b] \rightarrow \mathbb{R} \) by \(R[a, b] \).

Theorem 4.3. Given a real interval \([a, b]\), \(a < b \), a function \(f : [a, b] \rightarrow \mathbb{R} \) is in \(R[a, b] \) if, and only if, for each sequence of tagged partitions
\[
\Delta_k = ((x_{0k}, \ldots, x_{nk}), (t_{1k}, \ldots, t_{nk})), \quad k \in \mathbb{N},
\]
of \([a, b]\) such that \(\lim_{k \to \infty} h(\Delta_k) = 0 \), the limit of associated Riemann sums
\[
I(f) := \int_{a}^{b} f(x) \, dx := \lim_{k \to \infty} \sum_{i=1}^{n_k} f(t_{ik}^k)h_{ik}^k
\]
exists. The limit is then unique and called the Riemann integral of \(f \). Recall that every continuous and every piecewise continuous function on \([a, b]\) is in \(R[a, b] \).

Proof. See, e.g., [Phi16a, Th. 10.10(d)].

Thus, for each Riemann integrable function, we can use (4.6) to compute a sequence of approximations that converges to the correct value of the Riemann integral.

Example 4.4. To employ (4.4) to compute approximations to \(\Phi(1) \), where \(\Phi \) is the function defined in (4.2), one can use the tagged partitions \(\Delta_n \) of \([0, 1]\) given by \(x_i = t_i = i/n \) for \(i \in \{0, \ldots, n\} \), \(n \in \mathbb{N} \). Noticing \(h_i = 1/n \), one obtains
\[
I_n := \sum_{i=1}^{n} \frac{1}{n} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{i}{n} \right)^2 \right).
\]
From (4.6), we know that \(\Phi(1) = \lim_{n \to \infty} I_n \), since the integrand is continuous. For example, one can compute the following values:

A problem is that, when using (4.6), a priori, we have no control on the approximation error. Thus, given a required accuracy, we do not know what mesh size we need to choose. And even though the first four digits in the table of Example 4.4 seem to have stabilized, without further investigation, we can not be certain that that is, indeed, the case. The main goal in the following is to improve on this situation by providing approximation formulas for Riemann integrals together with effective error estimates.

We will slightly generalize the problem class by considering so-called weighted integrals:
Definition 4.5. Given a real interval \([a, b]\), \(a < b\), each Riemann integrable function \(\rho : [a, b] \to \mathbb{R}^+_0\), such that
\[
\int_a^b \rho(x) \, dx > 0
\] (4.7)
(in particular, \(\rho \not\equiv 0\), \(\rho\) bounded, \(0 < \int_a^b \rho(x) \, dx < \infty\)), is called a weight function. Given a weight function \(\rho\), the weighted integral of \(f \in \mathcal{R}[a, b]\) is
\[
I_\rho(f) := \int_a^b f(x)\rho(x) \, dx,
\] (4.8)
that means the usual integral \(I(f)\) corresponds to \(\rho \equiv 1\) (note that \(f\rho \in \mathcal{R}[a, b]\), cf. [Phi16a, Th. 10.18(d)]).

In the sequel, we will first study methods designed for the numerical solution of non-weighted integrals (i.e. \(\rho \equiv 1\)) in Sections 4.2, 4.3, and 4.5, followed by an investigation of Gaussian quadrature in Sec. 4.6, which is suitable for the numerical solution of both weighted and nonweighted integrals.

Definition 4.6. Given a real interval \([a, b]\), \(a < b\), in a generalization of the Riemann sums (4.4), a map
\[
I_n : \mathcal{R}[a, b] \to \mathbb{R}, \quad I_n(f) = (b - a) \sum_{i=0}^{n} \sigma_i f(x_i),
\] (4.9)
is called a quadrature formula or a quadrature rule with distinct points \(x_0, \ldots, x_n \in [a, b]\) and weights \(\sigma_0, \ldots, \sigma_n \in \mathbb{R}\), \(n \in \mathbb{N}_0\).

Remark 4.7. Note that every quadrature rule constitutes a linear functional on \(\mathcal{R}[a, b]\).

A decent quadrature rule should give the exact integral for polynomials of low degree. This gives rise to the next definition:

\[
\begin{array}{c|c}
 n & I_n \\
1 & 0.2426 \\
2 & 0.2978 \\
10 & 0.3342 \\
100 & 0.3415 \\
1000 & 0.3422 \\
5000 & 0.3422 \\
\end{array}
\]
Definition 4.8. Given a real interval \([a, b]\), \(a < b\), and a weight function \(\rho : [a, b] \rightarrow \mathbb{R}_0^+\), a quadrature rule \(I_n\) is defined to have the degree of accuracy \(r \in \mathbb{N}_0\) if, and only if,
\[
I_n(x^m) = \int_a^b x^m \rho(x) \, dx \quad \text{for each} \ m \in \{0, \ldots, r\},
\]
but,
\[
I_n(x^{r+1}) \neq \int_a^b x^{r+1} \rho(x) \, dx.
\]

Remark 4.9. (a) Due to the linearity of \(I_n\), \(I_n\) has degree of accuracy at least \(r \in \mathbb{N}_0\) if, and only if, \(I_n\) is exact for each \(p \in \mathcal{P}_r\).

(b) A quadrature rule \(I_n\) as given by (4.9) can never be exact for the polynomial
\[
p : \mathbb{R} \rightarrow \mathbb{R}, \quad p(x) := \prod_{i=0}^n (x - x_i)^2,
\]
since
\[
I_n(p) = 0 \neq \int_a^b p(x) \rho(x) \, dx.
\]
In particular, \(I_n\) can have degree of accuracy at most \(r = 2n + 1\).

(c) In view of (b), a quadrature rule \(I_n\) as given by (4.9) has any degree of accuracy (i.e. at least degree of accuracy 0) if, and only if,
\[
\int_a^b \rho(x) \, dx = I_n(1) = (b - a) \sum_{i=0}^n \sigma_i,
\]
which simplifies to
\[
\sum_{i=0}^n \sigma_i = 1 \quad \text{for} \ \rho \equiv 1.
\]

4.2 Quadrature Rules Based on Interpolating Polynomials

In this section, we consider \(\rho \equiv 1\), that means only nonweighted integrals. We can make use of interpolating polynomials to produce an abundance of useful quadrature rules.

Definition 4.10. Given a real interval \([a, b]\), \(a < b\), the quadrature rule based on interpolating polynomials for the distinct points \(x_0, \ldots, x_n \in [a, b]\), \(n \in \mathbb{N}_0\), is defined by
\[
I_n : \mathbb{R}[a, b] \rightarrow \mathbb{R}, \quad I_n(f) := \int_a^b p_n(x) \, dx,
\]
where \(p_n = p_n(f) \in \mathcal{P}_n\) is the interpolating polynomial corresponding to the data points \((x_0, f(x_0)), \ldots, (x_n, f(x_n))\).
Theorem 4.11. Let \([a, b]\) be a real interval, \(a < b\), and let \(I_n\) be the quadrature rule based on interpolating polynomials for the distinct points \(x_0, \ldots, x_n \in [a, b]\), \(n \in \mathbb{N}_0\), as defined in (4.15).

(a) \(I_n\) is, indeed, a quadrature rule in the sense of Def. 4.6, where the weights \(\sigma_i\), \(i \in \{0, \ldots, n\}\), are given in terms of the Lagrange basis polynomials \(L_i\) of (3.3b) by

\[
\sigma_i = \frac{1}{b-a} \int_a^b L_i(x) \, dx = \frac{1}{b-a} \int_a^b \prod_{k=0}^n \frac{x-x_k}{x_i-x_k} \, dx \tag{4.16}
\]

\((\ast)\) \(\int_0^1 \prod_{k=0}^n \frac{t-t_k}{t_i-t_k} \, dt\), where \(t_i := \frac{x_i-a}{b-a}\).

(b) \(I_n\) has at least degree of accuracy \(n\), i.e. it is exact for each \(q \in \mathcal{P}_n\).

(c) For each \(f \in C^{n+1}[a, b]\), one has the error estimate

\[
\left| \int_a^b f(x) \, dx - I_n(f) \right| \leq \frac{\|f^{(n+1)}\|_\infty}{(n+1)!} \int_a^b |\omega_{n+1}(x)| \, dx, \tag{4.17}
\]

where \(\omega_{n+1}(x) = \prod_{i=0}^n (x-x_i)\) is the Newton basis polynomial.

Proof. (a): (4.16) immediately follows by plugging (3.3) (with \(y_j = f(x_j)\)) into (4.15) and comparing with (4.9). The equality labeled \((\ast)\) is due to

\[
\frac{x-x_k}{x_i-x_k} = \frac{x-a}{b-a} - \frac{x_k-a}{b-a}
\]

and the change of variables \(x \mapsto t := \frac{x-a}{b-a}\).

(b): For \(q \in \mathcal{P}_n\), we have \(p_n(q) = q\) such that \(I_n(q) = \int_a^b q(x) \, dx\) is clear from (4.15).

(c): This is also immediate, namely from (4.15) and (3.21). Actually, there is a subtle point here, since what we claimed is only true given the (Riemann) integrability of the function \(x \mapsto f^{(n+1)}(\xi(x))\). Due to the dependence of \(\xi\) on \(x\), this is not trivial. However, we will show in the proof of Prop. 4.14, that \(x \mapsto f^{(n+1)}(\xi(x))\) is, indeed, even piecewise continuous on \([a, b]\).

\[
\lim_{n \to \infty} \left| \int_a^b f(x) \, dx - I_n(f) \right| = 0 \tag{4.19}
\]

Remark 4.12. If \(f \in C^\infty[a, b]\) and there exist \(K \in \mathbb{R}_0^+\) and \(R < (b-a)^{-1}\) such that (3.28) holds, i.e.

\[
\|f^{(n)}\|_\infty \leq Kn!R^n \quad \text{for each } n \in \mathbb{N}_0, \tag{4.18}
\]

then, for each sequence of distinct numbers \((x_0, x_1, \ldots)\) in \([a, b]\), the corresponding quadrature rules based on interpolating polynomials converge, i.e.
Indeed, \(\left| \int_a^b f(x) \, dx - I_n(f) \right| \leq \int_a^b \|f - p_n\|_\infty \, dx = (b - a) \|f - p_n\|_\infty \) and \(\lim_{n \to \infty} \|f - p_n\|_\infty = 0 \) according to (3.29).

In certain situations, (4.17) can be improved by determining the sign of the error term (see Prop. 4.14 below). This information will come in handy when proving subsequent error estimates for special cases.

Lemma 4.13. Given a real interval \([a, b]\), \(a < b\), an integrable function \(g : [a, b] \to \mathbb{R}\) that has only one sign (i.e. \(g \geq 0\) or \(g \leq 0\)), and \(h \in C[a, b]\), there exists \(\tau \in [a, b]\) satisfying

\[
\int_a^b h(t)g(t) \, dt = h(\tau) \int_a^b g(t) \, dt. \tag{4.20}
\]

Proof. First, suppose \(g \geq 0\). Let \(s_m, s_M \in [a, b]\) be points, where \(h\) assumes its min (denoted by \(m_h\)) and its max (denoted by \(M_h\)), respectively. We have

\[
m_h \int_a^b g(t) \, dt \leq \int_a^b h(t)g(t) \, dt \leq M_h \int_a^b g(t) \, dt.
\]

Thus, if we define

\[
F : [a, b] \to \mathbb{R}, \quad F(s) := h(s) \int_a^b g(t) \, dt - \int_a^b h(t)g(t) \, dt,
\]

then \(F(s_m) \leq 0 \leq F(s_M)\), and the intermediate value theorem yields \(\tau \in [a, b]\) such that \(F(\tau) = 0\), i.e. \(\tau\) satisfies (4.20). If \(g \leq 0\), then applying the result we just proved to \(-g\) establishes the case. \(\blacksquare\)

Proposition 4.14. Let \([a, b]\) be a real interval, \(a < b\), and let \(I_n\) be the quadrature rule based on interpolating polynomials for the distinct points \(x_0, \ldots, x_n \in [a, b]\), \(n \in \mathbb{N}_0\), as defined in (4.15). If \(\omega_{n+1}(x) = \prod_{i=0}^{n+1} (x - x_i)\) has only one sign on \([a, b]\) (i.e. \(\omega_{n+1} \geq 0\) or \(\omega_{n+1} \leq 0\) on \([a, b]\), see Rem. 4.15 below), then, for each \(f \in C^{n+1}[a, b]\), there exists \(\tau \in [a, b]\) such that

\[
\int_a^b f(x) \, dx - I_n(f) = \frac{f^{(n+1)}(\tau)}{(n + 1)!} \int_a^b \omega_{n+1}(x) \, dx. \tag{4.21}
\]

In particular, if \(f^{(n+1)}\) has just one sign as well, then one can infer the sign of the error term (i.e. of the right-hand side of (4.21)).

Proof. From Th. 3.26, we know that, for each \(x \in [a, b]\), there exists \(\xi(x) \in [a, b]\) such that (cf. (3.46))

\[
f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n + 1)!} \omega_{n+1}(x). \tag{4.22}
\]

Combining (4.22) with (3.45) yields

\[
f^{(n+1)}(\xi(x)) = f[x, x_0, \ldots, x_n] (n + 1)! \tag{4.23}
\]
for each $x \in [a, b]$ such that $\omega_{n+1}(x) \neq 0$, i.e., for each $x \in [a, b] \setminus \{x_0, \ldots, x_n\}$. Since $x \mapsto f[x, x_0, \ldots, x_n]$ is continuous on $[a, b]$ by Prop. 3.24(a), the function $x \mapsto f^{(n+1)}(\xi(x))$ is also continuous in each $x \in [a, b] \setminus \{x_0, \ldots, x_n\}$, i.e., piecewise continuous on $[a, b]$. Moreover, an argument as in the proof of Th. 3.26(b) shows that the $x \mapsto f^{(n+1)}(\xi(x))$ is continuous in each $x \in [a, b] \setminus \{x_0, \ldots, x_n\}$, i.e., piecewise continuous on $[a, b]$.

Moreover, an argument as in the proof of Th. 3.26(b) shows that the $\xi(x_0), \ldots, \xi(x_n)$ can be chosen such that (4.23) holds for each $x \in [a, b]$ and $x \mapsto f^{(n+1)}(\xi(x))$ is continuous on $[a, b]$. Thus, integrating (4.22) and applying Lem. 4.13 yields $\tau \in [a, b]$ satisfying

$$\int_a^b f(x) \, dx - I_n(f) = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi(x)) \omega_{n+1}(x) \, dx = \frac{f^{(n+1)}(\tau)}{(n+1)!} \int_a^b \omega_{n+1}(x) \, dx,$$

proving (4.21). □

Remark 4.15. There exist precisely 3 examples where ω_{n+1} has only one sign on $[a, b]$, namely $\omega_1(x) = (x - a) \geq 0$, $\omega_2(x) = (x - b) \leq 0$, and $\omega_2(x) = (x - a)(x - b) \leq 0$. In all other cases, there exists at least one $x_i \in [a, b]$. As x_i is a simple zero of ω_{n+1}, ω_{n+1} changes its sign in the interior of $[a, b]$.

4.3 Newton-Cotes Formulas

We will now study quadrature rules based on interpolating polynomials with equally-spaced data points. In particular, we continue to assume $\rho \equiv 1$ (nonweighted integrals).

4.3.1 Definition, Weights, Degree of Accuracy

Definition and Remark 4.16. Given a real interval $[a, b]$, $a < b$, a quadrature rule based on interpolating polynomials according to Def. 4.10 is called a Newton-Cotes formula, also known as a Newton-Cotes quadrature rule if, and only if, the points $x_0, \ldots, x_n \in [a, b]$, $n \in \mathbb{N}$, are equally-spaced. Moreover, a Newton-Cotes formula is called closed or a Newton-Cotes closed quadrature rule if, and only if, $x_i := a + i h$, $h := \frac{b - a}{n}$, $i \in \{0, \ldots, n\}$, $n \in \mathbb{N}$. (4.25)

In the present context of equally-spaced x_i, the discretization’s mesh size h is also called step size. It is an exercise to compute the weights of the Newton-Cotes closed quadrature rules. One obtains

$$\sigma_i = \sigma_{i,n} = \frac{1}{n} \int_0^n \prod_{k=0}^n \frac{s - k}{i - k} \, ds.$$ (4.26)

Given n, one can compute the σ_i explicitly and store or tabulate them for further use. The next lemma shows that one actually does not need to compute all σ_i:

Lemma 4.17. The weights σ_i of the Newton-Cotes closed quadrature rules (see (4.26)) are symmetric, i.e.

$$\sigma_i = \sigma_{n-i} \quad \text{for each } i \in \{0, \ldots, n\}, \quad n \in \mathbb{N}.$$ (4.27)
\textbf{4 NUMERICAL INTEGRATION}

\textit{Proof.} Exercise.\hfill \blacksquare

If \(n \) is even, then, as we will show in Th. 4.19 below, the corresponding closed Newton-Cotes formula \(I_\omega \) is exact not only for \(p \in \mathcal{P}_{n} \), but even for \(p \in \mathcal{P}_{n+1} \). On the other hand, we will also see in Th. 4.19 that \(I(x^{n+2}) \neq I_n(x^{n+2}) \) as a consequence of the following preparatory lemma:

\textbf{Lemma 4.18.} If \([a, b], a < b, \) is a real interval, \(n \in \mathbb{N} \) is even, and \(x_i, i \in \{0, \ldots, n\} \), are defined according to (4.25), then the antiderivative of the Newton basis polynomial \(\omega := \omega_{n+1} \), i.e. the function

\[
F : \mathbb{R} \rightarrow \mathbb{R}, \quad F(x) := \int_a^x \prod_{i=0}^n (y - x_i) \, dy, \tag{4.28}
\]

satisfies

\[
F(x) = \begin{cases}
0 & \text{for } x = a, \\
> 0 & \text{for } a < x < b, \\
= 0 & \text{for } x = b.
\end{cases} \tag{4.29}
\]

\textit{Proof.} \(F(a) = 0 \) is clear. The remaining assertions of (4.29) are shown in several steps.

\textit{Claim 1.} With \(h \in]0, b - a[\) defined according to (4.25), one has

\[
\omega(x_{2j} + \tau) > 0, \quad \omega(x_{2j+1} + \tau) < 0, \quad \text{for each } \tau \in]0, h[\text{ and each } j \in \left\{0, \ldots, \frac{n}{2} - 1 \right\}. \tag{4.30}
\]

\textit{Proof.} As \(\omega \) has degree precisely \(n + 1 \) and a zero at each of the \(n + 1 \) distinct points \(x_0, \ldots, x_n \), each of these zeros must be simple. In particular, \(\omega \) must change its sign at each \(x_i \). Moreover, \(\lim_{x \to -\infty} \omega(x) = -\infty \) due to the fact that the degree \(n + 1 \) of \(\omega \) is odd. This implies that \(\omega \) changes its sign from negative to positive at \(x_0 = a \) and from positive to negative at \(x_1 = a + h \), establishing the case \(j = 0 \). The general case (4.30) now follows by induction.\hfill \blacktriangle

\textit{Claim 2.} On the left half of the interval \([a, b], |\omega| \) decays in the following sense:

\[
|\omega(x + h)| < |\omega(x)| \quad \text{for each } x \in \left[a, \frac{a + b}{2} - h\right] \setminus \{x_0, \ldots, x_{n/2-1}\}. \tag{4.31}
\]

\textit{Proof.} For each \(x \) that is not a zero of \(\omega \), we compute

\[
\frac{\omega(x + h)}{\omega(x)} = \frac{\prod_{i=0}^n (x + h - x_i)}{\prod_{i=0}^n (x - x_i)} = \frac{(x + h - a) \prod_{i=1}^{n-1} (x + h - x_i)}{(x - b) \prod_{i=0}^{n-1} (x - x_i)} = \frac{(x + h - a)}{x - b}.
\]

Moreover, if \(a < x < \frac{a + b}{2} - h \), then

\[
|x + h - a| = x + h - a < \frac{b - a}{2} < b - x = |x - b|,
\]

proving (4.31).\hfill \blacktriangle
Claim 3. \(F(x) > 0 \) for each \(x \in \left[a, \frac{a+b}{2} \right] \).

Proof. There exists \(\tau \in [0, h] \) and \(i \in \{0, \ldots, n/2 - 1\} \) such that \(x = x_i + \tau \). Thus,

\[
F(x) = \int_{x_i}^{x} \omega(y) \, dy + \sum_{k=0}^{i-1} \int_{x_k}^{x_{k+1}} \omega(y) \, dy,
\]

and it suffices to show that, for each \(\tau \in [0, h] \),

\[
\int_{x_2j}^{x_2j+\tau} \omega(y) \, dy > 0 \quad \text{if } j \in \left\{ k \in \mathbb{N}_0 : 0 \leq k \leq \frac{n/2 - 1}{2} \right\}, \quad (4.33a)
\]

\[
\int_{x_2j}^{x_2j+1+\tau} \omega(y) \, dy > 0 \quad \text{if } j \in \left\{ k \in \mathbb{N}_0 : 0 \leq k \leq \frac{n/2 - 2}{2} \right\}. \quad (4.33b)
\]

While (4.33a) is immediate from (4.30), for (4.33b), one calculates

\[
\int_{x_2j}^{x_2j+1+\tau} \omega(y) \, dy = \int_{x_2j}^{x_2j+\tau} \left[\omega(y) + \omega(y + h) \right] \, dy + \int_{x_2j}^{x_2j+1} \omega(y) \, dy > 0
\]

for each \(\tau \in [0, h] \) and each \(0 \leq j \leq \frac{n/2 - 2}{2} \), thereby establishing the case. \(\square \)

Claim 4. \(\omega \) is antisymmetric with respect to the midpoint of \([a, b] \), i.e.

\[
\omega \left(\frac{a+b}{2} + \tau \right) = -\omega \left(\frac{a+b}{2} - \tau \right) \quad \text{for each } \tau \in \mathbb{R}. \quad (4.34)
\]

Proof. From \((a+b)/2 - x_i = -(a+b)/2 - x_{n-i}) = (n/2 - i)h\) for each \(i \in \{0, \ldots, n\},\) one obtains

\[
\omega \left(\frac{a+b}{2} + \tau \right) = \prod_{i=0}^{n} \left(\frac{a+b}{2} + \tau - x_i \right) = -\prod_{i=0}^{n} \left(\frac{a+b}{2} - \tau - x_{n-i} \right)
\]

\[
= -\prod_{i=0}^{n} \left(\frac{a+b}{2} - \tau - x_i \right) = -\omega \left(\frac{a+b}{2} - \tau \right),
\]

which is (4.34). \(\square \)

Claim 5. \(F \) is symmetric with respect to the midpoint of \([a, b]\), i.e.

\[
F \left(\frac{a+b}{2} + \tau \right) = F \left(\frac{a+b}{2} - \tau \right) \quad \text{for each } \tau \in \mathbb{R}. \quad (4.35)
\]

Proof. For each \(\tau \in [0, \frac{b-a}{2}] \), we obtain

\[
F \left(\frac{a+b}{2} + \tau \right) = \int_{a}^{(a+b)/2-\tau} \omega(x) \, dx + \int_{(a+b)/2+\tau}^{(a+b)/2} \omega(x) \, dx = F \left(\frac{a+b}{2} - \tau \right),
\]

since the second integral vanishes due to (4.34). \(\square \)
Finally, (4.29) follows from combining $F(a) = 0$ with Claims 3 and 5.

Theorem 4.19. If $[a, b], a < b,$ is a real interval and $n \in \mathbb{N}$ is even, then the Newton-Cotes closed quadrature rule $I_n : R[a, b] \rightarrow \mathbb{R}$ has degree of accuracy $n + 1$.

Proof. It is an exercise to show that I_n has at least degree of accuracy $n + 1$. It then remains to show that

$$I(x^{n+2}) \neq I_n(x^{n+2}).$$

(4.36)

To that end, let $x_{n+1} \in [a, b] \setminus \{x_0, \ldots, x_n\}$, and let $q \in P_{n+1}$ be the interpolating polynomial for $f(x) = x^{n+2}$ and x_0, \ldots, x_n, whereas $p_n \in P_n$ is the corresponding interpolating polynomial for x_0, \ldots, x_n (note that p_n interpolates both f and q). As we already know that I_n has at least degree of accuracy $n + 1$, we obtain

$$\int_a^b p_n(x) \, dx = I_n(f) = I_n(q) = \int_a^b q(x) \, dx.$$

(4.37)

By applying (3.21) with $f(x) = x^{n+2}$ and using $f^{(n+2)}(x) = (n + 2)!$, one obtains

$$f(x) - q(x) = \frac{f^{(n+2)}(\xi(x))}{(n + 2)!} \omega_{n+2}(x) = \omega_{n+2}(x) = \prod_{i=0}^{n+1} (x - x_i) \quad \text{for each } x \in [a, b].$$

(4.38)

Integrating (4.38) while taking into account (4.37) as well as using F from (4.28) yields

$$I(f) - I_n(f) = \int_a^b \prod_{i=0}^{n+1} (x - x_i) \, dx = \int_a^b F'(x) (x - x_{n+1}) \, dx$$

$$= \left[F(x)(x - x_{n+1}) \right]_a^b - \int_a^b F(x) \, dx \quad (4.29) - \int_a^b F(x) \, dx \quad (4.29) < 0,$$

proving (4.36).

4.3.2 Rectangle Rules (n = 0)

Note that, for $n = 0$, there is no closed Newton-Cotes formula, as (4.25) can not be satisfied with just one point x_0. Every Newton-Cotes quadrature rule with $n = 0$ is called a **rectangle rule**, since the integral $\int_a^b f(x) \, dx$ is approximated by $(b - a) f(x_0)$, $x_0 \in [a, b]$, i.e. by the area of the rectangle with vertices $(a, 0), (b, 0), (a, f(x_0)), (b, f(x_0))$. Not surprisingly, the rectangle rule with $x_0 = (b + a)/2$ is known as the **midpoint rule**.

Rectangle rules have degree of accuracy $r \geq 0$, since they are exact for constant functions. Rectangle rules are usually not exact for polynomials of degree 1 (i.e. for non-constant affine functions); however, the midpoint rule has degree of accuracy $r = 1$ (exercise).

In the following lemma, we provide an error estimate for the rectangle rule using $x_0 = a$. For other choices of x_0, one obtains similar results.
Lemma 4.20. Given a real interval \([a, b]\), \(a < b\), and \(f \in C^1[a, b]\), there exists \(\tau \in [a, b]\) such that
\[
\int_a^b f(x) \, dx - (b - a)f(a) = \frac{(b - a)^2}{2} f'(\tau).
\] (4.39)

Proof. As \(\omega_1(x) = (x - a) \geq 0\) on \([a, b]\), we can apply Prop. 4.14 to get \(\tau \in [a, b]\) satisfying
\[
\int_a^b f(x) \, dx - (b - a)f(a) = f'(\tau) \int_a^b (x - a) \, dx = \frac{(b - a)^2}{2} f'(\tau),
\]
proving (4.39). ■

4.3.3 Trapezoidal Rule \((n = 1)\)

Definition and Remark 4.21. The closed Newton-Cotes formula with \(n = 1\) is called
trapezoidal rule. Its explicit form is easily computed, e.g. from (4.15):
\[
I_1(f) : = \int_a^b \left(f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right) \, dx = \left[f(a)x + \frac{1}{2} \frac{f(b) - f(a)}{b - a} (x - a)^2 \right]_a^b
\]
\[
= (b - a) \left(\frac{1}{2} f(a) + \frac{1}{2} f(b) \right)
\] (4.40)
for each \(f \in C[a, b]\). Note that (4.40) justifies the name trapezoidal rule, as this is precisely the area of the trapezoid with vertices \((a, 0), (b, 0), (a, f(a)), (b, f(b))\).

Lemma 4.22. The trapezoidal rule has degree of accuracy \(r = 1\).

Proof. Exercise. ■

Lemma 4.23. Given a real interval \([a, b]\), \(a < b\), and \(f \in C^2[a, b]\), there exists \(\tau \in [a, b]\) such that
\[
\int_a^b f(x) \, dx - I_1(f) = -\frac{(b - a)^3}{12} f''(\tau) = -\frac{h^3}{12} f''(\tau).
\] (4.41)

Proof. Exercise. ■

4.3.4 Simpson’s Rule \((n = 2)\)

Definition and Remark 4.24. The closed Newton-Cotes formula with \(n = 2\) is called
Simpson’s rule. To find the explicit form, we compute the weights \(\sigma_0, \sigma_1, \sigma_2\). According to (4.26), one finds
\[
\sigma_0 = \frac{1}{2} \int_0^2 \frac{s - 1}{-1} \frac{s - 2}{-2} \, ds = \frac{1}{4} \left[\frac{s^3}{3} - \frac{3s^2}{2} + 2s \right]_0^1 = \frac{1}{6}.
\] (4.42)
Next, one obtains $\sigma_2 = \sigma_0 = \frac{1}{6}$ from (4.27) and $\sigma_1 = 1 - \sigma_0 - \sigma_2 = \frac{2}{3}$ from Rem. 4.9. Plugging this into (4.9) yields

$$I_2(f) = (b - a) \left(\frac{1}{6} f(a) + \frac{2}{3} f \left(\frac{a + b}{2} \right) + \frac{1}{6} f(b) \right) \quad (4.43)$$

for each $f \in C[a, b]$.

Lemma 4.25. Simpson’s rule has degree of accuracy 3.

Proof. The assertion is immediate from Th. 4.19. ■

Lemma 4.26. Given a real interval $[a, b]$, $a < b$, and $f \in C^4[a, b]$, there exists $\tau \in [a, b]$ such that

$$\int_a^b f(x) \, dx - I_2(f) = -\frac{(b - a)^5}{2880} f^{(4)}(\tau) = -\frac{h^5}{90} f^{(4)}(\tau). \quad (4.44)$$

Proof. In addition to $x_0 = a$, $x_1 = (a + b)/2$, $x_2 = b$, we choose $x_3 := x_1$. Using Hermite interpolation, we know that there is a unique $q \in P_3$ such that $q(x_i) = f(x_i)$ for each $i \in \{0, 1, 2\}$ and $q'(x_3) = f'(x_3)$. As before, let $p_2 \in P_2$ be the corresponding interpolating polynomial merely satisfying $p_2(x_i) = f(x_i)$. As, by Lem. 4.25, I_2 has degree of accuracy 3, we know

$$\int_a^b p_2(x) \, dx = I_2(f) = I_2(q) = \int_a^b q(x) \, dx. \quad (4.45)$$

By applying (3.46) with $n = 3$, one obtains

$$f(x) = q(x) + \frac{f^{(4)}(\xi(x))}{4!} \omega_4(x) \quad \text{for each } x \in [a, b], \quad (4.46)$$

where

$$\omega_4(x) = (x - a) \left(x - \frac{a + b}{2} \right)^2 (x - b). \quad (4.47)$$

As in the proof of Prop. 4.14, it follows that the function $x \mapsto f^{(4)}(\xi(x))$ can be chosen continuous. Moreover, according to (4.47), $\omega_4(x) \leq 0$ for each $x \in [a, b]$. Thus, integrating (4.46) and applying (4.45) as well as Lem. 4.13 yields $\tau \in [a, b]$ satisfying

$$\int_a^b f(x) \, dx - I_2(f) = \frac{f^{(4)}(\tau)}{4!} \int_a^b \omega_4(x) \, dx = -\frac{f^{(4)}(\tau)}{24} \frac{(b - a)^5}{120} = -\frac{(b - a)^5}{2880} f^{(4)}(\tau) = -\frac{h^5}{90} f^{(4)}(\tau), \quad (4.48)$$
where it was used that
\[
\int_a^b \omega_4(x) \, dx = -\int_a^b \frac{(x-a)^2}{2} \left(2 \left(\frac{x-a+b}{2} \right) (x-b) + \left(\frac{x-a+b}{2} \right)^2 \right) \, dx
\]
\[
= - \left(\frac{(b-a)^5}{24} \right) - \int_a^b \frac{(x-a)^3}{6} \left(2(x-b) + 4 \left(\frac{x-a+b}{2} \right) \right) \, dx
\]
\[
= - \left(\frac{(b-a)^5}{24} \right) - 2 \left(\frac{(b-a)^5}{24} \right) + \int_a^b \left(\frac{(x-a)^4}{24} \right) \, dx
\]
\[
= - \frac{(b-a)^5}{120}. \tag{4.49}
\]
This completes the proof of (4.44).

4.3.5 Higher Order Newton-Cotes Formulas

As before, let \([a, b]\) be a real interval, \(a < b\), and let \(I_n : R[a, b] \rightarrow \mathbb{R}\) be the Newton-Cotes closed quadrature rule based on interpolating polynomials \(p \in P_n\). According to Th. 4.11(b), we know that \(I_n\) has degree of accuracy at least \(n\), and one might hope that, by increasing \(n\), one obtains more and more accurate quadrature rules for all \(f \in R[a, b]\) (or at least for all \(f \in C[a, b]\)). Unfortunately, this is not the case! As it turns out, Newton-Cotes formulas with larger \(n\) have quite a number of drawbacks. As a result, in practice, Newton-Cotes formulas with \(n > 3\) are hardly ever used (for \(n = 3\), one obtains Simpson’s 3/8 rule, and even that is not used all that often).

The problems with higher order Newton-Cotes formulas have to do with the fact that the formulas involve negative weights (negative weights first occur for \(n = 8\)). As \(n\) increases, the situation becomes worse and worse and one can actually show that (see [Bra77, Sec. IV.2])
\[
\lim_{n \rightarrow \infty} \sum_{i=0}^{n} |\sigma_{i,n}| = \infty. \tag{4.50}
\]
For polynomials and some other functions, terms with negative and positive weights cancel, but for general \(f \in C[a, b]\) (let alone general \(f \in R[a, b]\)), that is not the case, leading to instabilities and divergence. That, in the light of (4.50), convergence can not be expected is a consequence of the following Th. 4.28.

4.4 Convergence of Quadrature Rules

We first compute the operator norm of a quadrature rule in terms of its weights:

Proposition 4.27. Given a real interval \([a, b]\), \(a < b\), and a quadrature rule
\[
I_n : C[a, b] \rightarrow \mathbb{R}, \quad I_n(f) = (b-a) \sum_{i=0}^{n} \sigma_i f(x_i), \tag{4.51}
\]
with distinct \(x_0, \ldots, x_n \in [a, b]\) and weights \(\sigma_0, \ldots, \sigma_n \in \mathbb{R}\), \(n \in \mathbb{N}\), the operator norm of \(I_n\) induced by \(\| \cdot \|_\infty\) on \(C[a, b]\) is

\[
\|I_n\| = (b - a) \sum_{i=0}^{n} |\sigma_i|. \tag{4.52}
\]

Proof. For each \(f \in C[0, 1]\), we estimate

\[
|I_n(f)| \leq (b - a) \sum_{i=0}^{n} |\sigma_i| \|f\|_\infty,
\]

which already shows \(\|I_n\| \leq (b - a) \sum_{i=0}^{n} |\sigma_i|\). For the remaining inequality, define \(\phi : \{0, \ldots, n\} \rightarrow \{0, \ldots, n\}\) to be a reordering such that \(x_{\phi(0)} < x_{\phi(1)} < \cdots < x_{\phi(n)}\), let \(y_i := \text{sgn}(\sigma_{\phi(i)})\) for each \(i \in \{0, \ldots, n\}\), and

\[
f(x) := \begin{cases}
 y_0 & \text{for } x \in [a, x_{\phi(0)}], \\
 y_i + \frac{y_{i+1} - y_i}{x_{\phi(i+1)} - x_{\phi(i)}} (x - x_{\phi(i)}) & \text{for } x \in [x_{\phi(i)}, x_{\phi(i+1)}], i \in \{0, \ldots, n - 1\}, \\
 y_n & \text{for } x \in [x_{\phi(n)}, b].
\end{cases}
\]

Note that \(f\) is a linear spline on \([x_{\phi(0)}, x_{\phi(n)}]\) (cf. (3.64)), possibly with constant continuous extensions on \([a, x_{\phi(0)}]\) and \([x_{\phi(n)}, b]\). In particular, \(f \in C[a, b]\). Clearly, either \(I_n \equiv 0\) or \(\|f\|_\infty = 1\) and

\[
I_n(f) = (b - a) \sum_{i=0}^{n} \sigma_i f(x_i) = (b - a) \sum_{i=0}^{n} \sigma_i \text{sgn}(\sigma_i) = (b - a) \sum_{i=0}^{n} |\sigma_i|,
\]

showing the remaining inequality \(\|I_n\| \geq (b - a) \sum_{i=0}^{n} |\sigma_i|\) and, thus, (4.52). \(\blacksquare\)

Theorem 4.28 (Polya). Given a real interval \([a, b]\), \(a < b\), and a weight function \(\rho : [a, b] \rightarrow \mathbb{R}_0^+\), consider a sequence of quadrature rules

\[
I_n : C[a, b] \rightarrow \mathbb{R}, \quad I_n(f) = (b - a) \sum_{i=0}^{n} \sigma_{i,n} f(x_{i,n}), \tag{4.53}
\]

with distinct points \(x_{0,n}, \ldots, x_{n,n} \in [a, b]\) and weights \(\sigma_{0,n}, \ldots, \sigma_{n,n} \in \mathbb{R}\), \(n \in \mathbb{N}\). The sequence converges in the sense that

\[
\lim_{n \rightarrow \infty} I_n(f) = \int_a^b f(x)\rho(x) \, dx \quad \text{for each } f \in C[a, b] \tag{4.54}
\]

if, and only if, the following two conditions are satisfied:

(i) \(\lim_{n \rightarrow \infty} I_n(p) = \int_a^b p(x)\rho(x) \, dx\) holds for each polynomial \(p\).

(ii) The sums of the absolute values of the weights are uniformly bounded, i.e. there exists \(C \in \mathbb{R}_0^+\) such that

\[
\sum_{i=0}^{n} |\sigma_{i,n}| \leq C \quad \text{for each } n \in \mathbb{N}.
\]
Proof. Suppose (i) and (ii) hold true. Let \(W := \int_a^b \rho(x) \, dx \). Given \(f \in C[a, b] \) and \(\epsilon > 0 \), according to the Weierstrass Approximation Theorem 3.27, there exists a polynomial \(p \) such that
\[
\| f - p \|_{[a, b]} \| \leq \frac{\epsilon}{C(b - a) + 1 + W}.
\]
Due to (i), there exists \(N \in \mathbb{N} \) such that, for each \(n \geq N \),
\[
\left| I_n(p) - \int_a^b p(x) \rho(x) \, dx \right| < \varepsilon.
\]
Thus, for each \(n \geq N \),
\[
\left| I_n(f) - \int_a^b f(x) \rho(x) \, dx \right|
\leq \left| I_n(f) - I_n(p) \right| + \left| I_n(p) - \int_a^b p(x) \rho(x) \, dx \right| + \left| \int_a^b p(x) \rho(x) \, dx - \int_a^b f(x) \rho(x) \, dx \right|
< (b - a) \sum_{i=0}^{n} |\sigma_{i,n}| |f(x_{i,n}) - p(x_{i,n})| + \varepsilon + \varepsilon W \leq \varepsilon \left((b - a)C + 1 + W \right) = \epsilon,
\]
proving (4.54).

Conversely, (4.54) trivially implies (i). That it also implies (ii) is much more involved. Letting \(\mathcal{T} := \{ I_n : n \in \mathbb{N} \} \), we have \(\mathcal{T} \subseteq \mathcal{L}(C[a, b], \mathbb{R}) \) and (4.54) implies
\[
\sup \left\{ |T(f)| : T \in \mathcal{T} \right\} = \sup \left\{ |I_n(f)| : n \in \mathbb{N} \right\} < \infty \quad \text{for each } f \in C[a, b]. \tag{4.56}
\]
Then the Banach-Steinhaus Th. G.4 yields
\[
\sup \left\{ \|I_n\| : n \in \mathbb{N} \right\} = \sup \left\{ \|T\| : T \in \mathcal{T} \right\} < \infty, \tag{4.57}
\]
which, according to Prop. 4.27, is (ii). The proof of the Banach-Steinhaus theorem is usually part of Functional Analysis. It is provided in Appendix G. As it only uses elementary metric space theory, the interested reader should be able to understand it.

While, for \(\rho \equiv 1 \), Condition (i) of Th. 4.28 is obviously satisfied by the Newton-Cotes formulas, since, given \(q \in \mathcal{P}_n \), \(I_m(q) \) is exact for each \(m \geq n \), Condition (ii) of Th. 4.28 is violated due to (4.50). As the Newton-Cotes formulas are based on interpolating polynomials, and we had already needed additional conditions to guarantee the convergence of interpolating polynomials (see Th. 3.12), it should not be too surprising that Newton-Cotes formulas do not converge for all continuous functions.

So we see that improving the accuracy of Newton-Cotes formulas by increasing \(n \) is, in general, not feasible. However, the accuracy can be improved using a number of different strategies, two of which will be considered in the following. In Sec. 4.5, we will study so-called composite Newton-Cotes rules that result from subdividing \([a, b]\) into small intervals, using a low-order Newton-Cotes formula on each small interval, and
then summing up the results. In Sec. 4.6, we will consider Gaussian quadrature, where, in contrast to the Newton-Cotes formulas, one does not use equally-spaced points \(x_i \) for the interpolation, but chooses the locations of the \(x_i \) more carefully. As it turns out, one can choose the \(x_i \) such that all weights remain positive even for \(n \to \infty \). Then Rem. 4.9 combined with Th. 4.28 yields convergence.

4.5 Composite Newton-Cotes Quadrature Rules

Before studying Gaussian quadrature rules in the context of weighted integrals in Sec. 4.6, for the present section, we return to the situation of Sec. 4.3, i.e. nonweighted integrals (\(\rho \equiv 1 \)).

4.5.1 Introduction, Convergence

As discussed in the previous section, improving the accuracy of numerical integration by using high-order Newton-Cotes rules does usually not work. On the other hand, better accuracy can be achieved by subdividing \([a, b]\) into small intervals and then using a low-order Newton-Cotes rule (typically \(n \leq 2 \)) on each of the small intervals. The composite Newton-Cotes quadrature rules are the results of this strategy.

We begin with a general definition and a general convergence result based on the convergence of Riemann sums for Riemann integrable functions.

Definition 4.29. Suppose, for \(f : [0, 1] \to \mathbb{R} \), \(I_n, n \in \mathbb{N} \), has the form

\[
I_n(f) = \sum_{l=0}^{n} \sigma_l f(\xi_l) \tag{4.58}
\]

with \(0 = \xi_0 < \xi_1 < \cdots < \xi_n = 1 \) and weights \(\sigma_0, \ldots, \sigma_n \in \mathbb{R} \). Given a real interval \([a, b]\), \(a < b \), and \(N \in \mathbb{N} \), set

\[
\begin{align*}
x_k &= a + kh, \quad h := \frac{b - a}{N}, \quad \text{for each } k \in \{0, \ldots, N\}, \\
x_{kl} &= x_{k-1} + h\xi_l, \quad \text{for each } k \in \{1, \ldots, N\}, \quad l \in \{0, \ldots, n\}. \tag{4.59a}
\end{align*}
\]

Then

\[
I_{n,N}(f) := h \sum_{k=1}^{N} \sum_{l=0}^{n} \sigma_l f(x_{kl}), \quad f : [a, b] \to \mathbb{R}, \tag{4.60}
\]

are called the *composite quadrature rules* based on \(I_n \).

Remark 4.30. The heuristics behind (4.60) is

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx = h \int_{0}^{1} f(x_{k-1} + \xi h) \, d\xi \approx h \sum_{l=0}^{n} \sigma_l f(x_{kl}). \tag{4.61}
\]
Theorem 4.31. Let \([a, b], a < b,\) be a real interval, \(n \in \mathbb{N}_0.\) If \(I_n\) has the form (4.58) and is exact for each constant function (i.e. it has at least degree of accuracy 0 in the language of Def. 4.8), then the composite quadrature rules (4.60) based on \(I_n\) converge for each Riemann integrable \(f : [a, b] \rightarrow \mathbb{R},\) i.e.

\[
\forall f \in R[a, b] \quad \lim_{N \rightarrow \infty} I_{n, N}(f) = \int_a^b f(x) \, dx. \tag{4.62}
\]

Proof. Let \(f \in R[a, b].\) Introducing, for each \(l \in \{0, \ldots, n\},\) the abbreviation

\[
S_l(N) := \sum_{k=1}^{N} \frac{b - a}{N} f(x_{kl}), \tag{4.63}
\]

(4.60) yields

\[
I_{n, N}(f) = \sum_{l=0}^{n} \sigma_l S_l(N). \tag{4.64}
\]

Note that, for each \(l \in \{0, \ldots, n\},\) \(S_l(N)\) is a Riemann sum for the tagged partition \(\Delta_{Nl} := (x_{0}^{N}, \ldots, x_{N}^{N}), (x_{1}^{N}, \ldots, x_{N}^{N})\) and \(\lim_{N \rightarrow \infty} h(\Delta_{Nl}) = \lim_{N \rightarrow \infty} \frac{b-a}{N} = 0.\) Thus, applying Th. 4.3,

\[
\lim_{N \rightarrow \infty} S_l(N) = \int_a^b f(x) \, dx \quad \text{for each } l \in \{0, \ldots, n\}.
\]

This, in turn, implies

\[
\lim_{N \rightarrow \infty} I_{n, N}(f) = \lim_{N \rightarrow \infty} \sum_{l=0}^{n} \sigma_l S_l(N) = \int_a^b f(x) \, dx \sum_{l=0}^{n} \sigma_l = \int_a^b f(x) \, dx
\]

as, due to hypothesis,

\[
\sum_{l=0}^{n} \sigma_l = I_n(1) = \int_0^1 \, dx = 1,
\]

proving (4.62). \(\blacksquare\)

The convergence result of Th. 4.31 still suffers from the drawback of the original convergence result for the Riemann sums, namely that we do not obtain any control on the rate of convergence and the resulting error term. We will achieve such results in the following sections by assuming additional regularity of the integrated functions \(f.\) We introduce the following notion as a means to quantify the convergence rate of composite quadrature rules:

Definition 4.32. Given a real interval \([a, b], a < b,\) and a subset \(\mathcal{F}\) of the Riemann integrable functions on \([a, b],\) composite quadrature rules \(I_{n, N}\) according to (4.60) are said to have order of convergence \(r > 0\) for \(f \in \mathcal{F}\) if, and only if, for each \(f \in \mathcal{F},\) there exists \(K = K(f) \in \mathbb{R}_0^+\) such that

\[
\left| I_{n, N}(f) - \int_a^b f(x) \, dx \right| \leq K h^r \quad \text{for each } N \in \mathbb{N} \tag{4.65}
\]

\((h = (b - a)/N\) as before).
4.5.2 Composite Rectangle Rules \((n = 0)\)

Definition and Remark 4.33. Using the rectangle rule \(\int_0^1 f(x) \, dx \approx f(0)\) of Sec. 4.3.2 as \(I_0\) on \([0, 1]\), the formula (4.60) yields, for \(f : [a, b] \to \mathbb{R}\), the corresponding composite rectangle rules

\[
I_{0,N}(f) = h \sum_{k=1}^{N} f(x_{k0}) = h\left(f(x_0) + f(x_1) + \cdots + f(x_{N-1}) \right). \tag{4.66}
\]

Theorem 4.34. For each \(f \in C^1[a, b]\), there exists \(\tau \in [a, b]\) satisfying

\[
\int_a^b f(x) \, dx - I_{0,N}(f) = \frac{(b-a)^2}{2N} f'({\tau}) = \frac{b-a}{2} f'({\tau}). \tag{4.67}
\]

In particular, the composite rectangle rules have order of convergence \(r = 1\) for \(f \in C^1[a, b]\) in terms of Def. 4.32.

Proof. Fix \(f \in C^1[a, b]\). From Lem. 4.20, we obtain, for each \(k \in \{1, \ldots, N\}\), a point \(\tau_k \in [x_{k-1}, x_k]\) such that

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx - \frac{b-a}{N} f(x_{k-1}) = \frac{(b-a)^2}{2N^2} f'({\tau}_k) = \frac{h^2}{2} f'({\tau}_k). \tag{4.68}
\]

Summing (4.68) from \(k = 1\) through \(N\) yields

\[
\int_a^b f(x) \, dx - I_{0,N}(f) = \frac{b-a}{2} \frac{1}{N} \sum_{k=1}^{N} f'({\tau}_k).
\]

As \(f'\) is continuous and

\[
\min \left\{ f'(x) : x \in [a, b] \right\} \leq \alpha := \frac{1}{N} \sum_{k=1}^{N} f'({\tau}_k) \leq \max \left\{ f'(x) : x \in [a, b] \right\},
\]

the intermediate value theorem provides \(\tau \in [a, b]\) satisfying \(\alpha = f'({\tau})\), proving (4.67). The claimed order of convergence now follows as well, since (4.67) implies that (4.65) holds with \(r = 1\) and \(K := (b-a)\|f'\|_{\infty}/2\). □

4.5.3 Composite Trapezoidal Rules \((n = 1)\)

Definition and Remark 4.35. Using the trapezoidal rule (4.40) as \(I_1\) on \([0, 1]\), the formula (4.60) yields, for \(f : [a, b] \to \mathbb{R}\), the corresponding composite trapezoidal rules

\[
I_{1,N}(f) = h \sum_{k=1}^{N} \frac{1}{2} \left(f(x_{k0}) + f(x_{k1}) \right) = \frac{h}{2} \left(f(a) + \frac{1}{2} \sum_{k=1}^{N} \left(f(x_{k-1}) + f(x_k) \right) \right) = \frac{h}{2} \left(f(a) + 2 \left(f(x_1) + \cdots + f(x_{N-1}) \right) + f(b) \right). \tag{4.69}
\]
Theorem 4.36. For each $f \in C^2[a,b]$, there exists $\tau \in [a,b]$ satisfying

$$\int_a^b f(x) \, dx - I_{1,N}(f) = -\frac{(b-a)^3}{12N^2} f''(\tau) = -\frac{b-a}{12} h^2 f''(\tau). \quad (4.70)$$

In particular, the composite trapezoidal rules have order of convergence $r = 2$ for $f \in C^2[a,b]$ in terms of Def. 4.32.

Proof. Fix $f \in C^2[a,b]$. From Lem. 4.23, we obtain, for each $k \in \{1, \ldots, N\}$, a point $\tau_k \in [x_{k-1}, x_k]$ such that

$$\int_{x_{k-1}}^{x_k} f(x) \, dx - \frac{h}{2} \left(f(x_{k-1}) + f(x_k)\right) = -\frac{h^3}{12} f''(\tau_k).$$

Summing the above equation from $k = 1$ through N yields

$$\int_a^b f(x) \, dx - I_{1,N}(f) = -\frac{b-a}{12} h^2 \sum_{k=1}^{N} f''(\tau_k).$$

As f'' is continuous and

$$\min \left\{ f''(x) : x \in [a,b] \right\} \leq \alpha := \frac{1}{N} \sum_{k=1}^{N} f''(\tau_k) \leq \max \left\{ f''(x) : x \in [a,b] \right\},$$

the intermediate value theorem provides $\tau \in [a,b]$ satisfying $\alpha = f''(\tau)$, proving (4.70). The claimed order of convergence now follows as well, since (4.70) implies that (4.65) holds with $r = 2$ and $K := (b-a)\|f''\|_{\infty}/12$. \square

4.5.4 Composite Simpson’s Rules ($n = 2$)

Definition and Remark 4.37. Using Simpson’s rule (4.43) as I_2 on $[0, 1]$, the formula (4.60) yields, for $f : [a, b] \rightarrow \mathbb{R}$, the corresponding composite Simpson’s rules $I_{2,N}(f)$. It is an exercise to check that

$$I_{2,N}(f) = \frac{h}{6} \left(f(a) + 4 \sum_{k=1}^{N} f(x_{k-\frac{1}{2}}) + 2 \sum_{k=1}^{N-1} f(x_k) + f(b)\right), \quad (4.71)$$

where $x_{k-\frac{1}{2}} := (x_{k-1} + x_k)/2$ for each $k \in \{1, \ldots, N\}$.

Theorem 4.38. For each $f \in C^4[a,b]$, there exists $\tau \in [a,b]$ satisfying

$$\int_a^b f(x) \, dx - I_{2,N}(f) = -\frac{(b-a)^5}{2880N^4} f^{(4)}(\tau) = -\frac{b-a}{2880} h^4 f^{(4)}(\tau). \quad (4.72)$$

In particular, the composite Simpson’s rules have order of convergence $r = 4$ for $f \in C^4[a,b]$ in terms of Def. 4.32.

Proof. Exercise. \square
4 NUMERICAL INTEGRATION

4.6 Gaussian Quadrature

4.6.1 Introduction

As discussed in Sec. 4.3.5, quadrature rules based on interpolating polynomials for equally-spaced points \(x_i \) are suboptimal. This fact is related to equally-spaced points being suboptimal for the construction of interpolating polynomials in general as mentioned in Rem. 3.14. In Gaussian quadrature, one invests additional effort into smarter placing of the \(x_i \), resulting in more accurate quadrature rules. For example, this will ensure that all weights remain positive as the number of \(x_i \) increases, which, in turn, will yield the convergence of Gaussian quadrature rules for all continuous functions (see Th. 4.52 below).

We will see in the following that Gaussian quadrature rules \(I_n \) are quadrature rules in the sense of Def. 4.6. However, for historical reasons, in the context of Gaussian quadrature, it is common to use the notation

\[
I_n(f) = \sum_{i=1}^{n} \sigma_i f(\lambda_i),
\]

i.e. one writes \(\lambda_i \) instead of \(x_i \) and the factor \((b - a)\) is incorporated into the weights \(\sigma_i \).

