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1 MOTIVATION: MONTE CARLO METHODS 5

1 Motivation: Monte Carlo Methods

1.1 Numerical Integration in High Dimensions

Given a measure space (Ω,A, P ) (for example, a probability space (cf. Def. A.17 and
Def. B.1)), P (A) can be interpreted as a number that measures the size of the set
A ∈ A. The idea of Monte Carlo methods is to use this correspondence in reverse, i.e.
to calculate the size of sets by interpreting the size as a probability.

For example, consider a set S with subset T ⊆ S, and assume we have a method for
randomly and independently drawing elements s ∈ S and for deciding if s ∈ T . Then
we are performing what is known as a sequence of Bernoulli trials, since each instance
of our sampling experiment can have precisely two possible outcomes, namely s ∈ T
and s /∈ T . In the usual way, assigning s ∈ T the value 1 and s /∈ T the value 0, one is
employing the model space

Ω0 := {0, 1}, A0 := P(Ω0), A := {1},
P0(A) := p ∈ [0, 1], P0({0}) = 1− p,

(1.1)

where P(Ω0) denotes the power set of Ω0. Then one is actually simulating a sequence
(Xi)i∈N of random variables (cf. Def. B.2(a)) on the usual product probability space
(Ω,A, P ),

Ω := ΩN
0 , A := AN

0 , P := PN
0 , (1.2)

where
∀
i∈N

Xi : Ω −→ Ω0, Xi

(
(ωk)k∈N

)
= ωi. (1.3)

Since the Xi are independent and identically distributed (i.i.d.) with PXi
= P0 for each

i ∈ N (cf. Def. B.2(b) and Def. B.9), we know E(Xi) = p, σ2(Xi) = p(1 − p), and the
strong law of large numbers Th. B.32 yields

lim
n→∞

1

n

n∑

i=1

Xi = lim
n→∞

1

n

n∑

i=1

E(Xi) = lim
n→∞

n p

n
= p P -almost surely. (1.4)

In many practical situations, p is a reasonable measure for the size of the set T as a
subset of S, and the above procedure provides a way of computing it approximately.

Going one step further, we can use a similar idea to compute integrals, for example of
the form

∫ 1

0
f(x) dx with integrable f : [0, 1] −→ R: Given a probability space (Ω,A, P )

and a random variable U : Ω −→ [0, 1] that is uniformly distributed (i.e. PU(A) = λ1(A)
for each A ∈ B1 ∩ [0, 1]), one can write

α :=

∫ 1

0

f(x) dx =

∫ 1

0

f dPU = E(f ◦ U). (1.5)

Suppose, we have some method to independently and uniformly draw points from [0, 1]
(i.e. a method to simulate a sequence U1, U2, . . . of i.i.d. copies of U), then, letting

∀
n∈N

Sn :=
1

n

n∑

i=1

f(Ui), (1.6)
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in analogy with (1.4), the strong law of large numbers Th. B.32 provides

lim
n→∞

Sn = lim
n→∞

1

n

n∑

i=1

E(f ◦ Ui) = lim
n→∞

nα

n
= α P -almost surely. (1.7)

If f ∈ L2[0, 1] is nonconstant, then

σ2
f := V (f ◦ Ui) = E

(
(f ◦ Ui − E(f ◦ Ui))

2
)
=

∫ 1

0

f 2(x) dx − α2

=

∫ 1

0

(
f(x)− α

)2
dx > 0. (1.8)

Thus, the Central Limit Th. B.36 applies, yielding

lim
n→∞

(

1

σf
√
n

n∑

i=1

(
f ◦ Ui − α

)

)

(P ) = N(0, 1) in distribution, (1.9)

or, using Th. B.36(b),

lim
n→∞

P

{

σf a√
n

≤ 1

n

n∑

i=1

(
f ◦ Ui − α

)
<
σf b√
n

}

= lim
n→∞

P

{

a ≤ 1

σf
√
n

n∑

i=1

(
f ◦ Ui − α

)
< b

}

=
1√
2π

∫ b

a

e−x2/2 dx (1.10)

uniformly in a, b with −∞ ≤ a < b ≤ ∞. The expressions pn under the limit sign on the
left-hand side of (1.10) measure the probability that the absolute error when estimating

α via Monte Carlo simulation using the Sn lies between
σf a√

n
and

σf b√
n
. And one learns

from (1.10) that the error converges to 0 with arbitrarily large probability p < 1. More
precisely, given p < 1, there exist a, b ∈ R and N ∈ N such that pn > p for each n > N
((1.10) does not give any information regarding the size of N). Thus, the absolute error
converges to 0 with probability > p. However, a large constant σf can be a problem as
the convergence is slow, namely O(n−1/2). Recalling that the convergence rate of the
standard composite trapezoidal rule

α ≈ f(0) + f(1)

2n
+

1

n

n−1∑

i=1

f

(
i

n

)

(1.11)

is O(n−2), at least for f ∈ C2[0, 1] (see [Phi23, Th. 4.35]), it becomes clear, why Monte
Carlo is usually not a competitive method for the approximation of 1-dimensional inte-
grals.

However, the situation changes dramatically if
∫ 1

0
f is replaced by

∫

[0,1]d
f with large

d ∈ N. The generalization of (1.11) to d dimensions comes with a convergence rate
O(n−2/d), and this kind of decay of the convergence rate with d is characteristic for all
deterministic numerical integration methods. For the Monte Carlo method, everything
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can still be carried out as described above, still resulting in the O(n−1/2) convergence
rate, in general, of course, with worse constants.

Thus, Monte Carlo methods become more and more attractive the higher the dimension
d. The slow convergence rate O(n−1/2) is a characteristic of Monte Carlo methods
and can usually not be helped in situations, where the use of Monte Carlo methods is
warranted.

A central goal in mathematical finance is the pricing of financial products known
as derivatives. As it turns out, prices of such products can often be represented
as expected values given as integrals in high-dimensional, sometimes even infinite-
dimensional, spaces. Typically, the price of a derivative depends on quantities (e.g.
stock prices, interest rates etc.) evolving according to so-called stochastic processes.
Where we had to draw random points from [0, 1] or [0, 1]d in the above example, calcu-
lating the derivative price using Monte Carlo usually means drawing randomly from a
space of paths of a stochastic process.

1.2 Payoff of a European Call Option

The calculation of the payoff of a European call option involves the following quantities,
which will be explained in more detail below:

t : time, (1.12a)

T : strike time, (1.12b)

St : stock price at time t, (1.12c)

K : strike price, (1.12d)

f+ := max{0, f} : positive part of f, (1.12e)

r : interest rate, (1.12f)

σ : volatility, (1.12g)

C : payoff. (1.12h)

A European call option grants its holder the right to buy a given stock at some fixed
strike time T for a fixed strike price K. Here, the present time is assumed to be t = 0.
Thus, for T = 0, the payoff of the option is

C(T = 0) = (ST −K)+. (1.13)

To obtain the (present) value C(T ) of the payoff for T > 0, it is discounted by the
factor e−rT , allowing for a continuously compounded interest rate. Moreover, the stock
price St, 0 ≤ t ≤ T , is not a constant quantity, but is usually modeled as a random
variable evolving according to a stochastic process. In consequence, C(T ) is given by
the expected value

C(T ) = E
(
e−rT (ST −K)+

)
. (1.14)

For the expression (1.14) to be meaningful, we have to provide the distribution of the
random variable ST . According to the risk-neutral Black-Scholes model, St is the solu-
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tion to the stochastic differential equation (SDE)

dSt

St

= r dt + σ dWt , (1.15)

where W denotes a standard Brownian motion, a given stochastic process with special
properties. Here, (1.15) is the usual shorthand notation for

St = S0 +

∫ t

0

rSu du +

∫ t

0

σSu dWu , (1.16)

where the last integral in (1.16) is a so-called Itô integral [Øk03, Sec. 3]. If you are not
familiar with these notions, simply accept that a solution to (1.15) is given by

St = S0 exp

((

r − σ2

2

)

t+ σWt

)

, (1.17)

where, for each t ∈ [0, T ], St and Wt are real-valued random variables. Moreover, Wt

is actually N(0, t)-distributed. Thus, without changing the distribution, we can write√
t Z, where Z is a generic N(0, 1)-distributed random variable. This is customarily

done, replacing (1.17) with

St = S0 exp

((

r − σ2

2

)

t+ σ
√
t Z

)

, (1.18)

showing that the stock price St has a lognormal distribution (i.e. the logarithm of the
stock price has a normal distribution). Since S0 represents the current stock price, its
value is assumed to be known, S0 ∈ R+. As it turns out, in this still relatively simple
situation, one can obtain an explicit formula for value of the payoff according to (1.14)
(exercise):

C(T ) = E
(
e−rT (ST −K)+

)
= BS(S0, σ, T, r,K), (1.19a)

where

BS : R+ × R+ × R+ × R+
0 × R+ −→ R+,

BS(s, σ, T, r,K)

:= sΦ

(
ln(s/K) + (r + 1

2
σ2)T

σ
√
T

)

− e−rT KΦ

(
ln(s/K) + (r − 1

2
σ2)T

σ
√
T

)

(1.19b)

and

Φ : R −→]0, 1[, Φ(x) := (2π)−
1
2

∫ x

−∞
e−ξ2/2 dξ (1.20)

is the standard normal cumulative distribution function. The result (1.19) is known as
the Black-Scholes formula for a (European) call option.

In practise, the availability of the explicit formula (1.19), makes using Monte Carlo to

estimate the integral E
(
e−rT

(
ST −K

)+)
unnecessary (and even if there were no explicit

formula at hand, according to the discussion in Sec. 1.1, one would rather apply some
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deterministic numerical integration method to approximate this 1-dimensional integral).
However, the basic structure of this problem is similar to more involved mathematical
finance applications, where, in general, Monte Carlo is warranted for value calculations.
Therefore, it should be instructive to go through the basic steps one had to take if one
were to apply Monte Carlo in the above situation of a European call option. Moreover,
simple situations, where a solution via an explicit formula is available, are always good
to have in hand for testing one’s numerical method.

Where we needed an i.i.d. sequence of random variables uniformly distributed on [0, 1]d

for the numerical integration example in Sec. 1.1, we now require the availability of
an i.i.d. sequence of N(0, 1)-distributed random variables Z1, Z2, . . . . Given such a
sequence, one applies the following algorithm:

set Ĉ0 := 0

for i = 1, . . . , n

generate Zi ∈ R

compute Si(T ) := S0 exp

((

r − 1

2
σ2

)

T + σ
√
TZi

)

∈ R+

compute Ci := e−rT
(
Si(T )−K

)+ ∈ R+
0

compute Ĉi := Ĉi−1 + Ci/n ∈ R+
0

return Ĉn ∈ R+
0

(1.21)

As in previous examples, the strong law of large numbers Th. B.32 applies to yield

lim
n→∞

Ĉn = lim
n→∞

1

n

n∑

i=1

E
(
e−rT (ST −K)+

)
= E

(
e−rT (ST −K)+

)
almost surely,

(1.22)
and one can obtain error estimates along the lines of Sec. 1.1.

A feature of the most recent example, that is typical for this kind of mathematical
finance application, is the successive computation of several random variables

Zi −→ Si(T ) −→ Ci −→ Ĉi,

where randomness (or pseudorandomness) is only applied in the generation of the first
step (here, for the Zi), whereas all successive steps are deterministic.

1.3 Asian Call Options, Path Dependence

In the previous example, the payoff of the derivative security, namely the European call
option, depended on the (price of the) underlying asset S in such a way that one only
needed to know S0 and ST , but no intermediates St with 0 < t < T – one did not need
to know the path of S between 0 and T . However, in general, this path of the underlying
asset is important for the determination of a derivative security.
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For example, the payoff of so-called Asian call options depends on the average stock
price

S :=
1

m

m∑

j=1

Stj , (1.23)

where the 0 = t0 < t1 < · · · < tm = T are a fixed finite sequence of agreed-upon dates.
The value of the payoff of the Asian call option then is

C(T ) = E
(

e−rT
(
S −K

)+
)

. (1.24)

This can be done following the same strategy as in the previous section, except one
now has to generate an independent sequence of (discrete) paths Si(t1), . . . , Si(tm) over
which to average at the end. To that end, one starts with an i.i.d. sequence of N(0, 1)-
distributed random variables Zij, where j = 1, . . . ,m for each i. Assuming the same
model for the evolution of S as in the previous section, we obtain the following modified
version of the algorithm (1.21):

set Ĉ0 := 0

for i = 1, . . . , n

set Si0 := 0

set Si(0) := S0 ∈ R+

for j = 1, . . . ,m

generate Zij ∈ R

compute Si(tj) := Si(tj−1) exp

((

r − 1

2
σ2

)

(tj − tj−1) + σ
√
tj − tj−1Zij

)

compute Sij := Si,j−1 + Si(tj)/m ∈ R+

compute Ci := e−rT
(
Sim −K

)+ ∈ R+
0

compute Ĉi := Ĉi−1 + Ci/n ∈ R+
0

return Ĉn ∈ R+
0

(1.25)

Another typical situation, just briefly mentioned at this stage, where one needs to sample
paths via Monte Carlo, arises when (1.15) is replaced by a more complicated model,
where an explicit solution is not available, for example, if the volatility σ is allowed to
depend on the stock price:

dSt = rSt dt + σ(St)St dWt . (1.26)

As it turns out, the solution to (1.26) can be reasonably approximated by dividing [0, T ]
into finitely many time steps, e.g. of the equidistant length ∆t := T/m, m ∈ N, replacing
(1.26) by the discrete form

St+∆t = St + r St ∆t+ σ(St)St

√
∆t Z (1.27)

with N(0, 1)-distributed Z, and sampling discrete paths, resulting in an algorithm sim-
ilar to (1.25).
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2 Random Number Generation

2.1 Introduction

For the examples in Sec. 1 above, illustrating the use of Monte Carlo methods, we
always assumed the availability of a method for generating an i.i.d. sequence of random
variables, e.g. uniformly distributed on [0, 1]d in Sec. 1.1 and N(0, 1)-distributed in
Sections 1.2 and 1.3.

The availability of such methods is essential for all Monte Carlo simulation. In the
following, we will study how such methods can be obtained.

At the core lies the generation of so-called random numbers or pseudorandom numbers.

Definition 2.1. (a) Random numbers consist of a sequence u1, u2, . . . in some set S
(S ⊆ R in most cases) such that ui is in the range of Ui, where U1, U2, . . . is a
sequence of S-valued i.i.d. random variables.

(b) Uniform deviates are random numbers for uniformly distributed Ui (in situations
where this makes sense, S finite and S = [0, 1] being the most important examples).
Thus, for uniform deviates, within the given range, any number is (ideally) just as
likely to be generated as any other.

We will start by studying uniform deviates. We will later see how they can be trans-
formed to provide random variables of different distributions.

2.2 Hardware Random Number Generators

Our main focus will be on generators for pseudorandom numbers, i.e. on the use of
deterministic algorithms that generate sequences of numbers that appear to be random.
However, in the current section, we briefly treat generators for genuine random numbers,
known as hardware random number generators.

Such generators are always based on physical processes believed to be genuinely random,
e.g. radioactive decay or the detection of photons in a double-slit experiment or of pho-
tons traveling through a semi-transparent mirror. In the case of radioactive decay, one
can measure the lengths t1, t2, . . . of time intervals between two consecutive detections
of emissions from a radioactive source. One can then obtain a bitstream by generating a
1 if tn+1 > tn, a 0 if tn+1 < tn, and no bit if tn+1 = tn (to avoid the introduction of non-
randomness due to the resolution of the clock). From the bitstream, one generates the
random numbers. According to quantum theory, the generated bits must be completely
random, provided a perfectly working detector.

Other disadvantages of hardware random number generators include the problems of
reproducibility and speed: Large applications can use 1012 random numbers. As, for
hardware random number generators, there is no algorithm to reproduce the exact
sequence, the program run can only be reproduced if the entire sequence is stored – a
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nontrivial task if the sequence is long. Likewise, generating random numbers sufficiently
fast can be an issue for hardware random number generators.

While hardware random number generators are occasionally used in practise (there
exist such generators that provide random bits over the internet), good pseudorandom
number generators should be sufficient for most applications.

2.3 Pseudorandom Number Generators

2.3.1 General Considerations

In pseudorandom number generators, the ui of Def. 2.1 are obtained from a deterministic
algorithm. In this case, there is no need to store the ui for reproducibility, in contrast
to the case of the hardware generators considered above. Speed can still be an issue for
large applications and should be kept in mind when choosing suitable algorithms and
implementations.

Pseudorandom number generators typically have the form

xi+1 = f(xi), ui+1 = g(xi+1), (2.1)

with deterministic functions f and g.

The obvious question is if pseudorandom numbers are at all reasonable to use as a
substitute for genuine random numbers. Experience shows that pseudorandom numbers
can be successfully employed provided they satisfy certain quality requirements, by
which one usually means the numbers should not be detectable as nonrandom by a
large range of statistical tests, see below.

Note that, in view of the finite range of numbers that can be represented on a given
computer system, it is clear from (2.1) that the xi (and, hence, the ui) must become
periodic sooner or later. In principle, it can happen that the sequence has an initial
nonperiodic part, which could then even become constant in extreme cases. This is not
desirable, and we restrict ourselves to periodic sequences:

Definition 2.2. Pseudorandom numbers consist of a periodic sequence in some set S,
mimicking random numbers u1, u2, . . . as defined in Def. 2.1(a).

—

To be useful, the period of a pseudorandom number sequence should neither be too
small nor too large, see (b) and (g) below.

The following advise is quoted from [PTVF07, pp. 341–342] (the item labels (a)–(g) are
not present in [PTVF07]):

(a) Never use a generator principally based on a linear congruential generator (LCG)
or a multiplicative linear congruential generator (MLCG) [see Sec. 2.3.3 below] . . .
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(b) Never use a generator with a period less than ∼ 264 ≈ 2 · 1019, or any generator
whose period is undisclosed.

(c) Never use a generator that warns against using its low-order bits [because they
lack randomness]. That was good advice once, but it now indicates an obsolete
algorithm (usually a LCG).

(d) Never use the built-in generators in the C and C++ languages, especially rand and
srand. These have no standard implementation and are often badly flawed.

. . . You may also want to watch for indications that a generator is overengineered and
therefore wasteful of resources:

(e) Avoid generators that take more than (say) two dozen arithmetic or logical opera-
tions to generate a 64-bit integer or double precision floating result.

(f) Avoid using generators (over-)designed for serious cryptographic use.

(g) Avoid using generators with period > 10100. You really will never need it, and,
above some minimum bound, the period of a generator has little to do with its
quality.

Since we have told you what to avoid from the past, we should immediately follow with
the received wisdom of the present:

An acceptable random generator must combine at least two
(ideally, unrelated) methods. The methods combined should
evolve independently and share no state. The combination
should be by simple operations that do not produce results
less random than their operands.

End of quote from [PTVF07].

In terms of statistical tests, it is recommended in [PTVF07] that each method combined
to form a good random generator should individually pass the so-called DIEHARD tests
[Mar03a].

2.3.2 64-Bit Xorshift

Recommended for use in a combined generator, see Sec. 2.3.5.

A 64-bit number can be considered as an element of Z64
2 , Z2 = {0, 1}.

‘Xor’, usually written as ‘XOR’ refers to the logical operation of exclusive or, which
turns out to be identical to addition on Z2:

x XOR y = x+ y mod 2 for each x, y ∈ Z2. (2.2)
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For elements of Zn
2 , n ∈ N, XOR is applied in the usual componentwise way:

x XOR y = (x1 XOR y1, . . . , xn XOR yn) for each x, y ∈ Zn
2 . (2.3)

In xorshift generators, XOR is combined with the following shift operators:

Definition 2.3. Let n ∈ N and k ∈ {0, . . . , n}. The right-shift operators Rk and the
left-shift operators Lk are defined by

Rk : Z
n
2 −→ Zn

2 , Rk(x1, . . . , xn) := (0, . . . , 0
︸ ︷︷ ︸

k times

, x1, . . . , xn−k), (2.4a)

Lk : Z
n
2 −→ Zn

2 , Lk(x1, . . . , xn) := (xk+1, . . . , xn, 0, . . . , 0
︸ ︷︷ ︸

k times

), (2.4b)

respectively.

Lemma 2.4. Let n ∈ N and k ∈ {0, . . . , n}. Representing x ∈ Zn
2 as column vectors,

and letting Mk, M−k be the n × n matrices having only 0-entries, except for 1-entries
on the kth superdiagonal (respectively, subdiagonal), i.e.

Mk = (mk,i,j), mk,i,j :=

{

1 if j = i+ k,

0 otherwise,
M−k :=M t

k, (2.5)

we obtain for the shift operators

Mkx =
(
Lkx

t
)t

for each x ∈ Zn
2 , (2.6a)

M−kx =
(
Rkx

t
)t

for each x ∈ Zn
2 . (2.6b)

Proof. One computes

(Mkx)i =
n∑

j=1

mk,i,j xj =

{

xi+k for i+ k ≤ n,

0 otherwise,
=
(
Lkx

t
)t

i
(2.7a)

(M−kx)i =
n∑

j=1

m−k,i,j xj =

{

xi−k for 1 ≤ i− k,

0 otherwise,
=
(
Rkx

t
)t

i
(2.7b)

thereby establishing the case. �

Definition and Remark 2.5. Let n ∈ N. By a xorshift we mean any operation that
combines x ∈ Zn

2 with a shifted version of x via XOR, i.e. any mapping of the form

x 7→ x XOR Lk(x) or x 7→ x XOR Rk(x) for some k ∈ {0, . . . , n}. (2.8)

For n = 16, 32, 64, we can write (2.8) in C/C++ notation:

x ^= x << k; or x ^= x >> k; for some k ∈ {0, . . . , n}. (2.9)

Returning, for the moment, to the situation of a general n ∈ N, and using that XOR is
just addition on Z2, as discussed above, together with Lem. 2.4, we obtain that a map
X : Zn

2 −→ Zn
2 is a xorshift if, and only if,

X = Xk := Id+Mk for a suitable k ∈ {−n, . . . , n}. (2.10)



2 RANDOM NUMBER GENERATION 15

In [Mar03b], Marsaglia described the following xorshift-based random number genera-
tors:

Definition 2.6. A map A : Z64
2 −→ Z64

2 is called a 64-bit xorshift random number
generator (RNG) if, and only if, there exists a triple (k1, k2, k3) ∈ {−64, . . . , 64}3 such
that either k1, k3 > 0, k2 < 0, or k1, k3 < 0, k2 > 0, and

A = Xk3Xk2Xk1 , (2.11)

where each Xki is a xorshift according to (2.10). We will then also write A(k1, k2, k3)
instead of A.

—

Thus, each 64-bit xorshift RNG is a composition of precisely 3 xorshifts. Recalling (2.9),
for k1, k2, k3 > 0, the update step x 7→ A(k1,−k2, k3)(x) can be implemented in C or
C++ using

x ^= x << k1;

x ^= x >> k2;

x ^= x << k3;

(2.12a)

and x 7→ A(−k1, k2,−k3)(x) using

x ^= x >> k1;

x ^= x << k2;

x ^= x >> k3;

(2.12b)

Not all 64-bit xorshift RNG are good generators. First, one is interested in finding
triples (k1, k2, k3) such that A(k1, k2, k3) has a full period of 264− 1 (the missing value is
0, which is a fixed point of all 64-bit xorshift RNG and must be avoided). One can find
such triples using the following Th. 2.10. We start with some preparations, first giving
a precise definition of full period:

Definition 2.7. Let K be a finite field, n ∈ N, and A : Kn −→ Kn a linear map on
the finite vector space Kn. Then A is said to have full period if, and only if,

OA(x) :=
{
Ak(x) : k ∈ N0

}
= Kn \ {0} for each x ∈ Kn \ {0}. (2.13)

The set OA(x) is sometimes called the orbit of x under A.

Lemma 2.8. Let n ∈ N0. The number of polynomials of degree at most n over Z2 is
2n+1: #(Z2)n[x] = 2n+1, where (Z2)n[x] denotes the Z2-vector space of polynomials of
degree at most n over Z2.

Proof. The usual linear isomorphism

I : Zn+1
2

∼= (Z2)n[x], I(a0, . . . , an) :=
n∑

i=0

aix
i, (2.14)

immediately yields #(Z2)n[x] = #Zn+1
2 = 2n+1. �
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Proposition 2.9. Let n ∈ N, let Kn be the n-dimensional vector space over the field
K, and let A : Kn −→ Kn be linear. Then, for each k ∈ N0, there exists a polynomial
Pk of degree less than n over K (i.e. Pk ∈ Kn−1[x]) such that

Ak = Pk(A). (2.15)

Proof. Exercise. �

Theorem 2.10 (Marsaglia, Tsay, 1985, see [Mar03b, Sec. 2.1]). Let n ∈ N. A linear
map A : Zn

2 −→ Zn
2 has full period if, and only if, A has order 2n − 1, i.e. if, and only

if, A2n−1 = Id and Ak 6= Id for each k ∈ {1, . . . , 2n − 2}.

Proof. Note #(Zn
2 \ {0}) = 2n − 1. First, suppose A has full period. If there were

1 ≤ k < 2n − 1 and v ∈ Zn
2 \ {0} with Akv = v, then #OA(v) ≤ k < 2n − 1, i.e. A

could not have full period. In particular, Ak 6= Id for each k ∈ {1, . . . , 2n−2} and, since
#(Zn

2 \ {0}) = 2n − 1, A2n−1v = v for each v ∈ Zn
2 \ {0}, showing A2n−1 = Id.

Conversely, suppose A has order 2n − 1. Then, the finite sequence A,A2, . . . , A2n−1

consists of 2n − 1 distinct invertible maps. From Prop. 2.9 we know that each Ak,
1 ≤ k < 2n − 1, can be represented by a polynomial Pk ∈ (Z2)n−1[x] via (2.15). Since
the Ak are all distinct, so are the Pk. However, from Lem. 2.8, we know there are
precisely 2n−1 polynomials in (Z2)n−1[x]\{0}. Thus, we can conclude, in reverse, that,
for each P ∈ (Z2)n−1[x] \ {0}, there exists k ∈ {1, . . . , 2n − 1} such that

P (A) = Ak. (2.16)

Now suppose there were l ∈ {1, . . . , 2n − 2} and v ∈ Zn
2 \ {0} such that Alv = v. Then

Al − Id is not invertible. On the other hand, Pl − 1 ∈ (Z2)n−1[x] \ {0}, i.e. there is
k ∈ {1, . . . , 2n − 1} such that

Ak = (Pl − 1)(A) = Pl(A)− Id = Al − Id . (2.17)

Since Ak is invertible, but Al − Id is noninvertible, we have a contradiction that shows
Alv 6= v for each l ∈ {1, . . . , 2n − 2}, v ∈ Zn

2 \ {0}. This, in turn, proves that A has full
period. �

Proposition 2.11. Let G be a group, g ∈ G. If gk = e for some k ∈ N, where e denotes
the neutral element of G, then the order of g, i.e.

o(g) := min{n ∈ N : gn = e}, (2.18)

is a divisor of k.

Proof. Seeking a contradiction, assume o(g) < k is not a divisor of k. Then

∃
m∈N

∃
r∈{1,...,o(g)−1}

k = m · o(g) + r. (2.19)

Thus,
e = gk = gm·o(g)gr = egr = gr, (2.20)

in contradiction to o(g) being the smallest number with that property. �
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Theorem 2.12. Setting M := 264 − 1, a linear map A : Z64
2 −→ Z64

2 (in particular, a
map representing a 64-bit xorshift RNG) has full period if, and only if,

AM = Id, Ak 6= Id for each k ∈
{

M

6700417
,

M

65537
,
M

641
,
M

257
,
M

17
,
M

5
,
M

3

}

.