4.6.2 Orthogonal Polynomials

Notation 4.39. Let \(\mathcal{P} \) denote the real vector space of polynomials \(p : \mathbb{R} \to \mathbb{R} \).

During Gaussian quadrature, the \(\lambda_i \) are determined as the zeros of polynomials that are orthogonal with respect to certain inner products (also known as scalar products) on the (infinite-dimensional) real vector space \(\mathcal{P} \) (see Appendix F).

Notation 4.40. Given a real interval \([a, b]\), \(a < b \), and a weight function \(\rho : [a, b] \to \mathbb{R}_0^+ \) as defined in Def. 4.5, let

\[
\langle \cdot, \cdot \rangle_\rho : \mathcal{P} \times \mathcal{P} \to \mathbb{R}, \quad \langle p, q \rangle_\rho := \int_a^b p(x)q(x)\rho(x)\,dx, \tag{4.74a}
\]

\[
\| \cdot \|_\rho : \mathcal{P} \to \mathbb{R}_0^+, \quad \| p \|_\rho := \sqrt{\langle p, p \rangle_\rho}. \tag{4.74b}
\]

Lemma 4.41. Given a real interval \([a, b]\), \(a < b \), and a weight function \(\rho : [a, b] \to \mathbb{R}_0^+ \), (4.74a) defines an inner product on \(\mathcal{P} \).

Proof. As \(\rho \in R[a,b] \), \(\rho \geq 0 \), and \(\int_a^b \rho(x)\,dx > 0 \), there must be some nontrivial interval \(J \subseteq [a, b] \) and \(\epsilon > 0 \) such that \(\rho \geq \epsilon \) on \(J \). Thus, if \(0 \neq p \in \mathcal{P} \), then there must be some nontrivial interval \(J_p \subseteq J \) and \(\epsilon_p > 0 \) such that \(p^2 \rho \geq \epsilon_p \) on \(J_p \),

implying \(\langle p, p \rangle_{\rho} = \int_{a}^{b} p^2(x) \rho(x) \, dx \geq \epsilon_p |J_p| > 0 \) and proving \(\langle \cdot, \cdot \rangle_{\rho} \) satisfies F.2(i). Given \(p, q, r \in \mathcal{P} \) and \(\lambda, \mu \in \mathbb{R} \), one computes

\[
\langle \lambda p + \mu q, r \rangle_{\rho} = \int_{a}^{b} (\lambda p(x) + \mu q(x)) r(x) \rho(x) \, dx \\
= \lambda \int_{a}^{b} q(x) r(x) \rho(x) \, dx + \mu \int_{a}^{b} q(x) r(x) \rho(x) \, dx \\
= \lambda \langle p, r \rangle_{\rho} + \mu \langle q, r \rangle_{\rho},
\]
proving F.2(ii). Since, for \(p, q \in \mathcal{P} \), one also has

\[
\langle p, q \rangle_{\rho} = \int_{a}^{b} p(x) q(x) \rho(x) \, dx = \int_{a}^{b} q(x) p(x) \rho(x) \, dx = \langle q, p \rangle_{\rho},
\]
such that F.2(iii) holds as well, the proof of the lemma is complete.

Remark 4.42. Given a real interval \([a, b], a < b\), and a weight function \(\rho : [a, b] \to \mathbb{R}^+_0 \), consider the inner product space \((\mathcal{P}, \langle \cdot, \cdot \rangle_{\rho})\), where \(\langle \cdot, \cdot \rangle_{\rho} \) is given by (4.74a). Then, for each \(n \in \mathbb{N}_0 \), \(q \in \mathcal{P}_n^+ \) (cf. (F.3)) if, and only if,

\[
\int_{a}^{b} q(x) p(x) \rho(x) = 0 \quad \text{for each } p \in \mathcal{P}_n.
\]
(4.75)

At first glance, it might not be obvious that there are always \(q \in \mathcal{P} \setminus \{0\} \) that satisfy (4.75). However, such \(q \neq 0 \) can always be found by the general procedure known as Gram-Schmidt orthogonalization which is reviewed in the following theorem.

Theorem 4.43 (Gram-Schmidt Orthogonalization). Let \((X, \langle \cdot, \cdot \rangle)\) be an inner product space with induced norm \(\| \cdot \| \) according to (F.1). Let \(x_0, x_1, \ldots \) be a finite or infinite sequence of vectors in \(X \). Define \(v_0, v_1, \ldots \) recursively as follows:

\[
v_0 := x_0, \quad v_n := x_n - \sum_{k=0, v_k \neq 0}^{n-1} \frac{\langle x_n, v_k \rangle}{\| v_k \|^2} v_k
\]
(4.76)

for each \(n \in \mathbb{N} \), additionally assuming that \(n \) is less than or equal to the max index of the sequence \(x_0, x_1, \ldots \) if the sequence is finite. Then the sequence \(v_0, v_1, \ldots \) constitutes an orthogonal system (see Def. F.4(a)). Of course, by omitting the \(v_k = 0 \) and by dividing each \(v_k \neq 0 \) by its norm, one can also obtain an orthonormal system (nonempty if at least one \(v_k \neq 0 \)). Moreover, \(v_n = 0 \) if, and only if, \(x_n \in \text{span}\{x_0, \ldots, x_{n-1}\} \). In particular, if the \(x_0, x_1, \ldots \) are all linearly independent, then so are the \(v_0, v_1, \ldots \).

Proof. We show by induction on \(n \), that, for each \(0 \leq m < n, v_m \perp v_m \). For \(n = 0 \), there is nothing to show. Thus, let \(n > 0 \) and \(0 \leq m < n \). By induction, \(\langle v_k, v_m \rangle = 0 \) for each \(0 \leq k, m < n \) such that \(k \neq m \). For \(v_m = 0, \langle v_n, v_m \rangle = 0 \) is clear. Otherwise,

\[
\langle v_n, v_m \rangle = \left(x_n - \sum_{k=0, v_k \neq 0}^{n-1} \frac{\langle x_n, v_k \rangle}{\| v_k \|^2} v_k, v_m \right) = \langle x_n, v_m \rangle - \frac{\langle x_n, v_m \rangle}{\| v_m \|^2} \langle v_m, v_m \rangle = 0,
\]
thereby establishing the case. So we know that v_0, v_1, \ldots constitutes an orthogonal system. Next, by induction, for each n, we obtain $v_n \in \text{span}\{x_0, \ldots, x_n\}$ directly from (4.76). Thus, $v_n = 0$ implies $x_n = \sum_{k=0}^{n-1} \frac{\langle x_n, v_k \rangle}{\|v_k\|^2} v_k \in \text{span}\{x_0, \ldots, x_{n-1}\}$. Conversely, if $x_n \in \text{span}\{x_0, \ldots, x_{n-1}\}$, then

$$\dim \text{span}\{v_0, \ldots, v_{n-1}, v_n\} = \dim \text{span}\{x_0, \ldots, x_{n-1}, x_n\} = \dim \text{span}\{x_0, \ldots, x_{n-1}\},$$

which, due to Lem. F.5(c), implies $v_n = 0$. Finally, if all x_0, x_1, \ldots are linearly independent, then all $v_k \neq 0$, $k = 0, 1, \ldots$, such that the v_0, v_1, \ldots are linearly independent by Lem. F.5(c). \blacksquare

While Gram-Schmidt orthogonalization works in every inner product space, we will see in the next theorem that, for polynomials, there is another recursive relation that is theoretically useful as well as more efficient.

Theorem 4.44. Given an inner product $\langle \cdot, \cdot \rangle$ on \mathcal{P} that satisfies

$$\langle xp, q \rangle = \langle p, xq \rangle \quad \text{for each } p, q \in \mathcal{P} \quad (4.77)$$

(clearly, the inner product from (4.74a) satisfies (4.77)), let $\| \cdot \|$ denote the induced norm. If, for each $n \in \mathbb{N}_0$, $x_n \in \mathcal{P}$ is defined by $x_n(x) := x^n$ and $p_n := v_n$ is given by Gram-Schmidt orthogonalization according to (4.76), then the p_n satisfy the following recursive relation (sometimes called three-term recursion):

$$p_0 = x_0 \equiv 1, \quad p_1 = x - \beta_0, \quad (4.78a)$$

$$p_{n+1} = (x - \beta_n)p_n - \gamma_n^2 p_{n-1} \quad \text{for each } n \in \mathbb{N}, \quad (4.78b)$$

where

$$\beta_n := \frac{\langle xp_n, p_n \rangle}{\|p_n\|^2} \quad \text{for each } n \in \mathbb{N}_0, \quad \gamma_n := \frac{\|p_n\|}{\|p_{n-1}\|} \quad \text{for each } n \in \mathbb{N}. \quad (4.78c)$$

Proof. Recall that, according to Th. 4.43, the linear independence of the x_n guarantees the linear independence of the $p_n = v_n$. We observe that $p_0 = x_0 \equiv 1$ is clear from (4.76) and the definition of x_0. Next, form (4.76), we compute

$$p_1 = v_1 = x_1 - \frac{\langle x_1, p_0 \rangle}{\|p_0\|^2} p_0 = x - \frac{\langle x_0, p_0 \rangle}{\|p_0\|^2} = x - \beta_0.$$

It remains to consider $n + 1$ for each $n \in \mathbb{N}$. Letting

$$q_{n+1} := (x - \beta_n)p_n - \gamma_n^2 p_{n-1},$$

the proof is complete once we have shown

$$q_{n+1} = p_{n+1}.$$
Clearly,
\[r := p_{n+1} - q_{n+1} \in \mathcal{P}_n, \]
as the coefficient of \(x^{n+1} \) in both \(p_{n+1} \) and \(q_{n+1} \) is 1. According to Lem. F.5(b), it now suffices to show \(r \in \mathcal{P}_n^\perp \). Moreover, we know \(p_{n+1} \in \mathcal{P}_n^\perp \), since \(p_{n+1} \perp p_k \) for each \(k \in \{0, \ldots, n\} \) according to Th. 4.43 and \(\mathcal{P}_n = \text{span}\{p_0, \ldots, p_n\} \). Thus, by Lem. F.5(a), to prove \(r \in \mathcal{P}_n^\perp \), it suffices to show
\[q_{n+1} \in \mathcal{P}_n^\perp. \tag{4.79} \]

To this end, we start by using \(\langle p_{n-1}, p_n \rangle = 0 \) and the definition of \(\beta_n \) to compute
\[\langle q_{n+1}, p_n \rangle = \langle (x - \beta_n)p_n - \gamma_n^2p_{n-1}, p_n \rangle = \langle xp_n, p_n \rangle - \beta_n \langle p_n, p_n \rangle = 0. \tag{4.80a} \]
Similarly, also using (4.77) as well as the definition of \(\gamma_n \), we obtain
\[\langle q_{n+1}, p_{n-1} \rangle = \langle xp_n, p_{n-1} \rangle - \gamma_n^2\|p_{n-1}\|^2 = \langle p_n, xp_{n-1} \rangle - \|p_{n-1}\|^2 = \langle p_n, xp_{n-1} - p_{n-1} \rangle = 0, \tag{4.80b} \]
where, at (*), it was used that \(xp_{n-1} - p_{n-1} \in \mathcal{P}_{n-1} \) due to the fact that \(x^n \) is canceled. Finally, for an arbitrary \(q \in \mathcal{P}_{n-2} \) (setting \(\mathcal{P}_0 := \{0\} \)), it holds that
\[\langle q_{n+1}, q \rangle = \langle p_n, xq \rangle - \beta_n \langle p_n, q \rangle - \gamma_n^2 \langle p_{n-1}, q \rangle = 0, \tag{4.80c} \]
due to \(p_n \in \mathcal{P}_{n-1}^\perp \) and \(p_{n-1} \in \mathcal{P}_{n-2}^\perp \). Combining the equations (4.80) yields \(q_{n+1} \perp q \) for each \(q \in \text{span}\{p_n, p_{n-1}\} \cap \mathcal{P}_{n-2} = \mathcal{P}_n \), establishing (4.79) and completing the proof. \(\blacksquare \)

Remark 4.45. The reason that (4.78) is more efficient than (4.76) lies in the fact that the computation of \(p_{n+1} \) according to (4.76) requires the computation of the \(n+1 \) inner products \(\langle x_{n+1}, p_0 \rangle, \ldots, \langle x_{n+1}, p_n \rangle \), whereas the computation of \(p_{n+1} \) according to (4.78) merely requires the computation of the 2 inner products \(\langle p_n, p_n \rangle \) and \(\langle xp_n, p_n \rangle \) occurring in \(\beta_n \) and \(\gamma_n \).

Definition 4.46. In the situation of Th. 4.44, we call the polynomials \(p_n, n \in \mathbb{N}_0 \), given by (4.78), the **orthogonal polynomials** with respect to \(\langle \cdot, \cdot \rangle \) (\(p_n \) is called the \(n \)th orthogonal polynomial).

Example 4.47. Considering \(\rho \equiv 1 \) on \([-1, 1]\), one obtains \(\langle p, q \rangle_\rho = \int_{-1}^{1} p(x)q(x) \, dx \) and it is an exercise to check that the first four resulting orthogonal polynomials are
\[p_0(x) = 1, \quad p_1(x) = x, \quad p_2(x) = x^2 - \frac{1}{3}, \quad p_3(x) = x^3 - \frac{3}{5} x. \]

The Gaussian quadrature rules are based on polynomial interpolation with respect to the zeros of orthogonal polynomials. The following theorem provides information regarding such zeros. In general, the explicit computation of the zeros is a nontrivial task and a disadvantage of Gaussian quadrature rules (the price one has to pay for higher accuracy and better convergence properties as compared to Newton-Cotes rules).
Theorem 4.48. Given a real interval \([a, b]\), \(a < b\), and a weight function \(\rho : [a, b] \to \mathbb{R}_0^+\), let \(p_n, n \in \mathbb{N}_0\), be the orthogonal polynomials with respect to \(\langle \cdot, \cdot \rangle_\rho\). For a fixed \(n \geq 1\), \(p_n\) has precisely \(n\) distinct zeros \(\lambda_1, \ldots, \lambda_n\), which all are simple and lie in the open interval \(]a, b[\).

Proof. Let \(a < \lambda_1 < \lambda_2 < \cdots < \lambda_k < b\) be an enumeration of the zeros of \(p_n\) that lie in \(]a, b[\) and have odd multiplicity (i.e. \(p_n\) changes sign at these \(\lambda_j\)). From \(p_n \in \mathcal{P}_n\), we know \(k \leq n\). The goal is to show \(k = n\). Seeking a contradiction, we assume \(k < n\). This implies

\[q(x) := \prod_{i=1}^{k} (x - \lambda_i) \in \mathcal{P}_{n-1}. \]

Thus, as \(p_n \in \mathcal{P}_{n-1}^+\), we get

\[\langle p_n, q \rangle_\rho = 0. \quad (4.81) \]

On the other hand, the polynomial \(p_n q\) has only zeros of even multiplicity on \(]a, b[\), which means either \(p_n q \geq 0\) or \(p_n q \leq 0\) on the entire interval \([a, b]\), such that

\[\langle p_n, q \rangle_\rho = \int_a^b p_n(x)q(x)\rho(x) \, dx \neq 0, \quad (4.82) \]

in contradiction to (4.81). This shows \(k = n\), and, in particular, that all zeros of \(p_n\) are simple. \(\blacksquare\)

4.6.3 Gaussian Quadrature Rules

Definition 4.49. Given a real interval \([a, b]\), \(a < b\), a weight function \(\rho : [a, b] \to \mathbb{R}_0^+\), and \(n \in \mathbb{N}\), let \(\lambda_1, \ldots, \lambda_n \in [a, b]\) be the zeros of the \(n\)th orthogonal polynomial \(p_n\) with respect to \(\langle \cdot, \cdot \rangle_\rho\) and let \(L_1, \ldots, L_n\) be the corresponding Lagrange basis polynomials (cf. (3.3b)), i.e.

\[L_j(x) := \prod_{\substack{i=1 \atop i \neq j}}^n \frac{x - \lambda_i}{\lambda_j - \lambda_i} \quad \text{for each } j \in \{1, \ldots, n\}, \quad (4.83) \]

then the quadrature rule

\[I_n : R[a, b] \to \mathbb{R}, \quad I_n(f) := \sum_{j=1}^n \sigma_j f(\lambda_j), \quad (4.84a) \]

where

\[\sigma_j := \langle L_j, 1 \rangle_\rho = \int_a^b L_j(x)\rho(x) \, dx \quad \text{for each } j \in \{1, \ldots, n\}, \quad (4.84b) \]

is called the \(n\)th order Gaussian quadrature rule with respect to \(\rho\).

Theorem 4.50. Consider the situation of Def. 4.49; in particular let \(I_n\) be the Gaussian quadrature rule defined according to (4.84).
(a) I_n is exact for each polynomial of degree at most $2n - 1$. This can be stated in the form

$$\langle p, 1 \rangle_\rho = \sum_{j=1}^{n} \sigma_j p(\lambda_j) \text{ for each } p \in \mathcal{P}_{2n-1}. \quad (4.85)$$

Comparing with (4.9) and Rem. 4.9(b) shows that I_n has degree of accuracy precisely $2n - 1$, i.e. the maximal possible degree of accuracy.

(b) All weights σ_j, $j \in \{1, \ldots, n\}$, are positive: $\sigma_j > 0$.

(c) For $\rho \equiv 1$, I_n is based on interpolating polynomials for $\lambda_1, \ldots, \lambda_n$ in the sense of Def. 4.10.

Proof. (a): Recall from Linear Algebra that the remainder theorem holds in the ring of polynomials \mathcal{P}. In particular, since p_n has degree precisely n, given an arbitrary $p \in \mathcal{P}_{2n-1}$, there exist $q, r \in \mathcal{P}_{n-1}$ such that

$$p = qp_n + r. \quad (4.86)$$

Then, the relation $p_n(\lambda_j) = 0$ implies

$$p(\lambda_j) = r(\lambda_j) \text{ for each } j \in \{1, \ldots, n\}. \quad (4.87)$$

Since $r \in \mathcal{P}_{n-1}$, it must be the unique interpolating polynomial for the data

$$(\lambda_1, r(\lambda_1)), \ldots, (\lambda_n, r(\lambda_n)).$$

Thus, according to the Lagrange interpolating polynomial formula (3.3a):

$$r(x) = \sum_{j=1}^{n} r(\lambda_j)L_j(x) \quad (4.87) = \sum_{j=1}^{n} p(\lambda_j)L_j(x). \quad (4.88)$$

This allows to compute

$$\langle p, 1 \rangle_\rho \overset{(4.86)}{=} \int_a^b \left(q(x)p_n(x) + r(x) \right) \rho(x) \, dx = \langle q, p_n \rangle_\rho + \langle r, 1 \rangle_\rho$$

$$\overset{p_n \in \mathcal{P}^+_{n-1}, \quad (4.88)}{=} \sum_{j=1}^{n} p(\lambda_j)\langle L_j, 1 \rangle_\rho \overset{(4.84b)}{=} \sum_{j=1}^{n} \sigma_j p(\lambda_j), \quad (4.89)$$

proving (4.85).

(b): For each $j \in \{1, \ldots, n\}$, we apply (4.85) to $L_j^2 \in \mathcal{P}_{2n-2}$ to obtain

$$0 < \|L_j\|_\rho^2 = \langle L_j^2, 1 \rangle_\rho \overset{(4.85)}{=} \sum_{k=1}^{n} \sigma_k L_j^2(\lambda_k) \overset{(3.7)}{=} \sigma_j.$$
(c): This follows from (a): If \(f: [a,b] \rightarrow \mathbb{R} \) is given and \(p \in \mathcal{P}_{n-1} \) is the interpolating polynomial for the data \((\lambda_1, f(\lambda_1)), \ldots, (\lambda_n, f(\lambda_n))\), then
\[
I_n(f) = \sum_{j=1}^{n} \sigma_j f(\lambda_j) = \sum_{j=1}^{n} \sigma_j p(\lambda_j) = \langle p, 1 \rangle_1 = \int_{a}^{b} p(x) \, dx,
\]
which establishes the case.

Theorem 4.51. The converse of Th. 4.50(a) is also true: If, for \(n \in \mathbb{N}, \lambda_1, \ldots, \lambda_n \in \mathbb{R} \) and \(\sigma_1, \ldots, \sigma_n \in \mathbb{R} \) are such that (4.85) holds, then \(\lambda_1, \ldots, \lambda_n \) must be the zeros of the \(n \)th orthogonal polynomial \(p_n \) and \(\sigma_1, \ldots, \sigma_n \) must satisfy (4.84b).

Proof. We first verify \(q = p_n \) for \(q: \mathbb{R} \rightarrow \mathbb{R}, \ q(x) := \prod_{j=1}^{n} (x - \lambda_j). \) (4.90)

To that end, let \(m \in \{0, \ldots, n-1\} \) and apply (4.85) to the polynomial \(p(x) := x^m q(x) \) (note \(p \in \mathcal{P}_{n+m} \subseteq \mathcal{P}_{2n-1} \)) to obtain
\[
\langle q, x^m \rangle_\rho = \langle x^m q, 1 \rangle_\rho = \sum_{j=1}^{n} \sigma_j \lambda_j^m q(\lambda_j) = 0,
\]
showing \(q \in \mathcal{P}_{n-1}^+ \) and \(q - p_n \in \mathcal{P}_{n-1}^\perp \). On the other hand, both \(q \) and \(p_n \) have degree precisely \(n \) and the coefficient of \(x^n \) is 1 in both cases. Thus, in \(q - p_n, x^n \) cancels, showing \(q - p_n \in \mathcal{P}_{n-1} \). Since \(\mathcal{P}_{n-1} \cap \mathcal{P}_{n-1}^\perp = \{0\} \) according to Lem. F.5(b), we have established \(q = p_n \), thereby also identifying the \(\lambda_j \) as the zeros of \(p_n \) as claimed. Finally, applying (4.85) with \(p = L_j \) yields
\[
\langle L_j, 1 \rangle_\rho = \sum_{k=1}^{n} \sigma_j L_j(\lambda_k) = \sigma_j,
\]
showing that the \(\sigma_j \), indeed, satisfy (4.84b).

Theorem 4.52. For each \(f \in C[a, b] \), the Gaussian quadrature rules \(I_n(f) \) of Def. 4.49 converge:
\[
\lim_{n \to \infty} I_n(f) = \int_{a}^{b} f(x) \rho(x) \, dx \quad \text{for each } f \in C[a, b]. \quad (4.91)
\]

Proof. The convergence is a consequence of Polya’s Th. 4.28: Condition (i) of Th. 4.28 is satisfied as \(I_n(p) \) is exact for each \(p \in \mathcal{P}_{2n-1} \) and Condition (ii) of Th. 4.28 is satisfied since the positivity of the weights yields
\[
\sum_{j=1}^{n} |\sigma_{j,n}| = \sum_{j=1}^{n} \sigma_{j,n} = I_n(1) = \int_{a}^{b} \rho(x) \, dx \in \mathbb{R}^+ \quad (4.92)
\]
for each \(n \in \mathbb{N} \).
Remark 4.53. (a) Using the linear change of variables

\[x \mapsto u = u(x) := \frac{b - a}{2} x + \frac{a + b}{2}, \]

we can transform an integral over \([a, b]\) into an integral over \([-1, 1] \):

\[\int_a^b f(u) \, du = \frac{b - a}{2} \int_{-1}^1 f(u(x)) \, dx = \frac{b - a}{2} \int_{-1}^1 f\left(\frac{b - a}{2} x + \frac{a + b}{2}\right) \, dx. \]

(4.93)

This is useful in the context of Gaussian quadrature rules, since the computation of the zeros \(\lambda_j\) of the orthogonal polynomials is, in general, not easy. However, due to (4.93), one does not have to recompute them for each interval \([a, b]\), but one can just compute them once for \([-1, 1]\) and tabulate them. Of course, one still needs to recompute for each \(n \in \mathbb{N}\) and each new weight function \(\rho\).

(b) If one is given the \(\lambda_j\) for a large \(n\) with respect to some strange \(\rho > 0\), and one wants to exploit the resulting Gaussian quadrature rule to just compute the nonweighted integral of \(f\), one can obviously always do that by applying the rule to \(g := f/\rho\) instead of to \(f\).

As usual, to obtain an error estimate, one needs to assume more regularity of the integrated function \(f\).

Theorem 4.54. Consider the situation of Def. 4.49; in particular let \(I_n\) be the Gaussian quadrature rule defined according to (4.84). Then, for each \(f \in C^{2n}[a, b]\), there exists \(\tau \in [a, b]\) such that

\[\int_a^b f(x) \rho(x) \, dx - I_n(f) = \int_a^b \frac{f^{(2n)}(\tau)}{2n!} \, dx, \]

(4.94)

where \(p_n\) is the \(n\)th orthogonal polynomial, which can be further estimated by

\[|p_n(x)| \leq (b - a)^n \quad \text{for each} \quad x \in [a, b]. \]

(4.95)

Proof. As before, let \(\lambda_1, \ldots, \lambda_n\) be the zeros of the \(n\)th orthogonal polynomial \(p_n\). Given \(f \in C^{2n}[a, b]\), let \(q \in \mathcal{P}_{2n-1}\) be the Hermite interpolating polynomial for the \(2n\) points

\[\lambda_1, \lambda_1, \lambda_2, \lambda_2, \ldots, \lambda_n, \lambda_n. \]

The identity (3.45) yields

\[f(x) = q(x) + f[x, \lambda_1, \lambda_1, \lambda_2, \lambda_2, \ldots, \lambda_n, \lambda_n] \prod_{j=1}^n (x - \lambda_j)^2. \]

(4.96)

Now we multiply (4.96) by \(\rho\), replace the generalized divided difference by using the mean value theorem for generalized divided differences (3.47), and integrate over \([a, b]\):

\[\int_a^b f(x) \rho(x) \, dx = \int_a^b q(x) \rho(x) \, dx + \frac{1}{(2n)!} \int_a^b f^{(2n)}(\xi(x)) p_n^2(x) \rho(x) \, dx. \]

(4.97)
5 NUMERICAL SOLUTION OF LINEAR SYSTEMS

Note that, as in the proof of Prop. 4.14, the map \(x \mapsto f^{(2n)}(\xi(x)) \) can be chosen to be continuous (in particular, integrable), and this choice is assumed here. Since \(p_n^2 \rho \geq 0 \), we can apply Lem. 4.13 to obtain \(\tau \in [a,b] \) satisfying

\[
\int_a^b f(x) \rho(x) \, dx = \int_a^b q(x) \rho(x) \, dx + \frac{f^{(2n)}(\tau)}{(2n)!} \int_a^b p_n^2(x) \rho(x) \, dx. \tag{4.98}
\]

Since \(q \in \mathcal{P}_{2n-1} \), \(I_n \) is exact for \(q \), i.e.

\[
\int_a^b q(x) \rho(x) \, dx = I_n(q) = \sum_{j=1}^{n} \sigma_j q(\lambda_j) = \sum_{j=1}^{n} \sigma_j f(\lambda_j) = I_n(f). \tag{4.99}
\]

Combining (4.99) and (4.98) proves (4.94). Finally, (4.95) is clear from the representation \(p_n(x) = \prod_{j=1}^{n} (x - \lambda_j) \) and \(\lambda_j \in [a,b] \) for each \(j \in \{1,\ldots,n\} \).

\[\blacksquare\]

Remark 4.55. One can obviously also combine the strategies of Sec. 4.5 and Sec. 4.6. The results are composite Gaussian quadrature rules.

5 Numerical Solution of Linear Systems

5.1 Motivation

For simplicity, we will restrict ourselves to the case of systems over the real numbers. In principle, systems over other fields are of interest as well.

Definition 5.1. Given a real \(n \times m \) matrix \(A \), \(m, n \in \mathbb{N} \), and \(b \in \mathbb{R}^n \), the equation

\[
Ax = b \tag{5.1}
\]

is called a linear system for the unknown \(x \in \mathbb{R}^m \). The matrix one obtains by adding \(b \) as the \((m+1)\text{th}\) column to \(A \) is called the augmented matrix of the linear system. It is denoted by \((A|b)\).

The goal of this section is to determine solutions to linear systems (5.1), provided such solutions exist. If the linear system does not have any solutions, than one is interested in solving the least squares minimization problem, i.e. one aims at finding \(x \) such that \(\|Ax - b\|_2 \) is minimized. Since one often needs to solve (5.1) with the same \(A \) and many different \(b \), it is of particular interest to decompose \(A \) in a way that facilitates the efficient computation of solutions when varying \(b \) (if \(A \) is invertible, then such decompositions can be used to obtain \(A^{-1} \), but it is often not necessary to compute \(A^{-1} \) explicitly).
5.2 Gaussian Elimination and LU Decomposition

5.2.1 Pivot Strategies

The first method for the solution of linear systems one usually encounters is the Gaussian elimination algorithm. It is assumed the Gaussian elimination algorithm is known. However, a review is provided in Appendix H.1 (see, in particular, Def. H.5).

The Gaussian elimination algorithm suffers from the fact that it can be numerically unstable even for matrices with small condition number, as demonstrated in the following example.

Example 5.2. Consider the linear system $Ax = b$ with

$$ A := \begin{pmatrix} 0.0001 & 1 \\ 1 & 1 \end{pmatrix}, \quad b := \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \quad (5.2) $$

The exact solution is

$$ x = \begin{pmatrix} 1.00010001 \\ 0.99989999 \end{pmatrix}. \quad (5.3) $$

We now examine what occurs if we solve the system approximately using the Gaussian elimination algorithm according to Def. H.5 and a floating point arithmetic, rounding to 3 significant digits:

When applying the Gaussian elimination algorithm to $(A|b)$, there is only one step, and it is carried out according to Def. H.5(a), i.e. the second row is replaced by the sum of the second row and the first row multiplied by -10^{-4}. The exact result is

$$ \begin{pmatrix} 10^{-4} & 1 & 1 \\ 0 & -9999 & -9998 \end{pmatrix}. \quad (5.4a) $$

However, when rounding to 3 digits, it is replaced by

$$ \begin{pmatrix} 10^{-4} & 1 & 1 \\ 0 & -10^4 & -10^4 \end{pmatrix}, \quad (5.4b) $$

yielding the approximate solution

$$ x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \quad (5.4c) $$

Thus, the relative error in the solution is about 10000 times the relative error of rounding. The condition number is low, namely $\kappa_2(A) \approx 2.618$ with respect to the Euclidean norm. The error should not be amplified by a factor of 10000 if the algorithm is stable.

Now consider what occurs if we first switch the rows of $(A|b)$:

$$ \begin{pmatrix} 1 & 1 & 2 \\ 10^{-4} & 1 & 1 \end{pmatrix}. \quad (5.5a) $$

Now Gaussian elimination and rounding yields

$$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \quad (5.5b) $$
with the approximate solution

\[x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

(5.5c)

which is much better than (5.4c).

Example 5.2 shows that it can be advantageous to switch rows even if one could just apply Def. H.5(a) in the \(k \)th step of the Gaussian elimination algorithm. Similarly, when applying Def. H.5(b), not every choice of the row number \(i \), used for switching, is equally good. It is advisable to use what is called a pivot strategy – a strategy to determine if, in the Gaussian elimination’s \(k \)th step, one should first switch the current row with another row, and, if so, which other row should be used.

A first strategy that can be used to avoid instabilities of the form that occurred in Example 5.2 is the column maximum strategy (cf. Def. 5.4 below): In the \(k \)th step of Gaussian elimination, find the row number \(i \geq r(k) \) (all rows with numbers less than \(r(k) \) are already in echelon form and remain unchanged, cf. Def. H.5), where the pivot element (cf. Def. H.1) has the maximal absolute value; if \(i \neq r(k) \), then switch rows \(i \) and \(r(k) \) before proceeding. This was the strategy that resulted in the acceptable solution (5.5c). However, consider what happens in the following example:

Example 5.3. Consider the linear system \(Ax = b \) with

\[
A := \begin{pmatrix} 1 & 10000 \\ 1 & 1 \end{pmatrix}, \quad b := \begin{pmatrix} 10000 \\ 2 \end{pmatrix}.
\]

(5.6)

The exact solution is the same as in Example 5.2, i.e. given by (5.3) (the first row of Example 5.2 has merely been multiplied by 10000). Again, we examine what occurs if we solve the system approximately using Gaussian elimination, rounding to 3 significant digits:

As the pivot element of the first row is maximal, the column maximum strategy does not require any switching. After the fist step we obtain

\[
\begin{pmatrix} 1 & 10000 \\ 0 & -9999 \end{pmatrix} \begin{pmatrix} 10000 \\ -9998 \end{pmatrix},
\]

(5.7a)

which, after rounding to 3 digits, is replaced by

\[
\begin{pmatrix} 1 & 10000 \\ 0 & -10000 \end{pmatrix} \begin{pmatrix} 10000 \\ -10000 \end{pmatrix},
\]

(5.7b)

yielding the unsatisfactory approximate solution

\[x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

(5.7c)

The problem here is that the pivot element of the first row is small as compared with the other elements of that row! This leads to the so-called relative column maximum
strategy (cf. Def. 5.4 below), where, instead of choosing the pivot element with the largest absolute value, one chooses the pivot element such that its absolute value divided by the sum of the absolute values of all elements in that row is maximized.

In the above case, the relative column maximum strategy would require first switching rows:

\[
\begin{pmatrix}
1 & 1 & 2 \\
1 & 10000 & 10000
\end{pmatrix}.
\]

Now Gaussian elimination and rounding yields

\[
\begin{pmatrix}
1 & 1 & 2 \\
0 & 10000 & 10000
\end{pmatrix},
\]

once again with the acceptable approximate solution

\[
x = \begin{pmatrix}
1 \\
1
\end{pmatrix}.
\]

Both pivot strategies discussed above are summarized in the following definition:

Definition 5.4. Let \(A \) be a real \(n \times m \) matrix \(A \), where \(m, n \in \mathbb{N} \), and \(b \in \mathbb{R}^n \). We define two modified versions of the Gaussian elimination algorithm of Def. H.5 by adding one of the following actions (0) or \((0')\) at the beginning of the algorithm’s \(k \)th step (for each \(k \geq 1 \) such that \(r(k) < n \) and \(k \leq m + 1 \)).

As in Def. H.5, let \((A^{(1)}|b^{(1)}) := (A|b), r(1) := 1\), and, for each \(k \geq 1 \) such that \(r(k) < n \) and \(k \leq m + 1 \), transform \((A^{(k)}|b^{(k)})\) into \((A^{(k+1)}|b^{(k+1)})\) and \(r(k) \) into \(r(k + 1) \). In contrast to Def. H.5, to achieve the transformation, first perform either (0) or \((0')\):

(0) **Column Maximum Strategy:** Determine \(i \in \{r(k), \ldots, n\} \) such that

\[
|a^{(k)}_{ik}| = \max \left\{|a^{(k)}_{\alpha k} : \alpha \in \{r(k), \ldots, n\}\right\}.
\]

(0') **Relative Column Maximum Strategy:** For each \(\alpha \in \{r(k), \ldots, n\} \), define

\[
S^{(k)}_{\alpha} := \sum_{\beta = k}^{m+1} |a^{(k)}_{\alpha \beta}|.
\]

If \(\max \left\{ S^{(k)}_{\alpha} : \alpha \in \{r(k), \ldots, n\} \right\} = 0 \), then \((A^{(k)}|b^{(k)})\) is already in echelon form and the algorithm is halted. Otherwise, determine \(i \in \{r(k), \ldots, n\} \) such that

\[
\frac{|a^{(k)}_{ik}|}{S^{(k)}_i} = \max \left\{ \frac{|a^{(k)}_{\alpha k}|}{S^{(k)}_{\alpha}} : \alpha \in \{r(k), \ldots, n\}, S^{(k)}_{\alpha} \neq 0 \right\}.
\]
If \(a_{ik}^{(k)} = 0 \), then nothing needs to be done (Def. H.5(c)). If \(a_{ik}^{(k)} \neq 0 \) and \(i = r(k) \), then no switching is needed, i.e. one proceeds by Def. H.5(a). If \(a_{ik}^{(k)} \neq 0 \) and \(i \neq r(k) \), then one proceeds by Def. H.5(b) (using the found row number \(i \) for switching).

Remark 5.5. (a) Clearly, Th. H.6 remains valid for the Gaussian elimination algorithm with column maximum strategy as well as with relative column maximum strategy (i.e. the modified Gaussian elimination algorithm still transforms the augmented matrix \((A|b)\) of the linear system \(Ax = b \) into a matrix \((\tilde{A}|\tilde{b})\) in echelon form, such that the linear system \(\tilde{A}x = \tilde{b} \) has precisely the same set of solutions as the original system).

(b) The relative maximum strategy is more stable in cases where the order of magnitude of matrix elements varies strongly, but it is also less efficient.

5.2.2 Gaussian Elimination via Matrix Multiplication and LU Decomposition

The Gaussian elimination algorithm can not only be used to solve one particular linear system, but it can also be used, with virtually no extra effort, to decompose the matrix \(A \) into simpler matrices \(L \) and \(U \) that then facilitate the simple solution of \(Ax = b \) when varying \(b \) (i.e. without having to reapply Gaussian elimination for each new \(b \)).

The decomposition is easily obtained from the fact that each elementary row operation occurring during Gaussian elimination (cf. Def. H.3) can be obtained via multiplication with a suitable matrix. Namely, adding the multiple of one row to another row is obtained by multiplication by a so-called Frobenius matrix (see Def. 5.6(b)), while the switching of rows is obtained by a permutation matrix (see Def. and Rem. 5.10).

We start by reviewing definitions and properties of Frobenius and related matrices.

Definition 5.6. (a) An \(n \times n \) matrix \(A \), \(n \in \mathbb{N} \), is called **upper triangular** or **right triangular** (respectively **lower triangular** or **left triangular**) if, and only if, \(a_{ij} = 0 \) for each \(i, j \in \{1, \ldots, n\} \) such that \(i > j \) (respectively \(i < j \)). A triangular matrix \(A \) is called **unipotent** if, and only if, \(a_{ii} = 1 \) for each \(i \in \{1, \ldots, n\} \).

(b) A unipotent lower triangular \(n \times n \) matrix \(A \), \(n \in \mathbb{N} \), is called a **Frobenius matrix** of index \(k \), \(k \in \{1, \ldots, n\} \), if, and only if, \(a_{ij} = 0 \) for each \(j \neq k \), i.e. if, and only if, it has the following form:

\[
A = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & 1 \\
& & a_{k+1,k} & 1 \\
& & a_{k+2,k} & 1 \\
& & & & \ddots \\
a_{n,k} & & & & 1
\end{pmatrix}.
\] (5.11)
The following Rem. 5.7 recalls relevant properties of general triangular matrices, while the subsequent Rem. 5.8 deals with Frobenius matrices.

Remark 5.7. The following assertions are easily verified from the definition of matrix multiplication:

(a) The set \mathcal{L} of lower triangular $n \times n$ matrices is closed under matrix multiplication. Since matrix multiplication is always associative, in algebraic terms, this means that \mathcal{L} forms a semigroup. The same is true for the set \mathcal{R} of upper triangular $n \times n$ matrices.

(b) The inverse of an invertible lower triangular $n \times n$ matrix is again a lower triangular $n \times n$ matrix. Together with (a), this means that the set of all invertible lower triangular $n \times n$ matrices forms a group. The unipotent lower triangular $n \times n$ matrices form a subgroup of that group. Analogous statements hold true for the set of upper triangular $n \times n$ matrices.

Remark 5.8. The following assertions are also easily verified from the definition of matrix multiplication:

(a) The elementary row operation of row addition can be achieved by multiplication by a suitable Frobenius matrix from the left. In particular, consider the Gaussian elimination algorithm of Def. H.5 applied to an $n \times m$ matrix A (note that the algorithm can be applied to any matrix, so it does not really matter if A represents an augmented matrix of a linear system or not). If $A^{(k)} \mapsto A^{(k+1)}$ is the matrix transformation occurring in the kth step of the Gaussian elimination algorithm of Def. H.5 and the kth step is done by performing Def. H.5(a), i.e. by, for each $i \in \{r(k) + 1, \ldots, n\}$, replacing the ith row by the ith row plus $-a_{ik}^{(k)}/a_{r(k),k}$ times the $r(k)$th row, then

$$A^{(k+1)} = L_k A^{(k)},$$

where

$$L_k = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \overset{1}{\overset{1}{1}} \\
-l_{r(k)+1,r(k)} & & 1 & \\
-l_{r(k)+2,r(k)} & \ddots & & \\
\vdots & & \ddots & \\
l_{n,r(k)} & \cdots & & 1
\end{pmatrix}, \quad l_{i,r(k)} := a_{ik}^{(k)}/a_{r(k),k}^{(k)}$$

is an $n \times n$ Frobenius matrix of index $r(k)$.

(b) If the $n \times n$ matrix L is a Frobenius matrix,

$$L = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & 1 \\
& & l_{k+1,k} & 1 \\
& & l_{k+2,k} & 1 \\
& & \vdots & \ddots \\
& & l_{n,k} & 1
\end{pmatrix}, \quad (5.13a)$$

then L is invertible with

$$L^{-1} = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & 1 \\
& & -l_{k+1,k} & 1 \\
& & -l_{k+2,k} & 1 \\
& & \vdots & \ddots \\
& & -l_{n,k} & 1
\end{pmatrix}. \quad (5.13b)$$

In particular, if L is a Frobenius matrix of index k, then L^{-1} is also a Frobenius matrix of index k.

(c) If

$$L = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 0 \\
& \vdots & \ddots & \vdots \\
1 & l_{n1} & l_{n2} & \ldots & 1
\end{pmatrix}, \quad (5.14a)$$

is an arbitrary unipotent lower triangular $n \times n$ matrix, then it is the product of the following $n - 1$ Frobenius matrices:

$$L = \tilde{L}_1 \cdots \tilde{L}_{n-1}, \quad (5.14b)$$

where

$$\tilde{L}_k := \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & 1 \\
& & l_{k+1,k} & 1 \\
& & l_{k+2,k} & 1 \\
& & \vdots & \ddots \\
& & l_{n,k} & 1
\end{pmatrix} \quad \text{for each } k \in \{1, \ldots, n - 1\} \quad (5.14c)$$

is a Frobenius matrix of index k.
Theorem 5.9. Let A be a real $n \times m$ matrix, $m, n \in \mathbb{N}$. Moreover, let \tilde{A} be the $n \times m$ matrix in echelon form resulting at the end of the Gaussian elimination algorithm of Def. H.5. Moreover, assume that no row switching occurred during the application of the Gaussian elimination algorithm, i.e., in each step (a) or (c) of Def. H.5 was used, but never (b).

(a) There exists a unipotent lower triangular $n \times n$ matrix L such that

$$A = L\tilde{A}. \quad (5.15a)$$

This is the version of the LU decomposition without row switching for general $n \times m$ matrices. Obviously, this is not an LU decomposition in the strict sense, since \tilde{A} is in echelon form, but not necessarily upper triangular. For LU decompositions in the strict sense, see (b).

(b) If A is an $n \times n$ matrix, then \tilde{A} is an upper triangular matrix, which is emphasized by writing $U := \tilde{A}$. Thus, there exist a unipotent lower triangular $n \times n$ matrix L and an upper triangular matrix U such that

$$A = LU = L\tilde{A}. \quad (5.15b)$$

This is called an LU decomposition of A. If A is invertible, then $U = \tilde{A}$ is invertible and the LU decomposition is unique.

Proof. (a): Let $N \in \{0, \ldots, m\}$ be the final number of steps that is needed to perform the Gaussian elimination algorithm according to Def. H.5 (note that we now have m where we had $m + 1$ in Def. H.5, which is due to the fact that our current matrix A is not augmented by a vector b). If $N = 0$, then A consists of precisely one row and there is nothing to prove (set $L := (1)$). If $N \geq 1$, then let $A^{[1]} := A$ and, recursively, for each $k \in \{1, \ldots, N\}$, let $A^{(k+1)}$ be the matrix obtained in the kth step of the Gaussian elimination algorithm. If Def. H.5(a) is used in the kth step, then (5.16) also holds, namely with $L_k := \text{Id}$. By induction, (5.16) implies

$$\tilde{A} = A^{(N+1)} = L_N \cdots L_1 A. \quad (5.17)$$

Comparing with (5.14) shows that $L := L_1^{-1} \cdots L_N^{-1}$ is a unipotent lower triangular matrix, thereby establishing (a). Note: From (5.14) and the definition of the L_k, we actually know all entries of L explicitly: Every nonzero entry of the $r(k)$th column is given by (5.12b). This will be used when formulating the LU decomposition algorithm in Sec. 5.2.3 below.
(b): Everything follows easily from (a): Existence is clear since a quadratic matrix in echelon form is upper triangular. If A is invertible, then so is $U = \tilde{A} = L^{-1}A$. If A is invertible, and we have LU decompositions

$$L_1U_1 = A = L_2U_2,$$

then we obtain $U_1U_2^{-1} = L_1^{-1}L_2 =: E$. As both upper triangular and unipotent lower triangular matrices are closed under matrix multiplication, the matrix E is unipotent and both upper and lower triangular, showing $E = \text{Id}$. This, in turn, yields $U_1 = U_2$ as well as $L_1 = L_2$, i.e. the uniqueness claimed in (b).

We now proceed to review the definition and properties of permutation matrices which occur in connection with row switching:

Definition and Remark 5.10. Let $n \in \mathbb{N}$. Each bijective map $\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ is called a permutation of $\{1, \ldots, n\}$. The set of permutations of $\{1, \ldots, n\}$ forms a group with respect to the composition of maps, the so-called symmetric group S_n. For each $\pi \in S_n$, we define an $n \times n$ matrix

$$P_\pi := \left(e_{\pi(1)}^t \quad e_{\pi(2)}^t \quad \cdots \quad e_{\pi(n)}^t \right),$$

where the e_i denote the standard unit (row) vectors of \mathbb{R}^n (cf. (3.35)). The matrix P_π is called the permutation matrix associated with π.

Remark 5.11.

(a) A real $n \times n$ matrix P is a permutation matrix if, and only if, each row and each column of P have precisely one entry 1 and all other entries of P are 0.

(b) If $\pi \in S_n$ and the columns of P_π are given according to (5.20), then the rows of P_π are given according to the inverse permutation π^{-1},

$$P_\pi = \begin{pmatrix} e_{\pi^{-1}(1)} \\ e_{\pi^{-1}(2)} \\ \vdots \\ e_{\pi^{-1}(n)} \end{pmatrix};$$

Consider the ith row. Then $p_{ij} = 1$ if, and only if, $i = \pi(j)$ (since p_{ij} also belongs to the jth column). Thus, $p_{ij} = 1$ if, and only if, $j = \pi^{-1}(i)$, which means that the ith row is $e_{\pi^{-1}(i)}$.

(c) Left multiplication of a matrix A by a permutation matrix P_π permutes the rows of A according to π,

$$P_\pi \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} = \begin{pmatrix} r_{\pi(1)} \\ r_{\pi(2)} \\ \vdots \\ r_{\pi(n)} \end{pmatrix}.$$
which follows from the special case

\[
P_\pi e_i^t = \begin{pmatrix} e_{\pi^{-1}(1)} \\ e_{\pi^{-1}(2)} \\ \vdots \\ e_{\pi^{-1}(n)} \end{pmatrix} e_i^t = \begin{pmatrix} e_{\pi^{-1}(1)} \cdot e_i \\ e_{\pi^{-1}(2)} \cdot e_i \\ \vdots \\ e_{\pi^{-1}(n)} \cdot e_i \end{pmatrix} = e_{\pi(i)}^t,
\]

that holds for each \(i \in \{1, \ldots, n\} \).

(d) Right multiplication of a matrix \(A \) by a permutation matrix \(P_\pi \) permutes the columns of \(A \) according to \(\pi^{-1} \),

\[
\begin{pmatrix} c_1 & c_2 & \cdots & c_n \end{pmatrix} P_\pi = \begin{pmatrix} c_{\pi^{-1}(1)} & c_{\pi^{-1}(2)} & \cdots & c_{\pi^{-1}(n)} \end{pmatrix},
\]

which follows from the special case

\[
e_i P_\pi = e_i \left(e_{\pi(1)}^t e_{\pi(2)}^t \cdots e_{\pi(n)}^t \right) = \left(e_i \cdot e_{\pi(1)} \ e_i \cdot e_{\pi(2)} \ \cdots \ e_i \cdot e_{\pi(n)} \right) = e_{\pi^{-1}(i)},
\]

that holds for each \(i \in \{1, \ldots, n\} \).

(e) For each \(\pi, \sigma \in S_n \), one has

\[
P_\pi P_\sigma = P_{\pi \circ \sigma} \tag{5.22}
\]

which, in algebraic terms, means that the map \(\pi \mapsto P_\pi \) constitutes a group homomorphism and that the permutation matrices form a representation of \(S_n \).

(f) Combining (e) with (5.21) and (5.20) yields

\[
P^{-1} = P^k \tag{5.23}
\]

for each permutation matrix \(P \).

For obvious reasons, for the Gaussian elimination algorithm, permutation matrices that switch precisely two rows are especially important.

Definition and Remark 5.12. A permutation matrix \(P_\tau \) corresponding to a transposition \(\tau = (ij) \in S_n \) (\(\tau \) permutes \(i \) and \(j \) and leaves all other elements fixed) is called a *transposition matrix* and is denoted by \(P_{ij} := P_\tau \). The transposition matrix \(P_{ij} \) has the
form
\[
\begin{pmatrix}
1 & & & & \\
0 & 1 & & & \\
1 & & 1 & & \\
& & & 1 & \\
& & & & 1
\end{pmatrix}
\]
(5.24)

Since every permutation is the composition of a finite number of transpositions, it is implied by Rem. 5.11(e) that every permutation matrix is the product of a finite number of transposition matrices.

Remark 5.13. It is immediate from Rem. 5.11(c),(d) that left multiplication of a matrix \(A \) by \(P_{ij} \) switches the \(i \)th and \(j \)th row of \(A \), whereas right multiplication of \(A \) by \(P_{ij} \) switches the \(i \)th and \(j \)th column of \(A \). In particular, the elementary row operation of row switching can be achieved by multiplication by a suitable transposition matrix from the left. In particular, consider the Gaussian elimination algorithm of Def. H.5 applied to an \(n \times m \) matrix \(A \). If \(A^{(k)} \mapsto A^{(k+1)} \) is the matrix transformation occurring in the \(k \)th step of the Gaussian elimination algorithm of Def. H.5 and the \(k \)th step is done by performing Def. H.5(b), then
\[
A^{(k+1)} = L_k P_{r(k)} A^{(k)},
\]
where \(L_k \) is the Frobenius matrix of index \(r(k) \) defined in (5.12b).

We are now in a position to prove the existence of LU decompositions without the restriction that no row switching is used in the Gaussian elimination algorithm.

Theorem 5.14. Let \(A \) be a real \(n \times m \) matrix, \(m, n \in \mathbb{N} \). Moreover, let \(\tilde{A} \) be the \(n \times m \) matrix in echelon form resulting at the end of the Gaussian elimination algorithm of Def. H.5.

(a) There exists a unipotent lower triangular \(n \times n \) matrix \(L \) and an \(n \times n \) permutation matrix \(P \) such that
\[
PA = L\tilde{A}.
\]
(5.26a)

As in Th. 5.9, this is not an LU decomposition in the strict sense, since \(\tilde{A} \) is in echelon form, but not necessarily upper triangular. One obtains LU decompositions in the strict sense if \(A \) is quadratic, which is the case considered in (b).
(b) If A is an $n \times n$ matrix, then \tilde{A} is an upper triangular matrix, which is emphasized by writing $U := \tilde{A}$. Thus, there exist a unipotent lower triangular $n \times n$ matrix L, an $n \times n$ permutation matrix P, and an upper triangular matrix U such that

$$PA = LU = L\tilde{A}. \quad (5.26b)$$

This is called an LU decomposition of PA.

In addition, in each case, one can choose P and L such that $|l_{ij}| \leq 1$ for each entry l_{ij} of L.

Proof. (a): Let $N \in \{0, \ldots, m\}$ be the final number of steps that is needed to perform the Gaussian elimination algorithm according to Def. H.5 (note that we now have m where we had $m + 1$ in Def. H.5, which is due to the fact that our current matrix A is not augmented by a vector b). If $N = 0$, then A consists of precisely one row and there is nothing to prove (set $L := P := (1)$). If $N \geq 1$, then let $A^{(1)} := A$ and, recursively, for each $k \in \{1, \ldots, N\}$, let $A^{(k+1)}$ be the matrix obtained in the kth step of the Gaussian elimination algorithm. If Def. H.5(b) is used in the kth step, then (5.27) also holds, namely with $P_k := \text{Id}$ for (a) and with $L_k := P_k := \text{Id}$ for (c). By induction, (5.27) implies

$$\tilde{A} = A^{(N+1)} = L_N P_N \cdots L_1 P_1 A. \quad (5.28)$$

To show that we can transform (5.28) into (5.26a), we first rewrite the right-hand side of (5.28) taking into account $P_k^{-1} = P_k$ for each of the transposition matrices P_k:

$$\tilde{A} = L_N(P_N L_{N-1} \underbrace{P_N \cdots P_N}_{\text{Id}} P_{N-1} L_{N-2} \underbrace{P_{N-1} \cdots P_N}_{\text{Id}} P_{N-2} \cdots L_1 \underbrace{P_2 \cdots P_N}_{\text{Id}} P_N P_{N-1} \cdots P_2 P_1 A). \quad (5.29)$$

Defining

$$L'_N := L_N, \quad L'_k := P_N P_{N-1} \cdots P_{k+1} L_k P_{k+1} \cdots P_{N-1} P_N \quad \text{for each } k \in \{1, \ldots, N-1\}, \quad (5.30)$$

(5.29) takes the form

$$\tilde{A} = L'_N \cdots L'_k P_N P_{N-1} \cdots P_2 P_1 A. \quad (5.31)$$

We now observe that the L'_k are still Frobenius matrices of index $r(k)$, except that the entries $l_{i,r(k)}$ of L_k with $i > r(k)$ have been permuted according to $P_N P_{N-1} \cdots P_{k+1}$:
This follows since
\[
P_{ij} = \begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{pmatrix} P_{ij} = \begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{pmatrix} = P_{ij},
\]
(5.32)
as left multiplication by \(P_{ij}\) switches the \(i\)th and \(j\)th row, switching \(l_{i,r(k)}\) and \(l_{j,r(k)}\) and moving the corresponding 1’s off the diagonal, whereas right multiplication by \(P_{ij}\) switches \(i\)th and \(j\)th column, moving both 1’s back onto the diagonal while leaving the \(r(k)\)th column unchanged.