(2.21)

Proof. That A having full period implies (2.21) is immediate from Th. 2.10. For the
converse, it is noted that

M = 3 · 5 · 17 · 257 · 641 · 65537 · 6700417 (2.22)

is the prime factorization of 264 − 1. Thus, each divisor 6= M of M must be a divisor
of at least one of the numbers in the set in (2.21). Combining (2.21) with Prop. 2.11
proves that A has order M ; then Th. 2.10 implies A has full period. �

Using Th. 2.12, it is now actually possible to check, for all admissible (k1, k2, k3) ∈
{−64, . . . , 64}3, if they satisfy (2.21) and, thus, produce a full period xorshift RNG –
this obviously requires the use of suitable computer code, where one would use that one
can readily compute the needed high powers of A by successive squaring (i.e. from A2,
A4, . . . ) (exercise). Still, as it turns out, not all full period triples produce RNG of
equal quality. Only some of them pass the DIEHARD tests [Mar03a].

Remark 2.13. Since the DIEHARD tests require a sequence of 32-bit numbers, for a
sequence of 64-bit numbers to pass DIEHARD is supposed to mean that both its low
and high bits pass DIEHARD. More precisely, the 64-bit sequence

(x(n))n∈N = (x
(n)
1 , . . . , x

(n)
64 )n∈N

is defined to pass DIEHARD if, and only if, the sequences

(x
(n)
1 , . . . , x

(n)
32 )n∈N and (x

(n)
33 , . . . , x

(n)
64 )n∈N

both pass DIEHARD.

—

The following Table 1 shows three triples that, according to [PTVF07], yield 64-bit
xorshift RNG that pass DIEHARD (the first 3 out of 9 such triples provided on page
347 of [PTVF07]).

We summarize the 64-bit xorshift RNG that are recommended for use in a combined
RNG:

state : xn ∈ Z64
2 \ {0} (unsigned 64-bit), n ∈ N,

initialize : x1 ∈ Z64
2 \ {0},

update : xn+1 = Xk3Xk2Xk1xn according to (2.11)

with k1, k3 > 0, k2 < 0, or k1, k3 < 0, k2 > 0 according to Tab. 1,

period : 264 − 1.

(2.23)
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ID |k1| |k2| |k3|
A1 21 35 4
A2 20 41 5
A3 17 31 8

Table 1: Triples that, according to [PTVF07], produce 64-bit xorshift RNG that pass
DIEHARD. This holds for both forms k1, k3 > 0, k2 < 0, and k1, k3 < 0, k2 > 0.

Remark 2.14. A weakness of the 64-bit xorshift RNG lies in the fact that each bit of
xn+1 depends on at most 8 bits of xn: If x, y ∈ Z64

2 and y = Xkx with Xk as in (2.10),
0 < k ≤ 64, then, using (2.7a),

∀
i∈{1,...,64}

yi =

{

xi + xi+k for i+ k ≤ n,

xi for i+ k > n,
(2.24)

i.e. yi depends on at most xi and xi+k. Analogously, one sees that yi depends on at
most xi and xi+k for k < 0. Thus, since a 64-bit xorshift RNG A combines precisely 3
xorshifts, each bit of y = Ax depends on at most 8 bits of x.

2.3.3 Linear Congruential Generators

As mentioned before, by itself, a linear congruential generator (LCG) should not be used
as an RNG. However, when using care, LCG can be useful in combined generators (see
Sec. 2.3.5 below).

Definition 2.15. Given numbers a, c ∈ N0, m ∈ N, each map of the form

C : Zm −→ Zm, C(x) := (a x+ c) mod m, (2.25)

is called a linear congruential generator (LCG) with modulus m, multiplier a, and incre-
ment c. If c = 0, then the LCG is also called multiplicative linear congruential generator
(MLCG). Analogous to Def. 2.7, an LCG is defined to have full period if, and only if,

OC(x) :=
{
Ck(x) : k ∈ N0

}
= Zm for each x ∈ Zm. (2.26)

Theorem 2.16. Let a, c ∈ N0, m ∈ N. Then an LCG according to (2.25) has full period
if, and only if, the following three conditions are satisfied:

(i) c and m are relatively prime, i.e. 1 is their only common divisor.

(ii) Each prime number that is a divisor of m is also a divisor of a− 1.

(iii) If 4 is a divisor of m, then 4 is also a divisor of a− 1.

Proof. See [Knu98, p. 17ff.]. �
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Note that the trivial case a = c = 1 shows that, even though desirable, a full period by
itself does not ensure a useful LCG. Even if a, c,m are chosen more wisely, LCG have
serious weaknesses:

Theorem 2.17. Let a, c ∈ N0, m ∈ N, and let C be the LCG according to (2.25). Given
x0 ∈ Zm, d ∈ N, define sequences (xn)n∈N0 ∈ Zm, (rn)n∈N0 ∈ [0, 1], (pn)n∈N0 ∈ [0, 1]d by

xn+1 := C(xn), rn := xn/m, pn := (rn, . . . , rn+d−1). (2.27)

Then there exist k < (d!m)1/d parallel (d−1)-dimensional hyperplanes H1, . . . , Hk ⊆ Rd

such that

{pn : n ∈ N0} ⊆ [0, 1]d ∩
k⋃

i=1

Hi. (2.28)

Proof. See [Mar68, Th. 1]. �

So, while a true uniformly distributed random variable would tend to fill [0, 1]d uniformly,
the output of an LCG is always concentrated in relatively few discrete planes. If a, c,m
are not chosen carefully, the number of planes can actually be much smaller than the
bound (d!m)1/d of the theorem. A number-theoretical test, the so-called spectral test
(see [Knu98, Sec. 3.3.4]) has been developed to characterize the density of planes of
LCG output.

Another serious weaknesses of LCG is related to short periods of low bits if m is chosen
as a power of 2:

Remark 2.18. It can be shown (exercise) that if the modulus m of an LCG is a power
of 2, then the lowest bit has period ≤ 2, the 2 lowest bits have period ≤ 4, the k lowest
bits have period ≤ 2k. If, on the other hand, m is not a power of 2, then efficient
implementation of (2.25) tends to be challenging.

—

The following Table 2 shows three values for a, c, that, together with m = 264, are
recommended in [PTVF07] for the use in combined RNG. According to [PTVF07], in
each case, the LCG strongly passes the spectral test [Knu98, Sec. 3.3.4], the high 32 bits
almost (but do not quite) pass the DIEHARD tests [Mar03a], whereas the low 32 bits
are a complete disaster.

ID a c
C1 3935559000370003845 2691343689449507681
C2 3202034522624059733 4354685564936845319
C3 2862933555777941757 7046029254386353087

Table 2: Values for a, c, that, together with m = 264, are recommended in [PTVF07] for
the use in combined RNG.
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We summarize the 64-bit LCG that are recommended for use in a combined RNG:

state : xn ∈ Z64
2 (unsigned 64-bit), n ∈ N,

initialize : x1 ∈ Z64
2 ,

update : xn+1 = (a xn + c) mod 264

with a, c according to Tab. 2,

period : 264.

(2.29)

2.3.4 Multiply with Carry

Recommended for use in a combined generator, see Sec. 2.3.5.

We will only consider so-called lag-1 multiply with carry (MWC) RNG. For more general
types of MWC RNG, see [CL97].

Definition 2.19. Given numbers a, b ∈ N, each map of the form

B : N0 × Zb −→ N0 × Zb, B(c, x) := (c′, x′), (2.30a)

where
x′ + c′ b = a x+ c (2.30b)

is called a multiply with carry (MWC) RNG with multiplier a and base b. The first
component of the pairs in (2.30a) is referred to as the carry component of the MWC
RNG.

Remark 2.20. (a) Note that, due to the requirement 0 ≤ x′ < b, the numbers c′ and
x′ are uniquely determined by (2.30b). They can be computed as

x′ = (a x+ c) mod b, c′ =

⌊
a x+ c

b

⌋

, (2.31)

where ⌊y⌋ denotes the largest integer smaller than or equal to y.

(b) If c < a in (2.30b), then c′ < a as well. Indeed,

c′ b = a x+ c− x′ < a (x+ 1)− x′ ≤ a (x+ 1) ≤ ab, (2.32)

i.e. dividing by b proves c′ < a.

Definition and Remark 2.21. Given an MWC RNG B as in (2.30), (c, x) ∈ N0 × Zb

is called a recurrent state if, and only if, (c, x) has finite order, i.e. if, and only if, there
exists n ∈ N such that Bn(c, x) = (c, x). In that case the order of (c, x), which is the
same as

#OB(c, x) = #{Bk(c, x) : k ∈ N}, (2.33)

is also called the period of (c, x) under B, denoted πB(c, x).

As a consequence of Rem. 2.20(b) and B(0, 0) = (0, 0), if ab > 1 and c < a, then the
number M := ab− 1 is an upper bound for πB(c, x).

—
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Here, we are mostly interested in MWC RNG with base b = 232 and carry c ∈ Zb.
Representing c as the high bits and x ∈ Zb as the low bits of a 64-bit number y, the
update step y = (c, x) 7→ B(c, x) can be implemented in C or C++ using

y = a*(y & 0xffffffff) + (y >> 32); (2.34)

To see that (2.34) does correspond to (2.31), note that 0xffffffff is the hexadecimal
representation of 232 − 1, i.e. y & 0xffffffff = x, whereas y >> 32 = c.

Theorem 2.22. Given a ∈ N, b = 232, let B be the MWC RNG according to (2.30).
Set M := ab− 1.

(a) If M is prime and c < a, then πB(c, x) < M .

(b) If both M and (M − 1)/2 are prime, then there exist (c, x) ∈ Zb × Zb such that
πB(c, x) = (M − 1)/2.

Proof. See [CL97]. �

In consequence of Th. 2.22, one aims at finding a such that both 232 a−1 and (232 a−2)/2
are prime. Several such a exist, where larger a yield larger periods. The following Table
3 shows two such values for a, where the period is close to 264. These values for a,
together with b = 232, are recommended in [PTVF07] for the use in combined RNG.
According to [PTVF07], in both cases, the resulting RNG passes the DIEHARD tests
[Mar03a] (cf. Rem. 2.13), even though the high 32 bits miss some 8000 values (which a
uniformly distributed random variable would obviously not do).

ID a
B1 4294957665
B2 4294963023

Table 3: Values for a, that, together with b = 232, are recommended in [PTVF07] for
the use in combined RNG.

We summarize the MWC RNG with base b = 232 that are recommended for use in a
combined RNG. Here, as described above, we combine (c, x) into a 64-bit number y.
The set Σ of possible states is the orbit of the initial value. It is always a strict subset
of Z64

2 , and, if the initial value is of the form stated below, then #Σ = (232 a− 2)/2.

state : yn = (cn, xn) ∈ Σ ( Z64
2 \ {0} (unsigned 64-bit), n ∈ N,

initialize : (0, x1), where x1 ∈ Z32
2 \ {0},

update : yn+1 = (cn+1, xn+1), xn+1 = (a xn + cn) mod b, cn+1 = ⌊a xn + cn
b

⌋,
with a according to Tab. 3,

period : (232 a− 2)/2 (a prime number). (2.35)
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2.3.5 Combined Generators

In the previous sections, we described several types of RNG and recommended some
of them for use in so-called combined generators. We will actually distinguish between
combined and composed RNG:

Definition 2.23. Let M be some nonempty set.

(a) Given maps A,B : M −→M , representing RNG,

B.A : M −→M ×M, x 7→
(
B(Ax), Ax

)
(2.36)

is called a composed RNG (B is composed with A).

(b) Given maps Ai : M −→ M , i = 1, . . . , n, n ∈ N, representing RNG, and f :
Mn −→M ,

f.(A1, . . . , An) : M
n −→Mn+1,

(x1, . . . , xn) 7→
(
f(A1x1, . . . , Anxn), A1x1, . . . , Anxn

)
.

(2.37)

is called a combined RNG (combining A1, . . . , An).

Remark 2.24. (a) For a composed RNG as in Def. 2.23(a), one wants A to proceed
independently of the output of B, i.e., when iterating, the first component of B.A
should not be fed back into A; one should rather use the second component, i.e. the
output of A. For that reason, the period of B.A is defined to be the same as the
period of A – more precisely, for each x ∈M with finite order under A,

πB.A(x) := πA(x) := #OA(x). (2.38)

(b) For a combined RNG as in Def. 2.23(b), one wants the Ai to proceed mutually inde-
pendent, i.e., when iterating, Aixi is fed back into Ai rather than f(A1x1, . . . , Anxn).
In particular, the period of f.(A1, . . . , An) is defined to be the period of the map
A = (A1, . . . , An) – more precisely, for each x ∈Mn with finite order under A,

πf.(A1,...,An)(x) := πA(x) := #OA(x). (2.39)

Remark 2.25. The following guidelines for forming combined generators are not math-
ematically precise, but should still be useful:

(a) The combined methods should evolve mutually independent.

(b) The combined methods should not rely on similar algorithms.

(c) The combination should be done such that the output of the combined method is
not less random than any one input if the other inputs are kept fixed.
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Example 2.26. To illustrate the condition in Rem. 2.25(c), consider 32- or 64-bit
arithmetic: Multiplication is not suitable for combining generators, since, if one factor
is a power of 2, then the low bits of the result will all be zero, no matter how random
the second factor is. For 32- or 64-bit arithmetic, one should only combine generators
using + or XOR.

—

By combining generators using + or XOR one can increase the size of the state space
as well as period. The same can not be done using composed generators. However, the
following example shows that composed generators can still be useful:

Example 2.27. Let A1 be a 64-bit xorshift RNG with values k1, k2, k3 according to the
corresponding entry of Table 1 and let C1 be the 64-bit LCG with values a, c according
to the corresponding entry of Table 2. Then A1.C1 has neither the weakness of C1

(short period low bits) nor the weakness of A1 (each bit depends on only a few bits of
the previous state).

Example 2.28. As a more complicated example, consider the RNG of [PTVF07, p.
342-343]. It can be written as

f.(π1(A1,l.C3), A3,r, B1), (2.40)

where π1 is the projection π1(x1, x2) = x1, A1,l, C3, A3,r, B1 : Z
64
2 −→ Z64

2 ,

A1,l = Xk3X−k2Xk1 , (2.41a)

C3(x) = (a x+ c) mod 264, (2.41b)

A3,r = X−k3Xk2X−k1 , (2.41c)

B1(c, x) =

(⌊
a x+ c

b

⌋

, (a x+ c) mod b

)

, (2.41d)

with the Xki according to (2.11), the parameters are according to the corresponding
entries of Tables 1,2,3 respectively; and

f : (Z64
2 )3 −→ Z64

2 , f(x, v, w) :=
(
(x+ v) mod 264

)
XORw. (2.42)

From Rem. 2.24(a),(b), we obtain that the period of f.(π1(A1,l.C3), A3,r, B1) is given by
the period of (C3, A3,r, B1) or, more precisely,

πf.(π1(A1,l.C3),A3,r,B1)(x) = 264 · (264 − 1) · (4294957665 · 232 − 2)/2 ≈ 3.13854 · 1057

for each x := (x1, x2, 0, x3) ∈ Z64
2 ×

(
Z64

2 \ {0}
)
× Z32

2 ×
(
Z32

2 \ {0}
)
.

(2.43)
Following [PTVF07, p. 342-343], we consider the following implementation in C++ (see
explanation below):
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typedef unsigned long long int Ullong; // type for 64-bit numbers

struct Ran

{

Ullong u,v,w;

Ran(Ullong j) : v(4101842887655102017LL), w(1)

{

u = j ^ v; int64();

v = u; int64();

w = v; int64();

}

inline Ullong int64()

{

u = u * 2862933555777941757LL + 7046029254386353087LL; // (1)

v ^= v >> 17; v ^= v << 31; v ^= v >> 8; // (2)

w = 4294957665U*(w & 0xffffffff) + (w >> 32); // (3)

Ullong x = u ^ (u << 21); x ^= x >> 35; x ^= x << 4; // (4)

return (x + v) ^ w; // (5)

}

};

Variables u,v,w are used to iterate C3, A3,r, B1, respectively. The constructor func-
tion Ran(Ullong j) implements one possibility of initializing u,v,w, using only the
value of j. The combined RNG of (2.40) is implemented as the member function
Ullong int64(), returning the first component of f.(π1(A1,l.C3), A3,r, B1), using the val-
ues of u,v,w as input. It uses the variable x to store π1(A1,l.C3). We observe u 7→ C3(u)
according to (2.41b) is implemented in (1), v 7→ A3,r(v) according to (2.41c) is imple-
mented in (2), w 7→ B1(w) according to (2.41d) is implemented in (3), u 7→ x := A1,l(u)
according to (2.41a) is implemented in (4), and (x, v, w) 7→ f(x, v, w) according to (2.42)
is implemented in (5).

2.4 Statistical Tests

As mentioned before, before applying RNG to serious applications, one should check the
quality of their output by submitting it to statistical tests. Many possible tests have
been published in the literature, and a thorough treatment of this subject is beyond
the scope of this class. Caveat: Even if an RNG has passed n statistical tests, there
is no guarantee that it will not fail test number n + 1. However, the probability that
an RNG is a good generator increases with the number of different tests it passes.
The DIEHARD test suite [Mar03a], already mentioned several times, can be seen as a
minimum requirement for a good RNG. We will only briefly touch on some of the 15
tests in DIEHARD, after a short discussion of chi-square tests.
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2.4.1 Chi-Square Tests

The chi-square test, also written as χ2-test, is a test to investigate if the vector-valued
random variable (Y1, . . . , YN) (also called a random vector) is multinomially distributed
according to a given multinomial distribution. This is the expected distribution if the
Yi count the numbers of how often sample si has been drawn in n independent drawings
from a finite sample space S = {s1, . . . , sN}, where the probability of drawing si is
pi > 0.

We recall the probability-theoretic notions relevant for the description of the chi-square
test:

Notation 2.29. Given a finite set S 6= ∅ and n ∈ N, let

Σ(S, n) :=

{

~k = (ks)s∈S ∈ NS
0 :
∑

s∈S
ks = n

}

(2.44)

denote the set of S-indexed tuples of nonnegative integers that have sum precisely n.

Definition 2.30. Let n,N ∈ N, let S = {s1, . . . , sN}, #S = N , be a finite sample
space, and ~p := (p1, . . . , pN) ∈ (R+)N with

∑n
i=1 pi = 1.

(a) The discrete probability measure on Σ(S, n) defined by

Mn,~p{~k} :=
n!

k1! · · · kN !
pk11 · · · pkNN (2.45)

is called the multinomial distribution with parameters n and ~p. If (Ω,A, P ) is a
probability space and Y := (Y1, . . . , YN) : Ω −→ Σ(S, n) a random vector, then Y
is called Mn,~p-distributed if, and only if, PY = Mn,~p.

(b) The map

V : Σ(S, n) −→ R+
0 , V (~k) :=

N∑

i=1

(ki − npi)
2

npi
= −n+

1

n

N∑

i=1

k2i
pi

(2.46)

is called the chi square statistic to n and ~p; one sometimes says that it has N − 1
degrees of freedom (as kN = n−∑N−1

i=1 ki).

Notation 2.31. Recalling the gamma function

Γ : R+ −→ R+, Γ(t) :=

∫ ∞

0

ut−1e−u du , (2.47)

for each a, b ∈ R+, let γa,b denote the function

γa,b : R
+ −→ R+, γa,b(x) :=

1

abΓ(b)
xb−1 e−

x
a . (2.48)



2 RANDOM NUMBER GENERATION 26

Remark 2.32. It follows from (2.47), (2.48), and a simple change of variables that

∫ ∞

0

γa,b(x) dx = 1 (2.49)

for each a, b > 0. If you are worried about γa,b not being defined at 0, just define it to
be any value you like – it does not change the value of the integral.

Definition and Remark 2.33. For each a, b > 0, the measure on B1 defined by

Γa,b := γa,b λ1, (2.50)

is called the gamma distribution on R with parameters a and b (here, γa,b is taken to be
extended by 0 to all of R). If (Ω,A, P ) is a probability space and X : Ω −→ R a random
variable such that PX = Γa,b, then one says X is Γa,b-distributed. For Γa,b-distributed
X, one checks

E(X) = ab, (2.51a)

V (X) = a2b. (2.51b)

Of particular interest is the distribution χ2
n := Γ2,n/2 for n ∈ N. It is called the chi-

square distribution with n degrees of freedom. Plugging the parameters into (2.51), for
χ2
n-distributed X:

E(X) = n, (2.52a)

V (X) = 2n. (2.52b)

—

The actual chi-square test is now based on the following theorem:

Theorem 2.34. Consider the situation of Def. 2.30. It holds that

lim
n→∞

Mn,~p

{

~k ∈ Σ(S, n) : V (~k) ≤ c
}

= χ2
N−1[0, c] for each c > 0. (2.53)

Proof. See, e.g., [Geo09, Th. 11.12]. �

We can now describe how a chi-square test is carried out. To investigate, if the members
of a sequence of S-valued i.i.d. random variables (Xi)i∈N, Xi : Ω −→ S, is distributed
according to ~p = (p1, . . . , pN), choose n ∈ N sufficiently large (see below), generate

X1(ω), . . . , Xn(ω), and compute ~k := Y (ω) ∈ Σ(S, n), where Y := (Y1, . . . , YN) is
defined through

Yi : Ω −→ N0, Yi(ω) := #
{
α ∈ {1, . . . , n} : Xα(ω) = si

}
. (2.54)

If the hypothesis regarding the X1, X2, . . . is true, then Y is Mn,~p-distributed (see, e.g.,

[Geo09, Th. 2.9]). Thus, in view of Th. 2.34, computing c := V (~k) and χ2
N−1[0, c] for
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~k = (k1, . . . , kN) := (Y1(ω), . . . , YN(ω)), one considers the sequence X1, X2, . . . to have
failed the test, provided χ2

N−1[0, c] is very low or very high: If, for example, χ2
N−1[0, c] <

0.05 or χ2
N−1[0, c] > 0.95, then, in both cases, the probability of c = V (~k) is < 5%, given

that the X1, X2, . . . are, indeed, i.i.d. and distributed according to ~p = (p1, . . . , pN) (and
given n sufficiently large).

As for the question of how large to choose n, one frequently finds the rule

n ≥ 5

min{pi : i = 1, . . . , N} (2.55)

in the literature (e.g. [Knu98, p. 45], [Geo09, p. 302]), even though I did not find any
source providing a reason for this particular value.

One way of applying the just described chi-square test to RNG is based on the following
Lem. 2.35.

Lemma 2.35. Let (Ω,A, P ) be a probability space, n ∈ N, S := {n1, . . . , nk} ⊆
{1, . . . , n}, #S = k ≤ n, π : Zn

2 −→ Zk
2, π(x1, . . . , xn) = (xn1 , . . . , xnk

).

(a) If X : Ω −→ Zn
2 is a uniformly distributed random variable, then so is π ◦X.

(b) If (Xi)i∈N, Xi : Ω −→ Zn
2 is a sequence of i.i.d. random variables, uniformly

distributed, then the same holds for the sequence (π ◦Xi)i∈N.

Proof. (a): Let x ∈ Zk
2. One computes

Pπ◦X{x} = PX

(
π−1{x}

)
=

#π−1{x}
#Zn

2

=
2n−k

2n
= 2−k =

1

#Zk
2

, (2.56)

thereby establishing the case.

(b) is just a combination of (a) with Th. B.10. �

Example 2.36. Suppose, we have an RNG represented by a map A : Z64
2 −→ Z64

2 (for
instance one of the RNG considered in Sec. 2.3). We want to apply the chi-square test
to investigate the hypothesis that a sequence A1, A2, . . . in Z64

2 , generated by A, is likely
to be the output of a sequence of uniformly i.i.d. random variables. According to Lem.
2.35, under the hypothesis, the projection π of the Ai onto the lowest 10 bits is also
uniformly i.i.d., now on 0, . . . , 210 − 1 = 1023 instead of on 0, . . . , 264 − 1. Thus, the
probability pi for i ∈ {0, . . . , 1023} is 1/1024. The chi-square test now consists of the
following steps:

(i) According to (2.55), choose n ≥ 5 · 1024 = 5120.

(ii) For each i ∈ {0, . . . , 1023}, calculate the number ki of times i occurs in the sequence
π(A1), . . . , π(An).

(iii) Set ~k := (k0, . . . , k1023), compute c := V (~k) according to (2.46), and the corre-
sponding χ2

1023[0, c].
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2.4.2 Binary Rank Tests

3 of the 15 tests in the DIEHARD test suite [Mar03a] are binary rank tests. They are
another application of the chi-square tests described in the previous section.

For a binary rank test, one uses the output of an RNG to create binary matrices of
some fixed size. For example, if the RNG provides 64-bit numbers, then one can use the
lower (or the upper) 32 bits to form the rows of a 32 × 32 binary matrix, i.e. a matrix
over Z2. Let

rk := #
{
A ∈ Z32×32

2 : rk(A) = k
}
< 232·32 = 21024 (2.57)

be the number of matrices having rank precisely k (it is a not too difficult combinatorial
task to compute explicit formulas for the rk).

Under the hypothesis (the one to be tested) that the output of the RNG is uniformly
distributed, so are the generated matrices in Z32×32

2 , and the corresponding ranks are
distributed according to ~p := (p0, . . . , p32), pk := rk/2

1024, on S := {0, . . . , 32}. So we
are in a setting where the chi-square test of Sec. 2.4.1 applies.

In practise, since the values for p0, . . . , p28 are very small as compared to p29, . . . , p32,
one lumps the occurrence of ranks 0, . . . , 28 into one event, using the 5-element set
S ′ := {≤ 28, 29, 30, 31, 32} instead of S.

2.4.3 A Simple Monkey Test: The CAT Test

2 of the 15 tests in the DIEHARD test suite [Mar03a] are monkey tests, however, much
more efficient and powerful than the CAT test. Here, we just give the general idea of
such tests.

The name of these tests refers to the well-known thought experiment of a monkey (or
a group of monkeys) hitting the keys of a typewriter at random. For simplicity, assume
that only the 26 capital letters A,. . . ,Z are possible. One can then apply probability
theory to the potential literary output. One can, for instance, count the number of
keystrokes it takes the monkey to type CAT for the first time, and one can compute the
probability distribution for that number.

Now, in random number generation, the RNG takes the role of the monkey. For example,
if the output of the RNG is x ∈ Z64

2
∼= Z264 , uniformly distributed, then

U : Z264 −→ {1, . . . , 26}, U(x) :=
⌊

26 · x

264

⌋

+ 1, (2.58)

can be used to obtain a uniformly distributed sequence of capital letters. In particular,
every three-letter word is as likely to occur as any other. Since there are 263 = 17576
three-letter words, the RNG monkey should, on average, need 17576 keystrokes to spell
the first CAT.
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3 Simulating Random Variables

So far, namely in Sec. 2, we have studied the creation of random numbers, simulating
i.i.d. random variables, uniformly distributed on some finite set S (and, actually, S = Z64

2

(often tacitly identified with Z264
∼= Z64

2 ) for all the primary RNG provided explicitly).
We have seen that all known RNG (hardware RNG as well as pseudo RNG) have their
issues, and one can even embark on philosophical discussions if true RNG should exist
or not.

However, from now on, we will disregard such questions, simply assuming that we are
somehow able to simulate a sequence of Z64

2 -valued, uniformly i.i.d. random variables
U1, U2, . . . .