Finally, using that each \((L_k')^{-1}\), according to Rem. 5.8(b), exists and is also a Frobenius matrix, (5.31) becomes
\[
L\tilde{A} = PA
\]
with
\[
P := P_NP_{N-1}\cdots P_2P_1, \quad L := (L_1')^{-1}\cdots(L_N')^{-1}.
\]
(5.34)
As in the proof of Th. 5.9, it follows from (5.14) that \(L\) is a unipotent lower triangular matrix, thereby completing the proof of (a).

For (b), we once again only remark that a quadratic matrix in echelon form is upper triangular.

To see that one can always choose \(P\) such that \(|l_{ij}| \leq 1\) for each entry \(l_{ij}\) of \(L\), note that when using the Gaussian elimination algorithm with column maximum strategy according to Def. 5.4, (5.9) guarantees that \(|l_{i,r(k)}| \leq 1\) for \(l_{i,r(k)}\) defined as in (5.12b).

\(\blacksquare\)

Remark 5.15. Note that, even for invertible \(A\), the triple \((P,L,U)\) of (5.26b) is, in general, not unique. For example
\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\]
and
\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

Remark 5.16. (a) Suppose the goal is to solve linear systems \(Ax = b\) with fixed \(A\) and varying \(b\). Moreover, suppose the LU decomposition \(PA = LU\) is at hand. Solving \(Ax = b\) is equivalent to solving \(PAX = Pb\), i.e. \(LUx = Pb\), which is equivalent to solving \(Lz = Pb\) for \(z\) and then solving \(Ux = z\) for \(x\). One can show that the
number of steps in finding the LU decomposition of an \(n \times n \) matrix \(A \) is \(O(n^3) \), whereas solving \(Lz = Pb \) and \(Ux = z \) needs only \(O(n^2) \) steps.

(b) One can use (a) to determine \(A^{-1} \) of an invertible \(n \times n \) matrix \(A \) by solving the \(n \) linear systems

\[
Av_1 = e_1, \ldots, Av_n = e_n,
\]

where \(e_1, \ldots, e_n \) are the standard (column) unit vectors. Then the \(v_k \) are obviously the column vectors of \(A^{-1} \).

(c) Even though the strategy of (a) works fine in many situations, it can fail numerically due to the following stability issue: While the condition numbers, for invertible \(A \), always satisfy

\[
\kappa(PA) \leq \kappa(L)\kappa(U)
\]

due to (2.81) and (2.51), the right-hand side of (5.36) can be much larger than the left-hand side. In that case, it is numerically ill-advised to solve \(Lz = Pb \) and \(Ux = z \) instead of solving \(Ax = b \). There exist more involved decomposition algorithms that are more stable, for example, the QR decomposition (where \(A \) is decomposed into an orthogonal matrix \(Q \) and an upper triangular matrix \(R \)) via the Householder method (see Sec. 5.4.3 below).

5.2.3 The Algorithm of LU Decomposition

Let us crystallize the proof of Th. 5.14 into an algorithm to actually compute the matrices \(L, P, \) and \(\tilde{A} \) occurring in the respective decompositions (5.26a) and (5.26b) of a given \(n \times m \) matrix \(A \). Once again, let \(N \in \{0, \ldots, m\} \) be the final number of steps that is needed to perform the Gaussian elimination algorithm according to Def. H.5.

(a) **Algorithm for \(\tilde{A} \) (i.e. for \(U \) for quadratic \(A \)):** Starting with \(A^{(1)} := A \), the \(k \)th step of the Gaussian elimination algorithm of Def. H.5 (possibly using a pivot strategy according to Def. 5.4) yields a matrix \(A^{(k+1)} \) and \(A^{(N+1)} \) is \(\tilde{A} \).

(b) **Algorithm for \(P \):** Starting with \(P^{(1)} := \text{Id} \), in the \(k \)th step of the Gaussian elimination algorithm of Def. H.5, define \(P^{(k+1)} := P_k P^{(k)} \), where \(P_k := P_{i,r(k)} \) if rows \(r(k) \) and \(i \) are switched according to (b) of Def. H.5, and \(P_k := \text{Id} \), otherwise. In the last step, one obtains \(P = P^{(N+1)} \).

(c) **Algorithm for \(L \):** Starting with \(L^{(1)} := 0 \) (zero matrix), we obtain \(L^{(k+1)} \) from \(L^{(k)} \) in the \(k \)th step of the Gaussian elimination algorithm of Def. H.5 as follows: For Def. H.5(c), set \(L^{(k+1)} := L^{(k)} \). If rows \(r(k) \) and \(i \) are switched according to Def. H.5(b), then we first switch rows \(r(k) \) and \(i \) in \(L^{(k)} \) to obtain some \(\tilde{L}^{(k)} \) (this conforms to the definition of the \(L_k \) in (5.30), we will come back to this point below). For Def. H.5(a) and for the elimination step of Def. H.5(b), we first copy all elements of \(L^{(k)} \) (resp. \(\tilde{L}^{(k)} \)) to \(L^{(k+1)} \), but then change the elements of the \(r(k) \)th column according to (5.12b): Set \(l_{i,r(k)}^{(k+1)} := a_{i,r(k)}^{(k+1)} / a_{r(k),r(k)}^{(k)} \) for each \(i \in \{r(k) + 1, \ldots, n\} \). In the last step, we obtain \(L \) from \(L^{(N+1)} \) by setting all elements on the diagonal to 1 (postponing
this step to the end avoids worrying about the diagonal elements when switching rows earlier).

To see that this procedure does, indeed, provide the correct L, we go back to the proof of Th. 5.14(a): From (5.33), (5.34), and (5.30), it follows that the $r(k)$th column of L is precisely the $r(k)$th column of L_{k-1} permuted according to $P_N \cdots P_{k+1}$. This is precisely what is described in (c) above: We start with the $r(k)$th column of L_{k-1} by setting $l_{k,r(k)}^{(k+1)} := a_{ik}^{(k)} / a_{r(k),k}^{(k)}$ and then apply P_{k+1}, \ldots, P_N during the remaining steps.

Example 5.17. Let us determine the LU decomposition (5.26b) for the matrix

$$A := \begin{pmatrix} 1 & 4 & 2 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & 6 & 3 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix},$$

using the column maximum strategy, which will guarantee $|l_{ij}| \leq 1$ for all components of L. According to the algorithm described above, we start by initializing

$$A^{(1)} := A, \quad P^{(1)} := \text{Id}, \quad L^{(1)} := 0, \quad r(1) := 1.$$

The column maximum strategy requires us to switch rows 1 and 3 using P_{13}:

$$P^{(2)} = P_{13}P^{(1)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P_{13}A = \begin{pmatrix} 2 & 6 & 3 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 4 & 2 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix}.$$

Eliminating the first column yields

$$L^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} 2 & 6 & 3 & 1 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -1 & -\frac{1}{2} & -\frac{5}{2} \\ 0 & 1 & 1 & 4 \end{pmatrix}, \quad r(2) = r(1) + 1 = 2.$$

In the next step, the column maximum strategy does not require any row switching, so we proceed by eliminating the second column:

$$P^{(3)} = P^{(2)}, \quad L^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad r(3) = r(2) + 1 = 3.$$
Now we need to switch rows 3 and 4 using P_{34}:

$$P = P^{(4)} = P_{34}P^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix},$$

$$P_{34}L^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & -1 & 0 & 0 \end{pmatrix}, \quad P_{34}A^{(3)} = \begin{pmatrix} 2 & 6 & 3 & 1 \\ 0 & -1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Accidentally, elimination of the third column does not require any additional work and we have

$$L^{(4)} = P_{34}L^{(3)}, \quad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2} & -1 & 0 & 1 \end{pmatrix},$$

$$U = \tilde{A} = A^{(4)} = P_{34}A^{(3)}, \quad r(4) = r(3) + 1 = 4.$$

Recall that L is obtained from $L^{(4)}$ by setting the diagonal values to 1. One checks that, indeed, $PA = LU$.

Remark 5.18. Note that in the kth step of the algorithm for \tilde{A}, we eliminate all elements of the kth column below the row with number $r(k)$, while in the kth step of the algorithm for L, we populate elements of the $r(k)$th column below the diagonal for the first time. Thus, when implementing the algorithm in practice, one can save memory capacity by storing the new elements for L at the locations of the previously eliminated elements of A. This strategy is sometimes called *compact storage*.

5.3 Cholesky Decomposition

Symmetric positive definite matrices A (and also symmetric positive semidefinite matrices, see Appendix H.4) can be decomposed in the particularly simple form $A = LL^t$, where L is lower triangular:

Theorem 5.19. Let A be a real $n \times n$ matrix, $n \in \mathbb{N}$. If A is symmetric and positive definite (cf. Def. 2.37(a),(c)), then there exists a unique lower triangular real $n \times n$ matrix L with positive diagonal entries (i.e. with $l_{jj} > 0$ for each $j \in \{1, \ldots, n\}$) and

$$A = LL^t. \quad (5.37)$$

This decomposition is called the Cholesky decomposition of A.

Proof. The proof is conducted via induction on \(n \). For \(n = 1 \), it is \(A = (a_{11}) \), \(a_{11} > 0 \), and \(L = (l_{11}) \) is uniquely given by the square root of \(a_{11} \): \(l_{11} = \sqrt{a_{11}} > 0 \). For \(n > 1 \), we write \(A \) in block form
\[
A = \begin{pmatrix}
B & v \\
v^t & a_{nn}
\end{pmatrix},
\]
where \(B \) is the \((n-1) \times (n-1)\) matrix with \(b_{ij} = a_{ij} \) for each \(i, j \in \{1, \ldots, n-1\} \) and \(v \in \mathbb{R}^{n-1} \) is the column vector with \(v_i = a_{in} \) for each \(i \in \{1, \ldots, n-1\} \). According to Prop. H.16, \(B \) is positive definite (and, clearly, \(B \) is also symmetric) and \(a_{nn} > 0 \). According to the induction hypothesis, there exists a unique lower triangular real \((n-1) \times (n-1)\) matrix \(L' \) with positive diagonal entries and \(B = L'(L')^t \). Then \(L' \) is invertible and we can define
\[
w := (L')^{-1} v.
\]
Moreover, let
\[
\alpha := a_{nn} - w^t w.
\]
Then \(\alpha \in \mathbb{R} \) and there exists \(\beta \in \mathbb{C} \) such that \(\beta^2 = \alpha \). We set
\[
L := \begin{pmatrix}
L' & 0 \\
w^t & \beta
\end{pmatrix}.
\]
Then \(L \) is lower triangular,
\[
L^t = \begin{pmatrix}
(L')^t & w \\
0 & \beta
\end{pmatrix},
\]
and
\[
LL^t = \begin{pmatrix}
L'(L')^t & L'w \\
w^t(L')^t & w^t w + \beta^2
\end{pmatrix} = \begin{pmatrix}
B & v \\
v^t & a_{nn}
\end{pmatrix} = A.
\]
It only remains to be shown one can choose \(\beta \in \mathbb{R}^+ \) and that this choice determines \(\beta \) uniquely. Since \(L' \) is a triangular matrix with positive entries on its diagonal, it is \(\det L' \in \mathbb{R}^+ \) and
\[
\det A = (\det L')^2 \beta^2 > 0.
\]
Thus, \(\alpha = \beta^2 > 0 \), and one can choose \(\beta = \sqrt{\alpha} \in \mathbb{R}^+ \) and \(\sqrt{\alpha} \) is the only positive number with square \(\alpha \). \(\blacksquare \)

Remark 5.20. From the proof of Th. 5.19, it is not hard to extract a recursive algorithm to actually compute the Cholesky decomposition of a symmetric positive definite \(n \times n \) matrix \(A \): One starts by setting
\[
l_{11} := \sqrt{a_{11}},
\]
and
\[
l_{ij} := \begin{cases}
\sqrt{b_{ij}} & \text{if } i = j \text{ and } j > 1 \\
0 & \text{otherwise},
\end{cases}
\]
where \(b_{ij} \) is the element of \(B \) in the \((i-1)\)th row and \((j-1)\)th column. This algorithm can be implemented recursively. If \(B \) is a symmetric matrix, then \(L \) is as well; if \(B \) is diagonal, then \(L \) is diagonal.
where the proof of Th. 5.19 guarantees $a_{11} > 0$. In the recursive step, one already has constructed the entries for the first $r - 1$ rows of L, $1 < r \leq n$ (corresponding to the entries of L' in the proof of Th. 5.19), and one needs to construct l_{r1}, \ldots, l_{rr}. Using (5.39), one has to solve $L'w = v$ for

$$w = \begin{pmatrix} l_{r1} \\ \vdots \\ l_{r,r-1} \end{pmatrix}, \quad \text{where} \quad v = \begin{pmatrix} a_{1r} \\ \vdots \\ a_{r-1,r} \end{pmatrix}.$$

As L' has lower triangular form, we obtain $l_{r1}, \ldots, l_{r,r-1}$ successively, using forward substitution, where

$$l_{rj} := a_{rj} - \frac{\sum_{k=1}^{j-1} l_{jk} l_{rk}}{l_{jj}} \quad \text{for each} \quad j \in \{1, \ldots, r - 1\} \quad (5.44b)$$

and the proof of Th. 5.19 guarantees $l_{jj} > 0$. Finally, one uses (5.40) (with n replaced by r) to obtain

$$l_{rr} = \sqrt{\alpha} = \sqrt{a_{rr} - w^t w} = \sqrt{a_{rr} - \sum_{k=1}^{r-1} l_{rk}^2}, \quad (5.44c)$$

where the proof of Th. 5.19 guarantees $\alpha > 0$.

Example 5.21. We compute the Cholesky decomposition for the symmetric positive definite matrix

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ -2 & 3 & 9 \end{pmatrix}.$$

According to the algorithm described in Rem. 5.20, we compute

$$l_{11} = \sqrt{a_{11}} = \sqrt{1} = 1,$$

$$l_{21} = \frac{a_{12}}{l_{11}} = \frac{-1}{1} = -1,$$

$$l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{2 - 1} = 1,$$

$$l_{31} = \frac{a_{13}}{l_{11}} = \frac{-2}{1} = -2,$$

$$l_{32} = \frac{a_{23} - l_{21} l_{31}}{l_{22}} = \frac{3 - (-1)(-2)}{1} = 1,$$

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = \sqrt{9 - 4 - 1} = 2.$$

Thus, the Cholesky decomposition for A is

$$LL^t = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ -2 & 3 & 9 \end{pmatrix} = A.$$
We conclude the section by showing that a Cholesky decomposition can not exist if A is not symmetric positive semidefinite:

Proposition 5.22. For $n \in \mathbb{N}$, let A and L be real $n \times n$ matrices, where $A = LL^t$. Then A is symmetric and positive semidefinite.

Proof. A is symmetric, since

$$A^t = (LL^t)^t = LL^t = A.$$

A is positive semidefinite, since

$$\forall x \in \mathbb{R}^n \quad x^tAx = x^tLL^tx = (L^tx)^t(L^tx) \geq 0,$$

which completes the proof. □

5.4 QR Decomposition

5.4.1 Definition and Motivation

For a short review of orthogonal matrices see Appendix H.2.

Definition 5.23. Let A be a real $n \times m$ matrix, $m, n \in \mathbb{N}$.

(a) A decomposition

$$A = Q\tilde{A}$$

is called a QR decomposition of A if, and only if, Q is an orthogonal $n \times n$ matrix and \tilde{A} is an $n \times m$ matrix in echelon form. If A is an $n \times n$ matrix, then \tilde{A} is a right or upper triangular matrix, i.e. (5.45a) is a QR decomposition in the strict sense, which is emphasized by writing $R := \tilde{A}$:

$$A = QR.$$

(5.45b)

(b) Let $r := \text{rk}(A)$ be the rank of A (see Def. and Rem. H.8). A decomposition

$$A = Q\tilde{A}$$

is called an economy size QR decomposition of A if, and only if, Q is an $n \times r$ matrix such that its columns form an orthonormal system in \mathbb{R}^n and \tilde{A} is an $r \times m$ matrix in echelon form. If $r = m$, then \tilde{A} is a right or upper triangular matrix, i.e. (5.46a) is an economy size QR decomposition in the strict sense, which is emphasized by writing $R := \tilde{A}$:

$$A = QR.$$

(5.46b)

Note: In the German literature, the economy size QR decomposition is usually called just QR decomposition, while our QR decomposition is referred to as the extended QR decomposition.
Lemma 5.24. Let A and Q be real $n \times n$ matrices, $n \in \mathbb{N}$, A being invertible and Q being orthogonal. With respect to the Euclidean norm on \mathbb{R}^n, the following holds (recall Def. 2.28 of a natural matrix norm and Def. and Rem. 2.56 for the condition of a matrix):

\[
\|QA\| = \|AQ\| = \|A\|, \\
\kappa_2(Q) = 1, \\
\kappa_2(QA) = \kappa_2(AQ) = \kappa_2(A).
\]

Proof. Exercise.

Remark 5.25. Suppose, as in Rem. 5.16(a), the goal is to solve linear systems $Ax = b$ with fixed A and varying b. In Rem. 5.16(a), we described how to make use of a given LU decomposition $PA = LU$ in this situation. An analogous procedure can be used given a QR decomposition $A = QR$. Solving $Ax = QRx = b$ is equivalent to solving $Qz = b$ for z and then solving $Rx = z$ for x. Due to $Q^{-1} = Q^t$, solving for $z = Q^t b$ is particularly simple. In Rem. 5.16(c), we noted that the condition of using the LU decomposition to solve $Ax = b$ can be much worse than the condition of A. However, for the QR decomposition, the situation is much better: Due to Lem. 5.24, the condition of using the QR decomposition is exactly the same as the condition of A. Thus, if available, the QR decomposition should always be used! Of course, one can also use the QR decomposition to determine A^{-1} of an invertible $n \times n$ matrix A as described in Rem. 5.16(b).

5.4.2 QR Decomposition via Gram-Schmidt Orthogonalization

As just noted in Rem. 5.25, it is numerically advisable to make use of a QR decomposition if it is available. However, so far we have not addressed the question of how to obtain such a decomposition. The simplest way, but not the most numerically stable, is to use the Gram-Schmidt orthogonalization of Th. 4.43. More precisely, Gram-Schmidt orthogonalization provides the economy size QR decomposition of Def. 5.23(b) as described in Th. 5.26(a). In Sec. 5.4.3 below, we will study the Householder method, which is more numerically stable and also provides the full QR decomposition directly.

Theorem 5.26. Let A be a real $n \times m$ matrix, $m, n \in \mathbb{N}$, with columns x_1, \ldots, x_m. If $r := \text{rk}(A) > 0$, then define increasing functions

\[
\rho : \{1, \ldots, m\} \to \{0, \ldots, r\}, \quad \rho(k) := \dim(\text{span}\{x_1, \ldots, x_k\}), \\
\mu : \{1, \ldots, r\} \to \{1, \ldots, m\}, \quad \mu(k) := \min\{j \in \{1, \ldots, m\} : \rho(j) = k\}.
\]

(a) There exists a QR decomposition of A as well as, for $r > 0$, an economy size QR decomposition of A. More precisely, there exist an orthogonal $n \times n$ matrix Q, an $n \times m$ matrix \tilde{A} in echelon form, an $n \times r$ matrix Q_e (for $r > 0$) such that its columns form an orthonormal system in \mathbb{R}^n, and (for $r > 0$) an $r \times m$ matrix \tilde{A}_e in echelon form such that

\[
A = Q \tilde{A}, \\
A = Q_e \tilde{A}_e \quad \text{for } r > 0.
\]
5 NUMERICAL SOLUTION OF LINEAR SYSTEMS

For $r > 0$, the columns $q_1, \ldots, q_r \in \mathbb{R}^n$ of Q_e can be computed from the columns $x_1, \ldots, x_m \in \mathbb{R}^n$ of A, obtaining $v_1, \ldots, v_m \in \mathbb{R}^n$ from (4.76) \(\text{(the first index is now 1 instead of 0 in (4.76))} \), letting, for each $k \in \{1, \ldots, r\}$, \(\tilde{v}_k := v_{\mu(k)} \) (i.e. the $\tilde{v}_1, \ldots, \tilde{v}_r$ are the v_1, \ldots, v_m with each $v_k = 0$ omitted) and, finally, letting $q_k := \tilde{v}_k / ||\tilde{v}_k||_2$ for each $k = 1, \ldots, r$.

Proof. (a): We start by showing that, for $r > 0$, the pivot elements of \tilde{A} are positive. Similarly, if one requires all pivot elements of \tilde{A} to be positive, then the QR decomposition of A is unique, except for the last columns q_{r+1}, \ldots, q_n of Q.

(b) For $r > 0$, there is a unique economy size QR decomposition of A such that all pivot elements of A are positive. Similarly, if one requires all pivot elements of A to be positive, then the QR decomposition of A is unique, except for the last columns q_{r+1}, \ldots, q_n of Q.

Proof. (a): We start by showing that, for $r > 1$, if Q_e and \tilde{A}_e are defined by (i) and (ii), respectively, then they provide the desired economy size QR decomposition of A. From Th. 4.43, we know that $v_k = 0$ if, and only if, $x_k \in \text{span}\{x_1, \ldots, x_{k-1}\}$. Thus, in (i), we indeed obtain r linearly independent v_k and Q_e is an $n \times r$ matrix such that its columns form an orthonormal system in \mathbb{R}^n. From (ii), we see that \tilde{A}_e is an $r \times m$ matrix, as $r = \rho(m)$. To see that \tilde{A}_e is in echelon form, consider its ith row, $i \in \{1, \ldots, r\}$. If $k < \mu(i)$, then $\rho(k) < i$, i.e. $r_{ik} = 0$. Thus, $||\tilde{v}_{\rho(k)}||_2$ with $k = \mu(i)$ is the pivot element of the ith row, and as μ is strictly increasing, \tilde{A}_e is in echelon form. To show $A = Q_e \tilde{A}_e$, note that, for each $k \in \{1, \ldots, m\}$,

$$x_k = \begin{cases} \sum_{i=1}^{\rho(k)} \langle x_k, q_i \rangle q_i & \text{for } k > \mu(\rho(k)) \\ \sum_{i=1}^{\rho(k)-1} \langle x_k, q_i \rangle q_i + ||\tilde{v}_{\rho(k)}||_2 q_{\rho(k)} & \text{for } k = \mu(\rho(k)) \end{cases} = \sum_{i=1}^r r_{ik} q_i \quad (5.50)$$

as a consequence of (4.76), completing the proof of the economy size QR decomposition. Moreover, given the economy size QR decomposition, (iii) and (iv) clearly provide a QR decomposition of A.

(b): Recall from the proof of (a) that, for the \tilde{A}_e defined in (ii) and, thus, for the \tilde{A} defined in (iv), the pivot elements are given by the $||\tilde{v}_{\rho(k)}||_2$ and, thus, always positive. It suffices to prove the uniqueness statement for the QR decomposition, as it clearly implies the uniqueness statement for the economy size QR decomposition. Suppose

$$A = QR = \hat{Q} \hat{R}, \quad (5.51)$$

where

$$\hat{A}_e = \hat{Q}_e \hat{R}_e,$$
where Q, \tilde{Q} are orthogonal $n \times n$ matrices, and R, \tilde{R} are $n \times m$ matrices in echelon form such that all pivot elements are positive. We write (5.51) in the equivalent form

$$x_k = \sum_{i=1}^{r} r_{ik} q_i = \sum_{i=1}^{r} \tilde{r}_{ik} \tilde{q}_i$$

for each $k \in \{1, \ldots, m\}$, (5.52)

and show, by induction on $\alpha \in \{1, \ldots, r+1\}$, that $q_\alpha = \tilde{q}_\alpha$ for $\alpha \leq r$ and $r_{ik} = \tilde{r}_{ik}$ for each $i \in \{1, \ldots, r\}$, $k \in \{1, \ldots, \min\{\mu(\alpha), m\}\}$, $\mu(r+1) = m+1$, as well as

$$\text{span}\{x_1, \ldots, x_{\mu(\alpha)}\} = \text{span}\{q_1, \ldots, q_{\alpha-1}, q_\alpha\} \quad \text{for } \alpha \leq r.$$

(5.53)

Consider $\alpha = 1$. For $1 \leq k < \mu(1)$, we have $x_k = 0$, and the linear independence of the q_i (respectively, \tilde{q}_i) yields $r_{ik} = \tilde{r}_{ik} = 0$ for each $i \in \{1, \ldots, r\}$, $1 \leq k < \mu(1)$ (if any). Next,

$$0 \neq x_{\mu(1)} = r_{1,\mu(1)} q_1 = \tilde{r}_{1,\mu(1)} \tilde{q}_1,$$

(5.54)

since the echelon forms of R and \tilde{R} imply $r_{i,\mu(1)} = \tilde{r}_{i,\mu(1)} = 0$ for each $i > 1$. As $\|q_1\|_2 = \|\tilde{q}_1\|_2 = 1$, (5.54) implies $q_1 = \pm \tilde{q}_1$. As we also know that both pivot elements $r_{1,\mu(1)}$ and $\tilde{r}_{1,\mu(1)}$ are positive, $q_1 = \tilde{q}_1$ follows. This, in turn, lets one conclude $r_{1,\mu(1)} = \tilde{r}_{1,\mu(1)}$ (again using (5.54)). Note that (5.54) also implies $\text{span}\{x_1, \ldots, x_{\mu(1)}\} = \text{span}\{q_1\}$. Now let $\alpha > 1$ and, by induction, assume $q_\beta = \tilde{q}_\beta$ for $1 \leq \beta < \alpha$ and $r_{ik} = \tilde{r}_{ik}$ for each $i \in \{1, \ldots, r\}$, $k \in \{1, \ldots, \mu(\alpha-1)\}$, as well as

$$\text{span}\{x_1, \ldots, x_{\mu(\beta)}\} = \text{span}\{q_1, \ldots, q_\beta\}.$$

(5.55)

We have to show $r_{ik} = \tilde{r}_{ik}$ for each $i \in \{1, \ldots, r\}$, $k \in \{\mu(\alpha-1) + 1, \ldots, \min\{\mu(\alpha), m\}\}$, and $q_\alpha = \tilde{q}_\alpha$ for $\alpha \leq r$, as well as (5.53). For each $k \in \{\mu(\alpha-1) + 1, \ldots, \mu(\alpha) - 1\}$, from (5.55) with $\beta = \alpha - 1$, we know

$$\text{span}\{x_1, \ldots, x_k\} = \text{span}\{x_1, \ldots, x_{\mu(\alpha-1)}\} = \text{span}\{q_1, \ldots, q_{\alpha-1}\},$$

(5.56)

such that (5.52) implies $r_{ik} = \tilde{r}_{ik} = 0$ for each $i > \alpha - 1$. Then, for $1 \leq i \leq \alpha - 1$, multiplying (5.52) by q_i and using the orthonormality of the q_i provides $r_{ik} = \tilde{r}_{ik} = \langle x_k, q_i \rangle$. For $\alpha = r + 1$, we are already done. Otherwise, a similar argument also works for $k = \mu(\alpha) \leq m$: As we had just seen, $r_{al} = \tilde{r}_{al} = 0$ for each $1 \leq l < k$. So the echelon forms of R and \tilde{R} imply $r_{ik} = \tilde{r}_{ik} = 0$ for each $i > \alpha$. Then, as before, $r_{ik} = \tilde{r}_{ik} = \langle x_k, q_i \rangle$ for each $i < \alpha$ by multiplying (5.52) by q_i, and, finally,

$$0 \neq x_k - \sum_{i=1}^{\alpha-1} r_{ik} q_i = x_{\mu(\alpha)} - \sum_{i=1}^{\alpha-1} r_{ik} q_i = r_{ak} q_\alpha = \tilde{r}_{ak} \tilde{q}_\alpha.$$

(5.57)

Analogous to the case $\alpha = 1$, the positivity of r_{ak} and \tilde{r}_{ak} implies first $q_\alpha = \tilde{q}_\alpha$ followed by $r_{ak} = \tilde{r}_{ak}$. To conclude the induction, we note that combining (5.57) with (5.56) verifies (5.53). In particular, we have shown that (5.52) holds as well as $x_k = \sum_{i=1}^{r'} r_{ik} q_i$, i.e. $0 = \sum_{i=r+1}^{n} r_{ik} q_i = \sum_{i=r+1}^{n} \tilde{r}_{ik} \tilde{q}_i$, which implies $r_{ik} = 0$ for each $i > r$ due to the linear independence of the q_i, and $\tilde{r}_{ik} = 0$ for each $i > r$ due to the linear independence of the \tilde{q}_i. ■
Remark 5.27. Gram-Schmidt orthogonalization according to (4.76) becomes numerically unstable in cases where \(x_k \) is “almost” in span\{\(x_1, \ldots, x_{k-1} \)\}, resulting in a very small \(0 \neq v_k \), in which case \(\|v_k\|^{-1} \) can become arbitrarily large. In the following section, we will study an alternative method to compute the QR decomposition that avoids this issue.

Example 5.28. We once again consider the matrix from Ex. 5.17, i.e.

\[
A := \begin{pmatrix}
1 & 4 & 2 & 3 \\
1 & 2 & 1 & 0 \\
2 & 6 & 3 & 1 \\
0 & 0 & 1 & 4
\end{pmatrix}.
\]

Applying Gram-Schmidt orthogonalization (4.76) to the columns

\[
x_1 := \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}, \quad x_2 := \begin{pmatrix} 4 \\ 2 \\ 6 \\ 0 \end{pmatrix}, \quad x_3 := \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \quad x_4 := \begin{pmatrix} 3 \\ 0 \\ 1 \\ 4 \end{pmatrix}
\]

of \(A \) yields

\[
v_1 = x_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix},
\]

\[
v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\|v_1\|^2} v_1 = x_2 - \frac{18}{6} v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix},
\]

\[
v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle x_3, v_2 \rangle}{\|v_2\|^2} v_2 = x_3 - \frac{9}{6} v_1 - \frac{1}{2} v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},
\]

\[
v_4 = x_4 - \frac{\langle x_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle x_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle x_4, v_3 \rangle}{\|v_3\|^2} v_3 = x_4 - \frac{5}{6} v_1 - \frac{3}{2} v_2 - \frac{4}{3} v_3 = \begin{pmatrix} 2/3 \\ 2/3 \\ -2/3 \\ 0 \end{pmatrix}.
\]

Thus,

\[
q_1 = \frac{v_1}{\|v_1\|} = \frac{v_1}{\sqrt{6}}, \quad q_2 = \frac{v_2}{\|v_2\|} = \frac{v_2}{\sqrt{2}}, \quad q_3 = \frac{v_3}{\|v_3\|} = v_3, \quad q_4 = \frac{v_4}{\|v_4\|} = \frac{v_4}{2/\sqrt{3}}
\]

and

\[
Q = \begin{pmatrix}
1/\sqrt{6} & 1/\sqrt{2} & 0 & 1/\sqrt{3} \\
1/\sqrt{6} & -1/\sqrt{2} & 0 & 1/\sqrt{3} \\
2/\sqrt{6} & 0 & 0 & -1/\sqrt{3} \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]
Next, we obtain
\[r_{11} = \|v_1\|_2 = \sqrt{6}, \quad r_{12} = \langle x_2, q_1 \rangle = 3\sqrt{6}, \quad r_{13} = \langle x_3, q_1 \rangle = 9/\sqrt{6}, \quad r_{14} = \langle x_4, q_1 \rangle = 5/\sqrt{6}, \]
\[r_{21} = 0, \quad r_{22} = \|v_2\|_2 = \sqrt{2}, \quad r_{23} = \langle x_3, q_2 \rangle = 1/\sqrt{2}, \quad r_{24} = \langle x_4, q_2 \rangle = 3/\sqrt{2}, \]
\[r_{31} = 0, \quad r_{32} = 0, \quad r_{33} = \|v_3\|_2 = 1, \quad r_{34} = \langle x_4, q_3 \rangle = 4, \]
\[r_{41} = 0, \quad r_{42} = 0, \quad r_{43} = 0, \quad r_{44} = \|v_4\|_2 = 2/\sqrt{3}, \]
that means
\[R = \hat{A} = \begin{pmatrix} \sqrt{6} & 3\sqrt{6} & 9/\sqrt{6} & 5/\sqrt{6} \\ 0 & \sqrt{2} & 1/\sqrt{2} & 3/\sqrt{2} \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2/\sqrt{3} \end{pmatrix}. \]
One verifies \(A = QR \).

5.4.3 QR Decomposition via Householder Reflections

The Householder method uses reflections to compute the QR decomposition of a matrix. It does not go through the economy size QR decomposition (as does the Gram-Schmidt method), but provides the QR decomposition directly (which can be seen as an advantage or disadvantage, depending on the circumstances). The Householder method does not suffer from the numerical instability issues discussed in Rem. 5.27. On the other hand, the Gram-Schmidt method provides \(k \) orthogonal vectors in \(k \) steps, whereas, for the Householder method, one has to complete all \(n \) steps to obtain \(n \) orthogonal vectors.

We begin with some preparatory definitions and remarks:

Definition 5.29. A real \(n \times n \) matrix \(H, n \in \mathbb{N} \), is called a *Householder matrix* or *Householder reflection* or *Householder transformation* if, and only if, there exists \(u \in \mathbb{R}^n \) such that \(\|u\|_2 = 1 \) and
\[H = \text{Id} - 2uu^t, \tag{5.58} \]
where, here and in the following, \(u \) is treated as a *column* vector. If \(H \) is a Householder matrix, then the linear map \(H : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is also called a *Householder reflection* or *Householder transformation.*

Lemma 5.30. Let the real \(n \times n \) matrix \(H, n \in \mathbb{N} \), be a Householder matrix. Then the following holds:

(a) \(H \) is symmetric: \(H^t = H \).

(b) \(H \) is involutary: \(H^2 = \text{Id} \).

(c) \(H \) is orthogonal: \(H^tH = \text{Id} \).

Proof. As \(H \) is a Householder matrix, there exists \(u \in \mathbb{R}^n \) such that \(\|u\|_2 = 1 \) and (5.58) is satisfied.
(a): One computes
\[H^t = (\text{Id} - 2uu^t)^t = \text{Id} - 2(u^t)^tu^t = H. \] (5.59)

(b): Another easy calculation:
\[H^2 = (\text{Id} - 2uu^t)(\text{Id} - 2uu^t) = \text{Id} - 4uu^t + 4uu^tuu^t = \text{Id}, \] (5.60)
where \(u^tu = \|u\|_2^2 = 1 \) was used in the last equality.

(c) is immediate from (a) and (b). \(\square \)

Remark 5.31. Let the real \(n \times n \) matrix \(H, n \in \mathbb{N}, \) be a Householder matrix, with \(H = \text{Id} - 2uu^t, u \in \mathbb{R}^n, \|u\|_2 = 1. \) Then the map \(H : \mathbb{R}^n \rightarrow \mathbb{R}^n, x \mapsto Hx \) constitutes the reflection through the hyperplane
\[V := \text{span}\{e_1\}^\perp = \{z \in \mathbb{R}^n : z^tu = 0\} : \] (5.61)

Note that, for each \(x \in \mathbb{R}^n, x - uu^tx \in V: \)
\[(x - uu^tx)^tu = x^tu - (x^tu)u^tu = 0. \] (5.62)

In particular, \(\text{Id} - uu^t \) is the orthogonal projection onto \(V, \) showing that \(H \) constitutes the reflection through \(V. \)

The key idea of the Householder method for the computation of a QR decomposition is to find a Householder reflection that transforms a given vector into the span of the first standard unit vector \(e_1 \in \mathbb{R}^k. \) This task then has to be performed for varying dimensions \(k. \) That such Householder reflections exist is the contents of the following lemma:

Lemma 5.32. Let \(k \in \mathbb{N}. \) We consider the elements of \(\mathbb{R}^k \) as column vectors. Let \(e_1 \in \mathbb{R}^k \) be the first standard unit vector of \(\mathbb{R}^k. \) If \(x \in \mathbb{R}^k \) and \(x \notin \text{span}\{e_1\}, \) then
\[u := \frac{x + \sigma e_1}{\|x + \sigma e_1\|_2} \quad \text{for} \quad \sigma = \pm\|x\|_2, \] (5.63)
satisfies
\[\|u\|_2 = 1 \text{ and } (\text{Id} - 2uu^t)x = -\sigma e_1. \] (5.64)
(5.65)

Proof. First, note that \(x \notin \text{span}\{e_1\} \) implies \(\|x + \sigma e_1\|_2 \neq 0 \) such that \(u \) is well-defined. Moreover, (5.64) is immediate from the definition of \(u. \) To verify (5.65), note
\[\|x + \sigma e_1\|_2^2 = \|x\|_2^2 + 2\sigma e_1^tx + \sigma^2 = 2(x + \sigma e_1)^tx \] (5.66a)
due to the definition of \(\sigma. \) Together with the definition of \(u, \) this yields
\[2u^tx = \frac{2(x + \sigma e_1)^tx}{\|x + \sigma e_1\|_2} = \|x + \sigma e_1\|_2 \] (5.66b)
and
\[2uu^tx = x + \sigma e_1, \]
proving (5.65).

Remark 5.33. In (5.63), one has the freedom to choose the sign of \(\sigma \). It is numerically advisable to choose
\[\sigma = \sigma(x) := \begin{cases} \|x\|_2 & \text{for } x_1 \geq 0, \\ -\|x\|_2 & \text{for } x_1 < 0, \end{cases} \]
(5.67)
to avoid subtractive cancellation of digits.

Definition 5.34. Given a real \(n \times m \) matrix \(A \), \(m, n \in \mathbb{N} \), the *Householder method* is the following procedure: Let \(A^{(1)} := A \), \(Q^{(1)} := \text{Id} \) (identity on \(\mathbb{R}^n \)), \(r(1) := 1 \). For \(k \geq 1 \), as long as \(r(k) < n \) and \(k \leq m \), the Householder method transforms \(A^{(k)} \) into \(A^{(k+1)} \), \(Q^{(k)} \) into \(Q^{(k+1)} \), and \(r(k) \) into \(r(k+1) \) by performing precisely one of the following actions:

(a) If \(a_{rk}^{(k)} = 0 \) for each \(i \in \{r(k), \ldots, n\} \), then
\[A^{(k+1)} := A^{(k)}, \quad Q^{(k+1)} := Q^{(k)}, \quad r(k+1) := r(k). \]

(b) If \(a_{rk}^{(k)} \neq 0 \), but \(a_{ik}^{(k)} = 0 \) for each \(i \in \{r(k) + 1, \ldots, n\} \),
\[A^{(k+1)} := A^{(k)}, \quad Q^{(k+1)} := Q^{(k)}, \quad r(k+1) := r(k) + 1. \]

(c) Otherwise, i.e. if \(x^{(k)} \notin \text{span}\{e_1\} \), where
\[x^{(k)} := \begin{pmatrix} a_{rk}^{(k)} \\ \vdots \\ a_{nk}^{(k)} \end{pmatrix}^t \in \mathbb{R}^{n-r(k)+1} \]
(5.68)
and \(e_1 \) is the standard unit vector in \(\mathbb{R}^{n-r(k)+1} \), then
\[A^{(k+1)} := H^{(k)}A^{(k)}, \quad Q^{(k+1)} := Q^{(k)}H^{(k)}, \quad r(k+1) := r(k) + 1, \]
where
\[H^{(k)} := \begin{pmatrix} \text{Id} & 0 \\ 0 & \text{Id} - 2u^{(k)}(u^{(k)})^t \end{pmatrix}, \quad u^{(k)} := \frac{x^{(k)} + \sigma e_1}{\|x^{(k)} + \sigma e_1\|_2}, \]
(5.69)
with \(\sigma = \sigma(x^{(k)}) \) chosen as in Rem. 5.33, with the upper \(\text{Id} \) being the identity on \(\mathbb{R}^{r(k)-1} \), and with the lower \(\text{Id} \) being the identity on \(\mathbb{R}^{n-r(k)+1} \).

Theorem 5.35. Given a real \(n \times m \) matrix \(A \), \(m, n \in \mathbb{N} \), the Householder method as defined in Def. 5.34 yields a \(QR \) decomposition of \(A \). More precisely, if \(r(k) = n \) or \(k = m + 1 \), then \(Q := Q^{(k)} \) is an orthogonal \(n \times n \) matrix and \(\tilde{A} := A^{(k)} \) is an \(n \times m \) matrix in echelon form satisfying \(A = Q\tilde{A} \).
Proof. First note that the Householder method terminates after at most \(m \) steps. If \(1 \leq N \leq m + 1 \) is the maximal \(k \) occurring during the Householder method, and one lets \(H^{(k)} := Id \) for each \(k \) such that Def. 5.34(a) or Def. 5.34(b) was used, then

\[
Q = H^{(1)} \cdots H^{(N-1)}, \quad \tilde{A} = H^{(N-1)} \cdots H^{(1)} A.
\] (5.70)

Since, according to Lem. 5.30(b), \((H^{(k)})^2 = Id \) for each \(k \), \(Q\tilde{A} = A \) is an immediate consequence of (5.70). Moreover, it follows from Lem. 5.30(c) that the \(H^{(k)} \) are all orthogonal, implying that \(Q \) is orthogonal. To prove that \(\tilde{A} \) is in echelon form, we show by induction over \(k \) that the first \(k - 1 \) columns of \(A^{(k)} \) are in echelon form as well as the first \(r(k) \) rows of \(A^{(k)} \) with \(a_{ij}^{(k)} = 0 \) for each \((i,j) \in \{r(k), \ldots, n\} \times \{1, \ldots, k - 1\} \). For \(k = 1 \), the assertion is trivially true. By induction, we assume the assertion for \(k \) and prove it for \(k + 1 \) (for \(k = 1 \), we don’t assume anything). Observe that multiplication of \(A^{(k)} \) with \(H^{(k)} \) as defined in (5.69) does not change the first \(r(k) - 1 \) rows of \(A^{(k)} \). It does not change the first \(k - 1 \) columns of \(A^{(k)} \), either, since \(a_{ij}^{(k)} = 0 \) for each \((i,j) \in \{r(k), \ldots, n\} \times \{1, \ldots, k - 1\} \). Moreover, if we are in the case of Def. 5.34(c), then the choice of \(u^{(k)} \) in (5.69) and (5.65) of Lem. 5.32 guarantee

\[
\begin{pmatrix}
 a_{r(k),k}^{(k+1)} \\
 a_{r(k)+1,k}^{(k+1)} \\
 \vdots \\
 a_{n,k}^{(k+1)}
\end{pmatrix}
\in \text{span}\left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}. \tag{5.71}
\]

In each case, after the application of (a), (b), or (c) of Def. 5.34, \(a_{ij}^{(k+1)} = 0 \) for each \((i,j) \in \{r(k+1), \ldots, n\} \times \{1, \ldots, k\} \). We have to show that the first \(r(k+1) \) rows of \(A^{(k+1)} \) are in echelon form. For Def. 5.34(a), it is \(r(k+1) = r(k) \) and there is nothing to prove. For Def. 5.34(b),(c), we know \(a_{r(k+1),j}^{(k+1)} = 0 \) for each \(j \in \{1, \ldots, k\} \), while \(a_{r(k),k}^{(k+1)} \neq 0 \), showing that the first \(r(k+1) \) rows of \(A^{(k+1)} \) are in echelon form in each case. So we know that the first \(r(k+1) \) rows of \(A^{(k+1)} \) are in echelon form, and all elements in the first \(k \) columns of \(A^{(k+1)} \) below row \(r(k+1) \) are zero, showing that the first \(k \) columns of \(A^{(k+1)} \) are also in echelon form. As, at the end of the Householder method, \(r(k) = n \) or \(k = m + 1 \), we have shown that \(\tilde{A} \) is in echelon form. \(\blacksquare \)

Example 5.36. We apply the Householder method of Def. 5.34 to the matrix \(A \) of the previous Examples 5.17 and 5.28, i.e. to

\[
A := \begin{pmatrix} 1 & 4 & 2 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & 6 & 3 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix}. \tag{5.72a}
\]

We start with

\[
A^{(1)} := A, \quad Q^{(1)} := Id, \quad r(1) := 1. \tag{5.72b}
\]
Since $x^{(1)} := (1, 1, 2, 0)^t \notin \text{span}\{(1, 0, 0, 0)^t\}$, we compute

$$u^{(1)} := \frac{x^{(1)} + \sigma(x^{(1)}) e_1}{\|x^{(1)} + \sigma(x^{(1)}) e_1\|_2} = \frac{1}{\|x^{(1)} + \sqrt{6} e_1\|_2} \begin{pmatrix} 1 + \sqrt{6} \\ 1 \\ 2 \\ 0 \end{pmatrix},$$

(5.72c)

$$H^{(1)} := \text{Id} - 2u^{(1)}(u^{(1)})^t = \text{Id} - \frac{1}{6 + \sqrt{6}} \begin{pmatrix} 7 + 2\sqrt{6} & 1 + \sqrt{6} & 2 + 2\sqrt{6} & 0 \\ 1 + \sqrt{6} & 1 & 2 & 0 \\ 2 + 2\sqrt{6} & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \approx \begin{pmatrix} -0.4082 & -0.4082 & -0.8165 & 0 \\ -0.4082 & 0.8816 & -0.2367 & 0 \\ -0.8165 & -0.2367 & 0.5266 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

(5.72d)

$$A^{(2)} := H^{(1)} A^{(1)} \approx \begin{pmatrix} -2.4495 & -7.3485 & -3.6742 & -2.0412 \\ 0 & -1.2899 & -0.6449 & -1.4614 \\ 0 & -0.5798 & -0.2899 & -1.9229 \\ 0 & 0 & 1 & 4 \end{pmatrix},$$

(5.72e)

$$Q^{(2)} := Q^{(1)} H^{(1)} = H^{(1)}, \quad r^{(2)} := r^{(1)} + 1 = 2.$$

(5.72f)

Since $x^{(2)} := (-1.2899, -0.5798, 0)^t \notin \text{span}\{(1, 0, 0)^t\}$, we compute

$$u^{(2)} := \frac{x^{(2)} + \sigma(x^{(2)}) e_1}{\|x^{(2)} + \sigma(x^{(2)}) e_1\|_2} = \frac{x^{(2)} - \|x^{(2)}\|_2 e_1}{\|x^{(2)} - \|x^{(2)}\|_2 e_1\|_2} \approx \begin{pmatrix} -0.9778 \\ -0.2096 \\ 0 \end{pmatrix},$$

(5.72g)

$$H^{(2)} := \begin{pmatrix} 1 & 0 \\ 0 & \text{Id} - 2u^{(2)}(u^{(2)})^t \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.9121 & -0.4100 & 0 \\ 0 & -0.4100 & 0.9121 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

(5.72h)

$$A^{(3)} = H^{(2)} A^{(2)} \approx \begin{pmatrix} -2.4495 & -7.3485 & -3.6742 & -2.0412 \\ 0 & 1.4142 & 0.7071 & 2.1213 \\ 0 & 0 & 0 & -1.1547 \\ 0 & 0 & 1 & 4 \end{pmatrix},$$

(5.72i)

$$Q^{(3)} = Q^{(2)} H^{(2)} \approx \begin{pmatrix} -0.4082 & 0.7071 & -0.5774 & 0 \\ -0.4082 & -0.7071 & -0.5774 & 0 \\ -0.8165 & -0.0000 & 0.5774 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad r^{(3)} = r^{(2)} + 1 = 3.$$

(5.72j)
Since \(x^{(3)} := (0, 1)^t \notin \text{span}\{(1, 0)^t\}, \) we compute

\[
u^{(3)} := \frac{x^{(3)} + \sigma(x^{(3)}) e_1}{\|x^{(3)} + \sigma(x^{(3)}) e_1\|_2} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \quad (5.72k)
\]

\[
H^{(3)} := \begin{pmatrix} \text{Id} & 0 \\ 0 & \text{Id} - 2u^{(3)}(u^{(3)})^t \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad (5.72l)
\]

\[
R = \tilde{A} = A^{(4)} = H^{(3)}A^{(3)} \approx \begin{pmatrix} -2.4495 & -7.3485 & -3.6742 & -2.0412 \\ 0 & 1.4142 & 0.7071 & 2.1213 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 0 & 1.1547 \end{pmatrix}, \quad (5.72m)
\]

\[
Q = Q^{(4)} = Q^{(3)}H^{(3)} \approx \begin{pmatrix} -0.4082 & 0.7071 & 0 & 0.5774 \\ -0.4082 & -0.7071 & 0 & 0.5774 \\ -0.8165 & 0 & 0 & -0.5774 \\ 0 & 0 & -1 & 0 \end{pmatrix}. \quad (5.72n)
\]

One verifies \(A = QR. \)

6 Short Introduction to Iterative Methods, Solution of Nonlinear Equations

6.1 Motivation: Fixed Points and Zeros

Definition 6.1. (a) Given a function \(\varphi : A \to B, \) where \(A, B \) can be arbitrary sets, \(x \in A \) is called a fixed point of \(\varphi \) if, and only if, \(\varphi(x) = x. \)

(b) If \(f : A \to Y, \) where \(A \) can be an arbitrary set, and \(Y \) is (a subset of) a vector space, then \(x \in A \) is called a zero (or sometimes a root) of \(f \) if, and only if, \(f(x) = 0. \)

In the present section, we will study methods for finding roots and zeros of functions in special situations. While, if formulated in the generality of Def. 6.1, the setting of fixed point and zero problems is different, in many situations, a fixed point problem can be transformed into an equivalent zero problem and vice versa (see Rem. 6.2 below). In consequence, methods that are formulated for fixed points, such as the Banach fixed point theorem of Sec. 6.2, can often also be used to find zeros, while methods formulated for zeros, such as Newton’s method of Sec. 6.3, can often also be used to find fixed points.

Remark 6.2. (a) If \(\varphi : A \to B, \) where \(A, B \) are subsets of a common vector space \(X, \) then \(x \in A \) is a fixed point of \(\varphi \) if, and only if, \(\varphi(x) - x = 0, \) i.e. if, and only if, \(x \) is a zero of the function \(f : A \to X, f(x) := \varphi(x) - x \) (we can no longer admit arbitrary sets \(A, B, \) as adding and subtracting must make sense; but note that it might happen that \(\varphi(x) - x \notin A \cup B). \)
(b) If \(f : A \rightarrow Y \), where \(A \) and \(Y \) are both subsets of some common vector space \(Z \), then \(x \in A \) is a zero of \(f \) if, and only if, \(f(x) + x = x \), i.e. if, and only if, \(x \) is a fixed point of the function \(\varphi : A \rightarrow Z \), \(\varphi(x) := f(x) + x \).

Given a function \(g \), an iterative method defines a sequence \(x_0, x_1, \ldots \), where, for \(n \in \mathbb{N}_0 \), \(x_{n+1} \) is computed from \(x_n \) (or possibly \(x_0, \ldots, x_n \)) by using \(g \). For example “using \(g \)” can mean applying \(g \) to \(x_n \) (as in the case of the Banach fixed point method of Th. 6.5 below) or it can mean applying \(g \) and \(g' \) (as in the case of Newton’s method according to (6.9) below). We will just investigate two particular iterative methods below, namely the mentioned Banach fixed point method that is designed to provide sequences that converge to a fixed point of \(g \), and Newton’s method that is designed to provide sequences that converge to a zero of \(g \).

6.2 Banach Fixed Point Theorem A.K.A. Contraction Mapping Principle

The generic setting for this section are metric spaces.

Definition 6.3. Let \(\emptyset \neq A \) be a subset of a metric space \((X,d) \). A map \(\varphi : A \rightarrow A \) is called a contraction if, and only if, there exists \(0 \leq L < 1 \) satisfying

\[
d(\varphi(x), \varphi(y)) \leq L d(x, y) \quad \text{for each } x, y \in A. \quad (6.1)
\]

Remark 6.4. According to Def. 6.3, \(\varphi : A \rightarrow A \) is a contraction if, and only if, \(\varphi \) is Lipschitz continuous with Lipschitz constant \(L < 1 \).

The following Th. 6.5 constitutes the Banach fixed point theorem. It is also known as the contraction mapping principle.