The present section is devoted to the problem of transforming the Ui into a sequence
of i.i.d. random variables having some other prescribed probability distribution. Note
that, due to Th. B.10, preserving independence is usually not an issue.

3.1 Uniform Deviates

We have already implicitly used that, given Z64
2 -valued uniform deviates (recall Def.

2.1(b)), we can obtain [0, 1]d-valued uniform deviates. The following Lem. 3.1 provides
the precise statement this transformation is founded on:

Lemma 3.1. Let (Ω,A, P ) be a probability space, n ∈ N, S := {0, . . . , n−1}, U : S −→
[0, 1], U(k) := k/n.

(a) If X : Ω −→ S is a uniformly distributed random variable, then U ◦X is approxi-
mately uniformly distributed on [0, 1] in the sense that

λ1[a, b]−
1

n
< PU◦X [a, b] < λ1[a, b] +

1

n
(3.1)

for each 0 ≤ a < b ≤ 1.

(b) If (X1, . . . , Xd), d ∈ N, Xi : Ω −→ S, is a tuple of uniformly i.i.d. random variables,
then (U ◦X1, . . . , U ◦Xd) : Ω −→ [0, 1]d is approximately uniformly distributed on
[0, 1]d in the sense that

λd[a, b]−O

(
1

n

)

< P(U◦X1,...,U◦Xd)[a, b] < λd[a, b] +O

(
1

n

)

(3.2)

for each (0, . . . , 0) ≤ a < b ≤ (1, . . . , 1).

(c) Let (Xi)i∈N, Xi : Ω −→ S be a sequence of uniformly i.i.d. random variables; d ∈ N.
For each i ∈ N, define

Ui : Ω −→ [0, 1]d, Ui(ω) :=
(
(U ◦X(i−1)d+1)(ω), . . . , (U ◦Xid)(ω)

)
. (3.3)

Then (Ui)i∈N is an i.i.d. sequence of random variables, approximately uniformly
distributed in the sense of (b).
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Proof. Exercise. �

Remark 3.2. If the [0, 1]-valued random variable U is uniformly distributed, then one
can consider U as R-valued, where the distribution is given by

∀
t∈R

P{U < t} = P{U ≤ t} =







0 for t ≤ 0,

t for 0 ≤ t ≤ 1,

1 for 1 ≤ t.

(3.4)

3.2 Inverse Transform Method

Given a probability measure π on B1, the inverse transform method is designed to
simulate random variables with values in (subsets of) R, being distributed according
to π. This is accomplished making use of the corresponding cumulative distribution
function (CDF) of π, where it turns out to be convenient to use the right-continuous (r.c.)
version Fπ,r of the CDF (see Def. B.28(b) and Th. B.29). For the sake of readability, we
will write Fπ := Fπ,r in the following.

We can precisely state our goal as follows: Given a [0, 1]-valued uniformly distributed
random variable U , transform U into a random variable X, that is distributed accord-
ing to Fπ. According to the following Prop. 3.3, this can be accomplished using (a
generalization of) the inverse of Fπ:

Proposition 3.3. Let (Ω,A, P ) be a probability space, U : Ω −→ [0, 1] a uniformly
distributed random variable, and Fπ : R −→ [0, 1], Fπ(x) := π]−∞, x] the r.c. CDF for
some probability measure π on B1. Define

X : Ω −→ R, X := F̃π ◦ U, (3.5)

where
F̃π : [0, 1] −→ R, F̃π(x) := inf{y ∈ R : Fπ(y) ≥ x} (3.6)

(it is F̃π = F−1
π if, and only if, Fπ is invertible, i.e. if, and only if, Fπ is continuous

and strictly increasing). Then X is a random variable distributed according to Fπ, i.e.
PX ]−∞, x] = Fπ(x) for each x ∈ R.

Proof. From Th. B.29, we know Fπ is increasing and r.c. We first show

∀
x∈R

A :=
{
ω ∈ Ω : F̃π(U(ω)) ≤ x

}
= B :=

{
ω ∈ Ω : U(ω) ≤ Fπ(x)

}
: (3.7)

If ω ∈ A, then γ := inf{y ∈ R : U(ω) ≤ Fπ(y)} = F̃π(U(ω)) ≤ x. If γ < x, then
U(ω) ≤ Fπ(x) follows as Fπ is increasing, showing ω ∈ B. If γ = x, then there is
γn ↓ γ = x with U(ω) ≤ Fπ(γn) for each n ∈ N. As Fπ is r.c., U(ω) ≤ limn→∞ Fπ(γn) =
Fπ(γ) = Fπ(x), again showing ω ∈ B. Conversely, if ω ∈ B, then U(ω) ≤ Fπ(x), such
that inf{y ∈ R : U(ω) ≤ Fπ(y)} ≤ x, showing ω ∈ A.
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From (3.7), one obtains

∀
x∈R

PX ]−∞, x] = P
(

U−1
(
F̃−1
π ]−∞, x]

))

= P (A)
(3.7)
= P (B)

= P
(

U−1
(
]−∞, Fπ(x)]

)) (3.4)
= Fπ(x),

establishing the case (note that, due to (3.7), the measurability of U implies the mea-
surability of F̃π ◦ U). �

Definition 3.4. Transforming a [0, 1]-valued uniformly distributed random variable U
into X using (3.5) and (3.6) is called the inverse transform method.

Example 3.5. Let a > 0. Recall the exponential distribution, Ea := Γa−1,1, a special
gamma distribution (cf. Def. and Rem. 2.33; from (2.51), one obtains E(X) = 1/a and
V (X) = 1/a2 for X ∼ Ea). The CDF of the exponential distribution is

F : R −→ [0, 1], F (x) =







0 for x ∈ [−∞, 0],
∫ x

0
a e−at dt = [−e−at]x0 = 1− e−ax for x ∈ [0,∞[,

1 for x = ∞.

(3.8)
Given a [0, 1]-valued uniformly distributed random variable U , we would like to con-
struct an exponentially distributed random variableX via the inverse transform method.
Clearly, F is invertible on [0,∞[ with

F−1 : [0, 1[−→ [0,∞[, F−1(x) := −a−1 ln(1− x). (3.9)

According to Prop. 3.3, we obtain an exponentially distributed random variable X from
(3.5), when using

F̃ : [0, 1] −→ {−∞}∪]0,∞], F̃ (x) :=







−∞ for x = 0,

−a−1 ln(1− x) for 0 < x < 1,

∞ for x = 1.

(3.10a)

Since U and 1 − U have the same distribution, one can also replace the F̃ of (3.10a)
with

F̃ : [0, 1] −→ {−∞}∪]0,∞], F̃ (x) :=







−∞ for x = 1,

−a−1 ln x for 1 > x > 0,

∞ for x = 0.

(3.10b)

Example 3.6. We apply the inverse transform method to obtain random variables with
discrete distributions: Let S = {s1, . . . , sn} ⊆ R be a finite set with s1 < · · · < sn. Let
the probability measure π on S be defined by π(si) := pi ∈ [0, 1],

∑n
i=1 pi = 1. Then

the r.c. CDF is

Fπ : R −→ [0, 1], Fπ(x) =







0 for x < s1,

qi for si ≤ x < si+1 and i ∈ {1, . . . , n− 1},
1 for sn ≤ x,

(3.11)
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where qi :=
∑i

j=1 pj. According to Prop. 3.3, we obtain a random variable X distributed
according to π from (3.5), when using

F̃π : [0, 1] −→ {−∞} ∪ S, F̃π(x) := inf{y ∈ R : Fπ(y) ≥ x} =

{

−∞ for x = 0,

sk(x) for x > 0,

(3.12)
where k(x) := min

{
i ∈ {1, . . . , n} : x ≤ qi

}
.

Example 3.7. Let (Ω,A, P ) be a probability space, U : Ω −→ [0, 1] a uniformly
distributed random variable, and Fπ : R −→ [0, 1], Fπ(x) := π] − ∞, x] the r.c. CDF
for some probability measure π on B1. Suppose the random variable X : Ω −→ R

is π-distributed, and we are interested in transforming U into some random variable
Y , which is distributed according to X under the condition A :=

{
X ∈]a, b]

}
, where

a, b ∈ R, a < b, Fπ(a) < Fπ(b) (i.e. P (A) = Fπ(b) − Fπ(a) > 0). Thus, we are looking
for some Y : Ω −→ R, such that for each x ∈ R:

P{Y ≤ x} = P{X ≤ x|A} =
P
{
X ∈]−∞, x]∩]a, b]

}

P (A)

=







0 for x ≤ a,
Fπ(x)−Fπ(a)
Fπ(b)−Fπ(a)

for a ≤ x ≤ b,

1 for b ≤ x.

(3.13)

Using the inverse transform method, Y can be constructed in two steps, first letting

V : Ω −→ [Fπ(a), Fπ(b)], V := Fπ(a) +
(
Fπ(b)− Fπ(a)

)
U, (3.14)

and then

Y : Ω −→ R, Y := F̃π ◦ V, (3.15)

with F̃ according to (3.6). To verify (3.13), we compute, for each x ∈ R:

P{Y ≤ x} = P
(

V −1
(
F̃−1
π ]−∞, x]

)) (∗)
= P

(

V −1
(
]−∞, Fπ(x)]

))

= P
{
ω ∈ Ω : V (ω) ≤ Fπ(x)

}
= P

{

ω ∈ Ω : U(ω) ≤ Fπ(x)− Fπ(a)

Fπ(b)− Fπ(a)

}

(3.4)
=







0 for x ≤ a,
Fπ(x)−Fπ(a)
Fπ(b)−Fπ(a)

for a ≤ x ≤ b,

1 for b ≤ x,

(3.16)

showing that Y has, indeed, the desired conditional distribution. At “(*)”, (3.7) was
used with U replaced by V .

—
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The inverse transform method is usually not the most efficient way of obtaining a random
variable with a desired distribution. In general, its feasibility and efficiency depend on
efficient algorithms for computing F̃π being at hand or not. If Fπ is invertible, then
Newton’s method can sometimes be useful to compute F̃π(u) = F−1

π (u) as the solution
x to the root problem Fπ(x)− u = 0.

The inverse transform method, at least in the form that was presented here, only yields
univariate (i.e. 1-dimensional) distributions.

3.3 Acceptance-Rejection Method

The goal of the acceptance-rejection method is still to simulate random variables Y that
have some desired given distribution. It is not restricted to R-valued Y , but also works
for Y with values in Rd or even in a more complicated space Ω′.

The idea of this method, also called the von Neumann acceptance-rejection method,
is to first simulate values of a more conveniently distributed random variable X. The
outputX(ω) is then rejected with a certain probability, where the rejection mechanism is
designed such that the accepted values are, indeed, distributed according to the desired
distribution, i.e. they can be used to represent Y .

We will restrict ourselves to formulating the acceptance-rejection method for the case,
where the distribution of Y is given via a probability density function (PDF, see Def.
B.26(b)). It is noted that variants also exist for situations, where Y is not given via a
PDF.

The acceptance-rejection method is based on the following proposition:

Proposition 3.8. Let (Ω,A, P ) be a probability space, (Ω′,A′, µ) a measure space, Y,X :
Ω −→ Ω′ random variables with PDF f, g : Ω′ −→ R+

0 , respectively (i.e. f PDF for Y
and g PDF for X), g > 0, and c > 1 such that

f(x) ≤ c g(x) for each x ∈ Ω′. (3.17)

If U : Ω −→ [0, 1] is a uniformly distributed random variable, which is independent of
X, then the distribution of Y is the conditional distribution of X under the condition

C :=

{

U ≤ f ◦X
c(g ◦X)

}

, (3.18)

that means

P{Y ∈ A} =

∫

A

f dµ =
P
{

X ∈ A, U ≤ f◦X
c(g◦X)

}

P (C)
for each A ∈ A′. (3.19)

Proof. Exercise. �

Definition and Remark 3.9. Given the situation of Prop. 3.8 and a method for
generating sequences (u1, x1), (u2, x2), . . . of values of independent copies of (U,X), the
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acceptance-rejection method returns (i.e. accepts) xi as a value of Y if, and only if,
ui ≤ f(xi)/(c g(xi)) (otherwise, xi is rejected). Then the distribution of the returned
values is that of X under the condition C, with C as in (3.18), and Prop. 3.8 yields that
the returned xi are, indeed, the values of a random variable Y , distributed according to
the PDF f .

Remark 3.10. In the situation of Prop. 3.8, (3.17) can not hold with c < 1 and it can
hold with c = 1 only if f = g µ-almost everywhere (exercise). It is desirable to find g
such that c is close to 1, such that as few generated values from X as possible need to
be rejected. On the other hand, a competing requirement is that g and X need to be
efficiently computable. It can be an art to find a suitable g for a given f such that g
and X are efficiently computable and g makes c small (i.e. close to 1). In this context,
if h(x) := f(x)/(cg(x)) is computationally costly to evaluate, acceptance-rejection can
often be made more efficient by the so-called squeeze method: One finds functions h1, h2
that can be evaluated more quickly and that form a squeeze of h in the sense that
h1 ≤ h ≤ h2. One now needs to evaluate h(xi) only if h1(xi) ≤ ui ≤ h2(xi). Of course,
finding good squeezes can also be an art.

Example 3.11. We show how the acceptance-rejection method can be applied to obtain
N(0, 1)-distributed random variables. Other methods for sampling univariate normally
distributed random variables (actually, more efficient ones) will be discussed in Sec.
3.4.1 below.

In the present example, the goal is to apply acceptance-rejection to obtain an N(0, 1)-
distributed Y , i.e. a Y with PDF

f : R −→ [0, 1], f(x) :=
1√
2π

e−x2/2. (3.20)

For g, we use the PDF of a so-called double exponential distribution, i.e.

g : R −→ [0, 1], g(x) :=
1

2
e−|x|. (3.21)

Then, for each x ∈ R,

f(x)

g(x)
=

√

2

π
e−x2/2+|x| ≤

√

2e

π
=: c = 1.3154... ≈ 1.3155, (3.22)

since −x2/2 + |x| attains its max 1/2 at x = 1. Thus, (3.17) is satisfied and the
acceptance-rejection method according to Def. and Rem. 3.9 can be applied, where a
value xi is accepted if, and only if,

ui ≤
f(xi)

cg(xi)
= e−x2

i /2+|xi|−1/2 = e−(|xi|−1)2/2. (3.23)

If (Ω,A, P ) is a probability space, Z : Ω −→ R+
0 is an E1-distributed (i.e. exponen-

tially distributed, cf. Ex. 3.5) random variable and V : Ω −→ {−1, 1} is a uniformly
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distributed random variable, Z, V mutually independent, then ZV : Ω −→ R is doubly
exponentially distributed: Indeed, for each 0 < a < b,

P
{
ZV ∈ [a, b]

}
= P

{
Z ∈ [a, b], V = 1

}
= P

{
Z ∈ [a, b]

}
P{V = 1}

=
1

2

∫ b

a

e−x dx =

∫ b

a

g(x) dx , (3.24)

and analogously for a < b < 0.

We already know how to generate sequences (ui)i∈N, (vi)i∈N, (zi)i∈N, such that the ui
represent i.i.d. copies of [0, 1]-valued uniformly distributed random variables, the vi
represent i.i.d. copies of {−1, 1}-valued uniformly distributed random variables, and the
zi represent i.i.d. copies of R+

0 -valued E1-distributed random variables (see Ex. 3.5).
If we generate the three sequences independently, then, using the acceptance-rejection
method, the following algorithm yields y1, y2, . . . , representing i.i.d. copies of N(0, 1)-
distributed random variables. We only describe one step of the algorithm:

1 : generate ui and zi

2 : hi := f(zi)/(cg(zi))

3 : if ui ≤ hi then

k := k + 1; generate vk; yk := zivk

4 : i := i+ 1; goto 1

(3.25)

Note that, since f and g are both symmetric with respect to x = 0, in Steps 2 and 3,
we can use the zi ∈ R+

0 to perform the acceptance test according to (3.23). This means,
one can avoid generating vk for rejected values.

Example 3.12. In Ex. 3.7, the inverse transform method was used to simulate particular
conditional distributions. Now consider the general case: Let (Ω,A, P ) be a probability
space, (Ω′,A′) a measurable space, X : Ω −→ Ω′ a random variable, and C ∈ A′

with P{X ∈ C} > 0. Suppose we know how to simulate the distribution of X, but
would like to simulate the distribution of X under the condition X ∈ C. If x1, x2, . . .
represent values of i.i.d. copies of X, then one can always obtain y1, y2, . . . representing
the conditional distribution by the following brute force algorithm:

1 : generate xi

2 : if xi ∈ C then

k := k + 1; yk := xi

3 : i := i+ 1; goto 1

(3.26)

If µ is a measure on (Ω′,A′) and g : Ω′ −→ R+ is a PDF for X, then

P{X ∈ A ∩ C}
P{X ∈ C} =

1

P{X ∈ C}

∫

A

g χC dµ for each A ∈ A′, (3.27)

i.e. f := g χC/P{X ∈ C} is a PDF for the conditional distribution. Since

f =
g χC

P{X ∈ C} ≤ g

P{X ∈ C} , (3.28)
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(3.17) holds, and (3.26) is precisely the acceptance-rejection method of Def. and Rem.
3.9, where the acceptance test ui ≤ P{X ∈ C}f(xi)/g(xi) does not depend on ui > 0
and reduces to testing xi ∈ C.

3.4 Normal Random Variables and Vectors

Normal random variables and vectors are of particular importance for mathematical
finance applications (cf. (1.21) and (1.25)), and, thus, we devote special attention to
techniques for their efficient simulation in the present section.

3.4.1 Simulation of Univariate Normals

In the present section, we consider methods for simulating random variables that have
a univariate, i.e. one-dimensional normal distribution N(α, σ2).

Lemma 3.13. Let (Ω,A, P ) be a probability space and Z : Ω −→ R an N(0, 1)-
distributed random variable. Then, given α ∈ R, σ > 0,

X : Ω −→ R, X := α + σZ, (3.29)

is N(α, σ2)-distributed.

Proof. Letting f : R −→ R, f(x) = α + σx, we have X = f ◦ Z. For each A ∈ B1, we
have

PX(A) = Pf◦Z(A) = PZ

(
f−1(A)

)
=

1√
2π

∫

f−1(A)

e−ξ2/2 dξ =
1√
2πσ2

∫

A

e−
(x−α)2

2σ2 dx ,

(3.30)
thereby establishing the case. �

In view of Lem. 3.13, we will restrict ourselves to studying methods for simulating
N(0, 1)-distributed random variables.

A first possibility for generating N(0, 1)-distributed random variables was already de-
scribed in Ex. 3.11 as an application of the acceptance-rejection method. As alterna-
tives, we will now discuss the so-called Box-Muller method [BM58] and its more efficient
variant due to Marsaglia and Bray [MB64].

The Box-Muller method is based on the following proposition:

Proposition 3.14. Let (Ω,A, P ) be a probability space. If U1, U2 : Ω −→]0, 1[ are
independent and uniformly distributed random variables, U : Ω −→]0, 1[2, U := (U1, U2),
and

f : ]0, 1[2−→ R2, f(u, v) :=
√
−2 ln u

(
sin(2πv), cos(2πv)

)
, (3.31)

then Z := f ◦ U : Ω −→ R2 is distributed according to the standard bivariate normal
distribution (cf. Sec. 3.4.2 below), i.e. for each a, b ∈ R2 with a < b:

P
{
Z ∈ [a, b]

}
=

1

2π

∫ b1

a1

∫ b2

a2

e−
x2+y2

2 dy dx . (3.32)
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In particular, the two components Z1 and Z2 of Z are independent and both N(0, 1)-
distributed.

Proof. The proof is an easy consequence of the change of variables formula, for which
we need to compute the Jacobian of f . The derivative is

Df(u, v) =

(

− sin(2πv)

u
√
−2 lnu

2π
√
−2 ln u cos(2πv)

− cos(2πv)

u
√
−2 lnu

−2π
√
−2 ln u sin(2πv)

)

, (3.33)

yielding the Jacobian determinant

detDf(u, v) =
2π

u
. (3.34)

Thus, to use the change of variables (x, y) := f(u, v), we need to compute u in terms
of (x, y) – more precisely, we need to compute the first component of f−1. If (x, y) :=
f(u, v), then

x2 + y2 = −2 ln u
(
sin2(2πv) + cos2(2πv)

)
= −2 ln u ⇒ u = e−

x2+y2

2 . (3.35)

Thus, for each A ∈ B2:

PZ(A) = Pf◦U(A) = PU

(
f−1(A)

)
=

∫

f−1(A)

1 d(u, v)

(∗)
=

∫

A

(

detDf
(
f−1(x, y)

))−1

d(x, y)

=

∫

A

u(x, y)

2π
d(x, y) =

1

2π

∫

A

e−
x2+y2

2 d(x, y) , (3.36)

where the change of variables formula has been used at (∗) with (x, y) := f(u, v). �

Definition and Remark 3.15. If u1, u2, . . . denote the output of a sequence of i.i.d.
copies of random variables uniformly distributed on [0, 1], then the Box-Muller method
is given by the following algorithm:

1 : generate ui 6= 0 and ui+1

2 : r :=
√

−2 ln ui; γ := 2πui+1

3 : zi := r cos γ; zi+1 := r sin γ

4 : i := i+ 2; goto 1

(3.37)

According to Prop. 3.14, z1, z2, . . . represent the output of i.i.d. copies of N(0, 1)-
distributed random variables.

—

The idea of the Marsaglia-Bray algorithm is to modify (3.37) such that the computa-
tionally costly evaluations of cos and sin can be avoided. To that end, they provide a
procedure for simulating random variables that are uniformly distributed on the unit
circle S.
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Remark 3.16. Let
S :=

{
(x1, x2) ∈ R2 : x21 + x22 = 1

}
. (3.38)

It is an exercise to show the conclusion of Prop. 3.14 still holds if U2 is replaced by a
random variable W = (W1,W2) : Ω −→ S, where W is uniformly distributed, U1 and
W are independent, and f is replaced by

g : ]0, 1[×S −→ R2, g(u, w1, w2) :=
√
−2 ln u (w1, w2). (3.39)

—

The Marsaglia-Bray algorithm for simulating random variables uniformly distributed on
S is based on the following proposition:

Proposition 3.17. Let (Ω,A, P ) be a probability space and let U1, U2 : Ω −→ ]0, 1[ be
independent and uniformly distributed random variables.

(a) Letting
Vi : Ω −→ ]− 1, 1 [, Vi := 2Ui − 1, i ∈ {1, 2}, (3.40)

the Vi are independent and uniformly distributed random variables.

(b) V := (V1, V2) : Ω −→ ] − 1, 1 [2 is a uniformly distributed random variable. In
particular, the distribution of V under the condition {V ∈ C},

C :=
{
(x1, x2) ∈ R2 : x21 + x22 ≤ 1

}
, (3.41)

is the uniform distribution on C.

(c) Letting
U : Ω −→ [0, 2 [, U := V 2

1 + V 2
2 , (3.42)

the distribution of U , under the condition {V ∈ C}, is the uniform distribution on
[0, 1].

(d) Recalling S from (3.38) and letting

W := (W1,W2) : Ω −→ S, Wi : Ω −→ [0, 1], Wi := Vi/
√
U, i ∈ {1, 2},

(3.43)
the distribution of W , under the condition {0 < U ≤ 1}, is uniformly distributed
on S.

(e) Under the condition {0 < U ≤ 1}, U and W are independent.

Proof. (a): Note Vi = f ◦Ui with f : ]0, 1[−→ ]−1, 1[, f(x) := 2x−1. The independence
is due to Th. B.10; for the distribution note, for each Borel set A in ]− 1, 1[:

PVi
(A) = Pf◦Ui

(A) = PUi

(
f−1(A)

)
=

∫

f−1(A)

1 dξ =
1

2

∫

A

1 dx . (3.44)
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(b) clearly holds as a simple consequence of the independence of V1 and V2.

(c): For each 0 ≤ a < b ≤ 1, denote the corresponding annulus by

Aa,b :=
{
(x1, x2) ∈ R2 : a ≤ x21 + x22 ≤ b

}
. (3.45)

We compute

∀
0≤a<b≤1

P
{
U ∈ [a, b]

}

P{V ∈ C} =
P
{
V 2
1 + V 2

2 ∈ [a, b]
}

1
4
λ2(C)

=
P
{
V ∈ Aa,b

}

1
4
π

=
1
4
λ2(Aa,b)

1
4
π

=
1
4
π(b− a)

1
4
π

= b− a.

(3.46)

(d): For each 0 ≤ α < β ≤ 2π, denote the corresponding segments of S and C by

Sα,β :=
{
(x1, x2) ∈ R2 : x1 = sin γ, x2 = cos γ, α ≤ γ ≤ β

}
, (3.47a)

Cα,β :=
{
(x1, x2) ∈ R2 : x1 = r sin γ, x2 = r cos γ, α ≤ γ ≤ β, r ∈ [0, 1]

}
, (3.47b)

respectively. We compute

∀
0≤α<β≤2π

P
{
W ∈ Sα,β

}

P{V ∈ C} =
P{V ∈ Cα,β}

1
4
π

=
1
4
λ2(Cα,β)

1
4
π

=
1
4

β−α
2π

π
1
4
π

=
β − α

2π
. (3.48)

(e): For each 0 ≤ a < b ≤ 1, 0 ≤ α < β ≤ 2π:

P
{
U ∈ [a, b], W ∈ Sα,β

}

P{V ∈ C} =
P{V ∈ Aa,b ∩ Cα,β}

1
4
π

=
1
4
λ2(Aa,b ∩ Cα,β)

1
4
π

=
1
4

β−α
2π
π(b− a)
1
4
π

=
β − α

2π
(b− a) =

P
{
U ∈ [a, b]

}

P{V ∈ C}
P
{
W ∈ Sα,β

}

P{V ∈ C} , (3.49)

completing the proof of (e) as well as the proof of the proposition. �

Remark 3.18. If u1, u2, . . . denote the output of a sequence of i.i.d. copies of random
variables uniformly distributed on [0, 1], then the Marsaglia-Bray variant of the Box-
Muller method is given by the following algorithm:

1 : generate ui and ui+1

2 : v1 := 2ui − 1; v2 := 2ui+1 − 1

3 : u := v21 + v22
4 : if u = 0 or u > 1

i := i+ 2; goto 1

5 : r :=

√

−2 ln u

u

6 : zk := rv1; zk+1 := rv2

7 : k := k + 2; i := i+ 2; goto 1

(3.50)



3 SIMULATING RANDOM VARIABLES 40

According to Prop. 3.17(c), u is uniformly distributed on [0, 1] and (v1, v2)/
√
u is uni-

formly distributed on S. In consequence, Rem. 3.16 guarantees that the z1, z2, . . .
represent the output of i.i.d. copies of N(0, 1)-distributed random variables.

—

Another alternative for generating univariate normal deviates is given by the algorithm
from [Lev92]. The following provides a C++ implementation, coded as a derivation from
the RNG Ran of Sec. 2.3.5. Of course, you can also base it on any other (decent) RNG.
The following implementation follows [PTVF07, p. 369] (see [Lev92] for an explanation
of the algorithm):

struct Normaldev : Ran

{

const double fac(5.42101086242752217E-20);

double mu,sig;

Normaldev(double mmu,

double ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig){}

double dev()

{

double u,v,x,y,q;

do {

do

{

u = fac*int64();

} while(0.0 == u);

v = 1.7156*(fac*int64()-0.5);

x = u - 0.449871;

y = abs(v) + 0.386595;

q = x*x + y*(0.19600*y-0.25472*x);

} while (q > 0.27597 && (q > 0.27846 || v*v > -4.*log(u)*u*u));

return mu + sig*v/u;

}

};

3.4.2 Simulation of Multivariate Normals

In the present section, we proceed to consider the simulation of multivariate normals, i.e.
of normally distributed random vectors. Let us first recall the definition of multivariate
normals in generalization of Def. and Rem. B.35. We begin with some preparations:

Notation 3.19. For each α ∈ R, it is useful to define the degenerate normal distribution
as the Dirac probability measure with its measure concentrated in α, i.e.