Theorem 6.5 (Banach Fixed Point Theorem). Let \(\emptyset \neq A \) be a closed subset of a complete metric space \((X,d) \) (for example, a Banach space). If \(\varphi : A \rightarrow A \) is a contraction with Lipschitz constant \(0 \leq L < 1 \), then \(\varphi \) has a unique fixed point \(x_* \in A \). Moreover, for each initial value \(x_0 \in A \), the sequence \((x_n)_{n \in \mathbb{N}_0} \), defined by

\[
x_{n+1} := \varphi(x_n) \quad \text{for each } n \in \mathbb{N}_0, \quad (6.2)
\]

converges to \(x_* \):

\[
\lim_{n \to \infty} \varphi^n(x_0) = x_*. \quad (6.3)
\]

Furthermore, for each such sequence, we have the error estimate

\[
d(x_n, x_*) \leq \frac{L^n}{1 - L} d(x_1, x_0) \quad (6.4)
\]

for each \(n \in \mathbb{N} \).
Proof. We start with uniqueness: Let \(x_*, x_{**} \in A \) be fixed points of \(\varphi \). Then
\[
d(x_*, x_{**}) = d(\varphi(x_*), \varphi(x_{**})) \leq L d(x_*, x_{**}),
\]
which implies \(1 \leq L \) for \(d(x_*, x_{**}) > 0 \). Thus, \(L < 1 \) implies \(d(x_*, x_{**}) = 0 \) and \(x_* = x_{**} \).

Next, we turn to existence. A simple induction on \(m - n \) shows
\[
d(x_{m+1}, x_m) \leq L d(x_m, x_{m-1}) \leq L^{m-n} d(x_{n+1}, x_n)
\]
for each \(m, n \in \mathbb{N}_0, m > n \). This, in turn, allows us to estimate, for each \(n, k \in \mathbb{N}_0 \):
\[
d(x_{n+k}, x_n) \leq \sum_{m=n}^{n+k-1} \frac{L^{n+k-1-m}}{1-L} d(x_1, x_0) \to 0 \quad \text{for} \ n \to \infty,
\]
establishing that \((x_n)_{n \in \mathbb{N}_0} \) constitutes a Cauchy sequence. Since \(X \) is complete, this Cauchy sequence must have a limit \(x_* \in X \), and since the sequence is in \(A \) and \(A \) is closed, \(x_* \in A \). The continuity of \(\varphi \) allows to take limits in (6.2), resulting in \(x_* = \varphi(x_*) \), showing that \(x_* \) is a fixed point and proving existence.

Finally, the error estimate (6.4) follows from (6.7) by fixing \(n \) and taking the limit for \(k \to \infty \). \qed

Example 6.6. Suppose, we are looking for a fixed point of the map \(\varphi(x) = \cos x \) (or, equivalently, for a zero of \(f(x) = \cos x - x \)). To apply the Banach fixed point Th. 6.5, we need to restrict \(\varphi \) to a set \(A \) such that \(\varphi(A) \subseteq A \). This is the case for \(A := [0, 1] \).

Moreover, \(\varphi : A \to A \) is a contraction, due to \(\sin 1 < 1 \) and the mean value theorem providing \(\tau \in]0, 1[\), satisfying
\[
|\varphi(x) - \varphi(y)| = |\varphi'(\tau)| |x - y| < (\sin 1)|x - y| \quad (6.8)
\]
for each \(x, y \in A \). Since \(\mathbb{R} \) is complete and \(A \) is closed in \(\mathbb{R} \), Th. 6.5 yields the existence of a unique fixed point \(x_* \in [0, 1] \) and \(\lim_{n \to \infty} \varphi^n(x_0) = x_* \) for each \(x_0 \in [0, 1] \).

6.3 Newton’s Method

As mentioned above, Newton’s method is an iterative method designed to provide sequences \((x_n)_{n \in \mathbb{N}_0} \) that converge to a zero of a given function \(f \). We will see that, if Newton’s method converges, than the convergence is faster than for the Banach fixed point method of the previous section. However, one also needs to assume more regularity of \(f \).

If \(A \subseteq \mathbb{R} \) and \(f : A \to \mathbb{R} \) is differentiable, then Newton’s method is defined by the recursion
\[
x_0 \in A, \quad x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{for each} \ n \in \mathbb{N}_0.
\]
(6.9a)
Analogously, Newton’s method can also be defined for differentiable \(f: A \to \mathbb{R}^m \), \(A \subseteq \mathbb{R}^m \):

\[
x_0 \in A, \quad x_{n+1} := x_n - (Df(x_n))^{-1}f(x_n) \quad \text{for each } n \in \mathbb{N}_0.
\]

(6.9b)

And, actually, the same can be done if \(\mathbb{R}^m \) is replaced by some general normed vector space, but then the notion of differentiability needs to be generalized to such spaces, which is beyond the scope of the present lecture.

In practice, in each step of Newton’s method (6.9b), one will determine \(x_{n+1} \) as the solution to the linear system

\[
Df(x_n)x_{n+1} = Df(x_n)x_n - f(x_n).
\]

(6.10)

There are clearly several issues with Newton’s method as formulated in (6.9):

(a) Is the derivative of \(f \) in \(x_n \) invertible?

(b) Is \(x_{n+1} \) an element of \(A \) such that the iteration can be continued?

(c) Does the sequence \((x_n)_{n \in \mathbb{N}_0} \) converge?

To ensure that we can answer “yes” to all of the above questions, we need suitable hypotheses. An example of a set of sufficient conditions is provided by the following theorem:

Theorem 6.7. Let \(m \in \mathbb{N} \) and fix a norm \(\| \cdot \| \) on \(\mathbb{R}^m \). Let \(A \subseteq \mathbb{R}^m \) be open. Moreover let \(f: A \to A \) be differentiable, let \(x_* \in A \) be a zero of \(f \), and let \(r > 0 \) be (sufficiently small) such that

\[
B_r(x_*) = \{ x \in \mathbb{R}^m : \| x - x_* \| < r \} \subseteq A.
\]

(6.11)

Assume that \(Df(x_*) \) is invertible and that \(\beta > 0 \) is such that

\[
\left\| (Df(x_*))^{-1} \right\| \leq \beta
\]

(6.12)

(here and in the following, we consider the induced operator norm on real \(n \times n \) matrices). Finally, assume that the map \(Df: B_r(x_*) \to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m) \) is Lipschitz continuous with Lipschitz constant \(L \in \mathbb{R}^+ \), i.e.

\[
\| (Df)(x) - (Df)(y) \| \leq L \| x - y \| \quad \text{for each } x, y \in B_r(x_*).
\]

(6.13)

Then, letting

\[
\delta := \min \left\{ r, \frac{1}{2\beta L} \right\},
\]

(6.14)

Newton’s method (6.9b) is well-defined for each \(x_0 \in B_\delta(x_*) \) (i.e., for each \(n \in \mathbb{N}_0 \), \(Df(x_n) \) is invertible and \(x_{n+1} \in B_\delta(x_*) \)), and

\[
\lim_{n \to \infty} x_n = x_*
\]

(6.15)
with the error estimates
\[
\|x_{n+1} - x_*\| \leq \beta L \|x_n - x_*\|^2 \leq \frac{1}{2} \|x_n - x_*\|, \quad (6.16)
\]
\[
\|x_n - x_*\| \leq \left(\frac{1}{2}\right)^{2^{n-1}} \|x_0 - x_*\|, \quad (6.17)
\]
for each \(n \in \mathbb{N}_0\). Moreover, within \(B_\delta(x_*)\), the zero \(x_*\) is unique.

Proof. The proof is conducted via several steps.

Claim 1. For each \(x \in B_\delta(x_*)\), the matrix \(Df(x)\) is invertible with
\[
\left\| (Df(x))^{-1} \right\| \leq 2\beta. \quad (6.18)
\]

Proof. Fix \(x \in B_\delta(x_*)\). We will apply Lem. 2.64 with
\[
A := Df(x_*), \quad \Delta A := Df(x) - Df(x_*), \quad Df(x) = A + \Delta A. \quad (6.19)
\]
To apply Lem. 2.64, we must estimate \(\Delta A\). We obtain
\[
\left\| \Delta A \right\| \leq L \|x - x_*\| < L \delta \leq \frac{1}{2\beta} \quad (6.12) \leq \frac{1}{2} \left\| A^{-1} \right\|^{-1}, \quad (6.20)
\]
such that we can, indeed, apply Lem. 2.64. In consequence, \(Df(x)\) is invertible with
\[
\left\| (Df(x))^{-1} \right\| \leq \frac{1}{1 - \left\| A^{-1} \right\| \left\| \Delta A \right\|} \leq \frac{1}{1} \leq 2\|A^{-1}\| \leq 2\beta, \quad (6.21)
\]
thereby establishing the case. \(\blacksquare\)

Claim 2. For each \(x, y \in B_r(x_*)\), the following holds:
\[
\|f(x) - f(y) - Df(y)(x - y)\| \leq \frac{L}{2} \|x - y\|^2. \quad (6.22)
\]

Proof. We apply the chain rule to the auxiliary function
\[
\phi : [0, 1] \rightarrow \mathbb{R}^m, \quad \phi(t) := f(y + t(x - y)) \quad (6.23)
\]
to obtain
\[
\phi'(t) := (Df(y + t(x - y)))(x - y) \quad \text{for each } t \in [0, 1]. \quad (6.24)
\]
This allows us to write
\[
f(x) - f(y) - Df(y)(x - y) = \phi(1) - \phi(0) - \phi'(0) = \int_0^1 \phi'(t) - \phi'(0) \, dt. \quad (6.25)
\]
Next, we estimate the norm of the integrand:
\[
\left\| \phi'(t) - \phi'(0) \right\| \leq \left\| Df(y + t(x - y)) - Df(y) \right\| \|x - y\| \leq L t \|x - y\|^2. \quad (6.26)
\]
Thus,
\[\left\| \int_0^1 (\phi'(t) - \phi'(0)) \, dt \right\| \leq \int_0^1 \left\| \phi'(t) - \phi'(0) \right\| \, dt \leq \int_0^1 L t \| x - y \|^2 \, dt = \frac{L}{2} \| x - y \|^2. \] \hfill (6.27)

Combining (6.27) with (6.25) proves (6.22).

We will now show that
\[x_n \in B_\delta(x_*) \] \hfill (6.28)
and the error estimate (6.16) holds for each \(n \in \mathbb{N}_0 \). We proceed by induction. For \(n = 0 \), (6.28) holds by hypothesis. Next, we assume that \(n \in \mathbb{N}_0 \) and (6.28) holds. Using \(f(x_*) = 0 \) and (6.9b), we write
\[
x_{n+1} - x_* = x_n - x_* - (Df(x_n))^{-1} (f(x_n) - f(x_*))
= -(Df(x_n))^{-1} (f(x_n) - f(x_*) - Df(x_n)(x_n - x_*)). \] \hfill (6.29)

Applying the norm to (6.29) and using (6.18) and (6.22) implies
\[
\| x_{n+1} - x_* \| \leq 2 \beta \frac{L}{2} \| x_n - x_* \|^2 = \beta L \| x_n - x_* \|^2 \leq \beta L \delta \| x_n - x_* \| \leq \frac{1}{2} \| x_n - x_* \|, \] \hfill (6.30)
which proves \(x_{n+1} \in B_\delta(x_*) \) as well as (6.16).

Another induction shows that (6.16) implies, for each \(n \in \mathbb{N} \),
\[
\| x_n - x_* \| \leq (\beta L)^{1+2+\cdots+2^{n-1}} \| x_0 - x_* \|^{2^n} \leq (\beta L \delta)^{2^{n-1}} \| x_0 - x_* \|, \] \hfill (6.31)
where the geometric sum formula \(1 + 2 + \cdots + 2^{n-1} = \frac{2^n - 1}{2 - 1} = 2^n - 1 \) was used for the last inequality. Moreover, \(\beta L \delta \leq \frac{1}{2} \) together with (6.31) proves (6.17), and, in particular, (6.15).

Finally, we show that \(x_* \) is the unique zero in \(B_\delta(x_*) \): Suppose \(\ast, x_\ast \in B_\delta(x_*) \) with \(f(x_*) = f(x_\ast) = 0 \). Then
\[
\| x_\ast - x_* \| = \left\| (Df(x_*))^{-1} (f(x_\ast) - f(x_*) - Df(x_*)(x_\ast - x_*)) \right\|. \] \hfill (6.32)
Applying (6.18) and (6.22) yields
\[
\| x_\ast - x_* \| \leq 2 \beta \frac{L}{2} \| x_\ast - x_\ast \|^2 \leq \beta L \delta \| x_\ast - x_* \| \leq \frac{1}{2} \| x_\ast - x_* \|, \] \hfill (6.33)
implying \(\| x_\ast - x_\ast \| = 0 \) and completing the proof of the theorem.

The main drawback of Th. 6.7 is the assumption of the existence and location of the zero \(x_* \), which can be very difficult to verify in cases where one would like to apply Newton’s method. In the following variant Th. 6.8, the hypotheses are such the existence of a zero can be proved as well as the convergence of Newton’s method to that zero.
Theorem 6.8. Let \(m \in \mathbb{N} \) and fix a norm \(\| \cdot \| \) on \(\mathbb{R}^m \). Let \(A \subseteq \mathbb{R}^m \) be open and convex. Moreover let \(f : A \rightarrow A \) be differentiable, and assume \(Df \) to satisfy the Lipschitz condition (6.13) with \(L \in \mathbb{R}^+ \) and for \(x, y \in A \). Assume \(Df(x) \) to be invertible for each \(x \in A \), satisfying

\[\forall x \in A \quad \left\| \left(Df(x) \right)^{-1} \right\| \leq \beta \in \mathbb{R}_0^+ , \]

where, once again, we consider the induced operator norm on the real \(n \times n \) matrices. If \(x_0 \in A \) and \(r \in \mathbb{R}^+ \) are such that \(x_1 \in \mathcal{B}_r(x_0) \subseteq A \) \((x_1 \text{ according to } (6.9b)) \) and

\[\alpha := \left\| \left(Df(x_0) \right)^{-1}(f(x_0)) \right\| \]

satisfies

\[h := \frac{\alpha \beta L}{2} < 1 \]

and

\[r \geq \frac{\alpha}{1 - h}, \]

then Newton’s method \((6.9b)\) is well-defined for \(x_0 \) \((i.e., \text{ for each } n \in \mathbb{N}_0, \ Df(x_n) \text{ is invertible and } x_{n+1} \in A) \) and converges to a zero of \(f \): More precisely, one has

\[\forall n \in \mathbb{N}_0 \quad x_n \in \mathcal{B}_r(x_0), \]
\[\lim_{n \to \infty} x_n = x_* \in A, \]
\[f(x_*) = 0. \]

One also has the error estimate

\[\forall n \in \mathbb{N} \quad \| x_n - x_* \| \leq \alpha \frac{h^{2^{n-1}}}{1 - h^{2^n}}. \]

Proof. Analogous to (6.22) in the proof of Th. 6.7, we obtain

\[\forall x, y \in A \quad \left\| f(x) - f(y) - Df(y)(x - y) \right\| \leq \frac{L}{2} \| x - y \|^2 \]

from the Lipschitz condition (6.13) and the assumed convexity of \(A \). We now show via induction on \(n \in \mathbb{N}_0 \) that

\[\forall n \in \mathbb{N}_0 \quad \left(x_{n+1} \in \mathcal{B}_r(x_0) \land \| x_{n+1} - x_n \| \leq \alpha h^{2^{n-1}} \right). \]

For \(n = 0 \), \(x_1 \in \mathcal{B}_r(x_0) \) by hypothesis and \(\| x_1 - x_0 \| \leq \alpha \) by (6.9b) and (6.35). Now let \(n \geq 1 \). From (6.9b), we obtain

\[\forall n \in \mathbb{N} \quad Df(x_{n-1})(x_n) = Df(x_{n-1})(x_{n-1}) - f(x_{n-1}) \]
and, as we may apply f to x_n by the induction hypothesis,

$$f(x_n) = f(x_n) - f(x_{n-1}) - Df(x_{n-1})(x_n - x_{n-1}).$$

Together with (6.41), this yields

$$\|f(x_n)\| \leq \frac{L}{2} \|x_n - x_{n-1}\|^2.$$ \hfill (6.43)

Thus,

$$\|x_{n+1} - x_n\| \leq \frac{\beta L}{2} \|x_n - x_{n-1}\|^2 \tag{6.43}$$

completing the induction step for the second part of (6.42). Next, we use the second part of (6.42) to estimate

$$\|x_{n+1} - x_0\| \leq \sum_{k=0}^{n} \|x_{k+1} - x_k\| \leq \alpha \sum_{k=0}^{n} h^{2^k-1} \tag{6.46}$$

showing $x_{n+1} \in B_r(x_0)$ and completing the induction.

We use

$$h^{2^{n+k}} = h^{2^n-1} h^{2^{n+k-2^n}} = h^{2^n-1} (h^{2^n})^{2^k} \leq h^{2^n-1} (h^{2^n})^{2^k}$$

to estimate, for each $m, n \in \mathbb{N}$,

$$\|x_{n+m} - x_n\| \leq \sum_{k=0}^{m-1} \|x_{n+k+1} - x_{n+k}\| \leq \alpha \sum_{k=0}^{m-1} h^{2^{n+k}-1} \leq \alpha h^{2^n-1} \sum_{k=0}^{\infty} (h^{2^n})^k = \frac{\alpha h^{2^n-1}}{1 - h^{2^n}} \to 0 \text{ for } n \to \infty, \tag{6.47}$$

showing $(x_n)_{n \in \mathbb{N}}$ to be a Cauchy sequence and implying the existence of

$$x_* = \lim_{n \to \infty} x_n \in \overline{B}_r(x_0).$$

For fixed $n \in \mathbb{N}$ and $m \to \infty$, (6.47) proves (6.40). Finally,

$$\|f(x_*)\| = \lim_{n \to \infty} \|f(x_n)\| \leq \frac{L}{2} \lim_{n \to \infty} \|x_n - x_{n-1}\|^2 \leq \frac{L\alpha^2}{2} \lim_{n \to \infty} (h^{2^n-1})^2 = 0$$

shows $f(x_*) = 0$, completing the proof. \hfill \blacksquare
A \(b\)-Adic Expansions of Real Numbers

We are mostly used to representing real numbers in the decimal system. For example, we write

\[x = 395_3 = 1 \cdot 10^2 + 3 \cdot 10^1 + 1 \cdot 10^0 + \sum_{n=1}^{\infty} 6 \cdot 10^{-n}. \] (A.1a)

The decimal system represents real numbers as, in general, infinite series of decimal fractions. Digital computers represent numbers in the dual system, using base 2 instead of 10. For example, the number from (A.1a) has the dual representation

\[x = 10000011.\overline{10} = 2^7 + 2^1 + 2^0 + \sum_{n=0}^{\infty} 2^{-(2n+1)}. \] (A.1b)

Representations with base 16 (hexadecimal) and 8 (octal) are also of importance when working with digital computers. More generally, each natural number \(b \geq 2\) can be used as a base.

Definition A.1. Given a natural number \(b \geq 2\), an integer \(N \in \mathbb{Z}\), and a sequence \((d_N,d_{N-1},d_{N-2},\ldots)\) of nonnegative integers such that \(d_n \in \{0,\ldots,b-1\}\) for each \(n \in \{N,N-1,N-2,\ldots\}\), the expression

\[\sum_{\nu=0}^{\infty} d_{N-\nu} b^{N-\nu} \] (A.2)

is called a \(b\)-adic series. The number \(b\) is called the base or the radix, and the numbers \(d_{\nu}\) are called digits.

Lemma A.2. Given a natural number \(b \geq 2\), consider the \(b\)-adic series given by (A.2). Then

\[\sum_{\nu=0}^{\infty} d_{N-\nu} b^{N-\nu} \leq b^{N+1}, \] (A.3)

and, in particular, the \(b\)-adic series converges to some \(x \in \mathbb{R}_0^+\). Moreover, equality in (A.3) holds if, and only if, \(d_n = b-1\) for every \(n \in \{N,N-1,N-2,\ldots\}\).

Proof. Exercise. \(\blacksquare\)

Definition A.3. If \(b \geq 2\) is a natural number and \(x \in \mathbb{R}_0^+\) is the value of the \(b\)-adic series given by (A.2), than one calls the \(b\)-adic series a \(b\)-adic expansion of \(x\).

In the following Th. A.6, we will show that each nonnegative real number is represented by a \(b\)-adic series. First, another preparatory lemma.
Lemma A.4. Given a natural number $b \geq 2$, consider two b-adic series

$$x := \sum_{\nu=0}^{\infty} d_{N-\nu} b^{N-\nu} = \sum_{\nu=0}^{\infty} e_{N-\nu} b^{N-\nu}, \tag{A.4}$$

$N \in \mathbb{Z}$ and $d_n, e_n \in \{0, \ldots, b-1\}$ for each $n \in \{N, N-1, N-2, \ldots\}$. If $d_N < e_N$, then $e_N = d_N + 1$, $d_n = b-1$ for each $n < N$ and $e_n = 0$ for each $n < N$.

Proof. By subtracting $d_N b^N$ from both series, one can assume $d_N = 0$ without loss of generality. From Lem. A.2, we know

$$x = \sum_{\nu=0}^{\infty} d_{N-\nu} b^{N-\nu} = \sum_{\nu=0}^{\infty} d_{N-1-\nu} b^{N-1-\nu} \leq b^N. \tag{A.5a}$$

On the other hand:

$$x = \sum_{\nu=0}^{\infty} e_{N-\nu} b^{N-\nu} \geq b^N. \tag{A.5b}$$

Combining (A.5a) and (A.5b) yields $x = b^N$. Once again employing Lem. A.2, (A.5a) also shows that $d_n = b-1$ for each $n \leq N-1$ as claimed. Since $e_N > 0$ and $e_n \geq 0$ for each n, equality in (A.5b) can only occur for $e_N = 1$ and $e_n = 0$ for each $n < N$, thereby completing the proof of the lemma. ■

Notation A.5. For each $x \in \mathbb{R}$, we let

$$[x] := \max\{k \in \mathbb{Z} : k \leq x\} \tag{A.6}$$

denote the integral part of x (also called floor of x or x rounded down).

Theorem A.6. Given a natural number $b \geq 2$ and a nonnegative real number $x \in \mathbb{R}_0^+$, there exists a b-adic series representing x, i.e. there is $N \in \mathbb{Z}$ and a sequence $(d_N, d_{N-1}, d_{N-2}, \ldots)$ of nonnegative integers satisfying $d_n \in \{0, \ldots, b-1\}$ for each $n \in \{N, N-1, N-2, \ldots\}$ and

$$x = \sum_{\nu=0}^{\infty} d_{N-\nu} b^{N-\nu}. \tag{A.7}$$

If one introduces the additional requirement that $0 \neq d_N$, then each $x > 0$ has either a unique b-adic expansion or precisely two b-adic expansions. More precisely, for $0 \neq d_N$ and $x > 0$, the following statements are equivalent:

(i) The b-adic expansion of x is not unique.

(ii) There are precisely two b-adic expansions of x.

(iii) There exists a b-adic expansion of x such that $d_n = 0$ for each $n \leq n_0$ for some $n_0 \leq N$.
(iv) There exists a \(b \)-adic expansion of \(x \) such that \(d_n = b - 1 \) for each \(n \leq n_0 \) for some \(n_0 \leq N \).

Proof. We start by constructing numbers \(N \) and \(d_n, n \in \{N, N - 1, N - 2, \ldots \} \), such that (A.7) holds. For \(x = 0 \), one chooses an arbitrary \(N \in \mathbb{Z} \) and \(d_n = 0 \) for each \(n \in \{N, N - 1, N - 2, \ldots \} \). Thus, for the remainder of the proof, fix \(x > 0 \). Let
\[
N := \max\{n \in \mathbb{Z} : b^n \leq x\}.
\]

The numbers \(d_{N-n} \in \{0, \ldots, b - 1 \} \) and \(x_n \in \mathbb{R}^+ \), \(n \in \mathbb{N}_0 \), are defined inductively by letting
\[
d_N := \left\lfloor \frac{x}{b^N} \right\rfloor, \quad x_0 := d_Nb^N,
\]
\[
d_{N-n} := \left\lfloor \frac{x - x_{n-1}}{b^{N-n}} \right\rfloor, \quad x_n := x_{n-1} + d_{N-n}b^{N-n} \quad \text{for} \ n \geq 1.
\]

Claim 1. One can verify by induction on \(n \) that the numbers \(d_{N-n} \) and \(x_n \) enjoy the following properties for each \(n \in \mathbb{N}_0 \):
\[
d_{N-n} \in \{0, \ldots, b - 1 \}, \quad 0 < x_n = \sum_{\nu=0}^{n} d_{N-n} b^{N-n} \leq x, \quad x - x_n < b^{N-n}, \quad \text{(A.10)}
\]

Proof. The induction is carried out for all three statements of (A.10) simultaneously. From (A.8), we know \(b^N \leq x < b^{N+1} \), i.e. \(1 \leq \frac{x}{b^N} < b \). Using (A.9a), this yields \(d_N \in \{1, \ldots, b - 1 \} \) and \(0 < x_0 = d_Nb^N = b^N d_N \leq b^N \frac{x}{b^N} = x \) as well as \(x - x_0 = x - d_Nb^N = b^N \left(\frac{x}{b^N} - d_N \right) < b^N \). For \(n \geq 1 \), by induction, one obtains \(0 \leq x - x_{n-1} < b^{1+N-n} \), i.e. \(0 \leq \frac{x - x_{n-1}}{b^{1+N-n}} < b \). Using (A.9b), this yields \(d_{N-n} \in \{0, \ldots, b - 1 \} \) and \(x_n = x_{n-1} + d_{N-n}b^{N-n} \leq x_{n-1} + b^{N-n} \frac{x - x_{n-1}}{b^{1+N-n}} = x \). Moreover, by induction, \(0 < x_{n-1} = \sum_{\nu=0}^{n-1} d_{N-n} b^{N-n} \), such that (A.9b) implies \(x_n = x_{n-1} + d_{N-n}b^{N-n} \geq x_{n-1} > 0 \) and \(x_n = x_{n-1} + d_{N-n}b^{N-n} = d_{N-n}b^{N-n} + \sum_{\nu=0}^{n-1} d_{N-n} b^{N-n} = \sum_{\nu=0}^{n} d_{N-n} b^{N-n} \). Finally, \(x - x_n = x - x_{n-1} - d_{N-n}b^{N-n} = b^N \left(\frac{x - x_{n-1}}{b^{N-n}} - d_{N-n} \right) \leq b^{N-n} \), completing the proof of the claim. \(\square \)

Since, for each \(n \in \mathbb{N}_0 \),
\[
0 \leq x - x_n = b^{N-n-1} \frac{x - x_n}{b^{N-n-1}} \leq b^{N-n-1} (d_{N-n-1} + 1) \leq b^{N-n}, \quad \text{(A.11)}
\]
and \(\lim_{n \to \infty} b^{N-n} = 0 \), we have \(\lim_{n \to \infty} x_n = x \), thereby establishing (A.7).

It remains to verify the equivalence of (i) – (iv).

(ii) \(\Rightarrow \) (i) is trivial.
“(iii) ⇒ (i)”: Assume (iii) holds. Without loss of generality, we can assume that n_0 is the largest index such that $d_n = 0$ for each $n ≤ n_0$. We distinguish two cases. If $n_0 < N - 1$ or $d_N ≠ 1$, then

$$\sum_{\nu=0}^{N-n_0-2} d_{N-\nu} b^{N-\nu} + (d_{n_0+1} - 1)b^{n_0+1} + \sum_{\nu=N-n_0}^{\infty} (b - 1) b^{N-\nu}$$

is a different b-adic expansion of x and its first coefficient is nonzero. If $n_0 = N - 1$ and $d_N = 1$, then

$$\sum_{\nu=1}^{\infty} (b - 1) b^{N-\nu} = \sum_{\nu=0}^{\infty} (b - 1) b^{N-1-\nu}$$

is a different b-adic expansion of x and its first coefficient is nonzero.

“(iv) ⇒ (i)”: Assume (iv) holds. Without loss of generality, we can assume that n_0 is the largest index such that $d_n = b - 1$ for each $n ≤ n_0$. Then

$$\sum_{\nu=0}^{N-n_0-2} d_{N-\nu} b^{N-\nu} + (d_{n_0+1} + 1)b^{n_0+1} + \sum_{\nu=N-n_0}^{\infty} 0 b^{N-\nu}$$

is a different b-adic expansion of x and its first coefficient is nonzero.

We will now show that, conversely, (i) implies (ii), (iii), and (iv). To that end, let $x > 0$ and suppose that x has two different b-adic expansions

$$x = \sum_{\nu=0}^{\infty} d_{N_1-\nu} b^{N_1-\nu} = \sum_{\nu=0}^{\infty} e_{N_2-\nu} b^{N_2-\nu} \quad (A.12)$$

with $N_1, N_2 ∈ \mathbb{Z}$; $d_n, e_n ∈ \{0, \ldots, b - 1\}$; and $d_{N_1}, e_{N_2} > 0$. This implies

$$x ≥ b^{N_1}, \quad x ≥ b^{N_2}. \quad (A.13a)$$

Moreover, Lem. A.2 yields

$$x ≤ b^{N_1+1}, \quad x ≤ b^{N_2+1}. \quad (A.13b)$$

If $N_2 > N_1$, then (A.13) imply $N_2 = N_1 + 1$ and $b^{N_2} ≤ x ≤ b^{N_1+1} = b^{N_2}$, i.e. $x = b^{N_2} = b^{N_1+1}$. Since $e_{N_2} > 0$, one must have $e_{N_2} = 1$, and, in turn, $e_n = 0$ for each $n < N_2$. Moreover, $x = b^{N_1+1}$ and Lem. A.2 imply that $d_n = b - 1$ for each $n ∈ \{N_1, N_1 - 1, \ldots\}$. Thus, for $N_2 > N_1$, the value of N_1 is determined by N_2 and the values of all d_n and e_n are also completely determined, showing that there are precisely two b-adic expansions of x. Moreover, the d_n have the property required in (iv) and the e_n have the property required in (iii). The argument also shows that, for $N_1 > N_2$, one must have $N_1 = N_2 + 1$ with the e_n taking the values of the d_n and vice versa. Once again, there are precisely two b-adic expansions of x; now the d_n have the property required in (iii) and the e_n have the property required in (iv).

It remains to consider the case $N := N_1 = N_2$. Since, by hypothesis, the two b-adic expansions of x in (A.12) are not identical, there must be a largest index $n ≤ N$ such
that $d_n \neq e_n$. Thus, (A.12) implies

$$y := \sum_{\nu=0}^{\infty} d_{n-\nu} b^{-\nu} = \sum_{\nu=0}^{\infty} e_{n-\nu} b^{-\nu}. \quad (A.14)$$

Now Lem. A.4 shows that there are precisely two b-adic expansions of x, one having the property required in (iii) and the other having property required in (iv).

Thus, in each case ($N_2 > N_1$, $N_1 > N_2$, and $N_1 = N_2$), we find that (i) implies (ii), (iii), and (iv), thereby concluding the proof of the theorem. ■

In most cases, it is understood that we work only with decimal representations such that there is no confusion about the meaning of symbol strings like 101.01. However, in general, 101.01 could also be meant with respect to any other base, and, the number represented by the same string of symbols does obviously depend on the base used. Thus, when working with different representations, one needs some notation to keep track of the base.

Notation A.7. Given a natural number $b \geq 2$ and finite sequences

$$(d_{N_1}, d_{N_1-1}, \ldots, d_0) \in \{0, \ldots, b-1\}^{N_1+1}, \quad (A.15a)$$

$$(e_1, e_2, \ldots, e_{N_2}) \in \{0, \ldots, b-1\}^{N_2}, \quad (A.15b)$$

$$(p_1, p_2, \ldots, p_{N_3}) \in \{0, \ldots, b-1\}^{N_3}, \quad (A.15c)$$

$N_1, N_2, N_3 \in \mathbb{N}_0$ (where $N_2 = 0$ or $N_3 = 0$ is supposed to mean that the corresponding sequence is empty), the respective string

$$(d_{N_1} d_{N_1-1} \ldots d_0, e_1 \ldots e_{N_2} p_1 \ldots p_{N_3})_b$$

for $N_2 = N_3 = 0$,

$$(d_{N_1} d_{N_1-1} \ldots d_0, e_1 \ldots e_{N_2} p_1 \ldots p_{N_3})_b$$

for $N_2 + N_3 > 0 \quad (A.16)$$

represents the number

$$\sum_{\nu=0}^{N_1} d_{\nu} b^{\nu} + \sum_{\nu=1}^{N_2} e_{\nu} b^{-\nu} + \sum_{\alpha=0}^{N_3} \sum_{\nu=1}^{N_2} p_{\nu} b^{-N_2-\alpha N_3-\nu}. \quad (A.17)$$

Example A.8. For the number from (A.1), we get

$$x = (131.6)_{10} = (10000011.1001)_{2} = (83.A)_{16} \quad (A.18)$$

(for the hexadecimal system, it is customary to use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

One frequently needs to convert representations with respect to one base into representations with respect to another base. When working with digital computers, conversions between bases 10 and 2 and vice versa are the most obvious ones that come up. Converting representations is related to the following elementary remainder theorem and the well-known long division algorithm.
Theorem A.9. For each pair of numbers \((a, b) \in \mathbb{N}^2\), there exists a unique pair of numbers \((q, r) \in \mathbb{N}_0^2\) satisfying the two conditions \(a = qb + r\) and \(0 \leq r < b\).

Proof. Existence: Define

\[
q := \max\{n \in \mathbb{N}_0 : nb \leq a\},
\]

(A.19a)

\[
r := a - qb.
\]

(A.19b)

Then \(q \in \mathbb{N}_0\) by definition and (A.19b) immediately yields \(a = qb + r\) as well as \(r \in \mathbb{Z}\). Moreover, from (A.19a), \(qb \leq a = qb + r\), i.e. \(0 \leq r\), in particular, \(r \in \mathbb{N}_0\). Since (A.19a) also implies \((q + 1)b > a = qb + r\), we also have \(b > r\) as required.

Uniqueness: Suppose \((q_1, r_1) \in \mathbb{N}_0\), satisfying the two conditions \(a = q_1b + r_1\) and \(0 \leq r_1 < b\). Then \(q_1b = a - r_1 \leq a\) and \((q_1 + 1)b = a - r_1 + b > a\), showing \(q_1 = \max\{n \in \mathbb{N}_0 : nb \leq a\} = q\). This, in turn, implies \(r_1 = a - q_1b = a - qb = r\), thereby establishing the case.

\[\blacksquare\]

B Operator Norms and Natural Matrix Norms

Theorem B.1. For a linear map \(A : X \rightarrow Y\) between two normed vector spaces \((X, \| \cdot \|)\) and \((Y, \| \cdot \|)\), the following statements are equivalent:

(a) \(A\) is bounded.

(b) \(\|A\| < \infty\).

(c) \(A\) is Lipschitz continuous.

(d) \(A\) is continuous.

(e) There is \(x_0 \in X\) such that \(A\) is continuous at \(x_0\).

Proof. Since every Lipschitz continuous map is continuous and since every continuous map is continuous at every point, “(c) \(\Rightarrow\) (d) \(\Rightarrow\) (e)” is clear.

“(e) \(\Rightarrow\) (c)”\): Let \(x_0 \in X\) be such that \(A\) is continuous at \(x_0\). Thus, for each \(\epsilon > 0\), there is \(\delta > 0\) such that \(\|x - x_0\| < \delta\) implies \(\|Ax - Ax_0\| < \epsilon\). As \(A\) is linear, for each \(x \in X\) with \(\|x\| < \delta\), one has \(\|Ax\| = \|A(x + x_0) - Ax_0\| < \epsilon\), due to \(\|x + x_0 - x_0\| = \|x\| < \delta\). Moreover, one has \(\|\delta x/2\| \leq \delta/2 < \delta\) for each \(x \in X\) with \(\|x\| \leq 1\). Letting \(L := 2\epsilon/\delta\), this means that \(\|Ax\| = \|A(\delta x/2)\|/(\delta/2) < 2\epsilon/\delta = L\) for each \(x \in X\) with \(\|x\| \leq 1\). Thus, for each \(x, y \in X\) with \(x \neq y\), one has

\[
\|Ax - Ay\| = \|A(x - y)\| = \|x - y\| \left\| A\left(\frac{x - y}{\|x - y\|}\right)\right\| < L \|x - y\|.
\]

(B.1)

Together with the fact that \(\|Ax - Ay\| \leq L \|x - y\|\) is trivially true for \(x = y\), this shows that \(A\) is Lipschitz continuous.
“(c) ⇒ (b)”: As A is Lipschitz continuous, there exists $L \in \mathbb{R}_0^+$ such that $\|Ax - Ay\| \leq L \|x - y\|$ for each $x, y \in X$. Considering the special case $y = 0$ and $\|x\| = 1$ yields $\|Ax\| \leq L \|x\| = L$, implying $\|A\| \leq L < \infty$.

“(b) ⇒ (c)”: Let $\|A\| < \infty$. We will show $\|Ax - Ay\| \leq \|A\| \|x - y\|$ for each $x, y \in X$.

For $x = y$, there is nothing to prove. Thus, let $x \neq y$. One computes

$$\frac{\|Ax - Ay\|}{\|x - y\|} = \left\| A \left(\frac{x - y}{\|x - y\|} \right) \right\| \leq \|A\|$$

as $\left\| \frac{x - y}{\|x - y\|} \right\| = 1$, thereby establishing (B.2).

“(b) ⇒ (a)”: Let $\|A\| < \infty$ and let $M \subseteq X$ be bounded. Then there is $r > 0$ such that $M \subseteq B_r(0)$. Moreover, for each $0 \neq x \in M$:

$$\frac{\|Ax\|}{\|x\|} = \left\| A \left(\frac{x}{\|x\|} \right) \right\| \leq \|A\|$$

as $\left\| \frac{x}{\|x\|} \right\| = 1$. Thus $\|Ax\| \leq \|A\| \|x\| \leq r \|A\|$, showing that $A(M) \subseteq \overline{B}_{r\|A\|}(0)$. Thus, $A(M)$ is bounded, thereby establishing the case.

“(a) ⇒ (b)”: Since A is bounded, it maps the bounded set $\overline{B}_1(0) \subseteq X$ into some bounded subset of Y. Thus, there is $r > 0$ such that $A(\overline{B}_1(0)) \subseteq B_r(0) \subseteq Y$. In particular, $\|Ax\| < r$ for each $x \in X$ satisfying $\|x\| = 1$, showing $\|A\| \leq r < \infty$. ■

One can ask the question if every norm on $L(X, Y)$ is an operator norm induced by norms on X and Y. The following Example B.9 shows that this is not necessarily the case. This is not part of the core material of this lecture; it is just meant as an aside for the interested reader. We need some preparatory notions and results:

Theorem B.2. $L(X, Y)$ with the operator norm is a Banach space (i.e. a complete normed vector space) provided that Y is a Banach space (even if X is not a Banach space).

Proof. See, e.g., [RF10, Ch. 10, Prop. 3] or [Alt06, Th. 3.3]. ■

Definition and Remark B.3. If X is a normed vector space, then the space $X^* := L(X, \mathbb{R})$ is called the dual of X (the elements of X^* are called bounded linear functionals). According to (2.45), one has, for each $f \in X^*$,

$$\|f\|_{X^*} = \sup \{ |f(x)| : x \in X, \|x\|_X = 1 \}.$$ \hspace{1cm} (B.5)

Moreover, according to Th. B.2, the fact that \mathbb{R} is a Banach space implies that X^* is always a Banach space.
Theorem B.4. Let X be a normed vector space. If 0 ≠ x ∈ X, then there exists f ∈ X* (i.e. a bounded linear functional f) such that
\[\| f \| = 1 \quad \text{and} \quad f(x) = \| x \|. \] (B.6)

Proof. For a proof of the general case stated in the theorem, see, e.g., [RF10, Prop. 10.6]. It is based on the Hahn-Banach theorem of functional analysis, which, in turn, relies on the axiom of choice. Here, however, we are only interested in the case X = \(\mathbb{R}^n \), \(n \in \mathbb{N} \), and we provide a direct proof for this special case:

For X = \(\mathbb{R}^n \), we can construct f by induction on n. For \(n = 1 \), f : X → \(\mathbb{R} \), f(y) := sgn(y) \|y\| will do the job. For \(n > 1 \), let \(\{b_1, \ldots, b_n\} \) be a basis of X such that \(x \in V := \text{span}\{b_1, \ldots, b_{n-1}\} \). By induction, there is a map \(g \in V^* \) such that \(\| g \| = 1 \) and \(g(x) = \| x \| \). The goal is to define
\[f : \mathbb{R}^n \rightarrow \mathbb{R}, \quad f(v + \lambda b_n) := g(v) + \lambda f(b_n) \] (B.7)
with a suitable choice for \(f(b_n) \). To find a suitable \(f(b_n) \), note that, for each \(v_1, v_2 \in V \):
\[g(v_1) + g(v_2) = g(v_1 + v_2) \leq \| v_1 + v_2 \| \leq \| v_1 - b_n \| + \| v_2 + b_n \|, \] (B.8)
i.e.
\[-\| v_1 - b_n \| + g(v_1) \leq \| v_2 + b_n \| - g(v_2), \] (B.9)
implying
\[\alpha := \sup \{ -\| v - b_n \| + g(v) : v \in V \} \leq \inf \{ \| v + b_n \| - g(v) : v \in V \} =: \beta. \] (B.10)
Choose an arbitrary \(\gamma \in [\alpha, \beta] \) and set \(f(b_n) := \gamma \). It remains to show
\[|f(v + \lambda b_n)| \leq \| v + \lambda b_n \| \] (B.11)
for each \(v \in V \) and each \(\lambda \in \mathbb{R} \). To that end, fix \(v \in V \). For \(\lambda = 0 \), (B.11) holds by induction. For \(\lambda > 0 \):
\[f(v + \lambda b_n) = g(v) + \lambda \gamma = \lambda (g(v/\lambda) + \gamma) \leq \lambda (g(v/\lambda) + \| v/\lambda + b_n \| - g(v/\lambda)) = \| v + \lambda b_n \|. \] (B.12)
For \(\lambda < 0 \):
\[f(v + \lambda b_n) = g(v) + \lambda \gamma = -\lambda (g(v/(-\lambda)) - \gamma) \leq -\lambda (g(v/(-\lambda)) + \| v/(-\lambda) - b_n \| - g(v/(-\lambda))) = \| v + \lambda b_n \|. \] (B.13)
So we obtain that (B.11) holds for each \(v \in V \) and each \(\lambda \in \mathbb{R} \) without the absolute value on the left-hand side. However, replacing \(v \) by \(-v\) and \(\lambda \) by \(-\lambda\) then shows that it remains true with the absolute value as well. ■

Definition B.5. Let X, Y be normed vector spaces, and let \(A : X \rightarrow Y \) be a bounded and linear. The map
\[A^* : Y^* \rightarrow X^*, \quad A^*(f) := f \circ A, \] (B.14)
is called the adjoint or dual of A.
Example B.6. Let $m, n \in \mathbb{N}$ and let $A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear map given by the $m \times n$ matrix (a_{ij}). We claim that the adjoint map $A^* : \mathbb{R}^m \to \mathbb{R}^n$ is given by the adjoint matrix (a_{ji}), showing that both notions are consistently named:

Note that we can identify \mathbb{R}^n with $(\mathbb{R}^n)^*$, where $x^* = (x_1^*, \ldots, x_n^*) \in (\mathbb{R}^n)^*$ acts on $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ via $x^*(x) = \sum_{i=1}^{n} x_i^* x_i$ and analogously for \mathbb{R}^m and $(\mathbb{R}^m)^*$. Thus, for each $y^* = (y_1^*, \ldots, y_m^*) \in (\mathbb{R}^m)^*$ and each $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$:

$$
(A^* y^*)(x) = y^*(Ax) = \sum_{i=1}^{m} y_i^* (Ax)_i = \sum_{i=1}^{m} y_i^* \sum_{j=1}^{n} a_{ij} x_j = \sum_{j=1}^{m} y_j \sum_{i=1}^{n} a_{ji} x_i
$$

identifying $(A^* y^*)_i = \sum_{j=1}^{m} a_{ji} y_j^*$ for each $i = 1, \ldots, n$, establishing that the adjoint map A^* is, indeed, given by the adjoint matrix (a_{ji}).

Theorem B.7. Let X, Y be Banach spaces, and let $A : X \to Y$ be a bounded linear operator.

(a) The adjoint operator A^* of A according to Def. B.5 is well-defined, i.e. $f \circ A \in X^*$ for each $f \in Y^*$.

(b) A^* is a bounded linear operator and $\|A^*\| = \|A\|$.

Proof. (a): As a composition of linear maps, $f \circ A$ is linear; as a composition of continuous maps, $f \circ A$ is continuous.

(b): If $\lambda, \mu \in \mathbb{R}$ and $f, g \in Y^*$, then

$$
A^*(\lambda f + \mu g) = (\lambda f + \mu g) \circ A = \lambda (f \circ A) + \mu (g \circ A) = \lambda A^* (f) + \mu A^* (g),
$$

showing that A^* is linear. Moreover, if $f \in Y^*$ and $x \in X$, then

$$
\| (A^* f) x \| = \| f(A(x)) \| \leq \| f \| \| A(x) \| \leq \| f \| \| A \| \| x \|,
$$

showing $\| A^* f \| \leq \| f \| \| A \|$ and $\| A^* \| \leq \| A \|$.

The proof of $\| A^* \| \geq \| A \|$ is based on Th. B.4: For each $x \in X$ such that $Ax \neq 0$, Th. B.4 provides $f_x \in Y^*$ with $\| f_x \| = 1$ and $f_x(Ax) = \| Ax \|$. Now let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $\| x_n \| = 1$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \| Ax_n \| = \| A \|$. Then, for each $n \in \mathbb{N}$,

$$
\| (A^* f_{x_n}) x_n \| = \| f_{x_n}(Ax_n) \| = \| Ax_n \| = \| A \|
$$

implies $\| A^* f_{x_n} \| \geq \| Ax_n \|$, showing $\| A^* \| \geq \| A \|$.

Lemma B.8. Let $(X, \| \cdot \|)$ and $(Y, \| \cdot \|)$ be normed vector spaces and, for $A \in \mathcal{L}(X,Y)$, let $\| A \|$ denote the corresponding induced operator norm. Let $\alpha \in \mathbb{R}^+$. Then the norm $\| \cdot \|'$ on $\mathcal{L}(X,Y)$ defined by $\| A \|' := \alpha \| A \|$ is the induced operator norm corresponding to $(X, \| \cdot \|)$ and $(Y, \| \cdot \|')$, where, for each $y \in Y$, $\| y \|' := \alpha \| y \|$. In particular, a norm N on $\mathcal{L}(X,Y)$ is an operator norm induced by norms on X and Y if, and only if, all positive multiples αN are operator norms induced by norms on X and Y.

Proof. We only need to show that \(\|A\|' \) is the induced operator norm corresponding to \((X,\|\cdot\|')\) and \((Y,\|\cdot\|)\). One computes
\[
\|A\|' = \alpha \|A\| = \alpha \sup \{\|Ax\| : x \in X, \|x\| = 1\} = \sup \{\alpha \|Ax\| : x \in X, \|x\| = 1\},
\]
(B.19)
thereby establishing the case. ■

Example B.9. Let \(m,n \in \mathbb{N}\) and let \(A : \mathbb{R}^n \rightarrow \mathbb{R}^m\) be the linear map given by the \(m \times n\) matrix \((a_{ij})\). In view of Rem. 2.35, we define
\[
\|A\|_{\text{Frob}} := \|A\|_{\text{HS}} := \sqrt{\text{tr}(A^*A)} = \sqrt{\text{tr}(AA^*)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2},
\]
(B.20)
called the Frobenius norm or the Hilbert-Schmidt norm of \(A\). The claim is now that, for \(m,n > 1\), there do not exist norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\) such that the Frobenius norm is the resulting induced operator norm. In view of Lem. B.8, it suffices to show that the modified Frobenius norm \(\|A\|'_{\text{Frob}} := \|A\|_{\text{Frob}}/\sqrt{\max\{m,n\}}\) is not induced by norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\). This follows from the fact that, for each \(m,n \in \mathbb{N}\) with \(m,n > 1\), there exists an \(m \times n\) matrix \(A\) such that
\[
\|A^*A\|'_{\text{Frob}} > \|A^*\|'_{\text{Frob}} \|A\|'_{\text{Frob}}
\]
(B.21)
(it is an exercise to find such matrices \(A\)): If the modified Frobenius norm on \(A\) were induced by norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\), then, according to Example B.6 and Th. B.7(b), the modified Frobenius norm on \(A^*\) were induced by (the corresponding operator) norms on \((\mathbb{R}^m)^* \simeq \mathbb{R}^m\) and \((\mathbb{R}^n)^* \simeq \mathbb{R}^n\), implying that (B.21) could not occur, as induced norms must satisfy (2.51). Finally, Lem. B.8 yields that no positive multiple of the Frobenius norm is induced by norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\).

Caveat: It is underlined again that, as seen in the previous example, even though the Frobenius norm can be interpreted as the 2-norm on \(\mathbb{R}^{mn}\), it is not induced by the Euclidean norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\).

C \(\mathbb{R}^m\)-Valued Integration

In the proof of the well-conditionedness of a continuously differentiable function \(f : U \rightarrow \mathbb{R}^m, U \subseteq \mathbb{R}^n\), in Th. 2.52, we make use of \(\mathbb{R}^m\)-valued integrals. In particular, in the estimate (2.67), we use that \(\|\int_A f\| \leq \int_A \|f\|\) for each norm on \(\mathbb{R}^m\). While this is true for vector-valued integrals in general, the goal here is only to provide a proof for our special situation. For a general treatment of vector-valued integrals, see, for example, [Alt06, Sec. A1] or [Yos80, Sec. V.5].

Definition C.1. Let \(A \subseteq \mathbb{R}^n\) be measurable, \(m,n \in \mathbb{N}\).
(a) A function \(f : A \to \mathbb{R}^m \) is called measurable (respectively, integrable) if, and only if, each coordinate function \(f_i = \pi_i \circ f : A \to \mathbb{R}, \ i = 1, \ldots, m, \) is measurable (respectively, integrable).

(b) If \(f : A \to \mathbb{R}^m \) is integrable, then

\[
\int_A f := \left(\int_A f_1, \ldots, \int_A f_m \right) \in \mathbb{R}^m
\]

is the (\(\mathbb{R}^m \)-valued) integral of \(f \) over \(A \).

Remark C.2. The linearity of the \(\mathbb{R} \)-valued integral implies the linearity of the \(\mathbb{R}^m \)-valued integral.

Theorem C.3. Let \(A \subseteq \mathbb{R}^n \) be measurable, \(m, n \in \mathbb{N} \). Then \(f : A \to \mathbb{R}^m \) is measurable in the sense of Def. C.1(a) if, and only if, \(f^{-1}(O) \) is measurable for each open subset \(O \) of \(\mathbb{R}^m \).

Proof. Assume \(f^{-1}(O) \) is measurable for each open subset \(O \) of \(\mathbb{R}^m \). Let \(i \in \{1, \ldots, m\} \). If \(O_i \subseteq \mathbb{R} \) is open in \(\mathbb{R} \), then \(O := \pi_i^{-1}(O_i) = \{ x \in \mathbb{R}^m : x_i \in O_i \} \) is open in \(\mathbb{R}^m \). Thus, \(f_i^{-1}(O_i) = f^{-1}(O) \) is measurable, showing that each \(f_i \) is measurable, i.e. \(f \) is measurable. Now assume \(f \) is measurable, i.e. each \(f_i \) is measurable. Since every open \(O \subseteq \mathbb{R}^m \) is a countable union of open sets of the form \(O = O_1 \times \cdots \times O_m \) with each \(O_i \) being an open subset of \(\mathbb{R} \), it suffices to show that the preimages of such open sets are measurable. So let \(O \) be as above. Then \(f^{-1}(O) = \bigcap_{i=1}^m f_i^{-1}(O_i) \), showing that \(f^{-1}(O) \) is measurable. ■

Corollary C.4. Let \(A \subseteq \mathbb{R}^n \) be measurable, \(m, n \in \mathbb{N} \). If \(f : A \to \mathbb{R}^m \) is measurable, then \(\| f \| : A \to \mathbb{R} \) is measurable.

Proof. If \(O \subseteq \mathbb{R} \) is open, then \(\| \cdot \|^{-1}(O) \) is an open subset of \(\mathbb{R}^m \) by the continuity of the norm. In consequence, \(\| f \|^{-1}(O) = f^{-1}(\| \cdot \|^{-1}(O)) \) is measurable. ■

Theorem C.5. Let \(A \subseteq \mathbb{R}^n \) be measurable, \(m, n \in \mathbb{N} \). For each norm \(\| \cdot \| \) on \(\mathbb{R}^m \) and each integrable \(f : A \to \mathbb{R}^m \), the following holds:

\[
\left\| \int_A f \right\| \leq \int_A \| f \|
\] \hspace{1cm} (C.2)

Proof. First assume that \(B \subseteq A \) is measurable, \(y \in \mathbb{R}^m \), and \(f = y \chi_B \), where \(\chi_B \) is the characteristic function of \(B \) (i.e. the \(f_i \) are \(y_i \) on \(B \) and \(0 \) on \(A \setminus B \)). Then

\[
\left\| \int_A f \right\| = \left\| \left(y_1 \lambda_m(B), \ldots, y_m \lambda_m(B) \right) \right\| = \lambda_m(B) \| y \| = \int_A \| f \|
\] \hspace{1cm} (C.3)

where \(\lambda_m \) denotes \(m \)-dimensional Lebesgue measure. Next, consider the case that \(f \) is a so-called simple function, that means \(f \) takes only finitely many values \(y_1, \ldots, y_N \), \(N \in \mathbb{N} \), and each preimage \(B_i := f^{-1}\{y_i\} \subseteq \mathbb{R}^n \) is measurable. Then

\[
f = \sum_{i=1}^N y_i \chi_{B_i},
\]
where, without loss of generality, we may assume that the B_i are pairwise disjoint. We obtain
\[\left\| \int_A f \right\| \leq \sum_{i=1}^N \left\| \int_A y_i \chi_{B_i} \right\| = \sum_{i=1}^N \int_A \left\| y_i \chi_{B_i} \right\| = \int_A \left\| \sum_{i=1}^N y_i \chi_{B_i} \right\| = \int_A \| f \| \quad \text{(C.4)} \]
(note that, as the B_i are disjoint, the integrands of the last two integrals are, indeed, equal at each $x \in A$).

Now, if f is integrable, then each f_i is integrable (i.e. $f_i \in L^1(A)$) and there exist sequences of simple functions $\phi_{i,k} : A \to \mathbb{R}$ such that $\lim_{k \to \infty} \| \phi_{i,k} - f_i \|_{L^1(A)} = 0$. In particular,
\[0 \leq \lim_{k \to \infty} \left| \int_A \phi_{i,k} - \int_A f_i \right| \leq \lim_{k \to \infty} \| \phi_{i,k} - f_i \|_{L^1(A)} = 0. \quad \text{(C.5)} \]
Thus, we obtain
\[\left\| \int_A f \right\| = \left\| \left(\int_A f_1, \ldots, \int_A f_m \right) \right\| = \left\| \left(\lim_{k \to \infty} \int_A \phi_{1,k}, \ldots, \lim_{k \to \infty} \int_A \phi_{m,k} \right) \right\| = \lim_{k \to \infty} \left\| \int_A \phi_k \right\|
\leq \lim_{k \to \infty} \int_A \| \phi_k \| = \int_A \| f \|, \quad \text{(C.6)} \]
where the equality at (\ast) holds due to $\lim_{k \to \infty} \| \| \phi_k \| - \| f \| \|_{L^1(A)} = 0$, which, in turn, is verified by
\[0 \leq \int_A \| \phi_k \| - \| f \| \leq \int_A \| \phi_k - f \| \leq C \int_A \| \phi_k - f \|_1
= C \int_A \sum_{i=1}^m |\phi_{i,k} - f_i| \to 0 \quad \text{for } k \to \infty, \quad \text{(C.7)} \]
with $C \in \mathbb{R}^+$ since the norms $\| \cdot \|$ and $\| \cdot \|_1$ are equivalent on \mathbb{R}^m. \hfill \blacksquare

D The Vandermonde Determinant

Theorem D.1. Let $n \in \mathbb{N}$ and $\lambda_0, \lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Moreover, let
\[V := \begin{pmatrix} 1 & \lambda_0 & \ldots & \lambda_0^n \\ 1 & \lambda_1 & \ldots & \lambda_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_n & \ldots & \lambda_n^n \end{pmatrix} \quad \text{(D.1)} \]
be the corresponding Vandermonde matrix. Then its determinant, the so-called Vandermonde determinant is given by
\[\det(V) = \prod_{k,l=0 \atop k \neq l}^n (\lambda_k - \lambda_l). \quad \text{(D.2)} \]
Proof. The proof can be conducted by induction with respect to \(n \): For \(n = 1 \), we have

\[
\det(V) = \begin{vmatrix} 1 & \lambda_0 \\ 1 & \lambda_1 \end{vmatrix} = \lambda_1 - \lambda_0 = \prod_{k,l=0 \atop k > l}^1 (\lambda_k - \lambda_l),
\]

showing (D.2) holds for \(n = 1 \). Now let \(n > 1 \). We know from Linear Algebra that the value of a determinant does not change if we add a multiple of a column to a different column. Adding the \((-\lambda_0)\)-fold of the \(n \)th column to the \((n + 1)\)st column, we obtain in the \((n + 1)\)st column

\[
\begin{pmatrix}
0 \\
\lambda_1^n - \lambda_2^n - \lambda_0 \\
\vdots \\
\lambda_n^n - \lambda_0^n - \lambda_0
\end{pmatrix}
\]

Next, one adds the \((-\lambda_0)\)-fold of the \((n - 1)\)st column to the \(n \)th column, and, successively, the \((-\lambda_0)\)-fold of the \(m \)th column to the \((m + 1)\)st column. One finishes, in the \(n \)th step, by adding the \((-\lambda_0)\)-fold of the first column to the second column, obtaining

\[
\det(V) = \begin{vmatrix} 1 & \lambda_0 & \cdots & \lambda_n^0 \\
1 & \lambda_1 & \cdots & \lambda_n^1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_n & \cdots & \lambda_n^n
\end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\
1 & \lambda_1 - \lambda_0 & \lambda_2^n - \lambda_1 \lambda_0 & \cdots & \lambda_n^n - \lambda_1^n - \lambda_0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_n - \lambda_0 & \lambda_n^n - \lambda_n \lambda_0 & \cdots & \lambda_n^n - \lambda_n^n - \lambda_0
\end{vmatrix}.
\]

Applying the rule for determinants of block matrices to (D.5) yields

\[
\det(V) = 1 \cdot \begin{vmatrix} \lambda_1 - \lambda_0 & \lambda_2^n - \lambda_1 \lambda_0 & \cdots & \lambda_n^n - \lambda_1^n - \lambda_0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_n - \lambda_0 & \lambda_n^n - \lambda_n \lambda_0 & \cdots & \lambda_n^n - \lambda_n^n - \lambda_0
\end{vmatrix}.
\]

As we also know from Linear Algebra that determinants are linear in each row, for each \(k \), we can factor out \((\lambda_k - \lambda_0)\) from the \(k \)th row of (D.6), arriving at

\[
\det(V) = \prod_{k=1}^n (\lambda_k - \lambda_0) \begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_n & \cdots & \lambda_n^{n-1}
\end{vmatrix}.
\]

However, the determinant in (D.7) is precisely the Vandermonde determinant of the \(n - 1 \) numbers \(\lambda_1, \ldots, \lambda_n \), which is given according to the induction hypothesis, implying

\[
\det(V) = \prod_{k=1}^n (\lambda_k - \lambda_0) \prod_{k,l=0 \atop k > l} (\lambda_k - \lambda_l) = \prod_{k,l=0 \atop k > l} (\lambda_k - \lambda_l),
\]

completing the induction proof of (D.2).
E Parameter-Dependent Integrals

Theorem E.1. Let \((X, d)\) be a metric space and let \((\Omega, \mathcal{A}, \mu)\) be a measure space. Let \(n \in \mathbb{N}\) and \(f : X \times \Omega \rightarrow \mathbb{R}^n\). Fix \(x_0 \in X\) and assume \(f\) has the following properties:

(a) For each \(x \in X\), the function \(\omega \mapsto f(x, \omega)\) is integrable (i.e. all its components are integrable).

(b) For each \(\omega \in \Omega\), the function \(x \mapsto f(x, \omega)\) is continuous in \(x_0\).

(c) \(f\) is uniformly dominated by an integrable function \(h\), i.e. there exists an integrable \(h : \Omega \rightarrow \mathbb{R}^n\) such that

\[\forall_{i=1, \ldots, n} \forall_{(x, \omega) \in X \times \Omega} |f_i(x, \omega)| \leq h_i(\omega).\]

Then the function

\[\phi : X \rightarrow \mathbb{R}^n, \quad \phi(x) := \int_\Omega f(x, \omega) \, d\omega,\]

is continuous in \(x_0\).

Proof. Let \((x_m)_{m \in \mathbb{N}}\) be a sequence in \(X\) such that \(\lim_{m \rightarrow \infty} x_m = x_0\). According to (a), this gives rise to a sequence \((g_m)_{m \in \mathbb{N}}\) of integrable functions

\[g_m : \Omega \rightarrow \mathbb{R}^n, \quad g_m(\omega) := f(x_m, \omega),\]

converging pointwise on \(\Omega\) to the function

\[g : \Omega \rightarrow \mathbb{R}^n, \quad g(\omega) := f(x_0, \omega).\]

Since, by (c), all \(g_m\) are dominated by the integrable function \(h\) (i.e. \(|g_m| \leq h_i\) for each \(m \in \mathbb{N}, i \in \{1, \ldots, n\}\)), we can apply the dominated convergence theorem (DCT) to each component to obtain

\[\lim_{m \rightarrow \infty} \phi(x_m) = \lim_{m \rightarrow \infty} \int_\Omega f(x_m, \omega) \, d\omega = \lim_{m \rightarrow \infty} \int_\Omega g_m(\omega) \, d\omega \overset{\text{DCT}}{=} \int_\Omega g(\omega) \, d\omega = \int_\Omega f(x_0, \omega) \, d\omega = \phi(x_0),\]

proving \(\phi\) is continuous at \(x_0\). ■

F Inner Products and Orthogonality

Notation F.1. We will write \(K\) in situations, where we allow \(K\) to be \(\mathbb{R}\) or \(\mathbb{C}\).

Definition and Remark F.2. Let \(X\) be a vector space over \(K\). A function \(\langle \cdot, \cdot \rangle : X \times X \rightarrow K\) is called an inner product or a scalar product on \(X\) if, and only if, the following three conditions are satisfied:
(i) $\langle x, x \rangle \in \mathbb{R}^+$ for each $0 \neq x \in X$.

(ii) $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ for each $x, y, z \in X$ and each $\lambda, \mu \in \mathbb{K}$.

(iii) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for each $x, y \in X$.

If $\langle \cdot, \cdot \rangle$ is an inner product on X, then $(X, \langle \cdot, \cdot \rangle)$ is called an inner product space and the map
\[\| \cdot \| : X \rightarrow \mathbb{R}_0^+, \quad \| x \| := \sqrt{\langle x, x \rangle}, \] (F.1)
defines a norm on X, called the norm induced by the inner product.

Example F.3. Let $n \in \mathbb{N}$. Clearly, the map $\langle \cdot, \cdot \rangle : \mathbb{K}^n \times \mathbb{K}^n \rightarrow \mathbb{K}$, where
\[\forall a, b \in \mathbb{C}^n, \quad \langle a, b \rangle := \sum_{j=1}^{n} a_j \overline{b_j} \] (F.2)
defines an inner product on \mathbb{K}^n. The norm induced by this inner product is called the 2-norm and is denoted by $\| \cdot \|_2$.

Definition F.4. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space.

(a) Vectors $x, y \in X$ are called orthogonal or perpendicular (denoted $x \perp y$) if, and only if, $\langle x, y \rangle = 0$. An orthogonal system is a family $(x_\alpha)_{\alpha \in I}, x_\alpha \in X$, I being some index set, such that $\langle x_\alpha, x_\beta \rangle = 0$ for each $\alpha, \beta \in I$ with $\alpha \neq \beta$. An orthogonal system is called an orthonormal system if, and only if, it consists entirely of unit vectors (with respect to the induced norm).

(b) An orthonormal system $(x_\alpha)_{\alpha \in I}$ is called an orthonormal basis if, and only if, $x = \sum_{\alpha \in I} \langle x, x_\alpha \rangle x_\alpha$ for each $x \in X$.

(c) If V is a linear subspace of X, then we define
\[V^\perp := \{ x \in X : x \perp v \text{ for each } v \in V \}. \] (F.3)

Lemma F.5. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and let V be a linear subspace of X.

(a) V^\perp is a linear subspace of X.

(b) $V \cap V^\perp = \{0\}$.

(c) If I is some index set and $(x_\alpha)_{\alpha \in I}, x_\alpha \in X$, is an orthogonal system such that $x_\alpha \neq 0$ for each $\alpha \in I$, then the x_α are all linearly independent.

(d) Let $0 < \dim X = n < \infty$. Then an orthonormal system $(x_\alpha)_{\alpha \in I}$ is an orthonormal basis if, and only if, it is a basis in the usual sense of linear algebra.
Proof. (a): Let \(x, y \in V^\perp \) and \(\lambda \in \mathbb{K} \). Then, for each \(v \in V \), it holds that \(\langle x + y, v \rangle = \langle x, v \rangle + \langle y, v \rangle = 0 \) and \(\langle \lambda x, v \rangle = \lambda \langle x, v \rangle = 0 \), showing that \(x + y \in V^\perp \) as well as \(\lambda x \in V^\perp \) implying that \(V^\perp \) is a linear subspace.

(b): If \(v \in V \) and \(v \in V^\perp \), then \(\langle v, v \rangle = 0 \) by the definition of \(V^\perp \). However, \(\langle v, v \rangle = 0 \) implies \(v = 0 \) according to F.2(i).

(c): Suppose \(n \in \mathbb{N} \) and \(\lambda_1, \ldots, \lambda_n \in \mathbb{K} \) together with \(x_{\alpha_1}, \ldots, x_{\alpha_n} \) are such that \(\sum_{k=1}^n \lambda_k x_{\alpha_k} = 0 \). Then, for each \(j \in \{1, \ldots, n\} \), the relations \(\langle x_{\alpha_k}, x_{\alpha_j} \rangle = 0 \) for each \(k \neq j \) imply \(0 = \langle 0, x_{\alpha_j} \rangle = \langle \sum_{k=1}^n \lambda_k x_{\alpha_k}, x_{\alpha_j} \rangle = \sum_{k=1}^n \lambda_k \langle x_{\alpha_k}, x_{\alpha_j} \rangle = \lambda_j \langle x_{\alpha_j}, x_{\alpha_j} \rangle \), which yields \(\lambda_j = 0 \) by F.2(i). Thus, we have shown that \(\lambda_j = 0 \) for each \(j \in \{1, \ldots, n\} \), which establishes that the \(x_{\alpha} \) are all linearly independent.

(d): If \((x_\alpha)_{\alpha \in I} \) is an orthonormal basis, then the \(x_\alpha \) are linearly independent by (c) (since \(\| x_\alpha \| = 1 \) for each \(\alpha \in I \)). In particular, \(\dim X = n \) implies \#\(I \leq n \). As Def. F.4(b) implies \(\text{span}\{x_\alpha : \alpha \in I\} = X \) (here we use \(n < \infty \), otherwise the sums from Def. F.4(b) could have infinitely many nonzero terms), we see that \((x_\alpha)_{\alpha \in I} \) is a basis in the usual sense of linear algebra. Conversely, if \((x_\alpha)_{\alpha \in I} \) is a basis in the usual sense of linear algebra, then, for each \(x \in X \), there are \(\lambda_\alpha \in \mathbb{K}, \alpha \in I \), such that \(x = \sum_{\alpha \in I} \lambda_\alpha x_\alpha \). Thus,

\[
\sum_{\alpha \in I} \langle x, x_\alpha \rangle x_\alpha = \sum_{\alpha \in I} \left(\sum_{\beta \in I} \lambda_\beta x_\beta, x_\alpha \right) x_\alpha = \sum_{\alpha \in I} \sum_{\beta \in I} \lambda_\beta \langle x_\beta, x_\alpha \rangle x_\alpha = \sum_{\alpha \in I} \sum_{\beta \in I} \lambda_\beta \delta_{\beta, \alpha} x_\alpha = \sum_{\alpha \in I} \lambda_\alpha x_\alpha = x, \tag{F.4}
\]

showing that \((x_\alpha)_{\alpha \in I} \) is an orthonormal basis. \(\blacksquare \)

G Baire Category and the Uniform Boundedness Principle

Theorem G.1 (Baire Category Theorem). Let \(\emptyset \neq X \) be a nonempty complete metric space, and, for each \(k \in \mathbb{N} \), let \(A_k \) be a closed subset of \(X \). If

\[
X = \bigcup_{k=1}^{\infty} A_k, \tag{G.1}
\]

then there exists \(k_0 \in \mathbb{N} \) such that \(A_{k_0} \) has nonempty interior: \(\text{int} A_{k_0} \neq \emptyset \).

Proof. Seeking a contradiction, we assume (G.1) holds with closed sets \(A_k \) such that \(\text{int} A_k = \emptyset \) for each \(k \in \mathbb{N} \). Then, for each nonempty open set \(O \subseteq X \) and each \(k \in \mathbb{N} \), the set \(O \setminus A_k = O \cap (X \setminus A_k) \) is open and nonempty (as \(O \setminus A_k = \emptyset \) implied \(O \subseteq A_k \), such that the points in \(O \) were interior points of \(A_k \)). Since \(O \setminus A_k \) is open and nonempty, we can choose \(x \in O \setminus A_k \) and \(0 < \epsilon < \frac{1}{k} \) such that

\[
\overline{B}_\epsilon(x) \subseteq O \setminus A_k. \tag{G.2}
\]
As one can choose \(B_k(x) \) as a new \(O \), starting with arbitrary \(x_0 \in X \) and \(\epsilon_0 > 0 \), one can inductively construct sequences of points \(x_k \in X \), numbers \(\epsilon_k > 0 \), and corresponding balls such that
\[
\overline{B}_{k+1}(x_k) \subseteq B_k(x_{k-1}) \setminus A_k, \quad \epsilon_k \leq \frac{1}{k} \quad \text{for each } k \in \mathbb{N}. \tag{G.3}
\]
Then \(l \geq k \) implies \(x_l \in B_k(x_k) \) for each \(k, l \in \mathbb{N} \), such that \((x_k)_{k \in \mathbb{N}} \) constitutes a Cauchy sequence due to \(\lim_{k \to \infty} \epsilon_k = 0 \). The assumed completeness of \(X \) provides a limit \(x = \lim_{k \to \infty} x_k \in X \). The nested form (G.3) of the balls \(B_{k+1}(x_k) \) implies \(x \in B_{k+1}(x_k) \) for each \(k \in \mathbb{N} \) on the one hand and \(x \not\in A_k \) for each \(k \in \mathbb{N} \) on the other hand. However, this last conclusion is in contradiction to (G.1).

Remark G.2. The purpose of this remark is to explain the name *Baire Category Theorem* in Th. G.1. To that end, we need to introduce some terminology that will not be used again outside the present remark.

Let \(X \) be a metric space.

Recall that a subset \(D \) of \(X \) is called *dense* if, and only if, \(\overline{D} = X \), or, equivalently, if, and only if, for each \(x \in X \) and each \(\epsilon > 0 \), one has \(D \cap B(x, \epsilon) \neq \emptyset \). A subset \(E \) of \(X \) is called *nowhere dense* if, and only if, \(X \setminus \overline{E} \) is dense.

A subset \(M \) of \(X \) is said to be of *first category* or *meager* if, and only if, \(M = \bigcup_{k=1}^{\infty} E_k \) is a countable union of nowhere dense sets \(E_k, k \in \mathbb{N} \). A subset \(S \) of \(X \) is said to be of *second category* or *nonmeager* or *fat* if, and only if, \(S \) is not of first category. Caveat: These notions of category are completely different from the notion of category occurring in the more algebraic discipline called category theory.

Finally, the reason Th. G.1 carries the name *Baire Category Theorem* lies in the fact that it implies that every nonempty complete metric space \(X \) is of second category (considered as a subset of itself): If \(X \) were of first category, then \(X = \bigcup_{k=1}^{\infty} E_k \) with nowhere dense sets \(E_k \). As the \(E_k \) are nowhere dense, the complements \(X \setminus \overline{E_k} \) are dense, i.e. \(\overline{E_k} \) has empty interior, and \(X = \bigcup_{k=1}^{\infty} \overline{E_k} \) were a countable union of closed sets with empty interior in contradiction to Th. G.1.

Theorem G.3 (Uniform Boundedness Principle). Let \(X \) be a nonempty complete metric space and let \(Y \) be a normed vector space. Consider a set of continuous functions \(\mathcal{F} \subseteq C(X, Y) \). If
\[
M_x := \sup \{ \| f(x) \| : f \in \mathcal{F} \} < \infty \quad \text{for each } x \in X, \tag{G.4}
\]
then there exists \(x_0 \in X \) and \(\epsilon_0 > 0 \) such that
\[
\sup \{ M_x : x \in \overline{B}_{\epsilon_0}(x_0) \} < \infty. \tag{G.5}
\]
In other words, if a collection of continuous functions from \(X \) into \(Y \) is bounded pointwise in \(X \), then it is uniformly bounded on an entire ball.

Proof. If \(\mathcal{F} = \emptyset \), then \(M_x = \sup \emptyset := \inf \mathbb{R}_0^+ = 0 \) for each \(x \in X \) and there is nothing to prove. Thus, let \(\mathcal{F} \neq \emptyset \). For \(f \in \mathcal{F} \), \(k \in \mathbb{N} \), as both \(f \) and the norm are continuous, the set
\[
A_{k, f} := \{ x \in X : \| f(x) \| \leq k \} \tag{G.6}
\]
is an continuous inverse image of the closed set \([0, k]\) and, hence, closed. Since arbitrary intersections of closed sets are closed, so is

\[A_k := \bigcap_{f \in \mathcal{F}} A_{k,f} = \{ x \in X : \|f(x)\| \leq k \text{ for each } f \in \mathcal{F} \}. \]

(G.7)

Now (G.4) implies

\[X = \bigcup_{k=1}^{\infty} A_k \]

(G.8)

and the Baire Category Th. G.1 provides \(k_0 \in \mathbb{N}\) such that \(A_{k_0}\) has nonempty interior. Thus, there exist \(x_0 \in A_{k_0}\) and \(\epsilon_0 > 0\) such that \(\overline{B}_{\epsilon_0}(x_0) \subseteq A_{k_0}\), and, in consequence,

\[\sup \{ M_x : x \in \overline{B}_{\epsilon_0}(x_0) \} \leq k_0, \]

(G.9)

proving (G.5).

We now specialize the uniform boundedness principle to bounded linear maps:

Theorem G.4 (Banach-Steinhaus Theorem). Let \(X\) be a Banach space (i.e. a complete normed vector space) and let \(Y\) be a normed vector space. Consider a set of bounded linear functions \(\mathcal{T} \subseteq \mathcal{L}(X,Y)\). If

\[\sup \{ \|T(x)\| : T \in \mathcal{T} \} < \infty \quad \text{for each } x \in X, \]

(G.10)

then \(\mathcal{T}\) is a bounded subset of \(\mathcal{L}(X,Y)\), i.e.

\[\sup \{ \|T\| : T \in \mathcal{T} \} < \infty. \]

(G.11)

Proof. To apply Th. G.3, define, for each \(T \in \mathcal{T}\):

\[f_T : X \rightarrow \mathbb{R}, \quad f_T(x) := \|Tx\|. \]

(G.12)

Then \(\mathcal{F} := \{ f_T : T \in \mathcal{T} \} \subseteq C(X, \mathbb{R})\) and (G.10) implies that \(\mathcal{F}\) satisfies (G.4). Thus, if \(M_x\) is as in (G.4), we obtain \(x_0 \in X\) and \(\epsilon_0 > 0\) such that

\[\sup \{ M_x : x \in \overline{B}_{\epsilon_0}(x_0) \} < \infty, \]

(G.13)

i.e. there exists \(C \in \mathbb{R}^+\) satisfying

\[\|Tx\| \leq C \quad \text{for each } T \in \mathcal{T} \text{ and each } x \in X \text{ with } \|x - x_0\| \leq \epsilon_0. \]

(G.14)

In consequence, for each \(x \in X \setminus \{0\}\),

\[\|Tx\| = \frac{\|x\|}{\epsilon_0} \cdot \left\| T \left(x_0 + \epsilon_0 \frac{x}{\|x\|} \right) - Tx_0 \right\| \leq \frac{\|x\|}{\epsilon_0} \cdot 2C, \]

(G.15)

showing \(\|T\| \leq \frac{2C}{\epsilon_0}\) for each \(T \in \mathcal{T}\), thereby establishing the case.

■
H Linear Algebra

H.1 Gaussian Elimination Algorithm

Definition H.1. Let A be an $n \times m$ matrix, $m, n \in \mathbb{N}$. For each row, i.e. for each $i \in \{1, \ldots, n\}$, let $\nu(i) \in \{1, \ldots, m\}$ be the smallest index k such that $a_{ik} \neq 0$ and $\nu(i) := m + 1$ if the ith row consists entirely of zeros. Then A is said to be in echelon form if, and only if, for each $i \in \{2, \ldots, n\}$, one has $\nu(i) > \nu(i - 1)$ or $\nu(i) = m + 1$.

Thus, A is in echelon form if, and only if, it looks as follows:

$$A = \begin{pmatrix} 0 & \ldots & 0 & \square & * & * & * & \ldots & * & * & * \\ 0 & \ldots & 0 & 0 & \square & * & * & \ldots & * & * & * \\ 0 & \ldots & 0 & 0 & 0 & 0 & \square & * & \ldots & * & * \\ \vdots & & & & & & & & \vdots & \end{pmatrix}. \quad (H.1)$$

The first nonzero elements in each row are called pivot elements (in (H.1), the positions of the pivot elements are marked by squares \square). The columns containing a pivot element are called pivot columns, the corresponding variables are called pivot variables. All remaining variables are called free variables.

Example H.2. The following matrix is in echelon form:

$$\begin{pmatrix} 0 & 0 & 3 & 3 & 0 & -1 & 0 & 3 \\ 0 & 0 & 0 & 4 & 0 & 2 & -3 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

It remains in echelon form if one adds zero rows at the bottom. Here x_3, x_4, x_7 are pivot variables, whereas x_1, x_2, x_5, x_6, x_8 are free variables.

The set of solutions to a linear system are easily determined if its augmented matrix is in echelon form (see Rem H.10 below). Thus, it is desirable to transform the augmented matrix of a linear system into echelon form without changing the set of solutions. This can be achieved by the well-known Gaussian elimination algorithm.

Definition H.3. The following three operations, which transform an $n \times m$ matrix into another $n \times m$ matrix, are known as elementary row operations:

(a) Row Switching: Switching two rows.

(b) Row Multiplication: Replacing a row by some nonzero multiple of that row.

(c) Row Addition: Replacing a row by the sum of that row and a multiple of another row.

Theorem H.4. Applying elementary row operations to the augmented matrix $(A|b)$ of the linear system (5.1) does not change the system’s set of solutions. ■
Definition H.5. Given a real $n \times m$ matrix A, $m, n \in \mathbb{N}$, and $b \in \mathbb{R}^n$, the Gaussian elimination algorithm is the following procedure that successively applies elementary row operations to the augmented matrix $(A|b)$ of the linear system (5.1):

Let $(A^{(1)}|b^{(1)}) := (A|b)$, $r(1) := 1$. For each $k \geq 1$, as long as $r(k) < n$ and $k \leq m + 1$, the Gaussian elimination algorithm transforms $(A^{(k)}|b^{(k)})$ into $(A^{(k+1)}|b^{(k+1)})$ and $r(k)$ into $r(k+1)$ by performing precisely one of the following actions:

(a) If $a_{r(k),k}^{(k)} \neq 0$, then, for each $i \in \{r(k) + 1, \ldots, n\}$, replace the ith row by the ith row plus $-a_{ik}^{(k)} / a_{r(k),k}^{(k)}$ times the $r(k)$th row. Set $r(k + 1) := r(k) + 1$.

(b) If $a_{r(k),k}^{(k)} = 0$, and there exists $i \in \{r(k) + 1, \ldots, n\}$ such that $a_{ik}^{(k)} \neq 0$, then one chooses such an $i \in \{r(k) + 1, \ldots, n\}$ and switches the ith with the $r(k)$th row. One then proceeds as in (a).

(c) If $a_{ik}^{(k)} = 0$ for each $i \in \{r(k), \ldots, n\}$, then set $A^{(k+1)} := A^{(k)}$, $b^{(k+1)} := b^{(k)}$, and $r(k+1) := r(k)$.

Note that the Gaussian elimination algorithm stops after at most $m + 1$ steps. Moreover, in its kth step, it can only manipulate elements that have row number at least $r(k)$ and column number at least k.

Theorem H.6. Given a real $n \times m$ matrix A, $m, n \in \mathbb{N}$, and $b \in \mathbb{R}^n$, applying the Gaussian elimination algorithm to the augmented matrix $(A|b)$ of the linear system (5.1) yields a matrix $(\tilde{A}|\tilde{b})$ in echelon form, where \tilde{A} is a real $n \times m$ matrix and $\tilde{b} \in \mathbb{R}^n$ such that the linear system $Ax = b$ has precisely the same set of solutions as the original linear system $Ax = b$. \blacksquare

Remark H.7. To avoid mistakes, especially when performing the Gaussian elimination algorithm manually, it is advisable to check the row sums after each step. It obviously suffices to consider how row sums are changed if (a) of Def. H.5 is carried out. Moreover, let $i \in \{r(k) + 1, \ldots, n\}$, as only rows with row numbers $i \in \{r(k) + 1, \ldots, n\}$ can be changed by (a) in the kth step. If $s_i^{(k)} = b_i^{(k)} + \sum_{j=1}^{m} a_{ij}^{(k)}$ is the sum of the ith row before (a) has been carried out in the kth step, then

$$s_i^{(k+1)} = b_i^{(k+1)} + \sum_{j=1}^{m} a_{ij}^{(k+1)} = b_i^{(k)} - \frac{a_{ik}^{(k)}}{a_{r(k),k}^{(k)}} b_r^{(k)} + \sum_{j=1}^{m} \left(a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{r(k),k}^{(k)}} a_{r(k),j}^{(k)} \right)$$

must be the sum of the ith row after (a) has been carried out in the kth step.
We recall the notion of rank as well as the following general result on linear systems from Linear Algebra:

Definition and Remark H.8. The rank of a matrix A, denoted by $\text{rk}(A)$, is the dimension of the vector space spanned by the row vectors of A. This number is always the same as the dimension of the vector space spanned by the column vectors of A.

Theorem H.9. Given a real $n \times m$ matrix A, $m, n \in \mathbb{N}$, and $b \in \mathbb{R}^n$, let $(A|b)$ be the augmented matrix of the linear system $Ax = b$, and let $(\tilde{A}|\tilde{b})$ be the augmented matrix in echelon form that results from applying the Gaussian elimination algorithm to $(A|b)$ (cf. Def. H.5 and Th. H.6). Then the following assertions are equivalent:

(i) The linear system $Ax = b$ has at least one solution $x \in \mathbb{R}^m$.

(ii) $\text{rk}(A) = \text{rk}(A|b)$.

(iii) The last column \tilde{b} in the augmented matrix in echelon form $(\tilde{A}|\tilde{b})$ has no pivot elements (i.e. if there is a zero row in \tilde{A}, then the corresponding entry of \tilde{b} also vanishes).

If $Ax = b$ has at least one solution, then the set of all solutions is an affine space \mathcal{A}, which can be represented in the form $\mathcal{A} = v_0 + \ker A$, where v_0 is an arbitrary solution of $Ax = b$ (in other words, one obtains all solutions to the inhomogeneous system $Ax = b$ by adding a particular solution of the inhomogeneous system to the set of all solutions to the homogeneous system $Ax = 0$). The dimension of the solution space is

$$\dim \mathcal{A} = \dim(\ker A) = m - \text{rk}(A).$$ \hspace{1cm} (H.3)

$\dim \mathcal{A}$ also equals the number of free variables occurring in the echelon form $(\tilde{A}|\tilde{b})$ (cf. Def. H.1). In particular, if $Ax = b$ has at least one solution, then the solution is unique if, and only if, $\text{rk}(A) = m$. \hspace{1cm} \blacksquare

Remark H.10. If the augmented matrix $(A|b)$ of the linear system (5.1) is in echelon form and the set \mathcal{A} of solutions is nonempty, then one obtains a parameterized representation of \mathcal{A} by the following procedure known as back substitution: Starting at the bottom with the first nonzero row, one solves each row for the corresponding pivot variables, in each step substituting the expressions for pivot variables that were obtained in previous steps. The free variables are treated as parameters. A particular element of \mathcal{A} can be obtained by setting all free variables to 0. This is illustrated in the following example.

Example H.11. Consider the linear system $Ax = b$, where

$$A := \begin{pmatrix} 1 & 2 & -1 & 3 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad b := \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}. \hspace{1cm} (H.4)$$
Since \((A|b)\) is in echelon form and \(b\) does not have any pivot elements, the set of solutions \(A\) is nonempty, and it can be obtained using back substitution as described in Rem. H.10:

\[
\begin{aligned}
\begin{array}{l}
x_5 &= 3, \quad (H.5a) \\
x_3 &= 2 + x_5 - x_4 = 5 - x_4, \quad (H.5b) \\
x_1 &= 1 - 3x_4 + x_3 - 2x_2 = 6 - 4x_4 - 2x_2. \quad (H.5c)
\end{array}
\end{aligned}
\]

Thus,

\[
A = \begin{pmatrix} 6 \\ 0 \\ 5 \\ 0 \\ 3 \end{pmatrix} + \ker A = \left\{ \begin{pmatrix} 6 - 2x_2 - 4x_4 \\ x_2 \\ 5 - x_4 \\ x_4 \\ 3 \end{pmatrix} : x_2, x_4 \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} 6 \\ 0 \\ 5 \\ 0 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -4 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} : x_2, x_4 \in \mathbb{R} \right\}. \quad (H.6)
\]

H.2 Orthogonal Matrices

Definition H.12. Let \(n \in \mathbb{N}\). A real \(n \times n\) matrix \(Q\) is called *orthogonal* if, and only if, \(Q\) is invertible with \(Q^{-1} = Q^t\). The set of all orthogonal \(n \times n\) matrices is denoted by \(O(n)\).

Theorem H.13. Let \(n \in \mathbb{N}\). For a real \(n \times n\) matrix \(Q\), the following statements are equivalent:

(i) \(Q\) is orthogonal.

(ii) \(Q^t\) is orthogonal.

(iii) The columns of \(Q\) form an orthonormal basis of \(\mathbb{R}^n\).

(iv) The rows of \(Q\) form an orthonormal basis of \(\mathbb{R}^n\).

(v) \(\langle Qx, Qy \rangle = \langle x, y \rangle\) holds for each \(x, y \in \mathbb{R}^n\).

(vi) \(Q\) is isometric with respect to the Euclidean norm \(\| \cdot \|_2\), i.e. \(\|Qx\|_2 = \|x\|_2\) for each \(x \in \mathbb{R}^n\).

Proof. “(i)\iff(ii)” \(Q^{-1} = Q^t\) is equivalent to \(E = QQ^t\), which is equivalent to \((Q^t)^{-1} = Q = (Q^t)^t\).
“(i)⇔(iii)”: $Q^{-1} = Q^t$ implies

$$
\left\langle \begin{pmatrix} q_{11} \\ \vdots \\ q_{ni} \end{pmatrix}, \begin{pmatrix} q_{1j} \\ \vdots \\ q_{nj} \end{pmatrix} \right\rangle = \sum_{k=1}^{n} q_{ki}q_{kj} = \sum_{k=1}^{n} q^t_{ik}q_{kj} = \begin{cases} 0 & \text{for } i \neq j, \\ 1 & \text{for } i = j, \end{cases}
$$

showing that the columns of Q form an orthonormal system, i.e. n linearly independent vectors according to Lem. F.5(c), i.e. an orthonormal basis of \mathbb{R}^n according to Lem. F.5(d). Conversely, if the columns of Q form an orthonormal basis of \mathbb{R}^n, then they satisfy (H.7), which implies $Q^tQ = \text{Id}$.

“(i)⇔(iv)”: Since the rows of Q are the columns of Q^t, the equivalence of (i) and (iv) is immediate from (iii) and (ii).

“(i)⇒(v)”: For each $x, y \in \mathbb{R}^n$: $\langle Qx, Qy \rangle = \langle Q^tQx, y \rangle = \langle \text{Id}x, y \rangle = \langle x, y \rangle$.

“(v)⇒(vi)”: For each $x \in \mathbb{R}^n$: $\|Qx\|_2 = \langle Qx, Qx \rangle = \langle x, x \rangle = \|x\|_2$.

“(vi)⇒(i)”: The equality $\langle Qx, Qy \rangle = \langle Q^tQx, y \rangle = \langle \text{Id}x, y \rangle = \langle x, y \rangle$ holding for each $x, y \in \mathbb{R}^n$ implies $Q^tQ = \text{Id}$, i.e. Q is orthogonal.

Proposition H.14. Let $n \in \mathbb{N}$.

- If $A, B \in O(n)$, then $AB \in O(n)$.

- $O(n)$ constitutes a group.

Proof. (H.14): If $A, B \in O(n)$, then

$$(AB)^tAB = B^tA^tAB = B^t\text{Id}B = B^tB = \text{Id},$$

showing $AB \in O(n)$.

(H.14): Due to (H.14) and Th. H.13(ii), $O(n)$ is a subgroup of the general linear group $GL(n)$ of all invertible real $n \times n$ matrices.

H.3 Positive Definite Matrices

Notation H.15. If A is an $n \times n$ matrix, $n \in \mathbb{N}$, then, for $1 \leq k \leq l \leq n$, let

$$A^{kl} := \begin{pmatrix} a_{kk} & \cdots & a_{kl} \\ \vdots & \ddots & \vdots \\ a_{lk} & \cdots & a_{ll} \end{pmatrix}$$

(H.9)

denote the $(1 + l - k) \times (1 + l - k)$ principal submatrix of A, i.e.

$$a^{kl}_{ij} := a_{i+k-1,j+k-1}.$$

(H.10)
Proposition H.16. Let \(A \) be a real \(n \times n \) matrix, \(n \in \mathbb{N} \). Then \(A \) is positive definite (cf. Def. 2.37(c)) if, and only if, every principal submatrix \(A_{kl} \) of \(A \), \(1 \leq k \leq l \leq n \), is positive definite.

Proof. If all principal submatrices of \(A \) are positive definite, then, as \(A = A_{nn} \), \(A \) is positive definite. Now assume \(A \) to be positive definite and fix \(k, l \in \{1, \ldots, n\} \) with \(1 \leq k \leq l \leq n \). Let \(x = (x_k, \ldots, x_l) \in \mathbb{R}^{l-k} \setminus \{0\} \) and extend \(x \) to \(\mathbb{R}^n \) by 0, calling the extended vector \(y \):

\[
y = (y_1, \ldots, y_n) \in \mathbb{R}^n \setminus \{0\}, \quad y_i = \begin{cases} x_i & \text{for } k \leq i \leq l, \\ 0 & \text{otherwise.} \end{cases} \tag{H.11}
\]

We now consider \(x \) and \(y \) as column vectors and compute

\[
x^t A_{kl} x = \sum_{i,j=k}^{l} a_{ij} x_i x_j = \sum_{i,j=1}^{n} a_{ij} y_i y_j > 0, \tag{H.12}
\]

showing \(A_{kl} \) to be positive definite. \(\blacksquare \)

Proposition H.17. Let \(A \) be a symmetric positive definite real \(n \times n \) matrix, \(n \in \mathbb{N} \).

(a) All eigenvalues of \(A \) are positive real numbers.

(b) \(\det A > 0 \).

Proof. (a): Let \(\lambda \) be an eigenvalue of \(A \). According to Th. 2.39, \(\lambda \in \mathbb{R}^+ \) and there is a real eigenvector \(x \in \mathbb{R}^n \setminus \{0\} \) for \(\lambda \). Thus,

\[
0 < x^t A x = x^t \lambda x = \lambda \|x\|^2. \tag{H.13}
\]

As \(\|x\| \) is positive, \(\lambda \) must be positive as well.

(b) follows from (a), as \(\det A \) is the product of the eigenvalues of \(A \). \(\blacksquare \)

H.4 Cholesky Decomposition for Positive Semidefinite Matrices

In this section, we show that the results of Sec. 5.3 (except uniqueness of the decomposition) extend to symmetric positive semidefinite matrices.

Theorem H.18. Let \(\Sigma \) be a symmetric positive semidefinite real \(n \times n \) matrix, \(n \in \mathbb{N} \). Then there exists a lower triangular real \(n \times n \) matrix \(A \) with nonnegative diagonal entries (i.e. with \(a_{jj} \geq 0 \) for each \(j \in \{1, \ldots, n\} \)) and

\[
\Sigma = AA^t. \tag{H.14}
\]

In extension of the term for the positive definite case, we still call this decomposition a Cholesky decomposition of \(\Sigma \). It is recalled from Th. 5.19 that, if \(\Sigma \) is positive definite, then the diagonal entries of \(A \) can be chosen to be all positive and this determines \(A \) uniquely.
Proof. The positive definite case was proved in Th. 5.19. The general (positive semidefinite) case can be deduced from the positive definite case as follows: If \(\Sigma \) is symmetric positive semidefinite, then each \(\Sigma_k := \Sigma + \frac{1}{k} \text{Id}, \ k \in \mathbb{N} \), is positive definite:

\[
x^t \Sigma_k x = x^t \Sigma x + \frac{x^t x}{k} > 0 \quad \text{for each } 0 \neq x \in \mathbb{R}^n.
\] (H.15)

Thus, for each \(k \in \mathbb{N} \), there exists a lower triangular matrix \(A_k \) with positive diagonal entries such that \(\Sigma_k = A_k A_k^t \).

On the other hand, \(\Sigma_k \) converges to \(\Sigma \) with respect to each norm on \(\mathbb{R}^{n^2} \) (since all norms on \(\mathbb{R}^{n^2} \) are equivalent). In particular, \(\lim_{k \to \infty} \| \Sigma_k - \Sigma \|_2 = 0 \). Thus,

\[
\| A_k \|_2^2 = r(\Sigma_k) = \| \Sigma_k \|_2,
\] (H.16)

such that \(\lim_{k \to \infty} \| \Sigma_k - \Sigma \|_2 = 0 \) implies that the set \(K := \{ A_k : k \in \mathbb{N} \} \) is bounded with respect to \(\| \cdot \|_2 \). Thus, the closure of \(K \) in \(\mathbb{R}^{n^2} \) is compact, which implies \((A_k)_{k \in \mathbb{N}} \) has a convergent subsequence \((A_{k_l})_{l \in \mathbb{N}} \), converging to some matrix \(A \in \mathbb{R}^{n^2} \). As this convergence is with respect to the norm topology on \(\mathbb{R}^{n^2} \), each entry of the \(A_{k_l} \) must converge (in \(\mathbb{R} \)) to the respective entry of \(A \). In particular, \(A \) is lower triangular with all nonnegative diagonal entries. It only remains to show \(AA^t = \Sigma \). However,

\[
\Sigma = \lim_{l \to \infty} \Sigma_{k_l} = \lim_{l \to \infty} A_{k_l} A_{k_l}^t = AA^t,
\] (H.17)

which establishes the case. \(\blacksquare \)

Example H.19. The decomposition

\[
\begin{pmatrix}
0 & 0 \\
\sin x & \cos x
\end{pmatrix}
\begin{pmatrix}
0 & \sin x \\
0 & \cos x
\end{pmatrix}
= \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\]

for each \(x \in \mathbb{R} \) (H.18)

shows a symmetric positive semidefinite matrix (which is not positive definite) can have uncountably many different Cholesky decompositions.

Theorem H.20. Let \(\Sigma \) be a symmetric positive semidefinite real \(n \times n \) matrix, \(n \in \mathbb{N} \). Define the index set

\[
I := \{ (i,j) \in \{1, \ldots, n\}^2 : j \leq i \}.
\] (H.19)

Then a matrix \(A = (A_{ij}) \) providing a Cholesky decomposition \(\Sigma = AA^t \) of \(\Sigma = (\sigma_{ij}) \) is obtained via the following algorithm, defined recursively over \(I \), using the order \((1,1) < (2,1) < \cdots < (n,1) < (2,2) < \cdots < (n,2) < \cdots < (n,n) \) (which corresponds to traversing the lower half of \(\Sigma \) by columns from left to right):

\[
A_{11} := \sqrt{\sigma_{11}}.
\] (H.20a)

For \((i,j) \in I \setminus \{(1,1)\} \):

\[
A_{ij} := \begin{cases}
\frac{(\sigma_{ij} - \sum_{k=1}^{j-1} A_{ik} A_{jk})}{A_{jj}} & \text{for } i > j \text{ and } A_{jj} \neq 0, \\
0 & \text{for } i > j \text{ and } A_{jj} = 0, \\
\sqrt{\sigma_{ii} - \sum_{k=1}^{i-1} A_{ik}^2} & \text{for } i = j.
\end{cases}
\] (H.20b)
Proof. A lower triangular \(n \times n \) matrix \(A \) provides a Cholesky decomposition of \(\Sigma \) if, and only if,

\[
AA^t = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{21} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ \end{pmatrix} = \Sigma,
\]

i.e. if, and only if, the \(n(n+1)/2 \) lower half entries of \(A \) constitute a solution to the following (nonlinear) system of \(n(n+1)/2 \) equations:

\[
\sum_{k=1}^{j} A_{ik} A_{jk} = \sigma_{ij}, \quad (i,j) \in I.
\]

Using the order on \(I \) introduced in the statement of the theorem, (H.22a) takes the form

\[
\begin{align*}
A_{11}^2 &= \sigma_{11}, \\
A_{21} A_{11} &= \sigma_{21}, \\
& \quad \vdots \\
A_{n1} A_{11} &= \sigma_{n1}, \\
A_{21}^2 + A_{22}^2 &= \sigma_{22}, \\
A_{31} A_{21} + A_{32} A_{22} &= \sigma_{32}, \\
& \quad \vdots \\
A_{n1}^2 + \cdots + A_{nn}^2 &= \sigma_{nn}.
\end{align*}
\]

From Th. H.18, we know (H.22) must have at least one solution with \(A_{jj} \geq 0 \) for each \(j \in \{1, \ldots, n\} \). In particular, \(\sigma_{jj} \geq 0 \) for each \(j \in \{1, \ldots, n\} \) (this is also immediate from \(\Sigma \) being positive semidefinite, since \(\sigma_{jj} = e_j^t \Sigma e_j \), where \(e_j \) denotes the \(j \)th standard unit vector of \(\mathbb{R}^n \)). We need to show that (H.20) yields a solution to (H.22). The proof is carried out by induction on \(n \). For \(n = 1 \), we have \(\sigma_{11} \geq 0 \) and \(A_{11} = \sqrt{\sigma_{11}} \), i.e. there is nothing to prove. Now let \(n > 1 \). If \(\sigma_{11} > 0 \), then

\[
A_{11} = \sqrt{\sigma_{11}}, \quad A_{21} = \sigma_{21}/A_{11}, \quad \ldots, \quad A_{n1} = \sigma_{n1}/A_{11}
\]

is the unique solution to the first \(n \) equations of (H.22b) satisfying \(A_{jj} > 0 \), and this solution is provided by (H.20). If \(\sigma_{11} = 0 \), then \(\sigma_{21} = \cdots = \sigma_{n1} = 0 \): Otherwise, let \(s := (\sigma_{21} \ldots \sigma_{n1})^t \in \mathbb{R}^{n-1} \setminus \{0\}, \alpha \in \mathbb{R} \), and note

\[
\begin{pmatrix} \alpha \\ s \end{pmatrix} = \begin{pmatrix} 0 & s^t \\ s & \Sigma_{n-1} \end{pmatrix} \begin{pmatrix} \alpha \\ s \end{pmatrix} = \begin{pmatrix} \alpha s^t + \Sigma_{n-1} s \\ s \end{pmatrix} = 2 \alpha \|s\|^2 + s^t \Sigma_{n-1} s < 0
\]

for \(\alpha < -s^t \Sigma_{n-1} s/(2 \|s\|^2) \), in contradiction to \(\Sigma \) being positive semidefinite. Thus,

\[
A_{11} = A_{21} = \cdots = A_{n1} = 0
\]
is a particular solution to the first \(n \) equations of (H.22b), and this solution is provided by (H.20). We will now denote the solution to (H.22) given by Th. H.18 by \(B_{11}, \ldots, B_{nn} \) to distinguish it from the \(A_{ij} \) constructed via (H.20).

In each case, \(A_{11}, \ldots, A_{n1} \) are given by (H.23), and, for \((i, j) \in I \) with \(i, j \geq 2 \), we define

\[
\tau_{ij} := \sigma_{ij} - A_{i1} A_{j1} \quad \text{for each } (i, j) \in J := \{ (i, j) \in I : i, j \geq 2 \}.
\] (H.24)

To be able to proceed by induction, we show that the symmetric \((n - 1) \times (n - 1)\) matrix

\[
T := \begin{pmatrix}
\tau_{22} & \cdots & \tau_{n2} \\
\vdots & \ddots & \vdots \\
\tau_{n2} & \cdots & \tau_{nn}
\end{pmatrix}
\] (H.25)

is positive semidefinite. If \(\sigma_{11} = 0 \), then (H.23b) implies \(\tau_{ij} = \sigma_{ij} \) for each \((i, j) \in J\) and \(T \) is positive semidefinite, as \(\Sigma \) being positive semidefinite implies

\[
(x_2 \ldots x_n)^T \begin{pmatrix} x_2 & \cdots & x_n \end{pmatrix} \Sigma \begin{pmatrix} 0 \\
0 \\
\vdots \\
x_n \end{pmatrix} \geq 0
\] (H.26)

for each \((x_2, \ldots, x_n) \in \mathbb{R}^{n-1}\). If \(\sigma_{11} > 0 \), then (H.23a) holds as well as \(B_{11} = A_{11}, \ldots, B_{n1} = A_{n1} \). Thus, (H.24) implies

\[
\tau_{ij} := \sigma_{ij} - A_{i1} A_{j1} = \sigma_{ij} - B_{i1} B_{j1} \quad \text{for each } (i, j) \in J.
\] (H.27)

Then (H.22) with \(A \) replaced by \(B \) together with (H.27) implies

\[
\sum_{k=2}^{j} B_{ik} B_{jk} = \tau_{ij} \quad \text{for each } (i, j) \in J
\] (H.28)

or, written in matrix form,

\[
\begin{pmatrix}
B_{22} & \cdots & B_{n2} \\
\vdots & \ddots & \vdots \\
B_{n2} & \cdots & B_{nn}
\end{pmatrix}
\begin{pmatrix}
\tau_{22} & \cdots & \tau_{n2} \\
\vdots & \ddots & \vdots \\
\tau_{n2} & \cdots & \tau_{nn}
\end{pmatrix} = T,
\] (H.29)

which, once again, establishes \(T \) to be positive semidefinite (since, for each \(x \in \mathbb{R}^{n-1}, \)

\[
x^T T x = x^T B B^T x = (B^T x)^T (B^T x) \geq 0.
\]

By induction, we now know the algorithm of (H.20) yields a (possibly different from (H.29) for \(\sigma_{11} > 0 \)) decomposition of \(T \):

\[
CC^t = \begin{pmatrix}
C_{22} & \cdots & C_{n2} \\
\vdots & \ddots & \vdots \\
C_{n2} & \cdots & C_{nn}
\end{pmatrix}
\begin{pmatrix}
\tau_{22} & \cdots & \tau_{n2} \\
\vdots & \ddots & \vdots \\
\tau_{n2} & \cdots & \tau_{nn}
\end{pmatrix} = T
\] (H.30)

or
\[
\sum_{k=2}^{j} C_{ik}C_{jk} = \tau_{ij} = \sigma_{ij} - A_{i1}A_{j1} \quad \text{for each } (i, j) \in J, \quad (H.31)
\]
where
\[
C_{22} := \sqrt{\tau_{22}} = \begin{cases}
\sqrt{\sigma_{22}} & \text{for } \sigma_{11} = 0, \\
B_{22} & \text{for } \sigma_{11} > 0,
\end{cases} \quad (H.32a)
\]
and, for \((i, j) \in J \setminus \{(2, 2)\},\)
\[
C_{ij} := \begin{cases}
\left(\tau_{ij} - \sum_{k=2}^{i-1} C_{ik}C_{jk}\right)/C_{jj} & \text{for } i > j \text{ and } C_{jj} \neq 0, \\
0 & \text{for } i > j \text{ and } C_{jj} = 0, \\
\sqrt{\tau_{ii} - \sum_{k=2}^{i-1} C_{ik}^2} & \text{for } i = j.
\end{cases} \quad (H.32b)
\]
Substituting \(\tau_{ij} = \sigma_{ij} - A_{i1}A_{j1}\) from (H.24) into (H.32) and comparing with (H.20), an induction over \(J\) with respect to the order introduced in the statement of the theorem shows \(A_{ij} = C_{ij}\) for each \((i, j) \in J\). In particular, since all \(C_{ij}\) are well-defined by induction, all \(A_{ij}\) are well-defined by (H.20) (i.e. all occurring square roots exist as real numbers). It also follows that \(\{A_{ij} : (i, j) \in I\}\) is a solution to (H.22): The first \(n\) equations are satisfied according to (H.23); the remaining \((n - 1)n/2\) equations are satisfied according to (H.31) combined with \(C_{ij} = A_{ij}\). This concludes the proof that (H.20) furnishes a solution to (H.22). ☐

H.5 Jordan Normal Form

Theorem H.21 (Jordan Normal Form). Let \(n \in \mathbb{N}\) and \(A \in \mathcal{M}(n, \mathbb{C})\). There exists an invertible matrix \(T \in \mathcal{M}(n, \mathbb{C})\) such that
\[
B := T^{-1}AT \quad (H.33)
\]
is in Jordan normal form (also known as Jordan canonical form), i.e. \(B\) has block diagonal form
\[
B = \begin{pmatrix} B_1 & 0 \\ \vdots & \ddots \\ 0 & B_r \end{pmatrix}, \quad (H.34)
\]
where each block \(B_j \in \mathcal{M}(n_j, \mathbb{C}), n_j \in \{1, \ldots, n\},\) is a so-called Jordan matrix or Jordan block, i.e.
\[
B_j = (\lambda_j) \quad \text{or} \quad B_j = \begin{pmatrix} \lambda_j & 1 & 0 & \cdots & 0 \\ \lambda_j & 1 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \lambda_j & 1 \end{pmatrix}, \quad (H.35)
\]
where \(\lambda_j \) is an eigenvalue of \(A \) and \(\sum_{j=1}^{r} n_j = n \). Moreover, if \(\pi : \{1, \ldots, r\} \to \{1, \ldots, r\} \) is a permutation, then there exists an invertible matrix \(T_\pi \in M(n, \mathbb{C}) \) such that

\[
B_\pi := T_\pi^{-1} A T_\pi = \begin{pmatrix}
B_{\pi(1)} & 0 \\
\vdots & \ddots \\
0 & B_{\pi(r)}
\end{pmatrix}.
\]

(H.36)

Proof. See, e.g., [Koe03, Th. 9.5.6] or [Str08, Th. 27.13]. □

I Eigenvalues

I.1 Introductory Remarks

Definition and Remark I.1. Let \(A \) be an \(n \times n \) matrix over the field \(F, n \in \mathbb{N} \).