∀
α∈R

N(α, 0) := να,0 := δα : B1 −→ [0, 1], δα(A) :=

{

1 for α ∈ A,

0 for α /∈ A.
(3.51)
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For σ > 0, N(α, σ) is defined in Def. and Rem. B.35, and we let

N1 :=
{
N(α, σ) : α ∈ R, σ ∈ R+

0

}
(3.52)

denote the set of all normal distributions on B1.

Remark 3.20. A probability measure ν : B1 −→ [0, 1] is in N1 if, and only if, A ◦ ν ∈
N1 for each linear map A : R −→ R. This property, suitably generalized to higher
dimensions, can be used to define multivariate normal distributions:

Definition 3.21. A probability measure ν : Bd −→ [0, 1], d ∈ N, is called a d-
dimensional Gaussian or normal distribution if, and only if, A ◦ ν ∈ N1 for each linear
map A : Rd −→ R. The set of all d-dimensional normal distributions is denoted by
Nd. If (Ω,A, P ) is a probability space and X : Ω −→ Rd a random variable such that
PX ∈ Nd, then one calls X a multivariate normal or a normally distributed random
vector.

Remark 3.22. A probability measure ν : Bd −→ [0, 1], is a normal distribution if,
and only if, for each line L through the origin, the orthogonal projection π : Rd −→ L
transforms ν into a (possibly degenerate) normal distribution on L.

Definition and Remark 3.23. If µ is a probability measure measure on Bd, d ∈ N,
then

µ̂ : Rd −→ C, µ̂(x) :=

∫

Rd

ei 〈x,y〉 dµ(y) , (3.53)

is called the Fourier transform of µ, where 〈·, ·〉 denotes the Euclidean inner product on
Rd. The map µ 7→ µ̂ is one-to-one, i.e. µ is uniquely determined by its Fourier transform
(see, e.g., [Bau02, Th. 23.4]). If (Ω,A, P ) is a probability space, and X : Ω −→ Rd is a
random vector, then

φX : Rd −→ C, φX(x) := P̂X(x) = E
(
ei 〈x,X〉) , (3.54)

is called the characteristic function of X.

Theorem 3.24. A probability measure ν : Bd −→ [0, 1] is in Nd, d ∈ N, if, and only
if, there exist a vector α ∈ Rd and a symmetric positive semidefinite real d × d matrix
Σ such that its Fourier transform is given by

ν̂ : Rd −→ C, ν̂(x) = ei 〈x,α〉−
1
2
〈x,Σx〉. (3.55)

Moreover, ν is uniquely determined by α and Σ.

Proof. See, e.g., [Bau02, Th. 30.2]). �

Definition and Remark 3.25. If d ∈ N, α ∈ Rd, Σ is a symmetric positive semidefinite
real d× d matrix, and ν ∈ Nd is such that its Fourier transform is given by (3.55), then
one writes

N(α,Σ) := να,Σ := ν. (3.56)
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One calls N(0, Id) the d-variate standard normal distribution. If (Ω,A, P ) is a proba-
bility space and X : Ω −→ Rd a random vector such that PX = N(α,Σ), then one says
X is N(α,Σ)-distributed. For N(α,Σ)-distributed X, one checks that each component
Xi, i = 1, . . . , d, is normally distributed with E(Xi) = αi. So one defines

E(X) :=
(
E(X1), . . . , E(Xd)

)
= α (3.57)

and calls it the expectation vector of X. Moreover, one verifies that

σij := Cov(Xi, Xj) (3.58)

are precisely the entries of Σ, which justifies calling Σ the covariance matrix of X.

Proposition 3.26. If d ∈ N, α ∈ Rd, Σ is a symmetric positive semidefinite real
d× d matrix, then N(α,Σ) has a density with respect to λd if, and only if, Σ is positive
definite, i.e. if, and only if, Σ is invertible. In the latter case, the density is given by

gα,Σ : Rd −→ R+, gα,Σ(x) :=
1

√

(2π)d detΣ
e−

1
2
〈x−α,Σ−1(x−α)〉. (3.59)

Proof. See, e.g., [Bau02, Th. 30.4]). �

Lemma 3.27. Let (Ω,A, P ) be a probability space. If d ∈ N, α ∈ Rd, Σ is a symmetric
positive semidefinite real d × d matrix, the random vector Z : Ω −→ Rd is N(α,Σ)-
distributed, β ∈ Rk, k ∈ N, and A : Rd −→ Rk is any real k × d matrix, then

X : Ω −→ Rk, X := β + AZ, (3.60)

is N(β + Aα,AΣAt)-distributed.

Proof. Exercise. �

Remark 3.28. In view of Lem. 3.27, to simulate N(α,Σ)-distributed random vectors
X, it suffices to start with a sequence z1, z2, . . . of values representing the output of
i.i.d. copies of an N(0, 1)-distributed random variable, letting Zi := (z(i−1)d+1, . . . , zid),
i ∈ N, one obtains a sequences of values representing the output of i.i.d. copies of an
N(0, Id)-distributed random vector Z, such that Xi := α+AZi represent the output of
i.i.d. copies of X, provided Σ = AAt.

—

According to Rem. 3.28, we have reduced the problem of simulating multivariate normals
to the problem of decomposing a symmetric positive semidefinite real matrix Σ in the
form Σ = AAt. This can actually always be accomplished such that A is lower triangular,
which is desirable, as it allows efficient matrix multiplications Xi = α + AZi.

Definition 3.29. Let Σ be a symmetric positive semidefinite real d× d matrix, d ∈ N.
A decomposition

Σ = AAt (3.61)

is called a Cholesky decomposition of Σ if, and only if, A is a left or lower triangular
matrix. While useful in our context, this definition is slightly nonstandard, as the name
Cholesky decomposition is often restricted to the case where Σ is positive definite.
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Theorem 3.30. Let Σ be a symmetric positive semidefinite real d × d matrix, d ∈ N.
Then there exists a Cholesky decomposition of Σ in the sense of Def. 3.61. Moreover, A
can be chosen such that all its diagonal entries are nonnegative. If Σ is positive definite,
then the diagonal entries of A can be chosen to be all positive and this determines A
uniquely.

Proof. For the positive definite case see, e.g., [Pla10, Th. 4.24]. The general (positive
semidefinite) case can be deduced from the positive definite case as follows: If Σ is
symmetric positive semidefinite, then each Σn := Σ + 1

n
Id, n ∈ N, is positive definite:

xtΣnx = xtΣx+
xtx

n
> 0 for each 0 6= x ∈ Rd. (3.62)

Thus, for each n ∈ N, there exists a lower triangular matrix An with positive diagonal
entries such that Σn = AnA

t
n.

On the other hand, Σn converges to Σ with respect to each norm on Rd2 (since all norms
on Rd2 are equivalent). In particular, limn→∞ ‖Σn − Σ‖2 = 0, where ‖A‖2 denotes the
spectral norm of the matrix A. Recall ‖A‖2 = r(A) for each symmetric A, where

r(A) := max
{
|λ| : λ ∈ C and λ is eigenvalue of A

}
(3.63)

is the spectral radius of A (if A is symmetric, then all eigenvalues of A are real). Thus,

‖An‖22 = r(Σn) = ‖Σn‖2, (3.64)

such that limn→∞ ‖Σn − Σ‖2 = 0 implies that the set K := {An : n ∈ N} is bounded
with respect to ‖ · ‖2. Thus, the closure of K in Rd2 is compact, which implies (An)n∈N
has a convergent subsequence (Ank

)k∈N, converging to some matrix A ∈ Rd2 . As this
convergence is with respect to the norm topology on Rd2 , each entry of the Ank

must
converge (in R) to the respective entry of A. In particular, A is lower triangular with
all nonnegative diagonal entries. It only remains to show AAt = Σ. However,

Σ = lim
k→∞

Σnk
= lim

k→∞
Ank

At
nk

= AAt, (3.65)

which establishes the case. �

Example 3.31. The decomposition

(
0 0

sin x cos x

)(
0 sin x
0 cos x

)

=

(
0 0
0 1

)

for each x ∈ R (3.66)

shows a symmetric positive semidefinite matrix (which is not positive definite) can have
uncountably many different Cholesky decompositions.

Theorem 3.32. Let Σ be a symmetric positive semidefinite real d × d matrix, d ∈ N.
Define the index set

I :=
{
(i, j) ∈ {1, . . . , d}2 : j ≤ i

}
. (3.67)
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Then a matrix A = (Aij) providing a Cholesky decomposition Σ = AAt of Σ = (σij) is
obtained via the following algorithm, defined recursively over I, using the order (1, 1) <
(2, 1) < · · · < (d, 1) < (2, 2) < · · · < (d, 2) < · · · < (d, d) (which corresponds to
traversing the lower half of Σ by columns from left to right):

A11 :=
√
σ11. (3.68a)

For (i, j) ∈ I \ {(1, 1)}:

Aij :=







(

σij −
∑j−1

k=1AikAjk

)

/Ajj for i > j and Ajj 6= 0,

0 for i > j and Ajj = 0,
√

σii −
∑i−1

k=1A
2
ik for i = j.

(3.68b)

Proof. A lower triangular d × d matrix A provides a Cholesky decomposition of Σ if,
and only if,

AAt =








A11

A21 A22
...

...
. . .

Ad1 Ad2 . . . Add















A11 A21 . . . Ad1

A22 . . . Ad2

. . .
...
Add








= Σ, (3.69)

i.e. if, and only if, the d(d + 1)/2 lower half entries of A constitute a solution to the
following (nonlinear) system of d(d+ 1)/2 equations:

j
∑

k=1

AikAjk = σij , (i, j) ∈ I. (3.70a)

Using the order on I introduced in the statement of the theorem, (3.70a) takes the form

A2
11 = σ11,

A21A11 = σ21,

...

Ad1A11 = σd1,

A2
21 + A2

22 = σ22,

A31A21 + A32A22 = σ32,

...

A2
d1 + · · ·+ A2

dd = σdd.

(3.70b)

From Th. 3.30, we know (3.70) must have at least one solution with Ajj ≥ 0 for each
j ∈ {1, . . . , d}. In particular, σjj ≥ 0 for each j ∈ {1, . . . , d} (this is also immediate
from Σ being positive semidefinite, since σjj = etj Σej, where ej denotes the jth standard
unit vector of Rd). We need to show that (3.68) yields a solution to (3.70). The proof
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is carried out by induction on d. For d = 1, we have σ11 ≥ 0 and A11 =
√
σ11, i.e. there

is nothing to prove. Now let d > 1. If σ11 > 0, then

A11 =
√
σ11, A21 = σ21/A11, . . . , Ad1 = σd1/A11 (3.71a)

is the unique solution to the first d equations of (3.70b) satisfying A11 > 0, and this
solution is provided by (3.68). If σ11 = 0, then σ21 = · · · = σd1 = 0: Otherwise, let
s := (σ21 . . . σd1)

t ∈ Rd−1 \ {0}, α ∈ R, and note

(α, st)

(
0 st

s Σd−1

)(
α
s

)

= (α, st)

(
sts

αs+ Σd−1s

)

= 2α‖s‖2 + stΣd−1s < 0

for α < −stΣd−1s/(2‖s‖2), in contradiction to Σ being positive semidefinite. Thus,

A11 = A21 = · · · = Ad1 = 0 (3.71b)

is a particular solution to the first d equations of (3.70b), and this solution is provided
by (3.68). We will now denote the solution to (3.70) given by Th. 3.30 by B11, . . . , Bdd

to distinguish it from the Aij constructed via (3.68).

In each case, A11, . . . , Ad1 are given by (3.71), and, for (i, j) ∈ I with i, j ≥ 2, we define

τij := σij − Ai1Aj1 for each (i, j) ∈ J :=
{
(i, j) ∈ I : i, j ≥ 2

}
. (3.72)

To be able to proceed by induction, we show that the symmetric (d−1)× (d−1) matrix

T :=






τ22 . . . τd2
...

. . .
...

τd2 . . . τdd




 (3.73)

is positive semidefinite. If σ11 = 0, then (3.71b) implies τij = σij for each (i, j) ∈ J and
T is positive semidefinite, as Σ being positive semidefinite implies

(
x2 . . . xd

)
T






x2
...
xd




 =

(
0 x2 . . . xd

)
Σ








0
x2
...
xd








≥ 0 (3.74)

for each (x2, . . . , xd) ∈ Rd−1. If σ11 > 0, then (3.71a) holds as well as B11 = A11, . . . ,
Bd1 = Ad1. Thus, (3.72) implies

τij := σij − Ai1Aj1 = σij − Bi1Bj1 for each (i, j) ∈ J. (3.75)

Then (3.70) with A replaced by B together with (3.75) implies

j
∑

k=2

BikBjk = τij for each (i, j) ∈ J (3.76)
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or, written in matrix form,

BBt =






B22
...

. . .

Bd2 . . . Bdd











B22 . . . Bd2

. . .
...
Bdd




 =






τ22 . . . τd2
...

. . .
...

τd2 . . . τdd




 = T, (3.77)

which, once again, establishes T to be positive semidefinite (cf. [Koe03, Sec. 6.2.3]).

By induction, we now know the algorithm of (3.68) yields a (possibly different from
(3.77) for σ11 > 0) decomposition of T :

CCt =






C22
...

. . .

Cd2 . . . Cdd











C22 . . . Cd2

. . .
...
Cdd




 =






τ22 . . . τd2
...

. . .
...