(a) We recall from Linear Algebra that \(\lambda \in F \) is called an eigenvalue of \(A \) if, and only if,

\[
\exists \ 0 \neq v \in F^n \quad Av = \lambda v,
\]

where every \(0 \neq v \in F^n \) satisfying (I.1) is called an eigenvector to the eigenvalue \(\lambda \). Moreover, we also recall that the eigenvalues of \(A \) are precisely all the zeros of the characteristic polynomial \(\chi_A \) of \(A \), where \(\chi_A \) is defined by

\[
\chi_A(t) := \det(t \text{Id} - A).
\]

(I.2)

The set \(\sigma(A) \) of all eigenvalues of \(A \) is called the spectrum of \(A \),

\[
\sigma(A) := \{ \lambda \in F : \lambda \text{ is eigenvalue of } A \}.
\]

For \(\lambda \in \sigma(A) \), one defines its algebraic multiplicity \(m_a(\lambda) \) and its geometric multiplicity \(m_g(\lambda) \) as follows:

\[
m_a(\lambda) := m_a(\lambda, A) := \text{multiplicity of } \lambda \text{ as a zero of } \chi_A,
\]

(I.4a)

\[
m_g(\lambda) := m_g(\lambda, A) := \dim \ker(A - \lambda \text{Id}).
\]

(I.4b)

(b) Eigenvalues and their multiplicities are invariant under similarity transformations, i.e. if \(T \) is an invertible \(n \times n \) matrix over \(F \) and \(B := T^{-1} A T \), then \(\sigma(B) = \sigma(A) \) and, for each \(\lambda \in \sigma(A) \), \(m_a(\lambda, A) = m_a(\lambda, B) \) as well as \(m_g(\lambda, A) = m_g(\lambda, B) \).

(c) Note that the characteristic polynomial as defined in (I.2) is always a monic polynomial of degree \(n \) (i.e. a polynomial of degree \(n \), where the coefficient of \(t^n \) is 1). In general, the eigenvalues of \(A \) will be in the algebraic closure \(F' \) of \(F \). On the other hand, clearly, every monic polynomial of degree at least 1 and with coefficients in \(F \) is the characteristic polynomial of some matrix over \(F' \) (somewhat less clearly, it is even true that it always is the characteristic polynomial of some matrix over
The computation of eigenvalues is of importance to numerous applications. A standard example from Physics is the occurrence of eigenvalues as eigenfrequencies of oscillators. More generally, one often needs to compute eigenvalues when solving (linear) differential equations. In this and many other applications, the occurrence of eigenvalues can be traced back to the fact that eigenvalues occur when transforming a matrix into suitable normal forms, e.g. into Jordan normal form: To compute the Jordan normal form of a matrix, one first needs to compute its eigenvalues. Another example of internal importance to the field of Numerical Analysis is the computation of the spectral norm of a matrix (i.e. the operator norm induced by the Euclidean norm), which requires the computation of the absolute value of an eigenvalue with maximal size of a (real or complex) matrix.

Remark I.2. Given that eigenvalues are precisely the roots of the characteristic polynomial, and given that, as mentioned in Def. and Rem. I.1(c), every monic polynomial of degree at least 1 can occur as the characteristic polynomial of a matrix, it is not surprising that computing eigenvalues is, in general, a difficult task. According to Galois theory in Algebra, for a generic polynomial of degree at least 5, it is not possible to obtain its roots using radicals and, in general, an approximation by iterative numerical methods is warranted. Having said that, let us note that the problem of computing eigenvalues is, indeed, typically easier than the general problem of computing zeros of polynomials. This is due to the fact that the difficulty of computing the zeros of a polynomial depends tremendously on the form in which the polynomial is given: It is typically hard if the polynomial is expanded into the form \(p(t) = \sum_{j=0}^{n} a_j t^j \), but it is easy (trivial, in fact), if the polynomial is given in a factored form \(p(t) = c \prod_{j=1}^{n} (t - \lambda_j) \). If the characteristic polynomial is given implicitly by a matrix, one is, in general, somewhere between the two extremes. In particular, for a large matrix, it usually makes no sense to compute the characteristic polynomial in its expanded form (this is an expensive task in itself and, in the process, one even loses the additional structure given by the matrix). It makes much more sense to use methods tailored to the computation of eigenvalues, and, if available, one should make use of additional structure (such as symmetry) a matrix might have.

It will be useful to know that the zeros of a complex polynomial depend, in a certain sense, continuously on its coefficients, as this also means that the eigenvalues of a complex matrix depend, in the same sense, continuously on the coefficients of the matrix. The precise results will be given in Th. I.4 and Cor. I.5 below. The proof is based on Rouché’s theorem of Complex Analysis, which we now state (not in its most general form) for the convenience of the reader (Rouché’s theorem is usually proved as a simple consequence of the residue theorem).
Theorem I.3 (Rouché). Let \(D := B_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \} \) be a disk in \(\mathbb{C} \) \((z_0 \in \mathbb{C}, r \in \mathbb{R}^+)\) with boundary \(\partial D \). If \(G \subseteq \mathbb{C} \) is an open set containing the closed disk \(D = D \cup \partial D \) and if \(f, g : G \rightarrow \mathbb{C} \) are holomorphic functions satisfying
\[
\forall z \in \partial D \quad |f(z) - g(z)| < |f(z)|,
\] (I.5)
then \(N_f = N_g \), where \(N_f, N_g \) denote the number of zeros that \(f \) and \(g \) have in \(D \), respectively, and where each zero is counted with its multiplicity.

Proof. See, e.g., [Rud87, Th. 10.43(b)]. ■

Theorem I.4. Let \(p : \mathbb{C} \rightarrow \mathbb{C} \) be a monic complex polynomial of degree \(n, n \in \mathbb{N} \), i.e.
\[
p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0,
\] (I.6a)
\(a_0, \ldots, a_{n-1} \in \mathbb{C} \). Then, for each \(\epsilon > 0 \), there exists \(\delta > 0 \) such that, for each monic complex polynomial \(q : \mathbb{C} \rightarrow \mathbb{C} \) of degree \(n \), satisfying
\[
q(z) = z^n + b_{n-1}z^{n-1} + \cdots + b_1z + b_0,
\] (I.6b)
b_0, \ldots, b_{n-1} \in \mathbb{C}, and
\[
\forall k \in \{0, \ldots, n-1\} \quad |a_k - b_k| < \delta,
\] (I.6c)
there exist enumerations \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \) and \(\mu_1, \ldots, \mu_n \in \mathbb{C} \) of the zeros of \(p \) and \(q \), respectively, listing each zero according to its multiplicity, where
\[
\forall k \in \{1, \ldots, n\} \quad |\lambda_k - \mu_k| < \epsilon.
\] (I.7)

Proof. Let \(\alpha \in \mathbb{R}^+ \cup \{\infty\} \) denote the minimal distance between distinct zeros of \(p \), i.e.
\[
\alpha := \begin{cases}
\infty & \text{if } p \text{ has only one distinct zero}, \\
\min \{ |\lambda - \tilde{\lambda}| : p(\lambda) = p(\tilde{\lambda}) = 0, \lambda \neq \tilde{\lambda} \} & \text{otherwise}.
\end{cases}
\] (I.8)

Without loss of generality, we may assume \(0 < \epsilon < \alpha/2 \). Let \(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_t \), where \(1 \leq t \leq n \) be the distinct zeros of \(p \). For each \(k \in \{1, \ldots, t\} \), define the open disk \(D_k := B_\epsilon(\lambda_k) \). Since \(\epsilon < \alpha \), \(p \) does not have any zeros on \(\partial D_k \). Thus,
\[
m_k := \min \{ |p(z)| : z \in \partial D_k \} > 0.
\] (I.9a)

Also define
\[
M_k := \max \left\{ \sum_{j=0}^{n-1} |z|^j : z \in \partial D_k \right\} \quad \text{and note} \quad 1 \leq M_k < \infty.
\] (I.9b)

Then, for each \(\delta > 0 \) satisfying
\[
\forall k \in \{1, \ldots, t\} \quad M_k \delta < m_k
\]
and each \(q \) satisfying (I.6b) and (I.6c), the following holds true:

\[
\forall \ k \in \{1, \ldots, l\} \quad \forall \ z \in \partial D_k \quad |q(z) - p(z)| \leq \sum_{j=0}^{n-1} |a_j - b_j||z|^j \leq \delta \sum_{j=0}^{n-1} |z|^j \leq \delta M_k < m_k \leq |p(z)|,
\]

(I.10)

showing \(p \) and \(q \) satisfy hypothesis (I.5) of Rouché’s theorem. Thus, in each \(D_k \), the polynomials \(p \) and \(q \) must have precisely the same number of zeros (counted according to their respective multiplicities). Since \(p \) and \(q \) both have precisely \(n \) zeros (not necessarily distinct), the only (distinct) zero of \(p \) in \(D_k \) is \(\tilde{\lambda}_k \), and the radius of \(D_k \) is \(\epsilon \), the proof of Th. I.4 is complete.

Corollary I.5. Let \(A \in \mathcal{M}(n, \mathbb{C}) \), \(n \in \mathbb{N} \), and let \(\| \cdot \| \) denote some arbitrary norm on \(\mathcal{M}(n, \mathbb{C}) \). Then, for each \(\epsilon > 0 \), there exists \(\delta > 0 \) such that, for each matrix \(B \in \mathcal{M}(n, \mathbb{C}) \), satisfying

\[
\|A - B\| < \delta,
\]

there exist enumerations \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \) and \(\mu_1, \ldots, \mu_n \in \mathbb{C} \) of the eigenvalues of \(A \) and \(B \), respectively, listing each eigenvalue according to its (algebraic) multiplicity, where

\[
\forall \ k \in \{1, \ldots, n\} \quad |\lambda_k - \mu_k| < \epsilon.
\]

(I.12)

Proof. Recall that each coefficient of the characteristic polynomial \(\chi_A \) is a polynomial in the coefficients of \(A \) (since \(\chi_A(t) \) is defined as \(\det(t \text{Id} - A) \)), and thus, the function that maps the coefficients of \(A \) to the coefficients of \(\chi_A \) is continuous from \(\mathbb{C}^{n^2} \) to \(\mathbb{C}^n \). Thus (and since all norms on \(\mathbb{C}^{n^2} \) are equivalent as well as all norms on \(\mathbb{C}^n \)), given \(\gamma > 0 \), there exists \(\delta = \delta(\gamma) > 0 \), such that (I.11) implies

\[
\forall \ k \in \{0, \ldots, n-1\} \quad |a_k - b_k| < \gamma,
\]

if \(a_0, \ldots, a_{n-1} \) and \(b_0, \ldots, b_{n-1} \) denote the coefficients of \(\chi_A \) and \(\chi_B \), respectively. Since the eigenvalues are precisely the zeros of the respective characteristic polynomial, the statement of the corollary is now immediate from the statement of Th. I.4.

I.2 Estimates, Localization

As discussed in Rem. I.2, iterative numerical methods will usually need to be employed to approximate the eigenvalues of a given matrix. We also already know from Numerical Analysis I that iterative methods such as Newton’s method will, in general, only converge if one starts sufficiently close to the exact solution. The localization results of the present section can help choosing suitable initial points.

Definition I.6. For each \(A = (a_{kl}) \in \mathcal{M}(n, \mathbb{C}) \), \(n \in \mathbb{N} \), the closed disks

\[
G_k := G_k(A) := \left\{ z \in \mathbb{C} : |z - a_{kk}| \leq \sum_{\substack{l=1, \ l \neq k}}^{n} |a_{kl}| \right\}, \quad k \in \{1, \ldots, n\},
\]

(I.13)
are called the Gershgorin disks of the matrix A.

Theorem I.7 (Gershgorin Circle Theorem). For each $A = (a_{kl}) \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$, one has

$$\sigma(A) \subseteq \bigcup_{k=1}^{n} G_k(A), \quad (I.14)$$

that means the spectrum of a square complex matrix A is always contained in the union of the Gershgorin disks of A.

Proof. Let $\lambda \in \sigma(A)$ and let $x \in \mathbb{C}^n \setminus \{0\}$ be a corresponding eigenvector. Moreover, choose $k \in \{1, \ldots, n\}$ such that $|x_k| = \|x\|_{\max}$. The kth component of the equation $Ax = \lambda x$ reads

$$\lambda x_k = \sum_{l=1}^{n} a_{kl} x_l$$

and implies

$$|\lambda - a_{kk}| |x_k| \leq \sum_{l=1, \ l \neq k}^{n} |a_{kl}| |x_l| \leq \sum_{l=1, \ l \neq k}^{n} |a_{kl}| |x_k|.$$

Dividing the estimate by $|x_k| \neq 0$ shows $\lambda \in G_k$ and, thus, proves (I.14). \hfill \blacksquare

Corollary I.8. For each $A = (a_{kl}) \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$, instead of using row sums to define the Gershgorin disks of (I.13), one can use the column sums to define

$$G'_k := G'_k(A) := \left\{ z \in \mathbb{C} : |z - a_{kk}| \leq \sum_{l=1, \ l \neq k}^{n} |a_{lk}| \right\}, \quad k \in \{1, \ldots, n\}. \quad (I.15)$$

Then one can strengthen the statement of Th. I.7 to

$$\sigma(A) \subseteq \left(\bigcup_{k=1}^{n} G_k(A) \right) \cap \left(\bigcup_{k=1}^{n} G'_k(A) \right). \quad (I.16)$$

Proof. Since $\sigma(A) = \sigma(A^t)$ and $G_k(A^t) = G'_k(A)$, (I.16) is an immediate consequence of (I.14). \hfill \blacksquare

Example I.9. Consider the matrix

$$A := \begin{pmatrix} 5 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 3 & \frac{1}{4} & 0 \\ \frac{1}{2} & 0 & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 6 \end{pmatrix}.$$

Then the Gershgorin disks according to (I.13) and (I.15) are

$$G_1 = \overline{B}_1(5), \quad G_2 = \overline{B}_{\frac{3}{4}}(3), \quad G_3 = \overline{B}_{\frac{1}{4}}(1), \quad G_4 = \overline{B}_{\frac{1}{2}}(6),$$

$$G'_1 = \overline{B}_{\frac{1}{2}}(5), \quad G'_2 = \overline{B}_{\frac{1}{4}}(3), \quad G'_3 = \overline{B}_{\frac{1}{4}}(1), \quad G'_4 = \overline{B}_1(6).$$
Here, the intersection of (I.16) is noticeably smaller than either of the unions. Mathematica provides the following numerical approximations to the eigenvalues of A:

$$
\lambda_1 \approx 1.00739, \quad \lambda_2 \approx 2.86467, \quad \lambda_3 \approx 4.90694, \quad \lambda_4 \approx 6.22099.
$$

Theorem I.10. Let $A = (a_{kl}) \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$. Suppose k_1, \ldots, k_n is an enumeration of the numbers from 1 to n, and let $q \in \{1, \ldots, n\}$. Moreover, suppose

$$
D^{(1)} = G_{k_1} \cup \cdots \cup G_{k_q}
$$

is the union of q Gershgorin disks of A and

$$
D^{(2)} = G_{k_{q+1}} \cup \cdots \cup G_{k_n}
$$

is the union of the remaining $n - q$ Gershgorin disks of A. If $D^{(1)}$ and $D^{(2)}$ are disjoint, then $D^{(1)}$ must contain precisely q eigenvalues of A and $D^{(2)}$ must contain precisely $n - q$ eigenvalues of A (counted according to their algebraic multiplicity).

Proof. Let $D := \text{diag}(a_{11}, \ldots, a_{nn})$ be the diagonal matrix that has precisely the same diagonal elements as A. The idea of the proof is to connect A with D via a path (in fact, a line segment) through $\mathcal{M}(n, \mathbb{C})$. Then we will show that the claim of the theorem holds for D and must remain valid along the entire path. In consequence, it must also hold for A. The path is defined by

$$
\Phi : [0, 1] \longrightarrow \mathcal{M}(n, \mathbb{C}), \quad t \mapsto \Phi(t) = (\phi_{kl}(t)), \quad \phi_{kl}(t) := \begin{cases} a_{kl} & \text{for } k = l, \\ ta_{kl} & \text{for } k \neq l, \end{cases}
$$

i.e.

$$
\Phi(t) = \begin{pmatrix}
 a_{11} & ta_{12} & \ldots & \ldots & ta_{1n} \\
 ta_{21} & a_{22} & ta_{23} & \ldots & ta_{2n} \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 ta_{n-1,1} & \ldots & ta_{n-1,n-2} & a_{n-1,n-1} & ta_{n-1,n} \\
 ta_{n1} & ta_{n2} & \ldots & ta_{nn-1} & a_{nn}
\end{pmatrix}.
$$

Clearly,

$$
\Phi(0) = D = \text{diag}(a_{11}, \ldots, a_{nn}), \quad \Phi(1) = A.
$$

We denote the corresponding Gershgorin disks as follows:

$$
\forall k \in \{1, \ldots, n\}, \quad \forall t \in [0, 1], \quad G_k(t) := G_k(\Phi(t)) = \left\{ z \in \mathbb{C} : |z - a_{kk}| \leq t \sum_{l=1, l \neq k}^n |a_{kl}| \right\}. \quad \text{(I.19)}
$$

In consequence of (I.19), we have

$$
\forall k \in \{1, \ldots, n\}, \quad \forall t \in [0, 1], \quad \{a_{kk}\} = G_k(0) \subseteq G_k(t) \subseteq G_k(1) = G_k(A) = G_k. \quad \text{(I.20)}
$$
We now consider the set
\[S := \{ t \in [0, 1] : \Phi(t) \text{ has precisely } q \text{ eigenvalues in } D^{(1)} \}. \]
(I.21)

In (I.21) as well as in the rest of the proof, we always count all eigenvalues according to their respective algebraic multiplicities. Due to (I.20), we know that precisely the \(q \) eigenvalues \(a_{k_1, k_1}, \ldots, a_{k_q, k_q} \) of \(D \) are in \(D^{(1)} \). In particular, \(0 \in S \) and \(S \neq \emptyset \). The proof is done once we show
\[\tau := \sup S = 1 \]
(I.22a)

and
\[\tau \in S \quad \text{(i.e. } \tau = \max S \text{).} \]
(I.22b)

As \(D^{(1)} \) and \(D^{(2)} \) are compact and disjoint, they have a positive distance,
\[\epsilon := \text{dist}(D^{(1)}, D^{(2)}) > 0. \]
(I.23)

According to Cor. I.5, there exists \(\delta > 0 \) such that, for each \(s, t \in [0, 1] \) with \(|s - t| < \delta \), there exist enumerations \(\lambda_1(s), \ldots, \lambda_n(s) \) and \(\lambda_1(t), \ldots, \lambda_n(t) \) of the eigenvalues of \(\Phi(s) \) and \(\Phi(t) \), respectively, satisfying
\[\forall k \in \{1, \ldots, n\} \quad |\lambda_k(s) - \lambda_k(t)| < \epsilon. \]
(I.24)

Combining (I.24) with (I.23) yields
\[\forall s, t \in [0, 1] \quad \left((s \in S \text{ and } |s - t| < \delta) \Rightarrow t \in S \right). \]
(I.25)

Clearly, (I.25) implies both (I.22a) (since, otherwise, there were \(\tau < t < 1 \) with \(|\tau - t| < \delta \)) and (I.22b) (since there are \(0 < t < \tau \) with \(|\tau - t| < \delta \)), thereby completing the proof. \[\blacksquare \]

Remark I.11. If \(A \in \mathcal{M}(n, \mathbb{R}), n \in \mathbb{N} \), then Th. I.10 can sometimes help to determine which regions can contain nonreal eigenvalues: For real matrices all Gershgorin disks are centered on the real line. Moreover, if \(A \) is real, then \(\lambda \in \sigma(A) \) implies \(\bar{\lambda} \in \sigma(A) \) and they must lie in the same Gershgorin disks (as they have the same distance to the real line). Thus, if \(\lambda \) is not real, then it can not lie in any Gershgorin disks known to contain just one eigenvalue.

Example I.12. For the matrix \(A \) of Example I.9, we see that the sets \(G_3 = \overline{B}_1(1), G_2 = \overline{B}_{\frac{3}{2}}(3), G_1 \cup G_4 = \overline{B}_1(5) \cup \overline{B}_{\frac{1}{2}}(6) \) are pairwise disjoint. Thus, Th. I.10 implies that \(G_3 \) contains precisely one eigenvalue, \(G_2 \) contains precisely one eigenvalue, and \(G_1 \cup G_4 \) contains precisely two eigenvalues. Combining this information with Rem. I.11 shows that \(G_3 \) and \(G_2 \) must each contain a single real eigenvalue, whereas \(G_1 \cup G_4 \) could contain two conjugated nonreal eigenvalues (however, as stated in Example I.9, all eigenvalues of \(A \) are actually real).
I.3 Power Method

Given an $n \times n$ matrix A over \mathbb{C} and an initial vector $z_0 \in \mathbb{C}^n$, the power method (also known as power iteration or von Mises iteration) means applying increasingly higher powers of A to z_0 according to the definition

$$z_k := A z_{k-1} \quad \text{for each } k \in \mathbb{N} \quad \text{(i.e. } z_k = A^k z_0 \text{ for each } k \in \mathbb{N}_0).$$

(I.26)

We will see below that this simple iteration can, in many situations and with suitable modifications, be useful to approximate eigenvalues and eigenvectors (cf. Th. I.16 and Cor. I.19 below). Before we can prove the main results, we need some preparation:

Definition I.13. For each $A \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$, define its spectral radius by

$$r(A) := \max \{ |\lambda| : \lambda \in \sigma(A) \}.$$

(I.27)

Proposition I.14. The following holds true for each $A \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$:

$$\lim_{k \to \infty} A^k = 0 \quad \iff \quad r(A) < 1.$$

(I.28)

Proof. First, suppose $\lim_{k \to \infty} A^k = 0$. Let $\lambda \in \sigma(A)$ and choose a corresponding eigenvector $v \in \mathbb{C}^n \setminus \{0\}$. Then, for each norm $\| \cdot \|$ on \mathbb{C}^n with induced matrix norm on $\mathcal{M}(n, \mathbb{C})$,

$$\forall k \in \mathbb{N} \quad \| A^k v \| = |\lambda|^k \| v \| \leq \| A^k \| \| v \|,$$

implying (since $\lim_{k \to \infty} \| A^k \| = 0$ and $\| v \| > 0$)

$$\lim_{k \to \infty} |\lambda|^k = 0,$$

which, in turn, implies $|\lambda| < 1$. Conversely, suppose $r(A) < 1$. If $B, T \in \mathcal{M}(n, \mathbb{C})$ and T is invertible with $A = T B T^{-1}$, then an obvious induction shows

$$\forall k \in \mathbb{N}_0 \quad A^k = T B^k T^{-1}.$$

(I.29)

According to Th. H.21, we can choose T such that (I.29) holds with B in Jordan normal form, i.e. with B in block diagonal form

$$B = \begin{pmatrix} B_1 & 0 \\ \vdots & \ddots \\ 0 & B_r \end{pmatrix},$$

(I.30)

$1 \leq r \leq n$, where

$$B_j = (\lambda_j) \quad \text{or} \quad B_j = \begin{pmatrix} \lambda_j & 1 & 0 & \ldots & 0 \\ \lambda_j & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \lambda_j & 1 & \ldots & \lambda_j \end{pmatrix},$$

(I.31)
\(\lambda_j \in \sigma(A), \ B_j \in \mathcal{M}(n_j, \mathbb{C}), \ n_j \in \{1, \ldots, n\} \) for each \(j \in \{1, \ldots, r\} \), and \(\sum_{j=1}^{r} n_j = n \). Using blockwise matrix multiplication in (I.30) yields

\[
\forall \ k \in \mathbb{N}_0 \quad B^k = \begin{pmatrix}
B_1^k & 0 \\
\vdots & \ddots \\
0 & B_r^k
\end{pmatrix}.
\] (I.32)

We now show

\[
\forall \ j \in \{1, \ldots, r\} \quad \lim_{k \to \infty} B_j^k = 0.
\] (I.33)

To this end, we write \(B_j = \lambda_j \text{Id} + N_j \), where \(N_j \in \mathcal{M}(n_j, \mathbb{C}) \) is a canonical nilpotent matrix, \(N_j = 0 \) (zero matrix) or

\[
N_j = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix},
\]

and apply the binomial theorem to obtain

\[
\forall \ k \in \mathbb{N} \quad B_j^k = \sum_{\alpha=0}^{k} \binom{k}{\alpha} \lambda_j^{k-\alpha} N_j^\alpha = \sum_{\alpha=0}^{\min\{k,n_j-1\}} \binom{k}{\alpha} \lambda_j^{k-\alpha} N_j^\alpha.
\] (I.34)

Using

\[
\forall \ k \in \mathbb{N} \quad \forall \ \alpha \in \{0, \ldots, k\} \quad \binom{k}{\alpha} = \frac{k!}{\alpha! (k-\alpha)!} \leq k(k-1) \cdots (k-\alpha+1) \leq k^\alpha,
\]

and an arbitrary induced matrix norm on \(\mathcal{M}(n, \mathbb{C}) \), (I.34) implies

\[
\|B_j^k\| \leq \sum_{\alpha=0}^{n_j-1} k^\alpha |\lambda_j|^{k-\alpha} \|N_j\|^\alpha |\lambda_j|^{1-\alpha} \to 0 \quad \text{for} \ k \to \infty,
\]

proving (I.33). Next, we conclude \(\lim_{k \to \infty} B^k = 0 \) from (I.32). Thus, as \(\|A^k\| \leq \|T\| \|B^k\| \|T^{-1}\| \), the claimed \(\lim_{k \to \infty} A^k = 0 \) also follows and completes the proof. \(\blacksquare \)

Definition I.15. Let \(A \in \mathcal{M}(n, \mathbb{C}), \ z \in \mathbb{C}^n, \ n \in \mathbb{N} \). Recalling that \(\mathbb{C}^n \) is the direct sum of the generalized eigenspaces of \(A \),

\[
\mathbb{C}^n = \bigoplus_{\lambda \in \sigma(A)} M(\lambda), \quad \forall \ \lambda \in \sigma(A) \quad M(\lambda) := \ker(A - \lambda \text{Id})^{m_a(\lambda)},
\] (I.35)

we say that \(z \) has a *nontrivial part* in \(M(\mu), \ \mu \in \sigma(A) \), if, and only if, in the unique decomposition of \(z \) with respect to the direct sum (I.35),

\[
z = \sum_{\lambda \in \sigma(A)} z_\lambda \quad \text{with} \ z_\mu \neq 0, \quad \forall \ \lambda \in \sigma(A) \quad z_\lambda \in M(\lambda).
\] (I.36)
Theorem I.16. Let $A \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$. Suppose that A has an eigenvalue that is larger in size than all other eigenvalues of A, i.e.

$$\exists \lambda \in \sigma(A) \forall \mu \in \sigma(A) \setminus \{\lambda\} \ |\lambda| > |\mu|.$$ \hfill (I.37)

Moreover, assume λ to be semisimple (i.e. $A|_{M(\lambda)}$ is diagonalizable and all Jordan blocks with respect to λ are trivial). Choosing an arbitrary norm $\| \cdot \|$ on \mathbb{C}^n and starting with $z_0 \in \mathbb{C}^n$, define the sequence $(z_k)_{k \in \mathbb{N}}$ via the power iteration (I.26). From the z_k also define sequences $(w_k)_{k \in \mathbb{N}}$ and $(\alpha_k)_{k \in \mathbb{N}}$ by

$$w_k := \begin{cases} \frac{z_k}{\|z_k\|} & \text{for } z_k \neq 0, \\ z_0 & \text{for } z_k = 0 \end{cases} \in \mathbb{C}^n \quad \text{for each } k \in \mathbb{N}_0,$$ \hfill (I.38a)

$$\alpha_k := \begin{cases} \frac{z_k^* A z_k}{\|z_k\|^2} & \text{for } z_k \neq 0, \\ 0 & \text{for } z_k = 0 \end{cases} \in \mathbb{C} \quad \text{for each } k \in \mathbb{N}_0$$ \hfill (I.38b)

(treating the z_k as column vectors). If z_0 has a nontrivial part in $M(\lambda)$ in the sense of Def. I.15, then

$$\lim_{k \to \infty} \alpha_k = \lambda$$ \hfill (I.39a)

and there exist sequences $(\phi_k)_{k \in \mathbb{N}}$ in \mathbb{R} and $(r_k)_{k \in \mathbb{N}}$ in \mathbb{C}^n such that, for all k sufficiently large,

$$w_k = e^{i\phi_k} \frac{v_\lambda + r_k}{\|v_\lambda + r_k\|}, \quad \|v_\lambda + r_k\| \neq 0, \quad \lim_{k \to \infty} r_k = 0,$$ \hfill (I.39b)

where v_λ is an eigenvector corresponding to the eigenvalue λ.

Proof. If $\lambda = 0$, then condition (I.37) together with λ being semisimple implies $A = 0$ and there is nothing to prove. Thus, we proceed under the assumption $\lambda \neq 0$. As in the proof of Prop. I.14, we choose $T \in \mathcal{M}(n, \mathbb{C})$ invertible such that (I.29) holds with B in Jordan normal form. However, this time, we choose T such that the (trivial) Jordan blocks corresponding to λ come first, i.e.

$$B = \begin{pmatrix} B_1 & 0 \\ B_2 & \ddots \\ 0 & B_r \end{pmatrix}, \quad B_1 = \lambda \text{Id} \in \mathcal{M}(n_1, \mathbb{C}),$$ \hfill (I.40)

$B_j \in \mathcal{M}(n_j, \mathbb{C})$, is a Jordan matrix to $\lambda_j \in \sigma(A) \setminus \{\lambda\}$ for each $j = 2, \ldots, r$, $r \in \{1, \ldots, n\}$, $n_1, \ldots, n_r \in \mathbb{N}$, where $\sum_{j=1}^r n_j = n$. Since T is invertible, the columns t_1, \ldots, t_n of T form a basis of \mathbb{C}^n. For each $j \in \{1, \ldots, n_1\}$, we compute

$$At_j = TBT^{-1}t_j = TBe_j = T\lambda e_j = \lambda t_j,$$ \hfill (I.41)

showing t_j to be an eigenvector corresponding to λ. Thus, t_1, \ldots, t_{n_1} form a basis of $M(\lambda) = \ker(A - \lambda \text{Id})$ (here, the eigenspace is the same as the generalized eigenspace),
and, if \(z_0 \) has a nontrivial part in \(M(\lambda) \), then there exist \(\zeta_1, \ldots, \zeta_n \in \mathbb{C} \) with at least one \(\zeta_j \neq 0, j \in \{1, \ldots, n\} \), such that

\[
 z_0 = v_\lambda + \sum_{j=n_1+1}^{n} \zeta_j t_j, \quad v_\lambda = \sum_{j=1}^{n_1} \zeta_j t_j.
\]

We note \(v_\lambda \) to be an eigenvector corresponding to \(\lambda \). Next, we compute, for each \(k \in \mathbb{N}_0 \),

\[
 A^k z_0 = TB^k T^{-1} \left(v_\lambda + \sum_{j=n_1+1}^{n} \zeta_j t_j \right) = \lambda^k v_\lambda + TB^k \left(\sum_{j=n_1+1}^{n} \zeta_j e_j \right)
 = \lambda^k \left(v_\lambda + \frac{1}{\lambda^k} B^k \left(\sum_{j=n_1+1}^{n} \zeta_j e_j \right) \right),
\]

where, in the last step, we have used \(\lambda \neq 0 \). In consequence, letting, for each \(k \in \mathbb{N}_0 \),

\[
 r_k := \frac{1}{\lambda^k} B^k \left(\sum_{j=n_1+1}^{n} \zeta_j e_j \right), \quad (I.43)
\]

we obtain, for each \(k \) such that \(v_\lambda + r_k \neq 0 \),

\[
 w_k = \frac{A^k z_0}{\|A^k z_0\|} = \frac{\lambda^k v_\lambda + r_k}{\|\lambda^k v_\lambda + r_k\|}.
\]

Let \(\beta_k := \frac{\lambda^k}{\|\lambda^k \|} \). Then \(|\beta_k| = 1 \) and, thus, there is \(\phi_k \in [0, 2\pi) \) such that \(\beta_k = e^{i\phi_k} \). To prove (I.39b), it now only remains to show \(\lim_{k \to \infty} r_k = 0 \). However, the hypothesis (I.37) implies

\[
 \forall j \in \{2, \ldots, r\} \quad r \left(\frac{1}{\lambda} B_j \right) = \frac{|\lambda_j|}{\|\lambda\|} < 1
\]

and Prop. I.14, in turn, implies \(\lim_{k \to \infty} \frac{1}{\lambda^k} B^k = 0 \). Using this in (I.43), where \(\frac{1}{\lambda^k} B^k \) is applied to a vector in \(\text{span}\{e_{n_1+1}, \ldots, e_n\} \), yields

\[
 \lim_{k \to \infty} r_k = T \lim_{k \to \infty} \frac{1}{\lambda^k} B^k \left(\sum_{j=n_1+1}^{n} \zeta_j e_j \right) = 0, \quad (I.45)
\]

finishing the proof of (I.39b). Finally, it is

\[
 \lim_{k \to \infty} \alpha_k = \lim_{k \to \infty} \frac{z_k^* A z_k}{z_k^* z_k} = \lim_{k \to \infty} \frac{w_k^* A w_k}{w_k^* w_k} = \lim_{k \to \infty} \frac{(v_\lambda^* + r_k^*) A (v_\lambda + r_k)}{(v_\lambda^* + r_k^*) (v_\lambda + r_k)} = \frac{\lambda v_\lambda^* v_\lambda}{v_\lambda^* v_\lambda} = \lambda,
\]

establishing (I.39a) and completing the proof. \(\blacksquare \)

Caveat I.17. It is emphasized that, due to the presence of the factor \(e^{i\phi_k} \), (I.39b) does *not* claim the convergence of the \(w_k \) to an eigenvector of \(\lambda \). Indeed, in general, the sequence \((w_k)_{k \in \mathbb{N}} \) cannot be expected to converge. However, as \(v_\lambda \) is an eigenvector for \(\lambda \), so is every \(\frac{e^{i\phi_k} v_\lambda}{\|v_\lambda\|} \) (and every other scalar multiple). Thus, what (I.39b) does claim is that, for sufficiently large \(k \), \(w_k \) is arbitrarily close to an eigenvector of \(\lambda \), namely to the eigenvector \(\frac{e^{i\phi_k} v_\lambda}{\|v_\lambda\|} \) (the eigenvector that \(w_k \) is close to still depends on \(k \)).
Remark I.18. (a) The hypothesis of Th. I.16, that z_0 have a nontrivial part in $M(\lambda)$, can be difficult to check in practise. Still, it is usually not a severe restriction: Even if, initially, z_0 does not satisfy the condition, roundoff errors during the computation of $z_k = A^k z_0$ will cause the condition to be satisfied for sufficiently large k.

(b) The rate of convergence of the r_k in Th. I.16 (and, thus, of the α_k as well) is determined by the size of $|\mu|/|\lambda|$, where μ is a second largest eigenvalue (in terms of absolute value). Therefore, the convergence will be slow if $|\mu|$ and $|\lambda|$ are close.

Even though the power method applied according to Th. I.16 will (under the hypothesis of the theorem) only approximate the dominant eigenvalue (i.e. the largest in terms of absolute value), the following modification, known as the inverse power method, can be used to approximate other eigenvalues:

Corollary I.19. Let $A \in \mathcal{M}(n, \mathbb{C})$, $n \in \mathbb{N}$, and assume $\lambda \in \sigma(A)$ to be semisimple. Let $p \in \mathbb{C} \setminus \{\lambda\}$ be closer to λ than to any other eigenvalue of A, i.e.

$$\forall_{\mu \in \sigma(A) \setminus \{\lambda\}} 0 < |\lambda - p| < |\mu - p|.$$ \hspace{1cm} (I.46)

Set

$$G := (A - p \text{Id})^{-1}.$$ \hspace{1cm} (I.47)

Choosing an arbitrary norm $\|\cdot\|$ on \mathbb{C}^n and starting with $z_0 \in \mathbb{C}^n$, define the sequence $(z_k)_{k \in \mathbb{N}}$ via the power iteration (I.26) with A replaced by G. From the z_k also define sequences $(w_k)_{k \in \mathbb{N}}$ and $(\alpha_k)_{k \in \mathbb{N}}$ by

$$w_k := \begin{cases} \frac{z_k}{\|z_k\|} = \frac{G^k z_0}{\|G^k z_0\|} & \text{for } z_k \neq 0, \\ z_0 & \text{for } z_k = 0 \end{cases} \quad \in \mathbb{C}^n \quad \text{for each } k \in \mathbb{N}_0, \hspace{1cm} (I.48a)$$

$$\alpha_k := \begin{cases} \frac{z_k}{\|z_k\|} G z_k + p & \text{for } z_k G z_k \neq 0, \\ 0 & \text{otherwise} \end{cases} \quad \in \mathbb{C} \quad \text{for each } k \in \mathbb{N}_0 \hspace{1cm} (I.48b)$$

(treating the z_k as column vectors). If z_0 has a nontrivial part in $M((\lambda - p)^{-1}, G)$ in the sense of Def. I.15, then

$$\lim_{k \to \infty} \alpha_k = \lambda$$ \hspace{1cm} (I.49a)

and there exist sequences $(\phi_k)_{k \in \mathbb{N}}$ in \mathbb{R} and $(r_k)_{k \in \mathbb{N}}$ in \mathbb{C}^n such that, for all k sufficiently large,

$$w_k = e^{i\phi_k} v_\lambda + r_k \|v_\lambda + r_k\| \neq 0, \quad \lim_{k \to \infty} r_k = 0,$$ \hspace{1cm} (I.49b)

where v_λ is an eigenvector corresponding to the eigenvalue λ.

Proof. First note that (I.46) implies $p \notin \sigma(A)$, such that G is well-defined. The idea is to apply Th. I.16 to G. Let $\mu \in \mathbb{C} \setminus \{p\}$ and $v \in \mathbb{C}^n \setminus \{0\}$. Then

$$Av = \mu v$$

$$\iff (\mu - p) v = (A - p \text{Id}) v$$

$$\iff (A - p \text{Id})^{-1} v = (\mu - p)^{-1} v, \hspace{1cm} (I.50)$$
showing μ to be an eigenvalue for A with corresponding eigenvector v if, and only if, $(\mu - p)^{-1}$ is an eigenvalue for $G = (A - p \text{Id})^{-1}$ with the same corresponding eigenvector v. In particular, (I.46) implies $\frac{1}{\lambda - p}$ to be the dominant eigenvalue of G. Next, notice that the hypothesis that λ be semisimple for A implies $\frac{1}{\lambda - p}$ to be semisimple for G (as λId is the Jordan block for λ and A, $(\lambda - p) \text{Id}$ is the corresponding Jordan block for $A - p \text{Id}$, and $(\lambda - p)^{-1} \text{Id}$ is the corresponding Jordan block for G). Thus, all hypotheses of Th. I.16 are satisfied and we obtain $\lim_{k \to \infty} \alpha_k = (\lambda - p) + p = \lambda$, proving (I.49a). Moreover, (I.49b) also follows, where v_λ is an eigenvector for $\frac{1}{\lambda - p}$ and G. However, then v_λ is also an eigenvector for λ and A by (I.50).

Remark I.20. In practice, one computes the z_k for the inverse power method of Cor. I.19 by solving the linear systems $(A - p \text{Id})z_k = z_{k-1}$ for z_k. As the matrix $A - p \text{Id}$ does not vary, but only the right-hand side of the system varies, one should solve the systems by first computing a suitable decomposition of $A - p \text{Id}$ (e.g. a QR decomposition, Rem. 5.25).

Remark I.21. In sufficiently benign situations (say, if A is diagonalizable and all eigenvalues are real, e.g., if A is symmetric), one can combine the inverse power method (IPM) of Cor. I.19 with a bisection (or similar) method to obtain all eigenvalues of A: One starts by determining upper and lower bounds for $\sigma(A) \subseteq [m, M]$ (for example, by using Cor. I.8). One then chooses the $p := (m + M)/2$ as the midpoint and determines $\lambda = \lambda(p)$. Next, one uses the midpoints $p_1 := (m + p)/2$ and $p_2 := (p + M)/2$ and iterates the method, always choosing the midpoints of previous intervals. For each new midpoint p, four possibilities can occur: (i) one finds a new eigenvalue by IPM, (ii) IPM finds an eigenvalue that has already been found before, (iii) IPM fails, since p itself is an eigenvalue, (iv) IPM fails since p is exactly in the middle between two other eigenvalues. Cases (iii) and (iv) are unlikely, but if they do occur, they need to be recognized and treated separately. If not all eigenvalues are real, one can still use an analogous method, one just has to cover a certain compact section of the complex plane by finer and finer grids. If one were to use squares for the grids, one could use the centers of the squares to replace the midpoints of the intervals in the described procedure.

I.4 Transformation to Hessenberg Form

In preparation for the application of a numerical eigenvalue approximation algorithm (e.g. the QR algorithm we will study in Sec. I.5 below), it is often advisable to transform the matrix under consideration to Hessenberg form (see Def. I.22). The complexity of the transformation to Hessenberg form is $O(n^3)$. However, each step of the QR algorithm applied to a matrix in Hessenberg form is $O(n^2)$ as compared to $O(n^3)$ for a fully populated matrix.

Definition I.22. An $n \times n$ matrix $A = (a_{kl})$, $n \in \mathbb{N}$, is said to be in upper (resp. lower) Hessenberg form if, and only if, it is almost in upper (resp. lower) triangular form, except that there are allowed to be nonzero elements in the first subdiagonal (resp. superdiagonal), i.e., if, and only if,

$$a_{kl} = 0 \text{ for } k \geq l + 2 \quad \text{ (resp. } a_{kl} = 0 \text{ for } k \leq l - 2).$$

(I.51)
Thus, according to Def. I.22, the \(n \times n \) matrix \(A = (a_{kl}) \) is in upper Hessenberg form if, and only if, it can be written as

\[
A = \begin{pmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
0 & \ast & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ast \\
0 & \ldots & 0 & \ast
\end{pmatrix}
\]

How can one transform an arbitrary matrix \(A \in \mathcal{M}(n, \mathbb{K}), \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\} \), into Hessenberg form without changing its eigenvalues? The idea is to use several similarity transformations of the form \(A \mapsto HAH \), using Householder matrices \(H = H^{-1} \). As usual, here and in the following, we write \(\mathbb{K} \) if a statement is meant to be valid for both \(\mathbb{K} = \mathbb{R} \) and \(\mathbb{K} = \mathbb{C} \). Householder transformations were already used in Sec. 5.4.3 to obtain QR decompositions of real matrices. We give a brief review of Householder matrices and use this opportunity to check that everything still works analogously for \(\mathbb{K} = \mathbb{C} \):

Definition I.23. A matrix \(H \in \mathcal{M}(n, \mathbb{K}), n \in \mathbb{N} \), is called a Householder matrix or Householder transformation over \(\mathbb{K} \) if, and only if, there exists \(u \in \mathbb{K}^n \) such that \(\|u\|_2 = 1 \) and

\[
H = \text{Id} - 2uu^*,
\]

where, here and in the following, \(u \) is treated as a column vector.

Lemma I.24. Let \(H \in \mathcal{M}(n, \mathbb{K}), n \in \mathbb{N} \), be a Householder matrix. Then the following holds:

(a) \(H \) is Hermitian: \(H^* = H \).

(b) \(H \) is involutary: \(H^2 = \text{Id} \).

(c) \(H \) is unitary: \(H^*H = \text{Id} \).

Proof. As \(H \) is a Householder matrix, there exists \(u \in \mathbb{K}^n \) such that \(\|u\|_2 = 1 \) and (I.52) is satisfied. Then

\[
H^* = (\text{Id} - 2uu^*)^* = \text{Id} - 2(u^*)^*u^* = H
\]

proves (a) and

\[
H^2 = (\text{Id} - 2uu^*)(\text{Id} - 2uu^*) = \text{Id} - 4uu^* + 4uu^*uu^* = \text{Id},
\]

proves (b), where \(u^*u = \|u\|_2^2 = 1 \) was used in the last equality. Combining (a) and (b) then yields (c). \(\blacksquare \)
Lemma I.25. Let $k \in \mathbb{N}$. We consider the elements of \mathbb{K}^k as column vectors. Let $e_1 \in \mathbb{K}^k$ be the first standard unit vector of \mathbb{K}^k. If $x \in \mathbb{K}^k \setminus \{0\}$, then
\[
u := \nu(x) := \frac{v(x)}{\|v(x)\|_2}, \quad v := v(x) := \begin{cases} \frac{|x_1|x + x_1 \|x\|_2 e_1}{|x_1|\|x\|_2} & \text{for } x \neq 0, \\ \frac{x_1}{\|x\|_2} + e_1 & \text{for } x = 0, \end{cases} \tag{I.53a} \]
satisfies
\[
u \|v(x)\|_2 = 1 \quad \text{and} \quad (\text{Id} - 2\nu\nu^*)x = \xi e_1, \quad \xi = \begin{cases} \frac{-x_1\|x\|_2}{|x_1|} & \text{for } x \neq 0, \\ -\|x\|_2 & \text{for } x = 0. \end{cases} \tag{I.53b, c} \]

Proof. If $x_1 = 0$, then $v_1 = 0 + 1 = 1$, i.e. $v \neq 0$ and u is well-defined. If $x_1 \neq 0$, then
\[v_1 = \frac{x_1(|x_1| + \|x\|_2)}{|x_1|\|x\|_2} \neq 0,\]
i.e. $v \neq 0$ and u is well-defined in this case as well. Moreover, (I.53b) is immediate from the definition of u. To verify (I.53c), note
\[v^*v = \begin{cases} 1 + \frac{2|x_1|^2}{|x_1|\|x\|_2} + 1 = 2 + \frac{2|x_1|}{\|x\|_2} & \text{for } x_1 \neq 0, \\ 1 + 0 + 1 = 2 + \frac{2|x_1|}{\|x\|_2} & \text{for } x_1 = 0, \end{cases} \]
\[v^*x = \begin{cases} \|x\|_2 + |x_1| & \text{for } x_1 \neq 0, \\ \|x\|_2 + 0 = \|x\|_2 + |x_1| & \text{for } x_1 = 0. \end{cases} \]

Thus, for $x_1 = 0$, we obtain
\[(\text{Id} - 2\nu\nu^*)x = x - \frac{2vv^*x}{v^*v} = x - v\left(\|x\|_2 + |x_1|\right)1 + \frac{|x_1|}{\|x\|_2} = x - v\|x\|_2 = -\|x\|_2 e_1 = \xi e_1,\]
proving (I.53c). Similarly, for $x_1 \neq 0$, we obtain
\[(\text{Id} - 2\nu\nu^*)x = x - \frac{|x_1|x + x_1 \|x\|_2 e_1}{|x_1|} = -\frac{x_1\|x\|_2}{|x_1|} e_1 = \xi e_1,\]
once again proving (I.53c) and concluding the proof of the lemma. \[\blacksquare\]

We note that the numerator in (I.53a) is constructed in such a way that there is no subtractive cancellation of digits, independent of the signs of $\text{Re} x_1$ and $\text{Im} x_1$.

Algorithm I.26 (Transformation to Hessenberg Form). Given $A \in \mathcal{M}(n, \mathbb{K})$, $n \in \mathbb{N}$, $n > 2$ (for $n = 1$ and $n = 2$, A is always in Hessenberg form), we define the following algorithm: Let $A^{(1)} := A$. For $k = 1, \ldots, n - 2$, $A^{(k)}$ is transformed into $A^{(k+1)}$ by performing precisely one of the following actions:
I EIGENVALUES

(a) If $a_{ik}^{(k)} = 0$ for each $i \in \{k + 2, \ldots, n\}$, then

$$A^{(k+1)} := A^{(k)}, \quad H^{(k)} := \text{Id} \in \mathcal{M}(n, \mathbb{K}).$$

(b) Otherwise, it is $x^{(k)} \neq 0$, where

$$x^{(k)} := (a_{k+1,k}^{(k)}, \ldots, a_{n,k}^{(k)})^t \in \mathbb{K}^{n-k}, \quad \text{(I.54)}$$

and we set

$$A^{(k+1)} := H^{(k)} A^{(k)} H^{(k)},$$

where

$$H^{(k)} := \begin{pmatrix} \text{Id} & 0 \\ 0 & \begin{pmatrix} \text{Id} & -2u^{(k)}(u^{(k)})^* \\ =: H_1^{(k)} \end{pmatrix} \end{pmatrix}, \quad u^{(k)} := u(x^{(k)}), \quad \text{(I.55)}$$

with $u(x^{(k)})$ according to (I.53a), with the upper Id being the identity on \mathbb{K}^k, and with the lower Id being the identity on \mathbb{K}^{n-k}.

Theorem I.27. Let $A \in \mathcal{M}(n, \mathbb{K})$, $n \in \mathbb{N}$, $n > 2$, and let $B := A^{(n-1)}$ be the matrix obtained as a result after having applied Alg. I.26 to A.

(a) Then B is in upper Hessenberg form and $\sigma(B) = \sigma(A)$. Moreover, $m_a(\lambda, B) = m_a(\lambda, A)$ for each $\lambda \in \sigma(A)$.

(b) If A is Hermitian, then B must be Hermitian as well. Thus, B is a Hermitian matrix in Hessenberg form, i.e., it is tridiagonal (of course, for $\mathbb{K} = \mathbb{R}$, Hermitian is the same as symmetric).

(c) The transformation of A into B requires $O(n^3)$ arithmetic operations.

Proof. (a): Using (I.53c) and blockwise matrix multiplication, a straightforward induction shows that each $A^{(k+1)}$ has the form

$$A^{(k+1)} = H^{(k)} A^{(k)} H^{(k)} = \begin{pmatrix} A_1^{(k)} & A_2^{(k)} H_1^{(k)} \\ 0 & H_2^{(k)} A_3^{(k)} H_1^{(k)} \end{pmatrix}, \quad \text{(I.56)}$$
where $A_1^{(k)}$ is in upper Hessenberg form. In particular, for $k + 1 = n - 1$, we obtain B to be in upper Hessenberg form. Moreover, since each $A^{(k+1)}$ is obtained from $A^{(k)}$ via a similarity transformation, both matrices always have the same eigenvalues with the same multiplicities. In particular, by another induction, the same holds for A and B.

(b): Since each $H^{(k)}$ is Hermitian according to Lem. 5.30(a), if $A^{(k)}$ is Hermitian, then $(A^{(k+1)})^* = (H^{(k)}A^{(k)}H^{(k)})^* = A^{(k+1)}$, i.e. $A^{(k+1)}$ is Hermitian as well. Thus, another straightforward induction shows all $A^{(k)}$ to be Hermitian.

(c): The claim is that the number $N(n)$ of arithmetic operations needed to compute B from A is $O(n^3)$ for $n \to \infty$. For simplicity, we do not distinguish between different arithmetic operations, considering addition, multiplication, division, complex conjugation, and even the taking of a square root as one arithmetic operation each, even though the taking of a square root will tend to be orders of magnitude slower than an addition. Still, none of the operations depends on the size n of the matrix, which justifies treating them as the same, if one is just interested in the asymptotics $n \to \infty$. First, if $u, x \in \mathbb{C}^m$, $H = \text{Id} - 2uu^*$, then computing $Hx = x - 2u(u^*x)$ needs m conjugations, $3m$ multiplications, m additions, and m subtractions, yielding

$$N_1(m) = 6m.$$

Thus, the number of operations to obtain $x^*H = (Hx)^*$ is

$$N_2(m) = 7m$$

(the same as $N_1(m)$ plus the additional m conjugations). The computation of the norm $\|x\|_2$ needs m conjugations, m multiplications, m additions, and 1 square root, a scalar multiple ξx needs m multiplications. Thus, the computation of $u(x)$ according to (I.53a) needs $8m$ operations (2 norms, 2 scalar multiples) plus a constant number C of operations (conjugations, multiplications, divisions, square roots) that does not depend on m, the total being

$$N_3(m) = 8m + C.$$

Now we are in a position to compute the number $N^k(n)$ of operations needed to obtain $A^{(k+1)}$ from $A^{(k)}$: $N_3(n - k)$ operations to obtain $u^{(k)}$ according to (I.55), $N_1(n - k)$ operations to obtain $\xi_k e_1$ according to (I.56), $k \cdot N_2(n - k)$ operations to obtain $A_2^{(k)}H_1^{(k)}$ according to (I.56), and $(n - k) \cdot N_1(n - k) + (n - k) \cdot N_2(n - k)$ operations to obtain $H_1^{(k)}A_3^{(k)}H_1^{(k)}$ according to (I.56), the total being

$$N^k(n) = N_3(n - k) + N_1(n - k) + k \cdot N_2(n - k) + (n - k) \cdot N_1(n - k) + (n - k) \cdot N_2(n - k) = C + 8(n - k) + 6(n - k) + 7k(n - k) + 6(n - k)(n - k) + 7(n - k)(n - k) = C + 14(n - k) + 7n(n - k) + 6(n - k)^2.$$
Finally, we obtain

\[N(n) = \sum_{k=1}^{n-2} N^k(n) = C(n - 2) + (14 + 7n) \sum_{k=2}^{n-1} k + 6 \sum_{k=2}^{n-1} k^2 \]

\[= C(n - 2) + (14 + 7n) \left(\frac{(n-1)n}{2} - 1 \right) + 6 \left(\frac{(n-1)n(2n-1)}{6} - 1 \right), \]

which is \(O(n^3)\) for \(n \to \infty\), completing the proof.

I.5 QR Method

The QR algorithm for the approximation of the eigenvalues of \(A \in \mathcal{M}(n, \mathbb{K})\) makes use of the QR decomposition \(A = QR\) of \(A\) into a unitary matrix \(Q\) and an upper triangular matrix \(R\).

Theorem I.28. Given \(A \in \mathcal{M}(n, \mathbb{K})\), the Householder method as defined in Def. 5.34 (where, for \(\mathbb{K} = \mathbb{C}\), the Householder matrices have to be formed according to (I.53a) rather than according to (5.69)) yields a QR decomposition of \(A\). More precisely, at the end of the Householder method, one obtains a unitary matrix \(Q \in \mathcal{M}(n, \mathbb{K})\) and an upper triangular matrix \(R \in \mathcal{M}(n, \mathbb{K})\) satisfying

\[A = QR. \]

(I.57)

Proof. For \(\mathbb{K} = \mathbb{R}\), Th. 5.35 applies as stated. For \(\mathbb{K} = \mathbb{C}\), one verifies that the proof still works exactly the same, now using Lem. I.24 and Lem. I.25 instead of the analogous results in Sec. 5.4.3.

While, even for an invertible \(A \in \mathcal{M}(n, \mathbb{K})\), the QR decomposition is not unique, the nonuniqueness can be precisely described:

Proposition I.29. Suppose \(Q_1, Q_2, R_1, R_2 \in \mathcal{M}(n, \mathbb{K}), n \in \mathbb{N}\), are such that \(Q_1, Q_2\) are unitary, \(R_1, R_2\) are invertible upper triangular, and

\[Q_1 R_1 = Q_2 R_2. \]

(I.58)

Then there exists a diagonal matrix \(S, S = \text{diag}(\sigma_1, \ldots, \sigma_n), |\sigma_1| = \cdots = |\sigma_n| = 1\) (for \(\mathbb{K} = \mathbb{R}\), this means \(\sigma_1, \ldots, \sigma_n \in \{-1, 1\}\)), such that

\[Q_2 = Q_1 S \quad \text{and} \quad R_2 = S^* R_1. \]

(I.59)

Proof. As (I.58) implies \(S := Q_1^{-1} Q_2 = R_1 R_2^{-1}\), \(S\) must be both unitary and upper triangular. Thus, \(S\) must be diagonal, \(S = \text{diag}(\sigma_1, \ldots, \sigma_n)\) with \(|\sigma_k| = 1\).
Algorithm I.30 (QR Method). Given \(A \in \mathcal{M}(n, \mathbb{K}), \ n \in \mathbb{N} \), we define the following algorithm for the computation of a sequence \((A^{(k)})_{k \in \mathbb{N}} \) of matrices in \(\mathcal{M}(n, \mathbb{K}) \): Let \(A^{(1)} := A \). For each \(k \in \mathbb{N} \), let

\[
A^{(k+1)} := R_k Q_k,
\]

where

\[
A^{(k)} = Q_k R_k
\]

is a QR decomposition of \(A^{(k)} \).

Remark I.31. In each step of the QR method of Alg. I.30, one needs to obtain a QR decomposition of \(A^{(k)} \). For a fully populated matrix \(A^{(k)} \), the complexity of obtaining a QR decomposition is \(O(n^3) \). However, as we will see in Sec. I.6 below, if \(A^{(k)} \) is in Hessenberg form, one can choose \(Q_k, R_k \) such that \(A^{(k+1)} \) remains in Hessenberg form and the complexity of each step reduces to \(O(n^2) \). Thus, it is always advisable to transform \(A \) into Hessenberg form before applying the QR method.

Lemma I.32. Let \(A \in \mathcal{M}(n, \mathbb{K}), \ n \in \mathbb{N} \). Moreover, for each \(k \in \mathbb{N} \), let matrices \(A^{(k)}, R_k, Q_k \in \mathcal{M}(n, \mathbb{K}) \) be defined according to Alg. I.30. Then the following identities hold for each \(k \in \mathbb{N} \):

\[
\begin{align*}
A^{(k+1)} &= Q_k^* A^{(k)} Q_k, \\
A^{(k+1)} &= Q_1 Q_2 \cdots Q_k^* A (Q_1 Q_2 \cdots Q_k), \\
A^k &= (Q_1 Q_2 \cdots Q_k)(R_k R_{k-1} \cdots R_1).
\end{align*}
\]

Proof. (I.61a) holds, as

\[
\forall \ k \in \mathbb{N} \quad Q_k^* A^{(k)} Q_k = Q_k^* Q_k R_k Q_k = R_k Q_k = A^{(k+1)}.
\]

A simple induction applied to (I.61a) yields (I.61b). Another induction yields (I.61c): For \(k = 1 \), it is merely (I.60b). For \(k \in \mathbb{N} \), we compute

\[
Q_1 \cdots Q_k \underbrace{Q_k \cdots Q_k}_{(Q_1 \cdots Q_k)} \underbrace{R_k \cdots R_1}_{\text{ind. hyp.}} \overset{(I.61b)}{=} \underbrace{Q_1 \cdots Q_k}_{\text{Id}} (Q_1 \cdots Q_k)(Q_1 \cdots Q_k) \overset{\text{ind. hyp.}}{=} A \underbrace{A \cdots A}_{A A^k = A^{k+1}},
\]

which completes the induction and establishes the case. ■

In the following Th. I.34, it will be shown that, under suitable hypotheses, the matrices \(A^{(k)} \) of the QR method become, asymptotically, upper triangular, with the diagonal entries converging to the eigenvalues of \(A \). Theorem I.34 is not the most general convergence result of this kind. We will remark on possible extensions afterwards and we will also indicate that some of the hypotheses are not as restrictive as they might seem at first glance.
Notation I.33. Let $n \in \mathbb{N}$. By $\text{diag}(\lambda_1, \ldots, \lambda_n)$ we denote the diagonal $n \times n$ matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$, i.e.
\[
\text{diag}(\lambda_1, \ldots, \lambda_n) := D = (d_{kl}), \quad d_{kl} := \begin{cases}
\lambda_k & \text{for } k = l, \\
0 & \text{for } k \neq l
\end{cases}
\]
(I.62a)
(we have actually used this notation before). If $A = (a_{kl})$ is an $n \times n$ matrix, then, by $\text{diag}(A)$, we denote the diagonal $n \times n$ matrix that has precisely the same diagonal entries as A, i.e.
\[
\text{diag}(A) := D = (d_{kl}), \quad d_{kl} := \begin{cases}
a_{kk} & \text{for } k = l, \\
0 & \text{for } k \neq l.
\end{cases}
\]
(I.62b)

Theorem I.34. Let $A \in \mathcal{M}(n, \mathbb{K})$, $n \in \mathbb{N}$. Assume A to be diagonalizable, invertible, and such that all eigenvalues $\lambda_1, \ldots, \lambda_n \in \sigma(A) \subseteq \mathbb{K}$ are distinct, satisfying
\[
|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0.
\]
(I.63a)

Let $T \in \mathcal{M}(n, \mathbb{K})$ be invertible and such that
\[
A = TDT^{-1}, \quad D := \text{diag}(\lambda_1, \ldots, \lambda_n).
\]
(I.63b)
Assume T^{-1} to have an LU decomposition (without permutations), i.e., assume
\[
T^{-1} = LU,
\]
(I.63c)
where $L, U \in \mathcal{M}(n, \mathbb{K})$, L being unipotent and lower triangular, U being upper triangular. If $(A^{(k)})_{k \in \mathbb{N}}$ is defined according to Alg. I.30, then the $A^{(k)}$ are, asymptotically, upper triangular, with the diagonal entries converging to the eigenvalues of A, i.e.
\[
\forall j,l \in \{1, \ldots, n\}, \lim_{k \to \infty} a_{jl}^{(k)} = 0
\]
(I.64a)
and
\[
\forall j \in \{1, \ldots, n\} \lim_{k \to \infty} a_{jj}^{(k)} = \lambda_j.
\]
(I.64b)

Moreover, there exists a constant $C > 0$, such that we have the error estimates
\[
\forall k \in \mathbb{N} \left(\forall j,l \in \{1, \ldots, n\}, \lim_{j,l \to \infty} a_{jl}^{(k)} \leq C q^k, \forall j \in \{1, \ldots, n\} \lim_{j \to \infty} a_{jj}^{(k)} - \lambda_j \leq C q^k \right),
\]
(I.64c)
where
\[
q := \max \left\{ \frac{|\lambda_{j+1}|}{|\lambda_j|} : j \in \{1, \ldots, n - 1\} \right\} < 1.
\]
(I.64d)
Proof. For \(n = 1 \), there is nothing to prove (one has \(A = D = A^{(k)} \) for each \(k \in \mathbb{N} \)). Thus, we assume \(n > 1 \) for the rest of the proof. We start by making a number of observations for \(k \in \mathbb{N} \) being fixed. From (I.61c), we obtain a QR decomposition of \(A^k \):

\[
A^k = \tilde{Q}_k \tilde{R}_k, \quad \tilde{Q}_k := Q_1 \cdots Q_k, \quad \tilde{R}_k := R_k \cdots R_1. \tag{I.65}
\]

On the other hand, we also have

\[
A^k = TD^kLU = X_kD^kU, \quad X_k := TD^kLD^{-k}. \tag{I.66}
\]

We note \(X_k \) to be invertible, as it is the product of invertible matrices. Thus \(X_k \) has a QR decomposition \(X_k = Q_X R_X \) with invertible upper triangular matrix \(R_X \). Plugging the QR decomposition of \(X_k \) into (I.66), thus, yields a second QR decomposition of \(A^k \), namely

\[
A^k = Q_X (R_X D^k U).
\]

Due to Prop. I.29, we now obtain a unitary diagonal matrix \(S_k \) such that

\[
\tilde{Q}_k = Q_X S_k, \quad \tilde{R}_k = S_k^* R_X D^k U. \tag{I.67}
\]

This will now allow us to compute a somewhat complicated-looking representation of \(A^{(k)} \), which, nonetheless, will turn out to be useful in advancing the proof: We have, for \(k \geq 2 \),

\[
Q_k = (Q_1 \cdots Q_{k-1})^{-1} (Q_1 \cdots Q_{k-1} Q_k) = \tilde{Q}_{k-1}^{-1} \tilde{Q}_k = S_{k-1}^* Q_{k-1}^{-1} Q_{X_k} S_k,
\]

\[
R_k = (R_k R_{k-1} \cdots R_1)(R_{k-1} \cdots R_1)^{-1} = \tilde{R}_k \tilde{R}_{k-1}^{-1}
\]

\[
= S_k^* R_X D^k U U^{-1} D^{-(k-1)} R_{X_{k-1}}^{-1} S_{k-1} = S_{k}^* R_X D R_{X_{k-1}}^{-1} S_{k-1},
\]

implying

\[
A^{(k)} \overset{(I.66b)}{=} Q_k R_k = S_{k-1}^* Q_{X_{k-1}}^{-1} Q_{X_k} R_X D R_{X_{k-1}}^{-1} S_{k-1}
\]

\[
= S_{k-1}^* R_{X_{k-1}} R_{X_{k-1}}^{-1} Q_{X_{k-1}}^{-1} Q_{X_k} R_X D R_{X_{k-1}}^{-1} S_{k-1}
\]

\[
= S_{k-1}^* R_{X_{k-1}} X_{k-1}^{-1} X_k D R_{X_{k-1}}^{-1} S_{k-1}. \tag{I.68}
\]

The next step is to investigate the entries of

\[
X_k = TL^{(k)}, \quad L^{(k)} := D^k LD^{-k}. \tag{I.69}
\]

As \(L \) is lower triangular with \(l_{jj} = 1 \), we have

\[
l_{jl}^{(k)} = \lambda_j^k l_{jl} \lambda_l^{-k} = \begin{cases} 0 & \text{for } j < l, \\ 1 & \text{for } j = l, \\ l_{jl} (\frac{\lambda_j}{\lambda_l})^k & \text{for } j > l, \end{cases}
\]

and

\[
|l_{jl}^{(k)}| \begin{cases} = 0 & \text{for } j < l, \\ = 1 & \text{for } j = l, \\ \leq C_L q^k & \text{for } j > l, \end{cases}
\]
Thus, there is a lower triangular matrix E_k and a constant $C_E \in \mathbb{R}^+$ such that

$$L^{(k)} = \text{Id} + E_k, \quad \|E_k\|_2 \leq C_E C_L q^k. \quad (I.70)$$

Then

$$X_k = TL^{(k)} = T + TE_k. \quad (I.71)$$

Set, for $k \geq 2$,

$$F_k := (E_k - E_{k-1})(\text{Id} + E_{k-1})^{-1}. \quad (I.72)$$

As $\lim_{k \to \infty} E_k = 0$, the sequence $\{\|\text{(Id} + E_{k-1})^{-1}\|_2\}_{k \in \mathbb{N}}$ is bounded, i.e. there is a constant $C_F > 0$ such that

$$\forall k \geq 2, \quad \|F_k\|_2 \leq \|E_k - E_{k-1}\|_2 \|\text{(Id} + E_{k-1})^{-1}\|_2 \leq C_E C_L (q^k + q^{k-1}) C_F \leq C_1 q^k,$n

implying

$$X_{k-1}^{-1} X_k = (T + TE_{k-1})^{-1}(T + TE_k) = (\text{Id} + E_{k-1})^{-1}(\text{Id} + E_k) = \text{Id} + F_k.$$e sequence $\{\|R_{k}\|_{2}\}_{k \in \mathbb{N}}$ and $\{\|R_{k}^{-1}\|_{2}\}_{k \in \mathbb{N}}$ are bounded by some constant $C_R > 0$. Thus, as the S_k are also unitary,

$$\forall k \geq 2, \quad \|A^{(k)}_F\|_2 = \|S_{k-1}^{-1} R_{X_{k-1}} F_k D R_{X_{k-1}}^{-1} S_{k-1} \| \leq C_F^2 \|D\|_2 C_1 q^k. \quad (I.74)$$

Next, we observe each $A^{(k)}_D$ to be an upper triangular matrix, as it is the product of upper triangular matrices. Moreover, each S_k is a diagonal matrix and $\text{diag}(R_{X_k})^{-1} = \text{diag}(R_{X_k}^{-1})$. Thus,

$$\forall k \geq 2, \quad \text{diag}(A^{(k)}_D) = S_{k-1}^{-1} \text{diag}(R_{X_{k-1}}) D \text{diag}(R_{X_{k-1}}^{-1}) S_{k-1} = D. \quad (I.75)$$

Finally, as we know the 2-norm on $\mathcal{M}(n, \mathbb{K})$ to be equivalent to the max-norm on \mathbb{K}^{n^2}, combining (I.73) – (I.75) proves everything that was claimed in (I.64).
Remark I.35. (a) Hypothesis (I.63c) of Th. I.34 that T^{-1} has an LU decomposition without permutations is not as severe as it may seem. If permutations are necessary in the LU decomposition of T^{-1}, then Th. I.34 and its proof remain the same, except that the eigenvalues will occur permuted in the limiting diagonal matrix D. Moreover, it is an exercise to show that, if the matrix A in Th. I.34 has Hessenberg form with $0 \notin \{a_{21}, \ldots, a_{n,n-1}\}$ (in view of Rem. I.31, this is the case of most interest), then hypothesis (I.63c) can always be satisfied: As an intermediate step, one can show that, in this case,

$$\forall j \in \{1, \ldots, n-1\} \quad \text{span}\{e_1, \ldots, e_j\} \cap \text{span}\{t_{j+1}, \ldots, t_n\} = \{0\},$$

where e_1, \ldots, e_{n-1} are the standard unit vectors, and t_1, \ldots, t_n are the eigenvectors of A that form the columns of T.

(b) If A has several eigenvalues of equal modulus (e.g. multiple eigenvalues or nonreal eigenvalues of a real matrix), then the sequence of the QR method can no longer be expected to be asymptotically upper triangular, only block upper triangular. For example, if $|\lambda_1| = |\lambda_2| > |\lambda_3| = |\lambda_4| = |\lambda_5|$, then the asymptotic form will look like

$$\begin{pmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{pmatrix},$$

where the upper diagonal 2×2 block still has eigenvalues λ_1, λ_2 and the lower diagonal 3×3 block still has eigenvalues $\lambda_3, \lambda_4, \lambda_5$ (see [Cia89, Sec. 6.3] and references therein).

Remark I.36. (a) The efficiency of the QR method can be improved significantly by the introduction of so-called spectral shifts. One replaces (I.60) by

$$A^{(k+1)} := R_k Q_k + \mu_k \text{Id},$$

where

$$A^{(k)} - \mu_k \text{Id} = Q_k R_k$$

is a QR decomposition of $A^{(k)} - \mu_k \text{Id}$ and $\mu_k \in \mathbb{C}$ is the shift parameter of the kth step. As it turns out, using the lowest diagonal entry of the previous iteration as shift parameter, $\mu_k := a_{nn}^{(k)}$, is a simple choice that yields good results (see [SK11, Sec. 5.5.2]). According to [HB09, Sec. 27.3], an even better choice, albeit less simple, is to choose μ_k as the eigenvalue of

$$\begin{pmatrix}
a_{n-1,n-1}^{(k)} & a_{n-1,n}^{(k)} & \cdot \\
a_{n-1,n}^{(k)} & a_{n,n}^{(k)} & \cdot \\
a_{n,n}^{(k)} & \cdot & \cdot
\end{pmatrix}$$

that is closest to $a_{nn}^{(k)}$. If one needs to find nonreal eigenvalues of a real matrix, the related strategy of so-called double shifts is warranted (see [SK11, Sec. 5.5.3]).
(b) The above-described QR method with shifts is particularly successful if applied to Hessenberg matrices in combination with a strategy known as deflation. After each step, each element of the first subdiagonal is tested if it is sufficiently close to 0 to be treated as “already converged”, i.e. to be replaced by 0. Then, if \(a_{j,j-1}^{(k)} \), \(2 \leq j \leq n \), has been replaced by 0, the QR method is applied separately to the upper diagonal \((j-1) \times (j-1) \) block and the lower diagonal \((n-j+1) \times (n-j+1) \) block. If \(j = 2 \) or \(j = n \) (this is what usually happens if the shift strategy as described in (a) is applied), then \(a_{11}^{(k)} = \lambda_1 \) or \(a_{nn}^{(k)} = \lambda_n \) is already correct and one has to continue with an \((n-1) \times (n-1) \) matrix.

I.6 QR Method for Matrices in Hessenberg Form

As mentioned before, it is not advisable to apply the QR method of the previous section directly to a fully populated matrix, since, in this case, the complexity of obtaining the QR decomposition in each step is \(O(n^3) \). In the present section, we describe how each step of the QR method can be performed more efficiently for Hessenberg matrices, reducing the complexity of each step to \(O(n^2) \). The key idea is to replace the use of Householder matrices by so-called Givens rotations.

Notation I.37. Let \(n \in \mathbb{N} \), \(n > 1 \), \(m \in \{1, \ldots, n-1\} \), and \(c, s \in \mathbb{K} \). By \(G(m, c, s) = (g_{jl}) \in \mathcal{M}(n, \mathbb{K}) \) we denote the matrix, where

\[
g_{jl} = \begin{cases}
 c & \text{for } j = l = m, \\
 \bar{c} & \text{for } j = l = m + 1, \\
 s & \text{for } j = m + 1, l = m, \\
 -\bar{s} & \text{for } j = m, l = m + 1, \\
 1 & \text{for } j = l \notin \{m, m + 1\}, \\
 0 & \text{otherwise},
\end{cases}
\]

that means

\[
G(m, c, s) = \begin{pmatrix}
1 & \cdots & 1 \\
 & \ddots & \vdots \\
 & & 1 \\
-\bar{s} & c & s \\
\bar{s} & s & \bar{c} \\
& \ddots & \vdots \\
& & 1
\end{pmatrix}
\]

\(\left\uparrow \text{row } m \right. \)

\(\left\uparrow \text{row } m + 1 \right. \)

Lemma I.38. Let \(n \in \mathbb{N} \), \(n > 1 \), \(m \in \{1, \ldots, n-1\} \), and \(c, s \in \mathbb{K} \). Let \(G(m, c, s) = (g_{jl}) \in \mathcal{M}(n, \mathbb{K}) \) be as in Not. I.37.

(a) If \(|c|^2 + |s|^2 = 1 \), then \(G(m, c, s) \) is unitary (in this case, \(G(m, c, s) \) is a special case of what is known as a Givens rotation).
(b) If \(A = (a_{ij}) \in \mathcal{M}(n, \mathbb{K}) \) is in Hessenberg form with \(a_{21} = \cdots = a_{m,m-1} = 0, \ a_{m+1,m} \neq 0 \),
\[
c := \frac{a}{\sqrt{|a|^2 + |b|^2}}, \quad s := \frac{b}{\sqrt{|a|^2 + |b|^2}}, \quad a := a_{mm}, \ b := a_{m+1,m},
\]
and \(B = (b_{ji}) := G(m, c, s)^* A \), then \(B \) is still in Hessenberg form, but with \(b_{21} = \cdots = b_{m,m-1} = b_{m+1,m} = 0 \). Moreover, \(|c|^2 + |s|^2 = 1\). Rows \(m + 2 \) through \(n \) are identical in \(A \) and \(B \).

Proof. (a): \(G(m, c, s) \) is unitary, since
\[
\begin{pmatrix}
c & -\overline{s} \\
\overline{s} & c
\end{pmatrix}
\begin{pmatrix}
c & \overline{s} \\
s & c
\end{pmatrix}
= \begin{pmatrix}
|c|^2 + |s|^2 & c\overline{s} - \overline{c}s \\
s\overline{c} - \overline{s}c & |c|^2 + |s|^2
\end{pmatrix} = \text{Id},
\]
implies \(G(m, c, s)G(m, c, s)^* = \text{Id} \).

(b): Clearly, \(|c|^2 + |s|^2 = 1\). Due to the form of \(G(m, c, s)^* A \), \(G(m, c, s)^* A \) can only affect rows \(m \) and \(m + 1 \) of \(A \) (all other rows are the same in \(A \) and \(B \)). As \(A \) is in Hessenberg form with \(a_{21} = \cdots = a_{m,m-1} = 0 \), this further implies that columns 1 through \(m - 1 \) are also the same in \(A \) and \(B \), implying \(B \) to be in Hessenberg form with \(b_{21} = \cdots = b_{m,m-1} = 0 \) as well. Finally,
\[
b_{m+1,m} = -s a_{mm} + c a_{m+1,m} = \frac{-ba + ab}{\sqrt{|a|^2 + |b|^2}} = 0,
\]
thereby establishing the case. \(\blacksquare \)

The idea of each step of the QR method for matrices in Hessenberg form is to transform \(A^{(k)} \) into \(A^{(k+1)} \) by a sequence of \(n - 1 \) unitary similarity transformations via Givens rotations \(G_{k1}, \ldots, G_{kn-1} \). The \(G_{km} \) are chosen such that the sequence\n\[
A^{(k)} =: A^{(k,1)} \mapsto A^{(k,2)} := G_{k1}^* A^{(k,1)} \mapsto \ldots \mapsto R_k := A^{(k,n)} := G_{kn-1}^* A^{(k,n-1)}
\]
transforms \(A^{(k)} \) into an upper triangular matrix \(R_k \):

Lemma I.39. If \(A^{(k)} \in \mathcal{M}(n, \mathbb{K}) \) is a matrix in Hessenberg form, \(n \in \mathbb{N}, n \geq 2 \), \(A^{(k,1)} := A^{(k)} \), and, for each \(m \in \{1, \ldots, n - 1\} \),
\[
A^{(k,m+1)} := G_{km}^* A^{(k,m)},
\]
(1.79)\n\(G_{km} = \text{Id} \) for \(a_{m+1,m}^{(k)} = 0 \), otherwise \(G_{km} = G(m, c, s) \) with \(c, s \) defined as in (1.78), except with \(a := a_{mm}^{(k,m)} \) and \(b := a_{m+1,m}^{(k,m)} \), then each \(A^{(k,m)} \) is in Hessenberg form, \(a_{21}^{(k,m)} = \cdots = a_{m,m-1}^{(k,m)} = 0 \), and rows \(m + 1 \) through \(n \) are identical in \(A^{(k,m)} \) and in \(A^{(k)} \). In particular, \(R_k := A^{(k,n)} \) is an upper triangular matrix.

Proof. This is just Lem. I.38(b) combined with a straightforward induction on \(m \). \(\blacksquare \)
Algorithm I.40 (QR Method for Matrices in Hessenberg Form). Given $A \in \mathcal{M}(n, \mathbb{K})$ in Hessenberg form, $n \in \mathbb{N}$, $n \geq 2$, we define the following algorithm for the computation of a sequence $(A^{(k)})_{k \in \mathbb{N}}$ of matrices in $\mathcal{M}(n, \mathbb{K})$: Let $A^{(1)} := A$. For each $k \in \mathbb{N}$, $A^{(k+1)}$ is obtained from $A^{(k)}$ by a sequence of $n - 1$ unitary similarity transformations:

$$
A^{(k)} =: B^{(k,1)} \mapsto B^{(k,2)} := G_{k1}^* B^{(k,1)} G_{k1}^{	op}
$$

$$
\mapsto \ldots \mapsto A^{(k+1)} := B^{(k,n)} := G_{k,n-1}^* B^{(k,n-1)} G_{k,n-1},
$$

(I.80a)

where the G_{km}, $m \in \{1, \ldots, n-1\}$, are defined as in Lem. I.39. To obtain G_{km}, one needs to know $a_{(k,m)}^{(k,m)}$ and $a_{m+1,m}^{(k)}$. However, as it turns out, one does not actually have to compute the matrices $A^{(k,m)}$ explicitly, since, letting

$$
\forall m \in \{1, \ldots, n-1\} \quad C^{(k,m)} := G_{km}^* B^{(k,m)},
$$

(I.80b)

one has (see Th. I.41(c) below)

$$
\forall m \in \{1, \ldots, n-2\} \quad c_{m+1,m+1}^{(k,m)} = a_{m+1,m+1}^{(k,m+1)}, \quad c_{m+2,m+1}^{(k,m)} = a_{m+2,m+1}^{(k)}.
$$

(I.80c)

Thus, when computing $B^{(k,m+1)}$ for (I.80a), one computes $C^{(k,m)}$ first and stores the elements in (I.80c) to be available to obtain $G_{k,m+1}$.

Theorem I.41. Let $A \in \mathcal{M}(n, \mathbb{K})$ be in Hessenberg form, $n \in \mathbb{N}$, $n \geq 2$. Let the matrices $A^{(k)}$, $A^{(k,m)}$, $B^{(k,m)}$, and $C^{(k,m)}$ be defined as in Alg. I.40.

(a) The QR method for matrices in Hessenberg form as defined in Alg. I.40 is, indeed, a QR method as defined in Alg. I.30, i.e. (I.60) holds for the $(A^{(k)})$. In particular, Alg. I.40 preserves the eigenvalues (with multiplicities) of A and Th. I.34 applies (also cf. Rem. I.35(a)).

(b) Each $C^{(k,m)}$ and each $A^{(k)}$ is in Hessenberg form.

(c) Let $m \in \{1, \ldots, n-1\}$. Then all columns with indices $m + 1$ through n of the matrices $C^{(k,m)}$ and $A^{(k,m+1)}$ are identical (in particular, (I.80c) holds true).

Proof. Step 1: Assuming $A^{(k)}$ to be in Hessenberg form, we show that each $C^{(k,m)}$, $m \in \{1, \ldots, n-1\}$, is in Hessenberg form as well, (c) holds, and $A^{(k+1)}$ is in Hessenberg form: Let $m \in \{1, \ldots, n-1\}$. According to the definition in Lem. I.39,

$$
A^{(k,m+1)} = G_{km}^* \cdots G_{k1}^* A^{(k)}.
$$

Thus, according to (I.80a),

$$
C^{(k,m)} = G_{km}^* B^{(k,m)} = G_{km}^* G_{k,m-1}^* \cdots G_{k1}^* A^{(k)} G_{k1} \cdots G_{k,m-1} = A^{(k,m+1)} G_{k1} \cdots G_{k,m-1}.
$$

(I.81)

If a matrix $Z \in \mathcal{M}(n, \mathbb{K})$ is in Hessenberg form with $z_{l+1,l} = z_{l+2,l+1} = 0$, then right multiplication by G_{kl} only affects columns $l, l + 1$ of Z and rows $1, \ldots, l + 1$ of Z. As
\(A^{(k,m+1)} \) is in Hessenberg form with \(a^{(k,m+1)}_{21} = \cdots = a^{(k,m+1)}_{m+1,m} = 0 \) by Lem. I.39, (I.81) implies \(C^{(k,m)} \) is in Hessenberg form with columns \(m, \ldots, n \) of \(C^{(k,m)} \) and \(A^{(k,m+1)} \) being identical. As \(A^{(k+1)} = C^{(k+1)} G_{k,n-1} \), and \(G_{k,n-1} \) only affects columns \(n-1 \) and \(n \) of \(C^{(k+1)} \), \(A^{(k+1)} \) must also be in Hessenberg form, concluding Step 1.

Step 2: Assuming \(A^{(k)} \) to be in Hessenberg form, we show (I.60) to hold for \(A^{(k)} \) and \(A^{(k+1)} \): According to (I.80a),

\[
A^{(k+1)} = G_{k,n-1}^* \cdots G_{k1}^* A^{(k)} G_{k1} \cdots G_{k,n-1} = R_k Q_k, \tag{I.82a}
\]

where

\[
R_k = G_{k,n-1}^* \cdots G_{k1}^* A^{(k)}, \quad Q_k := G_{k1} \cdots G_{k,n-1}, \quad A^{(k)} = Q_k R_k. \tag{I.82b}
\]

As \(R_k \) is upper triangular by Lem. I.39 and \(Q_k \) is unitary (as it is the product of unitary matrices), we have proved that (I.60) holds and, thereby, completed Step 2.

Finally, since \(A^{(1)} \) is in Hessenberg form by hypothesis, using Steps 1 and 2 in an induction on \(k \) concludes the proof of the theorem.

Remark I.42. In the situation of Alg. I.40 it takes \(O(n^2) \) arithmetic operations to transform \(A^{(k)} \) into \(A^{(k+1)} \) (see the proof of Th. I.27(c) for a list of admissible arithmetic operations): One has to obtain the \(n-1 \) Givens rotations \(G_{k1}, \ldots, G_{k,n-1} \) using (I.78), and one also needs the adjoint \(n-1 \) Givens rotations. As the number of nontrivial entries in the \(G_{km} \) is always 4 and, thus, independent of \(n \), the total of arithmetic operations to obtain the \(G_{km} \) is \(N_G(n) = O(n) \). Since each \(C^{(k,m)} \) is in Hessenberg form, right multiplication with \(G_{km} \) only affects at most an \((m+2) \times 2 \) submatrix, needing at most \(C(m+2) \) arithmetic operations, \(C \in \mathbb{N} \). The result differs from a Hessenberg matrix at most in one element, namely the element with index \((m+2, m) \), i.e. left multiplication of the result with \(G_{k1}^* \) only affects at most a \(2 \times (n-m) \) submatrix, needing at most \(C(n-m) \) arithmetic operations (this is also consistent with the very first step, where one computes \(G_{k1}^* A^{(k)} \) with \(A^{(k)} \) in Hessenberg form). Thus, the total is at most

\[
N_G(n) + (n-1)C(n-m+1+m+2) = N_G(n) + (n-1)C(n+3),
\]

which is \(O(n^2) \) for \(n \to \infty \).

J Minimization

J.1 Motivation, Setting

Minimization (more generally, optimization) is a vast field, and we can only cover a few selected aspects in this class. We will consider minimization problems of the form

\[
\min f(a), \quad f : A \to \mathbb{R}. \tag{J.1}
\]

The function \(f \) to be minimized is often called the *objective function* or the *objective functional* of the problem, even though this seems to be particularly common in the context of constrained minimization (see below).
In Sec. 6.1, we discussed the tasks of finding zeros and fixed points of functions, and we found that, in most situations, both problems are equivalent. Minimization provides a third perspective onto this problem class: If \(F : A \rightarrow Y \), where \((Y, \| \cdot \|)\) is a normed vector space, and \(\alpha > 0 \), then

\[
F(x) = 0 \iff \|F(x)\|^\alpha = 0 = \min\{\|F(a)\|^\alpha : a \in A\}.
\]

More generally, given \(y \in Y \), we have the equivalence

\[
F(x) = y \iff \|F(x) - y\|^\alpha = 0 = \min\{\|F(a) - y\|^\alpha : a \in A\}. \tag{J.2}
\]

However, minimization is more general: If we seek the (global) min of the function \(f : A \rightarrow \mathbb{R} \), \(f(a) := \|F(a) - y\|^\alpha \), then it will yield a solution to \(F(x) = y \), provided such a solution exists. On the other hand, \(f \) can have a minimum even if \(F(x) = y \) does not have a solution. If \(Y = \mathbb{R}^n \), \(n \in \mathbb{N} \), with the 2-norm, and \(\alpha = 2 \), then the minimization of \(f \) is known as a least squares problem. The least squares problem is called linear if \(A \) is a normed vector space over \(\mathbb{R} \) and \(F : A \rightarrow Y \) is linear, and nonlinear otherwise.

One distinguishes between constrained and unconstrained minimization, where constrained minimization can be seen as restricting the objective function \(f : A \rightarrow \mathbb{R} \) to some subset of \(A \), determined by the constraints. Constraints can be given explicitly or implicitly. If \(A = \mathbb{R} \), then an explicit constraint might be to seek nonnegative solutions. Implicit constraints can be given in the form of equation constraints – for example, if \(A = \mathbb{R}^n \), then one might want to minimize \(f \) on the set of all solutions to \(Ma = b \), where \(M \) is some real \(m \times n \) matrix. In this class, we will restrict ourselves to unconstrained minimization. In particular, we will not cover the simplex method, a method for so-called linear programming, which consists of minimizing a linear \(f \) with affine constraints in finite dimensions (see, e.g., [HH92, Sec. 9] or [Str08, Sec. 5]). For constrained nonlinear optimization see, e.g., [QSS07, Sec. 7.3]). The optimal control of differential equations is an example of constrained minimization in infinite dimensions (see, e.g., [Phi09]).

We will only consider methods that are suitable for unconstrained nonlinear minimization, noting that even the linear least squares problem is a nonlinear minimization problem. Both methods involving derivatives (such as gradient methods) and derivative-free methods are of interest. Derivative-based methods typically show faster convergence rates, but, on the other hand, they tend to be less robust, need more function evaluations (i.e., each step of the method is more costly), and have a smaller scope of applicability (e.g., the function to be minimized must be differentiable).

J.2 Local Versus Global and the Role of Convexity

Definition J.1. Let \((X, \| \cdot \|)\) be a normed vector space, \(A \subseteq X \), and \(f : A \rightarrow \mathbb{R} \).

\(a \) Given \(x \in A \), \(f \) has a (strict) global min at \(x \) if, and only if, \(f(x) \leq f(y) \) \((f(x) < f(y))\) for each \(y \in A \setminus \{x\} \).
(b) Given \(x \in X \), \(f \) has a (strict) local min at \(x \) if, and only if, there exists \(r > 0 \) such that \(f(x) \leq f(y) \) (\(f(x) < f(y) \)) for each \(y \in \{ y \in A : \| y - x \| < r \} \setminus \{ x \} \).

Basically all deterministic minimization methods (in particular, all methods considered in this class) have the drawback that they will find local minima rather than global minima. This problem vanishes if every local min is a global min, which is, indeed, the case for convex functions. For this reason, we will briefly study convex functions in this section, before treating concrete minimization methods thereafter.

Definition J.2. A subset \(C \) of a real vector space \(X \) is called convex if, and only if, for each \((x, y) \in C^2 \) and each \(0 \leq \alpha \leq 1 \), one has \(\alpha x + (1 - \alpha) y \in C \).

Definition J.3. If \(A \) is a subset of a real vector space, then \(\text{conv} \ A \) is the intersection of all convex sets containing \(A \) and is called the convex hull of \(A \).

Remark J.4. Clearly, the intersection of convex sets is always convex and, thus, the convex hull of a set is always convex.

Definition J.5. Let \(C \) be a convex subset of a real vector space \(X \). A function \(f : C \rightarrow \mathbb{R} \) is called convex if, and only if, for each \((x, y) \in C^2 \) and each \(0 \leq \alpha \leq 1 \):

\[
f(\alpha x + (1 - \alpha) y) \leq \alpha f(x) + (1 - \alpha) f(y). \tag{J.3}
\]

If the inequality in (J.3) is strict whenever \(x \neq y \) and \(0 < \alpha < 1 \), then \(f \) is called strictly convex.

Example J.6. (a) We know from Calculus that a continuous function \(f : [a, b] \rightarrow \mathbb{R} \), that is twice differentiable on \([a, b] \) is strictly convex if \(f'' > 0 \) on \([a, b] \). Thus, \(f : \mathbb{R}_+ \rightarrow \mathbb{R} \), \(f(x) = x^p \), \(p > 1 \), is strictly convex (note \(f''(x) = p(p-1)x^{p-2} > 0 \) for \(x > 0 \)).

(b) Let \(C \) be a convex subset of a normed vector space \((X, \| \cdot \|) \) over \(\mathbb{R} \). Then \(\| \cdot \| : C \rightarrow \mathbb{R} \) is convex by the triangle inequality, but not strictly convex if \(C \) contains a segment of a one-dimensional subspace (why?). If \(\langle \cdot, \cdot \rangle \) is an inner product on \(X \) and \(\|x\| = \sqrt{\langle x, x \rangle} \), then

\[
f : C \rightarrow \mathbb{R}, \quad f(x) := \|x\|^2,
\]

is strictly convex: Indeed, if \(x, y \in X \), \(x \neq y \), \(0 < \alpha < 1 \), then

\[
f(\alpha x + (1 - \alpha)y) = \alpha^2\|x\|^2 + 2\alpha(1 - \alpha)\langle x, y \rangle + (1 - \alpha)^2\|y\|^2 \\
\leq (\alpha^2\|x\|^2 + 2\alpha(1 - \alpha)\|x\|\|y\| + (1 - \alpha)^2\|y\|^2) \\
= (\alpha\|x\| + (1 - \alpha)\|y\|)^2 \\
\leq (\alpha\|x\|^2 + (1 - \alpha)\|y\|^2 = \alpha f(x) + (1 - \alpha)f(y),
\]

where the Cauchy-Schwarz inequality was used at (*).
(c) The objective function of the linear least squares problem is strictly convex (exercise).

Theorem J.7. Let \((X, \|\cdot\|)\) be a normed vector space over \(\mathbb{R}\), \(C \subseteq X\), and \(f : C \rightarrow \mathbb{R}\). Assume \(C\) is a convex set, and \(f\) is a convex function.

(a) If \(f\) has a local min at \(x_0 \in C\), then \(f\) has a global min at \(x_0\).

(b) The set of mins of \(f\) is convex.

Proof. (a): Suppose \(f\) has a local min at \(x_0 \in C\), and consider an arbitrary \(x \in C\), \(x \neq x_0\). As \(x_0\) is a local min, there is \(r > 0\) such that \(f(x_0) \leq f(y)\) for each \(y \in C_r := \{y \in C : \|y - x_0\| < r\}\). Note that, for each \(\alpha \in \mathbb{R}\),

\[
x_0 + \alpha (x - x_0) = (1 - \alpha) x_0 + \alpha x.
\]

Thus, due to the convexity of \(C\), \(x_0 + \alpha (x - x_0) \in C\) for each \(\alpha \in [0, 1]\). Moreover, for sufficiently small \(\alpha\), namely for each \(\alpha \in R := \min\{1, r/\|x_0 - x\|\}\), one has \(x_0 + \alpha (x - x_0) \in C_r\). As \(x_0\) is a local min and \(f\) is convex, for each \(\alpha \in R\), one obtains:

\[
f(x_0) \leq f((1 - \alpha) x_0 + \alpha x) \leq (1 - \alpha) f(x_0) + \alpha f(x).
\] (J.5)

After subtracting \(f(x_0)\) and dividing by \(\alpha > 0\), (J.5) yields \(f(x_0) \leq f(x)\), showing that \(x_0\) is actually a global min as claimed.

(b): Let \(x_0 \in C\) be a min of \(f\). From (a), we already know that \(x_0\) must be a global min. So, if \(x \in C\) is any min of \(f\), then it follows that \(f(x) = f(x_0)\). If \(\alpha \in [0, 1]\), then the convexity of \(f\) implies that

\[
f((1 - \alpha) x_0 + \alpha x) \leq (1 - \alpha) f(x_0) + \alpha f(x) = f(x_0).
\] (J.6)

As \(x_0\) is a global min, (J.6) implies that \((1 - \alpha) x_0 + \alpha x\) is also a global min for each \(\alpha \in [0, 1]\), showing that the set of mins of \(f\) is convex as claimed.

Theorem J.8. Let \((X, \|\cdot\|)\) be a normed vector space over \(\mathbb{R}\), \(C \subseteq X\), and \(f : C \rightarrow \mathbb{R}\). Assume \(C\) is a convex set, and \(f\) is a strictly convex function. If \(x \in C\) is a local min of \(f\), then this is the unique local min of \(f\), and, moreover, it is strict.

Proof. According to Th. J.7, every local min of \(f\) is also a global min of \(f\). Seeking a contradiction, assume there is \(y \in C\), \(y \neq x\), such that \(y\) is also a min of \(f\). As \(x\) and \(y\) are both global mins, \(f(x) = f(y)\) is implied. Define \(z := \frac{1}{2} (x + y)\). Then \(z \in C\) due to the convexity of \(C\). Moreover, due to the strict convexity of \(f\),

\[
f(z) < \frac{1}{2} \left(f(x) + f(y) \right) = f(x)
\] (J.7)

in contradiction to \(x\) being a global min. Thus, \(x\) must be the unique min of \(f\), also implying that the min must be strict.
J.3 Golden Section Search

The goal of this section is to provide a derivative-free algorithm for one-dimensional minimization problems

\[\min f(t), \quad f : I \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}, \quad (J.8) \]

that is worst-case optimal in the same way the bisection method is worst-case optimal for root-finding problems. Let us emphasize that one-dimensional minimization problems also often occur as subproblems, so-called line searches in multi-dimensional minimization: One might use a derivative-based method to determine a descent direction \(u \) at some point \(x \) for some objective function \(J : X \rightarrow \mathbb{R} \), that means some \(u \in X \) such that the auxiliary objective function

\[f : [0, a] \rightarrow \mathbb{R}, \quad f(t) := J(x + tu) \quad (J.9) \]

is known to be decreasing in some neighborhood of 0. The line search then aims to minimize \(J \) on the line segment \(\{x + tu : t \in [0, a]\} \), i.e. to perform the (one-dimensional) minimization of \(f \).

Recall the bisection algorithm for finding a zero of a one-dimensional continuous function \(f : [a, b] \rightarrow \mathbb{R} \), defined on some interval \([a, b] \subseteq \mathbb{R}, a < b\), with \(f(a) < 0 < f(b)\): In each step, one has an interval \([a_n, b_n], a_n < b_n\), with \(f(a_n) < 0 < f(b_n)\), and one evaluates \(f \) at the midpoint \(c_n := (a_n + b_n)/2 \), choosing \([a_n, c_n]\) as the next interval if \(f(c_n) > 0 \) and \([c_n, b_n]\) if \(f(c_n) < 0 \). If \(f \) is continuous, then the boundary points of the intervals converge to a zero of \(f \). Choosing the midpoint is worst-case optimal in the sense that, without further knowledge on \(f \), any other choice for \(c_n \) might force one to choose the larger of the two subintervals for the next step, which would then have length bigger than \((b_n - a_n)/2\).

As we will see below, golden section search is the analogue of the bisection algorithm for minimization problems, where the situation is slightly more subtle. First, we have to address the problem of bracketing a minimum: For the bisection method, by the intermediate value theorem, a zero of the continuous function \(f \) is bracketed if \(f(a) < f(b) \) (or \(f(a) > f(b) \)). However, to bracket the min of a continuous function \(f \), we need three points \(a < b < c \), where

\[f(b) = \min\{f(a), f(b), f(c)\}. \quad (J.10) \]

Definition J.9. Let \(I \subseteq \mathbb{R} \) be an interval, \(f : I \rightarrow \mathbb{R} \). Then \((a, b, c) \in I^3\) is called a minimization triplet for \(f \) if, and only if, \(a < b < c \) and \((J.10) \) holds.

Clearly, if \(f \) is continuous, then \((J.10)\) implies \(f \) to have (at least one) global min in \([a, b] \). Thus, the problem of bracketing a minimum is to determine a minimization triplet for \(f \), where one has to be aware that the problem has no solution if \(f \) is strictly increasing or strictly decreasing. Still, we can formulate the following algorithm:
Algorithm J.10 (Bracketing a Minimum). Let \(f : I \rightarrow \mathbb{R} \) be defined on a nontrivial interval \(I \subseteq \mathbb{R} \), \(m := \inf I \), \(M := \sup I \). We define a finite sequence \((a_1, a_2, \ldots, a_N)\), \(N \geq 3\), of distinct points in \(I \) via the following recursion: For the first two points choose \(a < b \) in the interior of \(I \). Set
\[
\begin{align*}
a_1 &:= a, \quad a_2 := b, \quad \sigma := 1 \quad \text{if } f(b) \leq f(a), \\
a_1 &:= b, \quad a_2 := a, \quad \sigma := -1 \quad \text{if } f(b) > f(a).
\end{align*}
\]
(J.11)

If the algorithm has not been stopped in the previous step (i.e. if \(2 \leq n < N \)), then set \(t_n := a_n + 2\sigma|a_n - a_{n-1}| \) and
\[
a_{n+1} := \begin{cases}
 t_n & \text{if } t_n \in I, \\
 M & \text{if } t_n > M, \ M \in I, \\
 (a_n + M)/2 & \text{if } t_n > M, \ M \notin I, \\
 m & \text{if } t_n < m, \ m \in I, \\
 (m + a_n)/2 & \text{if } t_n < m, \ m \notin I.
\end{cases}
\]
(J.12)

Stop the iteration (and set \(N := n + 1 \)) if at least one of the following conditions is satisfied: (i) \(f(a_{n+1}) \geq f(a_n) \), (ii) \(a_{n+1} \in \{m, M\} \), (iii) \(a_{n+1} \notin [a_{\min}, a_{\max}] \) (where \(a_{\min}, a_{\max} \in I \) are some given bounds), (iv) \(n + 1 = n_{\max} \) (where \(n_{\max} \in \mathbb{N} \) is some given bound).

Remark J.11. (a) Since (J.11) guarantees \(f(a_1) \geq f(a_2) \), condition (i) plus an induction shows
\[f(a_1) \geq f(a_2) > \cdots > f(a_{N-1}).\]

(b) If Alg. J.10 terminates due to condition (i), then (a) implies \((a_{N-2}, a_{N-1}, a_N) \) (for \(\sigma = 1 \)) or \((a_N, a_{N-1}, a_{N-2}) \) (for \(\sigma = -1 \)) to be a minimization triplet for \(f \).

(c) If Alg. J.10 terminates due to conditions (ii) – (iv) (and (i) is not satisfied), then the method has failed to find a minimization triplet for \(f \). One then has three options: (a) abort the search (after all, a minimization triplet for \(f \) might not exist and \(a_N \) is a good candidate for a local min), (b) search on the other side of \(a_1 \), (c) continue the original search with adjusted bounds (if possible).

Given a minimization triplet \((a, b, c)\) for some function \(f \), we now want to evaluate \(f \) at \(x \in]a, b[\) or at \(x \in]b, c[\) to obtain a new minimization triplet \((a', b', c')\), where \(c' - a' < c - a \). Moreover, the strategy for choosing \(x \) should be worst-case optimal.

Lemma J.12. Let \(I \subseteq \mathbb{R} \) be an interval, \(f : I \rightarrow \mathbb{R} \). If \((a, b, c) \in I^3 \) is a minimization triplet for \(f \), then so are the following triples:
\[
\begin{align*}
(a, x, b) & \quad \text{for } a < x < b \text{ and } f(b) \geq f(x), \quad \text{(J.13a)} \\
(x, b, c) & \quad \text{for } a < x < b \text{ and } f(b) \leq f(x), \quad \text{(J.13b)} \\
(a, b, x) & \quad \text{for } b < x < c \text{ and } f(b) \leq f(x), \quad \text{(J.13c)} \\
(b, x, c) & \quad \text{for } b < x < c \text{ and } f(b) \geq f(x). \quad \text{(J.13d)}
\end{align*}
\]
Proof. All four cases are immediate.

While Lem. J.12 shows the forming of new, smaller triplets to be easy, the question remains of how to choose \(x \). Given a minimization triplet \((a,b,c)\), the location of \(b \) is a fraction \(w \) of the way between \(a \) and \(c \), i.e.

\[
w := \frac{b-a}{c-a}, \quad 1 - w = \frac{c-b}{c-a}.
\]

We will now assume \(w \leq \frac{1}{2} \) – if \(w > \frac{1}{2} \), then one can make the analogous (symmetric) argument, starting from \(c \) rather than from \(a \) (we will come back to this point below). The new point \(x \) will be an additional fraction \(z \) toward \(c \),

\[
z := \frac{x-b}{c-a}.
\]

If one chooses the new minimization triplet according to (J.13), then its length \(l \) is

\[
l = \begin{cases}
 w(c-a) & \text{for } a < x < b \text{ and } f(b) \geq f(x), \\
 (1-(w+z))(c-a) & \text{for } a < x < b \text{ and } f(b) \leq f(x), \\
 (w+z)(c-a) & \text{for } b < x < c \text{ and } f(b) \leq f(x), \\
 (1-w)(c-a) & \text{for } b < x < c \text{ and } f(b) \geq f(x).
\end{cases}
\]

For the moment, consider the case \(b < x < c \). As we assume no prior knowledge about \(f \), we have no control over which of the two choices we will have to make to obtain the new minimization triplet, i.e., if possible, we should make the last two factors in front of \(c-a \) in (J.16) equal, leading to \(w+z = 1-w \) or

\[
z = 1 - 2w.
\]

If we were to choose \(x \) between \(a \) and \(b \), then it could occur that \(l = (1-(w+z)) > 1-w \) (note \(z < 0 \) in this case), that means this choice is not worst-case optimal. Together with the symmetric argument for \(w > \frac{1}{2} \), this means we always need to put \(x \) in the larger of the two subintervals. While (J.17) provides a formula for determining \(z \) in terms of \(w \), we still have the freedom to choose \(w \). If there is an optimal value for \(w \), then this value should remain constant throughout the algorithm – it should be the same for the old triplet and for the new triplet. This leads to

\[
w = \frac{x-b}{c-b} = \frac{z(c-a)}{c-b} = \frac{z}{1-w},
\]

which, combined with (J.17), yields

\[
w^2 - 3w + 1 = 0 \iff w = \frac{3 \pm \sqrt{5}}{2}.
\]

Fortunately, precisely one of the values of \(w \) in (J.19) satisfies \(0 < w < \frac{1}{2} \), namely

\[
w = \frac{3 - \sqrt{5}}{2} \approx 0.38, \quad 1 - w = \frac{\sqrt{5} - 1}{2} \approx 0.62.
\]
Then $\frac{1-w}{w} = \frac{1+\sqrt{5}}{2}$ is the value of the golden ratio or golden section, which gives the following Alg. J.13 its name. Together with the symmetric argument for $w > \frac{1}{2}$, we can summarize our findings by stating that the new point x should be a fraction of $w = \frac{3-\sqrt{5}}{2}$ into the larger of the two subintervals (where the fraction is measured from the central point of the triplet):

Algorithm J.13 (Golden Section Search). Let $I \subseteq \mathbb{R}$ be a nontrivial interval, $f : I \rightarrow \mathbb{R}$. Assume that $(a, b, c) \in I^3$ is a minimization triplet for f. We define the following recursive algorithm for the computation of a sequence of minimization triplets for f: Set $(a_1, b_1, c_1) := (a, b, c)$. Given $n \in \mathbb{N}$ and a minimization triplet (a_n, b_n, c_n), set

$$x_n := \begin{cases}
 b_n + w(c_n - b_n) & \text{if } c_n - b_n \geq b_n - a_n, \\
 b_n - w(b_n - a_n) & \text{if } c_n - b_n < b_n - a_n,
\end{cases}$$

and choose $(a_{n+1}, b_{n+1}, c_{n+1})$ according to (J.13) (in practise, one will stop the iteration if $c_n - a_n < \epsilon$, where $\epsilon > 0$ is some given bound).

(a) The value of $f(b_n)$ decreases monotonically, i.e. $f(b_{n+1}) \leq f(b_n)$ for each $n \in \mathbb{N}$.

(b) With the possible exception of one step, one always has

$$c_{n+1} - a_{n+1} \leq q(c_n - a_n), \quad \text{where} \quad q := \frac{1}{2} + \frac{\alpha}{2} \approx 0.69, \quad \alpha := \frac{3 - \sqrt{5}}{2}. \quad (J.22)$$

(c) One has

$$x := \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n, \quad \{x\} = \bigcap_{n \in \mathbb{N}} [a_n, c_n]. \quad (J.23)$$

Proof. (a) clearly holds, since each new minimization triplet is chosen according to (J.13).

(b): As, according to (J.21), x_n is always chosen in the larger subinterval, it suffices to consider the case $w := \frac{b_n - a_n}{c_n - a_n} \leq \frac{1}{2}$. If $w = \alpha$, then (J.16) and (J.17) guarantee

$$c_{n+1} - a_{n+1} = (w + z)(c_n - a_n) = (1 - w)(c_n - a_n) < q(c_n - a_n).$$

Moreover, due to (J.18), if $w = \alpha$ (or $w = 1 - \alpha$) has occurred once, then $w = \alpha$ or $w = 1 - \alpha$ will hold for all following steps. Let $w \neq \alpha$, $w \leq \frac{1}{2}$. If $(a_{n+1}, b_{n+1}, c_{n+1}) = (b_n, x_n, c_n)$, then (J.22) might not hold, but $w = \alpha$ holds in the next step, i.e. (J.22) does hold for all following steps. Thus, it only remains to consider the case $(a_{n+1}, b_{n+1}, c_{n+1}) = (a_n, b_n, x_n)$. In this case,

$$\frac{c_{n+1} - a_{n+1}}{c_n - a_n} = \frac{x_n - a_n}{c_n - a_n} = \frac{b_n - a_n}{c_n - a_n} + \frac{x_n - b_n}{c_n - a_n} = w + \frac{x_n - b_n}{c_n - b_n} \frac{c_n - b_n}{c_n - a_n} = w + \frac{1}{2} \frac{c_n - b_n}{c_n - a_n} = w + \alpha(1 - w) = \alpha + (1 - \alpha)w \leq \alpha + (1 - \alpha)\frac{1}{2} = q,$$
establishing the case.

(c): Clearly, \([a_{n+1}, c_{n+1}] \subseteq [a_n, c_n]\) for each \(n \in \mathbb{N}\). Applying an induction to (J.22) yields

\[
\forall n \in \mathbb{N} \quad c_{n+1} - a_{n+1} \leq q^{n-1}(c_1 - a_1),
\]

where the exponent on the right-hand side is \(n - 1\) instead of \(n\) due to the possible exception in one step. Since \(q < 1\), this means \(\lim_{n \to \infty} (c_n - a_n) = 0\), proving (J.23). ■

Definition J.15. Let \(I \subseteq \mathbb{R}\) be an interval, \(f : I \to \mathbb{R}\). We call \(f\) locally monotone if, and only if, for each \(x \in I\), there exists \(\epsilon > 0\) such that \(f\) is monotone (increasing or decreasing) on \(I \cap [x - \epsilon, x]\) and monotone on \(I \cap [x, x + \epsilon]\).

Example J.16. The function \(f : \mathbb{R} \to \mathbb{R}, f(x) := \begin{cases} x \sin \frac{1}{x} & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases}\)

is an example of a continuous function that is not locally monotone (clearly, \(f\) is not monotone in any interval \([-\epsilon, 0]\) or \([0, \epsilon], \epsilon > 0\)).

Theorem J.17. Let \(I \subseteq \mathbb{R}\) be a nontrivial interval and assume \(f : I \to \mathbb{R}\) to be continuous and locally monotone in the sense of Def. J.15. Consider Alg. J.13 and let \(x := \lim_{n \to \infty} b_n\) (cf. Lem. J.14(c)). Then \(f\) has a local min at \(x\).

Proof. The continuity of \(f\) implies \(f(x) = \lim_{n \to \infty} f(b_n)\). Then Lem. J.14(a) implies

\[
f(x) = \inf\{f(b_n) : n \in \mathbb{N}\}. \tag{J.24}
\]

If \(f\) does not have a local min at \(x\), then

\[
\forall n \in \mathbb{N} \quad \exists y_n \in I \quad \left(y_n \in [a_n, c_n] \quad \text{and} \quad f(y_n) < f(x)\right). \tag{J.25}
\]

If \(a_n < y_n < x\), then \(f(a_n) > f(y_n) < f(x)\), showing \(f\) is not monotone in \([a_n, x]\). Likewise, if \(x < y_n < c_n\), then \(f(x) > f(y_n) < f(c_n)\), showing \(f\) is not monotone in \([x, c_n]\). Thus, there is no \(\epsilon > 0\) such that \(f\) is monotone on both \(I \cap [x - \epsilon, x]\) and \(I \cap [x, x + \epsilon]\), in contradiction to the assumption that \(f\) be locally monotone. ■

J.4 Nelder-Mead Method

The *Nelder-Mead method* of [NM65] is a method for minimization in \(\mathbb{R}^n\), i.e. for an objective function \(f : \mathbb{R}^n \to \mathbb{R}\). It is also known as the *downhill simplex method* or the *amoeba method*. The method has nothing to do with the simplex method of linear programming (except that both methods make use of the geometrical structure called simplex).

The Nelder-Mead method is a derivative-free method that is simple to implement. It is an example of a method that seems to perform quite well in practice, even though
there are known examples, where it will fail, and, in general, the related convergence theory available in the literature remains quite limited. Here, we will merely present the algorithm together with its heuristics, and provide some relevant references to the literature.

Recall that a (nondegenerate) simplex in \mathbb{R}^n is the convex hull of $n+1$ points $x_1, \ldots, x_{n+1} \in \mathbb{R}^n$ such that the points $x_2 - x_1, \ldots, x_{n+1} - x_1$ are linearly independent. If $\Delta = \text{conv}\{x_1, \ldots, x_{n+1}\}$, then x_1, \ldots, x_{n+1} are called the vertices of Δ.

The idea of the Nelder-Mead method is to construct a sequence $(\Delta^k)_{k \in \mathbb{N}}$, of simplices such that the size of the Δ^k converges to 0 and the value of f at the vertices of the Δ^k decreases, at least on average. To this end, in each step, one finds the vertex v, where f is largest and either replaces v by a new vertex (by moving it in the direction of the centroid of the remaining vertices, see below) or one shrinks the simplex.

Algorithm J.18 (Nelder-Mead). Given $f : \mathbb{R}^n \to \mathbb{R}$, $n \in \mathbb{N}$, we provide a recursion to obtain a sequence of simplices $(\Delta^k)_{k \in \mathbb{N}}$ as in (J.26):

Initialization: Choose $x_1^1 \in \mathbb{R}^n \setminus \{e_1, \ldots, e_n\}$ (the initial guess for the desired min of f), and set

$$
\forall \ i \in \{1, \ldots, n\} \quad x_{i+1}^1 := x_1^1 + \delta_i e_i,
$$

where the e_i denote the standard unit vectors, and the $\delta_i > 0$ are initialization parameters that one should try to adapt to the (conjectured) characteristic length scale (or scales) of the considered problem.

Iteration Step: Given Δ^k, $k \in \mathbb{N}$, sort the vertices such that (J.26) holds with

$$
f(x_1^k) \leq f(x_2^k) \cdots \leq f(x_{n+1}^k).
$$

According to the following rules, we will either replace (only) x_{n+1}^k or shrink the simplex. In preparation, we compute the centroid of the first n vertices, i.e.

$$
\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i^k,
$$

and the search direction u for the new vertex,

$$
u := \overline{x} - x_{n+1}^k.
$$

One will now apply precisely one of the following rules (1) – (4) in decreasing priority (i.e. rule (j) can only be used if none of the conditions for rules (1) – $(j - 1)$ applied):

(1) Reflection: Compute the reflected point

$$
x_r := \overline{x} + \mu_r u = x_{n+1}^k + (\mu_r + 1) u
$$

(2) Expansion: Compute the reflected point

$$
x_e := \overline{x} + \mu_e u = x_{n+1}^k + (\mu_e + 1) u
$$

(3) Shrink: Compute the centroid of the first n vertices,

$$
\overline{x}_1 := \frac{1}{n} \sum_{i=1}^{n} x_i^k
$$

and the search direction u for the new vertex,

$$
u := \overline{x}_1 - x_{n+1}^k.
$$

One will now apply precisely one of the following rules (1) – (4) in decreasing priority (i.e. rule (j) can only be used if none of the conditions for rules (1) – $(j - 1)$ applied):

(4) Shrink: Compute the reflected point

$$
x_s := \overline{x}_1 + \mu_s u = x_{n+1}^k + (\mu_s + 1) u
$$

Note that the selection of the rule to apply is done by examining the function values at the vertices of the simplex.
and the corresponding value
\[f_r := f(x_r), \]
where \(\mu_r > 0 \) is the reflection parameter (\(\mu_r = 1 \) being a common setting). If
\[f(x^k_r) \leq f_r < f(x^k_n), \]
then replace \(x^k_{n+1} \) with \(x_r \) to obtain the new simplex \(\Delta^{k+1} \). Heuristics: As \(f \) is largest at \(x^k_{n+1} \), one reflects the point through the hyperplane spanned by the remaining vertices hoping to find smaller values on the other side. If one, indeed, finds a sufficiently smaller value (better than the second worst), then one takes the new point, except if the new point has a smaller value than all other vertices, in which case, one tries to go even further in that direction by applying rule (2) below.

(2) Expansion: If
\[f(x_r) < f(x^k_r) \]
(i.e. (J.30c) does not hold and \(x_r \) is better than all \(x^k_i \)), then compute the expanded point
\[x_e := x_r + \mu_e u = x^k_{n+1} + (\mu_e + 1) u, \]
where \(\mu_e > \mu_r \) is the expansion parameter (\(\mu_e = 2 \) being a common setting). If
\[f(x_e) < f_r, \]
then replace \(x^k_{n+1} \) with \(x_e \) to obtain the new simplex \(\Delta^{k+1} \). If (J.31c) does not hold, then, as in (1), replace \(x^k_{n+1} \) with \(x_r \) to obtain \(\Delta^{k+1} \). If neither (J.30c) nor (J.31a) holds, then continue with (3) below. Heuristics: If \(x_r \) has the smallest value so far, then one hopes to find even smaller values by going further in the same direction.

(3) Contraction: If neither (J.30c) nor (J.31a) holds, then
\[f_r \geq f(x^k_n). \]
In this cases, compute the contracted point
\[x_c := x_r + \mu_c u = x^k_{n+1} + (\mu_c + 1) u, \]
where \(-1 < \mu_c < 0 \) is the contraction parameter (\(\mu_c = -\frac{1}{2} \) being a common setting). If
\[f(x_c) < f(x^k_{n+1}), \]
then replace \(x^k_{n+1} \) with \(x_c \) to obtain the new simplex \(\Delta^{k+1} \). Heuristics: If (J.32a) holds, then \(x_r \) would still be the worst vertex of the new simplex. If the new vertex is to be still the worst, then it should at least be such that it reduces the volume of the simplex. Thus, the contracted point is chosen between \(x^k_{n+1} \) and \(x_r \).

(4) Reduction: If (J.32a) holds and (J.32c) does not hold, then we have failed to find a better vertex in the direction \(u \). We then shrink the simplex around the best point \(x^k_1 \) by setting \(x^{k+1}_1 := x^k_1 \) and
\[\forall \; i \in \{2, \ldots, n+1\} \quad x^{k+1}_i := x^k_1 + \mu_s (x^k_i - x^k_1), \]
where \(\mu_s \) is the shrinking parameter (\(\mu_s = 1 \) being a common setting).
where $0 < \mu_s < 1$ is the shrink parameter ($\mu_s = \frac{1}{2}$ being a common setting). Heuristics: If f increases by moving from the worst point in the direction of the better points, then that indicates the simplex being too large, possibly containing several local mins. Thus, we shrink the simplex around the best point, hoping to thereby improve the situation.

Remark J.19. Consider Alg. J.18.

(a) Clearly, all simplices Δ^k, $k \in \mathbb{N}$, are nondegenerate: For Δ^1 this is guaranteed by choosing $x_1^1 \notin \{e_1, \ldots, e_n\}$; for $k > 1$, this is guaranteed since (1) – (3) choose the new vertex not in $\text{conv}\{x_1^k, \ldots, x_n^k\}$ (note $x_{n+1}^k + \mu(x - x_{n+1}^k) : \mu \in \mathbb{R} \cap \text{conv}\{x_1^k, \ldots, x_n^k\} = \{x\}$), and $x_2^k - x_1^k, \ldots, x_{n+1}^k - x_1^k$ are linearly independent in (4).

(b) (1) – (3) are designed such that the average value of f at the vertices decreases:

$$\frac{1}{n+1} \sum_{i=1}^{n+1} f(x_i^{k+1}) < \frac{1}{n+1} \sum_{i=1}^{n+1} f(x_i^k). \quad (J.34)$$

However, if (4) occurs, then (J.34) can fail to hold.

(c) As mentioned above, even though Alg. J.18 seems to perform well in practise, one can construct examples, where it will converge to points that are not local minima (see, e.g., [Kel99, Sec. 8.1.3]). Some positive results regarding the convergence of Alg. J.18 can be found in [Kel99, Sec. 8.1.2] and [LRWW98]. In general, multidimensional minimization is not an easy task, and it is not uncommon for algorithms to converge to wrong points. It is therefore recommended in [PTVF07, pp. 503-504] to restart the algorithm at a point that it claimed to be a minimum (also see [Kel99, Sec. 8.1.4] regarding restarts of Alg. J.18).

J.5 Gradient-Based Descent Methods

As in Sec. J.4, we are concerned with objective functions f defined on (subsets of) \mathbb{R}^n. In contrast to Sec. J.4, though, we will now be mostly interested in differentiable f. At the beginning of Sec. J.3, we have already had a brief encounter with so-called descent directions and related line searches. We will now make these notions more precise:

Definition J.20. Let $G \subseteq \mathbb{R}^n$ be open, $n \in \mathbb{N}$, and $f : G \longrightarrow \mathbb{R}$.

(a) Given $x^1 \in G$, a *stepsize direction iteration* defines a sequence $(x^k)_{k \in \mathbb{N}}$ in G by setting

$$\forall k \in \mathbb{N} \quad x^{k+1} := x^k + t_k u^k, \quad (J.35)$$

where $t_k \in \mathbb{R}^+$ is the *stepsize* and $u^k \in \mathbb{R}^n$ is the *direction* of the kth step. In general, t_k and u^k will depend on G, f, x^1, \ldots, x^k, t_1, \ldots, t_{k-1}, u^1, \ldots, u^{k-1}. Different choices of t_k and u^k correspond to different methods – some examples are provided in (b) – (d) below.
(b) A stepsize direction iteration as in (a) is called a descent method for f if, and only if, for each $k \in \mathbb{N}$, either $u_k = 0$ or
\[
\phi_k : I_k \to \mathbb{R}, \quad \phi_k(t) := f(x^k + t u^k), \quad I_k := \{ t \in \mathbb{R}^+_0 : x^k + t u^k \in G \}, \tag{J.36}
\]
is strictly decreasing in some neighborhood of 0.

(c) If f is differentiable, then a stepsize direction iteration as in (a) is called gradient method for f or method of steepest descent if, and only if,
\[
\forall k \in \mathbb{N}, \quad u_k = -\nabla f(x^k), \tag{J.37}
\]
i.e. if the directions are always chosen as the antigradient of f in x^k.

(d) If f is differentiable, then the conjugate gradient method is a stepsize direction iteration, where
\[
\forall k \in \{2, \ldots, n\}, \quad u_k = -\nabla f(x^k) + \beta_k u^{k-1}, \tag{J.38}
\]
and the $\beta_k \in \mathbb{R}^+$ are chosen such that $(u^k)_{k \in \{1, \ldots, n\}}$ forms an orthogonal system with respect to a suitable inner product.

Remark J.21. In the situation of Def. J.20 above, if f is differentiable, then its directional derivative at $x^k \in G$ in the direction $u^k \in \mathbb{R}^n$ is
\[
\phi_k'(0) = \lim_{t \downarrow 0} \frac{f(x^k + t u^k) - f(x^k)}{t} = \nabla f(x^k) \cdot u^k. \tag{J.39}
\]
If $\|u^k\|_2 = 1$, then the Cauchy-Schwarz inequality implies
\[
|\phi_k'(0)| = |\nabla f(x^k) \cdot u^k| \leq \|\nabla f(x^k)\|_2, \tag{J.40}
\]
justifying the name method of steepest descent for the gradient method of Def. J.20(c). The next lemma shows it is, indeed, a descent method as defined in Def. J.20(b), provided that f is continuously differentiable.

Notation J.22. If X is a real vector space and $x, y \in X$, then
\[
[x, y] := \{(1 - t)x + ty : t \in [0, 1]\} = \text{conv}\{x, y\} \tag{J.41}
\]
denotes the line segment between x and y.

Lemma J.23. Let $G \subseteq \mathbb{R}^n$ be open, $n \in \mathbb{N}$, and $f : G \to \mathbb{R}$ continuously differentiable. If
\[
\forall k \in \mathbb{N}, \quad \nabla f(x^k) \cdot u^k < 0, \tag{J.42}
\]
then each stepsize direction iteration as in Def. J.20(a) is a descent method according to Def. J.20(b). In particular, the gradient method of Def. J.20(c) is a descent method.
Proof. According to (J.39) and (J.42), we have

$$\phi'_k(0) < 0 \quad (J.43)$$

for ϕ_k of (J.36). As ϕ'_k is continuous in 0, (J.43) implies ϕ_k to be strictly decreasing in a neighborhood of 0.

We continue to remain in the setting of Def. J.20. Suppose we are in step k of a descent method, i.e. we know ϕ_k of (J.36) to be strictly decreasing in a neighborhood of 0. Then the question remains of how to choose the next stepsize t_k. One might want to choose t_k such that ϕ_k has a global (or at least a local) min at t_k. A local min can, for instance, be obtained by applying the golden section search of Alg. J.13. However, if function evaluations are expensive, then one might want to resort to some simpler method, even if it does not provide a local min of ϕ_k. Another potential problem with Alg. J.13 is that, in general, one has little control over the size of t_k, which makes convergence proofs difficult. The following Armijo rule has the advantage of being simple and, at the same time, relating the size of t_k to the size of $\nabla f(x^k)$:

Algorithm J.24 (Armijo Rule). Let $G \subseteq \mathbb{R}^n$ be open, $n \in \mathbb{N}$, and $f : G \to \mathbb{R}$ differentiable. The Armijo rule has two parameters, namely $\sigma, \beta \in]0, 1]$. If $x^k \in G$ and $u^k \in \mathbb{R}^n$ is either 0 or such that $\nabla f(x^k) \cdot u^k < 0$, then set

$$t_k := \begin{cases} 1 & \text{for } u^k = 0, \\ \max \{ \beta^l : l \in \mathbb{N}_0, \ x^k + \beta^l u^k \in G, \text{ and } \beta^l \text{ satisfies } (J.45) \} & \text{for } u^k \neq 0, \end{cases} \quad (J.44)$$

where

$$f(x^k + \beta^l u^k) \leq f(x^k) + \sigma \beta^l \nabla f(x^k) \cdot u^k. \quad (J.45)$$

In practise, since $(\beta^l)_{l \in \mathbb{N}_0}$ is strictly decreasing, one merely has to test the validity of $x^k + \beta^l u^k \in G$ and (J.45) for $l = 0, 1, 2, \ldots$ stopping once (J.45) holds for the first time.

Lemma J.25. Under the assumptions of Alg. J.24, if $u^k \neq 0$, then the max in (J.44) exists. In particular, the Armijo rule is well-defined.

Proof. Let $u^k \neq 0$. Since $(\beta^l)_{l \in \mathbb{N}_0}$ is decreasing, we only have to show that an $l \in \mathbb{N}_0$ exists such that $x^k + \beta^l u^k \in G$ and (J.45) holds. Since $\lim_{l \to \infty} \beta^l = 0$ and G is open, $x^k + \beta^l u^k \in G$ holds for each sufficiently large l. Seeking a contradiction, we now assume

$$\exists N \in \mathbb{N} \quad \forall l \geq N \quad \left(x^k + \beta^l u^k \in G \quad \text{and} \quad f(x^k + \beta^l u^k) > f(x^k) + \sigma \beta^l \nabla f(x^k) \cdot u^k \right).$$

Thus, as f is differentiable,

$$\nabla f(x^k) \cdot u^k \overset{(J.39)}{=} \lim_{l \to \infty} \frac{f(x^k + \beta^l u^k) - f(x^k)}{\beta^l} \geq \sigma \nabla f(x^k) \cdot u^k.$$

Then the assumption $\nabla f(x^k) \cdot u^k < 0$ implies $1 \leq \sigma$, in contradiction to $0 < \sigma < 1$. ■
In preparation for a convergence theorem for the gradient method (Th. J.27 below), we prove the following lemma:

Lemma J.26. Let \(G \subseteq \mathbb{R}^n \) be open, \(n \in \mathbb{N} \), and \(f : G \to \mathbb{R} \) continuously differentiable. Suppose \(x \in G, \ u \in \mathbb{R}^n \), and consider sequences \((x^k)_{k \in \mathbb{N}}\) in \(G \), \((u^k)_{k \in \mathbb{N}}\) in \(\mathbb{R}^n \), \((t_k)_{k \in \mathbb{N}}\) in \(\mathbb{R}^+ \), satisfying

\[
\lim_{k \to \infty} x^k = x, \quad \lim_{k \to \infty} u^k = u, \quad \lim_{k \to \infty} t_k = 0. \tag{J.46}
\]

Then

\[
\lim_{k \to \infty} \frac{f(x^k + t_k u^k) - f(x^k)}{t_k} = \nabla f(x) \cdot u. \tag{J.47}
\]

Proof. As \(G \) is open, (J.46) guarantees

\[
\exists \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall k > N \quad y^k := x^k + t_k u^k \in B_\varepsilon(x^k) \subseteq G.
\]

Thus, we can apply the mean value theorem to obtain

\[
\forall k > N \quad \exists \xi^k \in [x^k, y^k] \quad f(x^k + t_k u^k) - f(x^k) = t_k \nabla f(\xi^k) \cdot u^k. \tag{J.48}
\]

Since \(\lim_{k \to \infty} \xi^k = x \) and \(\nabla f \) is continuous, (J.48) implies (J.47). \(\blacksquare\)

Theorem J.27. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be continuously differentiable, \(n \in \mathbb{N} \). If the sequence \((x^k)_{k \in \mathbb{N}}\) is given by the gradient method of Def. J.20(c) together with the Armijo rule according to Alg. J.24, then every cluster point \(x \) of the sequence is a stationary point of \(f \).

Proof. If there is \(k_0 \in \mathbb{N} \) such that \(u^{k_0} = -\nabla f(x^{k_0}) = 0 \), then \(\lim_{k \to \infty} x^k = x^{k_0} \) is clear from (J.35) and we are already done. Thus, we may now assume \(u^k \neq 0 \) for each \(k \in \mathbb{N} \). Let \(x \in \mathbb{R}^n \) be a cluster point of \((x^k)_{k \in \mathbb{N}}\) and \((x^k_j)_{j \in \mathbb{N}}\) a subsequence such that \(x = \lim_{j \to \infty} x^{k_j} \). The continuity of \(f \) implies \(f(x) = \lim_{j \to \infty} f(x^{k_j}) \). But then, as \((f(x^k))_{k \in \mathbb{N}}\) is decreasing by the Armijo rule, one also obtains

\[
f(x) = \lim_{j \to \infty} f(x^{k_j}) = \lim_{k \to \infty} f(x^k).
\]

Thus, \(\lim_{k \to \infty} (f(x^{k+1}) - f(x^k)) = 0 \), and, using the Armijo rule again, we have

\[
0 < \sigma t_k \| \nabla f(x^k) \|_2^2 \leq f(x^{k+1}) - f(x^k) \to 0, \tag{J.49}
\]

where \(\sigma \in]0, 1[\) is the parameter from the Armijo rule. Seeking a contradiction, we now assume \(\nabla f(x) \neq 0 \). Then the continuity of \(\nabla f \) yields \(\lim_{j \to \infty} \nabla f(x^{k_j}) = \nabla f(x) \neq 0 \), which, together with (J.49) implies \(\lim_{j \to \infty} t_{k_j} = 0 \). Moreover, for each \(j \in \mathbb{N} \), \(t_{k_j} = \beta j \), where \(\beta \in]0, 1[\) is the parameter from the Armijo rule and \(l_j \in \mathbb{N}_0 \) is chosen according to (J.44). Thus, for each sufficiently large \(j \), \(m_j := l_j - 1 \in \mathbb{N}_0 \) and

\[
f(x^{k_j} + \beta^{m_j} u^{k_j}) > f(x^{k_j}) + \sigma \beta^{m_j} \nabla f(x^{k_j}) \cdot u^{k_j},
\]
which, rearranged, reads
\[
\frac{f(x^k + \beta m_j u^k_j) - f(x^k)}{\beta m_j} > \sigma \nabla f(x^k) \cdot u^k_j
\]
(here we have used that \(x^k + \beta m_j u^k_j \in G = \mathbb{R}^n\)). Taking the limit for \(j \to \infty\) and observing \(\lim_{j \to \infty} \beta m_j = 0\) in connection with Lem. J.26 then yields
\[
-\|\nabla f(x)\|^2 \geq -\sigma \|\nabla f(x)\|^2,
\]
i.e. \(\sigma \geq 1\). This contradiction to \(\sigma < 1\) completes the proof of \(\nabla f(x) = 0\).

As a caveat, it is underlined that Th. J.27 does not claim the sequence \((x^k)_{k \in \mathbb{N}}\) to have cluster points. It merely states that, if cluster points exist, then they must be stationary points. For convex differentiable functions, stationary points are minima:

Proposition J.28. If \(C \subseteq \mathbb{R}^n\) is open and convex, \(n \in \mathbb{N}\), and \(f : C \to \mathbb{R}\) is differentiable and (strictly) convex, then \(f\) has a (strict) global min at each stationary point (of which there is at most one in the strictly convex case, cf. Th. J.8).

Proof. Let \(x \in C\) be a stationary point of \(f\), i.e. \(\nabla f(x) = 0\). Let \(y \in C\), \(y \neq x\). Since \(C\) is open and convex, there exists an open interval \(I \subseteq \mathbb{R}\) such that \(0, 1 \in I\) and \([x + t(y - x) : t \in I] \subseteq C\). Consider the auxiliary function
\[
\phi : I \to \mathbb{R}, \quad \phi(t) := f(x + t(y - x)).
\]
We claim that \(\phi\) is (strictly) convex if \(f\) is (strictly) convex: Indeed, let \(s, t \in I\), \(s \neq t\), and \(\alpha \in]0, 1[\). Then
\[
\phi(\alpha s + (1 - \alpha)t) = f(x + (\alpha s + (1 - \alpha)t)(y - x)) \\
= f(\alpha(x + s(y - x)) + (1 - \alpha)(x + t(y - x))) \\
\leq \alpha f(x + s(y - x)) + (1 - \alpha)f(x + t(y - x)) \\
= \alpha \phi(s) + (1 - \alpha)\phi(t)
\]
with strict inequality if \(f\) is strictly convex. By the chain rule, \(\phi\) is differentiable with
\[
\forall_{t \in I} \phi'(t) = \nabla f(x + t(y - x)) \cdot (y - x).
\]
Thus, we know from Calculus that \(\phi'\) is (strictly) increasing and, as \(\phi'(0) = 0\), \(\phi\) must be (strictly) increasing on \(I \cap \mathbb{R}^+\). Thus, \(f(y) \geq f(x)\) \((f(y) > f(x))\), showing \(x\) to be a (strict) global min.

Corollary J.29. Let \(f : \mathbb{R}^n \to \mathbb{R}\) be (strictly) convex and continuously differentiable, \(n \in \mathbb{N}\). If the sequence \((x^k)_{k \in \mathbb{N}}\) is given by the gradient method of Def. J.20(c) together with the Armijo rule according to Alg. J.24, then every cluster point \(x\) of the sequence is a (strict) global min of \(f\) (in particular, there is at most one cluster point in the strictly convex case).

A disadvantage of the (hypotheses) of the previous results is that they do not guarantee the convergence of the gradient method (or even the existence of local minima). An important class of functions, where we can, indeed, guarantee both (together with an error estimate that shows a linear convergence rate) is the class of convex quadratic functions, which we will study next.

Definition J.30. Let \(Q \in M(n, \mathbb{R}) \) be symmetric and positive definite, \(a \in \mathbb{R}^n \), \(n \in \mathbb{N} \), \(\gamma \in \mathbb{R} \). Then the function

\[
 f : \mathbb{R}^n \rightarrow \mathbb{R}, \quad f(x) := \frac{1}{2} x^t Q x + a^t x + \gamma,
\]

where \(a, x \) are considered column vectors, is called the **quadratic function** given by \(Q \), \(a \), and \(\gamma \).

Proposition J.31. Let \(Q \in M(n, \mathbb{R}) \) be symmetric and positive definite, \(a \in \mathbb{R}^n \), \(n \in \mathbb{N} \), \(\gamma \in \mathbb{R} \). Then the function \(f \) of (J.52) has the following properties:

(a) \(f \) is strictly convex.

(b) \(f \) is differentiable with

\[
 \nabla f : \mathbb{R}^n \rightarrow \mathbb{R}^n, \quad \nabla f(x) = x^t Q + a^t.
\]

(c) \(f \) has a unique and strict global min at \(x^* := -Q^{-1}a \).

(d) Given \(x, u \in \mathbb{R}^n \), \(u \neq 0 \), the function

\[
 \phi : \mathbb{R} \rightarrow \mathbb{R}, \quad \phi(t) := f(x + tu),
\]

has a unique and strict global min at \(t^* := -\frac{(x^t Q + a^t)u}{u^t Q u} \).

Proof. (a): Since \(\langle x, y \rangle := x^t Q y \) defines an inner product on \(\mathbb{R}^n \), the strict convexity of \(f \) follows from Ex. J.6(b).

(b): Exercise.

(c) follows from (a), (b), and Prop. J.28, as \(f \) has a stationary point at \(x^* = -Q^{-1}a \).

(d): The computation in (J.51) with \(y - x \) replaced by \(u \) shows \(\phi \) to be strictly convex. Moreover,

\[
 \phi' : \mathbb{R} \rightarrow \mathbb{R}, \quad \phi'(t) = \nabla f(x + tu)u = (x^t + tu^t)Q u + a^t u.
\]

Then the assertion follows from Prop. J.28, as \(\phi \) has a stationary point at \(t^* = -\frac{(x^t Q + a^t)u}{u^t Q u} \).
Theorem J.32 (Kantorovich Inequality). Let $Q \in \mathcal{M}(n, \mathbb{R})$ be symmetric and positive definite, $n \in \mathbb{N}$. If $\alpha := \min \sigma(Q) \in \mathbb{R}^+$ and $\beta := \max \sigma(Q) \in \mathbb{R}^+$ are the smallest and largest eigenvalues of Q, respectively, then
\[
\forall \ x \in \mathbb{R}^n \setminus \{0\}, \quad F(x) := \frac{(x^t x)^2}{(x^t Q x)(x^t Q^{-1} x)} \geq \frac{4\alpha \beta}{(\alpha + \beta)^2} = 4 \left(\frac{\sqrt{\alpha}}{\beta} + \frac{\sqrt{\beta}}{\alpha} \right)^{-2}. \tag{J.55}
\]

Proof. Since Q is symmetric positive definite, we can write the eigenvalues in the form $0 < \alpha = \lambda_1 \leq \cdots \leq \lambda_n = \beta$ with corresponding orthonormal eigenvectors v_1, \ldots, v_n. Fix $x \in \mathbb{R}^n \setminus \{0\}$. As the v_1, \ldots, v_n form a basis, \[
\exists \mu_1, \ldots, \mu_n \in \mathbb{R} \quad \left(x = \sum_{i=1}^n \mu_i v_i, \quad \mu := \sum_{i=1}^n \mu_i^2 > 0 \right).
\]
As the v_1, \ldots, v_n are orthonormal eigenvectors for the $\lambda_1, \ldots, \lambda_n$, we obtain \[
F(x) = \frac{\mu^2}{(\sum_{i=1}^n \lambda_i \mu_i^2)(\sum_{i=1}^n \lambda_i^{-1} \mu_i^2)},
\]
which, letting $\gamma_i := \mu_i^2 / \mu$, becomes \[
F(x) = \frac{1}{(\sum_{i=1}^n \gamma_i \lambda_i)(\sum_{i=1}^n \gamma_i \lambda_i^{-1})}.
\]
Noting $0 \leq \gamma_i \leq 1$ and $\sum_{i=1}^n \gamma_i = 1$, we see that \[
\bar{\lambda} := \sum_{i=1}^n \gamma_i \lambda_i
\]
is a convex combination of the λ_i, i.e. $\alpha \leq \bar{\lambda} \leq \beta$. We would now like to show \[
\sum_{i=1}^n \gamma_i \lambda_i^{-1} \leq \frac{\alpha + \beta - \bar{\lambda}}{\alpha \beta}. \tag{J.56}
\]
To this end, observe that $l : \mathbb{R} \to \mathbb{R}$, $l(\lambda) := \frac{\alpha + \beta - \lambda}{\alpha \beta}$, represents the line through the points $P_\alpha := (\alpha, \alpha^{-1})$ and $P_\beta := (\beta, \beta^{-1})$, and that the set \[
C := \{(\lambda, \mu) \in \mathbb{R}^2 : \alpha \leq \lambda \leq \beta, \mu \leq l(\lambda)\},
\]
below that line, is a convex subset of \mathbb{R}^2. The function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$, $\varphi(\lambda) := \lambda^{-1}$, is strictly convex (e.g., due to $\varphi''(\lambda) = 2\lambda^{-3} > 0$), implying $P_i := (\lambda_i, \lambda_i^{-1}) \in C$ for each $i \in \{1, \ldots, n\}$. In consequence, $F := \sum_{i=1}^n \gamma_i P_i = (\bar{\lambda}, \sum_{i=1}^n \gamma_i \lambda_i^{-1}) \in C$, i.e. $\sum_{i=1}^n \gamma_i \lambda_i^{-1} \leq l(\bar{\lambda})$, proving (J.56). Thus, \[
F(x) = \frac{1}{\bar{\lambda}(\sum_{i=1}^n \gamma_i \lambda_i^{-1})} \geq \frac{\alpha \beta}{\bar{\lambda}(\alpha + \beta - \bar{\lambda})}. \tag{J.57}
\]
To estimate $F(x)$ further, we determine the global min of the differentiable function
\[\phi : \alpha, \beta \rightarrow \mathbb{R}, \quad \phi(\lambda) = \frac{\alpha \beta}{\lambda(\alpha + \beta - \lambda)}. \]

The derivative is
\[\phi' : \alpha, \beta \rightarrow \mathbb{R}, \quad \phi'(\lambda) = -\frac{\alpha \beta(\alpha + \beta - 2\lambda)}{\lambda^2(\alpha + \beta - \lambda)^2}. \]

Let $\lambda_0 := \frac{\alpha + \beta}{2}$. Clearly, $\phi'(\lambda) < 0$ for $\lambda < \lambda_0$, $\phi'({\lambda_0}) = 0$, and $\phi'(\lambda) > 0$ for $\lambda > \lambda_0$, showing that ϕ has its global min at λ_0. Using this fact in (J.57) yields
\[F(x) \geq \frac{\alpha \beta}{\lambda_0(\alpha + \beta - \lambda_0)} = \frac{4\alpha \beta}{(\alpha + \beta)^2}; \quad (J.58) \]
completing the proof of (J.55).

Theorem J.33. Let $Q \in \mathcal{M}(n, \mathbb{R})$ be symmetric and positive definite, $a \in \mathbb{R}^n$, $n \in \mathbb{N}$, $\gamma \in \mathbb{R}$, and let f be the corresponding quadratic function according to (J.52). If the sequence $(x^k)_{k \in \mathbb{N}}$ is given by the gradient method of Def. J.20(c), where (cf. Prop. J.31(d))
\[\forall_{k \in \mathbb{N}} \quad \left(u^k \neq 0 \Rightarrow t_k := -\frac{(x^k)^tQ + a^t)u^k}{(x^k)^tQu^k} > 0 \right), \quad (J.59) \]
then $\lim_{k \to \infty} x^k = x^*$, where $x^* = -Q^{-1}a$ is the global min of f according to Prop. J.31(c). Moreover, we have the error estimate
\[\forall_{k \in \mathbb{N}} \quad f(x^{k+1}) - f(x^*) \leq \left(\frac{\beta - \alpha}{\alpha + \beta} \right)^2 (f(x^k) - f(x^*)) \leq \left(\frac{\beta - \alpha}{\alpha + \beta} \right)^{2k} (f(x^1) - f(x^*)), \quad (J.60) \]
where $\alpha := \min \sigma(Q) \in \mathbb{R}^+$ and $\beta := \max \sigma(Q) \in \mathbb{R}^+$.

Proof. Introducing the abbreviations
\[\forall_{k \in \mathbb{N}} \quad g^k := (\nabla f(x^k))^t = Qx^k + a, \]
we see that, indeed, for $u^k \neq 0$,
\[t_k = \frac{(g^k)^t g^k}{(g^k)^t Qg^k} > 0. \]
If there is $k_0 \in \mathbb{N}$ such that $u^{k_0} = -\nabla f(x^{k_0}) = 0$, then, clearly, $\lim_{k \to \infty} x^k = x^{k_0} = x^*$ and we are already done. Thus, we may now assume $u^k \neq 0$ for each $k \in \mathbb{N}$. It clearly suffices to show the first estimate in (J.60), as this implies the second estimate as well as convergence to x^*. Using the formulas for g^k and t_k from above, we have
\[\forall_{k \in \mathbb{N}} \quad x^{k+1} = x^k - t_k g^k = x^k - \frac{(g^k)^t g^k}{(g^k)^t Qg^k} g^k, \]
implying
\[
\forall_{k \in \mathbb{N}} f(x^{k+1}) = \frac{1}{2}(x^k - t_k g^k)^t Q(x^k - t_k g^k) + a^t (x^k - t_k g^k) + \gamma
\]
\[
= f(x^k) - \frac{1}{2} t_k (x^k)^t Q g^k - \frac{1}{2} t_k (g^k)^t Q x^k + \frac{1}{2} t_k^2 (g^k)^t Q g^k - t_k a^t g^k
\]
\[
= f(x^k) - t_k (Qx^k + a)^t g^k + \frac{1}{2} t_k^2 (g^k)^t Q g^k
\]
\[
= f(x^k) - \frac{1}{2} \frac{(g^k)^t g^k}{(g^k)^t Q g^k}
\]
(J.61)

where it was used that \((g^k)^t Q x^k = ((g^k)^t Q x^k)^t = (x^k)^t Q g^k \in \mathbb{R}\). Next, we claim that
\[
\forall_{k \in \mathbb{N}} f(x^{k+1}) - f(x^*) = \left(1 - \frac{(g^k)^t g^k}{((g^k)^t Q g^k)((g^k)^t Q^{-1} g^k)}\right) (f(x^k) - f(x^*))
\]
(J.62)

which, in view of (J.61), is equivalent to
\[
\frac{1}{2} \frac{(g^k)^t g^k}{(g^k)^t Q g^k} = \frac{(g^k)^t g^k}{((g^k)^t Q g^k)((g^k)^t Q^{-1} g^k)} (f(x^k) - f(x^*))
\]

and
\[
2(f(x^k) - f(x^*)) = (g^k)^t Q^{-1} g^k.
\]

(J.63)

Indeed,
\[
2(f(x^k) - f(x^*)) = (x^k)^t Q x^k + 2a^t x^k + 2\gamma - (a^t Q^{-1} Q^{-1} a - 2\alpha Q^{-1} a + 2\gamma)
\]
\[
= (x^k)^t Q x^k + a^t x^k + a^t Q^{-1} a
\]
\[
= (x^k)^t Q x^k + a^t Q^{-1} Q x^k + a = (g^k)^t Q^{-1} g^k,
\]

which is (J.63). Applying the Kantorovich inequality (J.55) with \(x = g^k\) to (J.62) now yields
\[
\forall_{k \in \mathbb{N}} f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{4\alpha \beta}{(\alpha + \beta)^2}\right) (f(x^k) - f(x^*))
\]
\[
= \left(\frac{\beta - \alpha}{\alpha + \beta}\right)^2 (f(x^k) - f(x^*))
\]
thereby establishing the case.

\section*{J.6 Conjugate Gradient Method}

The conjugate gradient (CG) method is an iterative method designed for the solution of linear systems
\[
Qx = b,
\]
(J.64)

where \(Q \in \mathcal{M}(n, \mathbb{R})\) is symmetric and positive definite, \(b \in \mathbb{R}^n\). While (in exact arithmetic), it will find the exact solution in at most \(n\) steps, it is most suitable for problems
where \(n \) is large and/or \(Q \) is sparse, the idea being to stop the iteration after \(k < n \) steps, obtaining a sufficiently accurate approximation to the exact solution. According to Prop. J.31(c), (J.64) is equivalent to finding the global min of the quadratic function given by \(Q \) and \(-b\) (and \(0 \in \mathbb{R} \)), namely of

\[
f : \mathbb{R}^n \rightarrow \mathbb{R}, \quad f(x) := \frac{1}{2} x^t Q x - b^t x. \tag{J.65}
\]

Remark J.34. If \(Q \in \mathcal{M}(n, \mathbb{R}) \) is symmetric and positive definite, then the map

\[
\langle \cdot, \cdot \rangle_Q : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}, \quad \langle x, y \rangle_Q := x^t Q y, \tag{J.66}
\]

clearly forms an inner product on \(\mathbb{R}^n \). We call \(x, y \in \mathbb{R}^n \) \(Q \)-orthogonal if, and only if, they are orthogonal with respect to the inner product of (J.66), i.e. if, and only if, \(\langle x, y \rangle_Q = 0 \).

Proposition J.35. Let \(Q \in \mathcal{M}(n, \mathbb{R}) \) be symmetric and positive definite, \(b \in \mathbb{R}^n \), \(n \in \mathbb{N} \). If \(x^1, \ldots, x^{n+1} \in \mathbb{R}^n \) are given by a stepsize direction iteration according to Def. J.20(a), if the directions \(u^1, \ldots, u^n \in \mathbb{R}^n \setminus \{0\} \) are \(Q \)-orthogonal, i.e.

\[
\forall \ k \in \{2, \ldots, n\} \quad \forall \ j < k \quad \langle u^k, u^j \rangle_Q = 0, \tag{J.67}
\]

and if \(t_1, \ldots, t_n \in \mathbb{R} \) are according to (J.59) with a replaced by \(-b\), then \(x^{n+1} = Q^{-1} b \), i.e. the iteration converges to the exact solution to (J.64) in at most \(n \) steps (here, in contrast to Def. J.20(a), we do not require \(t_k \in \mathbb{R}^+ \) – however, if, indeed, \(t_k < 0 \), then one could replace \(u^k \) by \(-u^k \) and \(t_k \) by \(-t_k > 0 \) to remain in the setting of Def. J.20(a)).

Proof. Let \(f \) be according to (J.65). As in the proof of Th. J.32, we set

\[
\forall \ k \in \{1, \ldots, n+1\} \quad g^k := (\nabla f(x^k))^t = Q x^k - b.
\]

It then suffices to show

\[
\forall \ k \in \{1, \ldots, n\} \quad \forall \ j \leq k \quad (g^{k+1})^t u^j = 0 : \tag{J.68}
\]

Since \(u^1, \ldots, u^n \) are \(Q \)-orthogonal, they must be linearly independent. Moreover, by (J.68), \(g^{n+1} \) is orthogonal to each \(u^1, \ldots, u^n \). In consequence, if \(g^{n+1} \neq 0 \), then we have \(n + 1 \) linearly independent vectors in \(\mathbb{R}^n \), which is impossible. Thus, \(g^{n+1} = 0 \), i.e. \(Q x^{n+1} = b \), proving the proposition. So it merely remains to verify (J.68). We start with the case \(j = k \): Indeed,

\[
(g^{k+1})^t u^k = (Q x^{k+1} - b)^t u^k \quad \overset{(J.35),(J.59)}{=} \quad \left(x^k - \frac{(x^k)^t Q - b^t}{(u^k)^t Q u^k} Q u^k \right)^t u^k - b^t u^k = 0.
\]

Moreover,

\[
\forall \ j \leq k \leq n \quad (g^{i+1} - g^i)^t w^j = (Q x^{i+1} - Q x^i)^t w^j = t_i (u^i)^t Q u^j = 0, \tag{J.70}
\]
implying
\[
\forall k \in \{1, \ldots, n\} \quad \forall j \leq k \quad (g^{k+1})^T u^j = (g^{j+1})^T u^j + \sum_{i=j+1}^{k} (g^{i+1} - g^{i})^T u^j \overset{(J.69), (J.70)}{=} 0,
\]
which establishes (J.68) and completes the proof. ■

Proposition J.35 suggests to choose Q-orthogonal search directions. We actually already know methods for orthogonalization from Numerical Analysis I, namely the Gram-Schmidt method and the three-term recursion. The following CG method is an efficient way to carry out the steps of the stepsize direction iteration simultaneous with a Q-orthogonalization:

Algorithm J.36 (CG Method). Let $Q \in \mathcal{M}(n, \mathbb{R})$ be symmetric and positive definite, $b \in \mathbb{R}^n$, $n \in \mathbb{N}$. The conjugate gradient (CG) method then defines a finite sequence (x^1, \ldots, x^{n+1}) in \mathbb{R}^n via the following recursion: Initialization: Choose $x^1 \in \mathbb{R}^n$ (barring further information on Q and b, choosing $x^1 = 0$ is fine) and set
\[
g^1 := Qx^1 - b, \quad u^1 := -g^1. \quad (J.71)
\]
Iteration: Let $k \in \{1, \ldots, n\}$. If $u^k = 0$, then set $t_k := \beta_k := 1$, $x^{k+1} := x^k$, $g^{k+1} := g^k$, $u^{k+1} := u^k$ (or, in practise, stop the iteration). If $u^k \neq 0$, then set
\[
t_k := \frac{\|g^k\|^2}{\langle u^k, u^k \rangle_Q}, \quad (J.72a)
\]
\[
x^{k+1} := x^k + t_k u^k, \quad (J.72b)
\]
\[
g^{k+1} := g^k + t_k Qu^k, \quad (J.72c)
\]
\[
\beta_k := \frac{\|g^{k+1}\|^2}{\|g^k\|^2}, \quad (J.72d)
\]
\[
u^{k+1} := -g^{k+1} + \beta_k u^k. \quad (J.72e)
\]

(a) We will see in (J.73d) below that $u^k \neq 0$ implies $g^k \neq 0$, such that Alg. J.36 is well-defined.

(b) The most expensive operation in (J.72) is the matrix multiplication Qu^k, which is $O(n^2)$. As the result is needed in both (J.72a) and (J.72c), it should be temporarily stored in some vector $z^k := Qu^k$. If the matrix Q is sparse, it might be possible to reduce the cost of carrying out (J.72) significantly – for example, if Q is tridiagonal, then the cost reduces from $O(n^2)$ to $O(n)$.

Theorem J.38. Let $Q \in \mathcal{M}(n, \mathbb{R})$ be symmetric and positive definite, $b \in \mathbb{R}^n$, $n \in \mathbb{N}$. If $x^1, \ldots, x^{n+1} \in \mathbb{R}^n$ as well as the related vectors $u^k, g^k \in \mathbb{R}^n$ and numbers $t_k, \beta_k \in \mathbb{R}^+_0$
are given by Alg. J.36, then the following orthogonality relations hold:

\[\forall_{k,j \in \{1, \ldots, n+1\}, j < k} \langle u^k, u^j \rangle_Q = 0, \quad \text{(J.73a)} \]

\[\forall_{k,j \in \{1, \ldots, n+1\}, j < k} (g^k)^t g^j = 0, \quad \text{(J.73b)} \]

\[\forall_{k,j \in \{1, \ldots, n+1\}, j < k} (g^k)^t u^j = 0, \quad \text{(J.73c)} \]

\[\forall_{k \in \{1, \ldots, n+1\}} (g^k)^t u^k = -\|g^k\|^2_2. \quad \text{(J.73d)} \]

Moreover,

\[x^{n+1} = Q^{-1}b, \quad \text{(J.74)} \]

i.e. the CG method converges to the exact solution to (J.64) in at most \(n \) steps.

Proof. Let

\[m := \min \left(\{ k \in \{1, \ldots, n+1\} : u^k = 0 \} \cup \{n+1\} \right). \quad \text{(J.75)} \]

A first induction shows

\[\forall_{k \in \{1, \ldots, m\}} g^k = Qx^k - b : \quad \text{(J.76)} \]

Indeed, \(g^1 = Qx^1 - b \) holds by initialization and, for \(1 \leq k < m \),

\[g^{k+1} = g^k + t_k Q u^k \quad \text{ind.hyp.} \quad Q x^k - b + t_k Q u^k = Q (x^k + t_k u^k) - b = Q x^{k+1} - b, \]

proving (J.76). It now suffices to show that (J.73) holds with \(n+1 \) replaced by \(m \): If \(m < n+1 \), then \(u^m = 0 \), i.e. \(g^m = 0 \) by (J.73d), implying \(x^m = Q^{-1}b \) by (J.76). Then (J.73) and (J.74) also follow as stated. Next, note

\[\forall_{k \in \{1, \ldots, m-1\}} t_k = \frac{\|g^k\|^2_2}{\langle u^k, u^k \rangle_Q} \quad \text{(J.73d)} \quad \frac{(g^k)^t u^k}{\langle u^k, u^k \rangle_Q}, \quad \text{(J.77)} \]

which is consistent with (J.59). If \(m = n + 1 \), then Prop. J.35 applies according to (J.73a) and (J.77), implying the validity of (J.74). It, thus, remains to verify (J.73) holds with \(n+1 \) replaced by \(m \). We proceed via induction on \(k = 1, \ldots, m \): For \(k = 1 \), (J.73a) – (J.73c) are trivially true and (J.73d) holds as \((g^1)^t u^1 = -\|g^1\|^2_2 \) is true by initialization. Thus, let \(1 \leq k < m \). As in the proof of Prop. J.35, we obtain (J.68) from (J.73a), that means the induction hypothesis for (J.73a) implies (J.73c) for \(k + 1 \). Next, we verify (J.73d) for \(k + 1 \):

\[(g^{k+1})^t u^{k+1} = (g^{k+1})^t (-g^{k+1} + \beta_k u^k) = -\|g^{k+1}\|^2_2 + (g^k + t_k Q u^k)^t \beta_k u^k \quad \text{ind.hyp.} \]

\[\frac{-\|g^{k+1}\|^2_2 - \beta_k \|g^k\|^2_2 + \beta_k \|g^k\|^2_2}{-\|g^{k+1}\|^2_2} = -\|g^{k+1}\|^2_2. \]

It remains to show (J.73a) and (J.73b) for \(k + 1 \). We start with (J.73b):

\[(g^{k+1})^t g^1 = -(g^{k+1})^t u^1 \quad \text{(J.73c)} = 0 \]
and, for \(j \in \{2, \ldots, k \} \),
\[
(g^{k+1})^j t^j = (g^{k+1})^j(-u^j + \beta_{j-1}u^{j-1}) \tag{J.73c}
\]
Finally, to obtain (J.73a) for \(k+1 \), we note, for each \(j \in \{1, \ldots, k \} \),
\[
(u^{k+1}, u^j)_Q = (-g^{k+1} + \beta_k u^k)^j Qu^j = -\left(\frac{1}{t_j}(g^{k+1})^j(g^j - g^j) + \beta_k (u^k)^j Qu^j\right). \tag{J.78}
\]
Thus, for \(j < k \), (J.78) together with (J.73b) (for \(k+1 \)) and (J.73a) (for \(k \), i.e. the induction hypothesis) yields \((u^{k+1}, u^j)_Q = 0 \). For \(j = k \), we compute
\[
(u^{k+1}, u^k)_Q \overset{(J.78),(J.73b)}{=} -\frac{\|g^{k+1}\|^2}{t_k} + \beta_k \left(\frac{\|g^k\|^2}{t_k} = 0,
\]
which completes the induction proof of (J.73).

Theorem J.39. Let \(Q \in \mathcal{M}(n, \mathbb{R}) \) be symmetric and positive definite, \(b \in \mathbb{R}^n \), \(n \in \mathbb{N} \). If \(x^1, \ldots, x^{n+1} \in \mathbb{R}^n \) are given by Alg. J.36 and \(x^* := Q^{-1}b \), then the following error estimate holds:
\[
\forall k \in \{1, \ldots, n\} \quad \|x^{k+1} - x^*\|_Q \leq 2 \left(\frac{\sqrt{\kappa_2(Q)} - 1}{\sqrt{\kappa_2(Q)} + 1}\right)^k \|x^1 - x^*\|_Q, \tag{J.79}
\]
where \(\|\cdot\|_Q \) denotes the norm induced by \(\langle \cdot, \cdot \rangle_Q \) and \(\kappa_2(Q) = \|Q\|_2\|Q^{-1}\|_2 = \max_{\sigma(Q)} \frac{\sigma(Q)}{\min_{\sigma(Q)}} \) is the spectral condition of \(Q \).

Proof. See, e.g., [DH08, Th. 8.2].

Remark J.40. (a) According to Th. J.38, Alg. J.36 finds the exact solution after at most \(n \) steps. However, it might find the exact solution even earlier: According to [Sco11, Cor. 9.10], if \(Q \) has precisely \(m \) distinct eigenvalues, then Alg. J.36 finds the exact solution after at most \(m \) steps; and it is stated in [GK99, p. 225] that the same also holds if one starts at \(x^1 = 0 \) and \(b \) is the linear combination of \(m \) eigenvectors of \(Q \).

(b) If one needs to solve \(Ax = b \) with invertible \(A \in \mathcal{M}(n, \mathbb{R}) \), where \(A \) is not symmetric positive definite, one can still make use of the CG method, namely by applying it to \(A^tAx = A^tb \) (noting \(Q := A^tA \) to be symmetric positive definite). However, a disadvantage then is that the condition of \(Q \) can be much larger than the condition of \(A \).

References

REFERENCES

REFERENCES