τd2 . . . τdd




 = T (3.78)

or
j
∑

k=2

CikCjk = τij = σij − Ai1Aj1 for each (i, j) ∈ J, (3.79)

where

C22 :=
√
τ22 =

{√
σ22 for σ11 = 0,

B22 for σ11 > 0,
(3.80a)

and, for (i, j) ∈ J \ {(2, 2)},

Cij :=







(

τij −
∑j−1

k=2CikCjk

)

/Cjj for i > j and Cjj 6= 0,

0 for i > j and Cjj = 0,
√

τii −
∑i−1

k=2C
2
ik for i = j.

(3.80b)

Substituting τij = σij − Ai1Aj1 from (3.72) into (3.80) and comparing with (3.68), an
induction over J with respect to the order introduced in the statement of the theorem
shows Aij = Cij for each (i, j) ∈ J . In particular, since all Cij are well-defined by
induction, all Aij are well-defined by (3.68) (i.e. all occurring square roots exist as
real numbers). It also follows that {Aij : (i, j) ∈ I} is a solution to (3.70): The first
d equations are satisfied according to (3.71); the remaining (d − 1) d/2 equations are
satisfied according to (3.79) combined with Cij = Aij. This concludes the proof that
(3.68) furnishes a solution to (3.70). �

Remark 3.33. Even though, in exact arithmetic, the algorithm (3.68) does work for
every symmetric positive semidefinite real d × d matrix Σ, it is sensitive to round-off
errors: If Σ is not positive definite, then some Ajj must be 0. However, due to round-off
errors, it might be very small, but nonzero, resulting in division by very small numbers
for the subsequent Aij. Due to this circumstance, if it is known a priori that Σ is not
positive definite, one might want to avoid applying (3.68) directly to Σ. If Σ is not
positive definite, then it has rank k < d and there exists a symmetric positive definite
k × k matrix Σ̃ and a d× k matrix B such that

Σ = BΣ̃Bt : (3.81)
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From Linear Algebra, we know there exist d×d matrices Σ1 and B1, B1 invertible, such

that Σ = B1Σ1B
t
1, where one can even obtain Σ1 =

(
Idk 0
0 0

)

(see [Koe03, Secs. 3.5.6,

6.2.3]), and one can use the first k columns of B1 for B. Of course, one should not expect
B to be numerically easier to obtain than a Cholesky decomposition of Σ. However,
if a decomposition of the form (3.81) is somehow known a priori (not necessarily with
Σ̃ = Idk, just with Σ̃ positive definite), then it might make sense to apply (3.68) to Σ̃,
yielding a Cholesky decomposition Σ̃ = AAt. Then, using Lem. 3.27, one first simulates
an N(0, Id)-distributed Z, letting X := α+BAZ. Since Σ = BAAtBt, Lem. 3.27 shows
X is N(α,Σ)-distributed. However, note than one now also pays an additional matrix
multiplication in X := α + BAZ.

4 Simulating Stochastic Processes

As already seen in the motivating Sections 1.2 and 1.3, quantities relevant to Mathe-
matical Finance such as the stock price often come in the form of stochastic processes.
It is, thus, important to have tools to simulate the paths of such processes. We begin
by recalling the precise definitions of stochastic process and path.

Definition 4.1. Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable space, and
I and index set. A stochastic process is simply any family (Xt)t∈I of random variables
Xt : Ω −→ Ω′ (we will mostly be interested in the cases I = R+

0 and I = [0, T ], T > 0,
interpreting t as time; for I = R+

0 , we usually write (Xt)t≥0 instead of (Xt)t∈R+
0
). For

each ω ∈ Ω, the function Pω : I −→ Ω′, Pω(t) := Xt(ω) is called a path of the process.

—

Given a stochastic process (Xt)t∈I , we are now interested in simulating sample paths
t 7→ Xt(ω). Usually, for I ⊆ R, this means specifying t0 < t1 < · · · < tk and computing
a finite sequence (x0, . . . , xk) ∈ (Ω′)k+1, representing (Xt0(ω), . . . , Xtk(ω)).

Definition 4.2. Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable space, and
(Xt)t∈I a corresponding stochastic process. Given a finite ∅ 6= J ⊆ I, consider the
product map

XJ :=
⊗

t∈J
Xt : Ω −→ (Ω′)J , XJ(ω) :=

(
Xt(ω)

)

t∈J . (4.1)

(a) Then the joint distribution PJ of the (Xt)t∈J is defined as the push-forward measure
PJ := PXJ

on (Ω′)J .

(b) A method for simulating XJ with the correct distribution PJ is called exact on J
with respect to (Xt)t∈I .
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4.1 Brownian Motion

4.1.1 Definition and Basic Properties

Some of the most important stochastic processes in the context of mathematical finance
applications are those referred to as Brownian motions, and we already encountered the
standard Brownian motion in Sections 1.2 and 1.3. Here is the definition:

Definition 4.3. Let (Ω,A, P ) be a probability space, d ∈ N. A stochastic process
(Wt)t≥0, Wt : Ω −→ Rd is called a d-dimensional Brownian motion (sometimes also
referred to as a Wiener process, which justifies the common notation Wt) if, and only
if, the following conditions (i)–(iii) hold

(i) For almost every ω ∈ Ω, the path t 7→ Wt(ω) is continuous.

(ii) Each family of increments
(
Wt0 ,Wt1 −Wt0 , . . . ,Wtk −Wtk−1

)
with 0 ≤ t0 < t1 <

· · · < tk is independent.

(iii) For each 0 ≤ s < t, the increment Wt −Ws is N
(
0, (t− s) Id

)
-distributed.

A Brownian motion is a standard Brownian motion if, and only if,

W0 = 0 almost surely. (4.2)

If α ∈ Rd and Σ is a symmetric positive semidefinite real d×dmatrix, then the stochastic
process (Wt)t≥0 is said to be a Brownian motion with drift α and covariance matrix Σ
if, and only if, it satisfies (i)-(iii) above with (iii) replaced by

(iii)′ For each 0 ≤ s < t, the increment Wt −Ws is N
(
(t− s)α, (t− s)Σ

)
-distributed.

A Brownian motion on [0, T ], T > 0, is a Brownian motion on R+
0 , restricted to [0, T ].

Lemma 4.4. Let (Ω,A, P ) be a probability space, d ∈ N. If (Wt)t≥0 is a d-dimensional
Brownian motion satisfying Def. 4.3(i)-(iii), α ∈ Rd, Σ is a symmetric positive semidef-
inite real d× d matrix, and Σ = AAt, then (Xt)t≥0 with

∀
t∈R+

0

Xt := αt+ AWt (4.3)

is a d-dimensional Brownian motion with drift α and covariance matrix Σ.

Proof. If ω ∈ Ω and the path t 7→ Wt(ω) is continuous, then t 7→ Xt(ω) = αt+AWt(ω)
is also continuous, showing Def. 4.3(i) holds. Given 0 ≤ t0 < t1 < · · · < tk, the
independence of

(
Xt0 , Xt1 − Xt0 , . . . , Xtk − Xtk−1

)
follows from the independence of

(
Wt0 ,Wt1 − Wt0 , . . . ,Wtk − Wtk−1

)
via Th. B.10, i.e. Def. 4.3(ii) holds. Finally, the

validity of Def. 4.3(iii)′ is an immediate consequence of Lem. 3.27. �
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Remark 4.5. The stochastic process given by (4.3) is a solution to the stochastic
differential equation (SDE)

dXt = α dt + A dWt . (4.4)

This allows to generalize the notion of Brownian motion to the case of a time-dependent
drift α(t) and a time-dependent covariance matrix Σ(t): A Brownian motion with drift
α(t) and covariance matrix Σ(t) = A(t)A(t)t is a solution to the SDE

dXt = α(t) dt + A(t) dWt. (4.5)

One can show that such solutions have almost surely continuous paths, independent
increments in the sense of Def. 4.3(ii) and, for each 0 ≤ s < t, the increment Xt −Xs is
N
( ∫ t

s
α(u) du ,

∫ t

s
Σ(u) du

)
-distributed.

Remark 4.6. If (Xt)t≥0 is a d-dimensional standard Brownian motion (X0 = 0 a.s.)
with drift α and covariance matrix Σ, then combining X0 = 0 with Def. 4.3(iii)′ implies
Xt is N

(
tα, tΣ

)
-distributed for each t ≥ 0.

Remark 4.7. Let (Xt)t≥0 be a 1-dimensional standard Brownian motion with drift
α ∈ R and variance σ2. Given 0 ≤ t0 < t1 < · · · < tk, we are interested in the joint
distribution of (Xti)

k
i=0. Since (Xt0 , . . . , Xtk) is a linear transformation of

(
Xt0 , Xt1 −

Xt0 , . . . , Xtk −Xtk−1

)
,








Xt0

Xt1
...
Xtk








=








1
1 1
...

. . .

1 . . . 1















Xt0

Xt1 −Xt0
...

Xtk −Xtk−1







,

we already know the joint distribution is multivariate normal by Def. 4.3(iii)′ and Lem.
3.27. The expectation vector is α(t0, . . . , tk). Moreover, if 0 ≤ s < t, then

Cov(Xs, Xt) = E(XsXt)− E(Xs)E(Xt) = E
(
(Xt −Xs)Xs +X2

s

)
− α2st

= E
(
(Xt −Xs)Xs

)
− α2s(t− s) + E(X2

s )− α2s2

= Cov(Xs, Xt −Xs) + Cov(Xs, Xs)

= Cov(Xs, Xs) = σ2s = σ2 min{s, t}. (4.6)

Thus, the (k + 1)× (k + 1) covariance matrix of the joint distribution is

Σ = (σij)(i,j)∈{1,...,k+1}2 , σij = σ2 min{ti−1, tj−1}. (4.7)

Its Cholesky decomposition is AAt = Σ with

A = (Aij) = σ








√
t0 0 . . . 0√
t0

√
t1 − t0 . . . 0

...
...

. . .
...√

t0
√
t1 − t0 . . .

√
tk − tk−1







, (4.8)
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i.e.

Aij =







σ
√
t0 for j = 1,

σ
√
tj−1 − tj−2 for i ≥ j > 1,

0 otherwise.

(4.9)

Indeed, for each i ≥ j ≥ 1:

j
∑

µ=1

AiµAjµ =

{

σ2 t0 for j = 1,

σ2 t0 + σ2
∑j

µ=2(tµ−1 − tµ−2) = σ2 tj−1 for j > 1.
(4.10)

4.1.2 1-Dimensional Brownian Motion via Random Walk

The first goal in the present section is to simulate a 1-dimensional Brownian motion
(Wt)t≥0 with initial value W0 ≡ w0 ∈ R. Given 0 = t0 < t1 < · · · < tk, the idea of
the random walk construction is to start at w0 and to randomly walk from w0 to some
w1, representing the value of Wt1 , and so on, until arriving at some wk, representing the
value ofWtk . This random walk should be constructed such that the resulting method is
exact on {t0, . . . , tk} in the sense of Def. 4.2(b). While simulating a complicated process
exactly may be difficult or impossible, Brownian motions are still sufficiently simple,
such that an exact simulation is easily achieved, using the properties of the increments:

Start with a sequence z1, z2, . . . of values representing the output of i.i.d. copies of an
N(0, 1)-distributed random variable (see Sec. 3.4.1 above for methods to generate the
zi). Define (w0, . . . , wk) via the following recursion:

w0 : given initial value, (4.11a)

wi := wi−1 + zi
√

ti − ti−1 for i = 1, . . . , k. (4.11b)

The same construction actually still works to simulate a Brownian motion (Xt)t≥0 with
drift α and variance σ2. The recursion then becomes

x0 : given initial value, (4.12a)

xi := xi−1 + α(ti − ti−1) + zi σ
√

ti − ti−1 for i = 1, . . . , k, (4.12b)

and for time-dependent α and σ:

x0 : given initial value, (4.13a)

xi := xi−1 +

∫ ti

ti−1

α(u) du + zi

√
∫ ti

ti−1

σ2(u) du for i = 1, . . . , k. (4.13b)

Remark 4.8. If Z1, Z2, . . . are i.i.d., N(0, 1)-distributed random variables, then, letting

X0 :≡ x0, (4.14a)

Xi := Xi−1 +

∫ ti

ti−1

α(u) du + Zi

√
∫ ti

ti−1

σ2(u) du for i = 1, . . . , k, (4.14b)
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the Xi −Xi−1 are N
( ∫ ti

ti−1
α(u) du ,

∫ ti
ti−1

σ2(u) du
)
-distributed and independent by Th.

B.10, verifying the exactness on {t0, . . . , tk} of the random walk construction.

—

Depending on α and σ, the integrals in (4.13b) might not be easily computable. So,
in practise, one might want to replace them via quadrature formulas, in the simplest
case by approximating α and σ as constantly equal to α(ti−1) and σ(ti−1) on [ti−1, ti],
respectively. This leads to replacing (4.13b) with

xi := xi−1 + α(ti−1)(ti−1 − ti) + zi σ(ti−1)
√

ti−1 − ti for i = 1, . . . , k. (4.15)

However, the quadrature now introduces a so-called discretization error and, in general,
the simulation is no longer exact (i.e. the joint distribution of (Xt0 , . . . , Xtk) is no longer
simulated exactly).

4.1.3 1-Dimensional Brownian Motion via Multivariate Normals

One can also base simulations of 1-dimensional Brownian motions on Rem. 4.7. Not
surprisingly, we will essentially recover the random walk construction of the previous
section. However, it is still instructive to see how this works. As before, let 0 = t0 <
t1 < · · · < tk be given.

For simplicity, as in Rem. 4.7, let us consider a standard Brownian motion with constant
α, σ. From Rem. 4.7, we know the joint distribution of (Xt1 , . . . , Xtk) is N(β,Σ) with
expectation β = α(t1, . . . , tk) and covariance matrix Σ and Cholesky factor A given by
(4.7) and (4.8), respectively (now starting at t1 instead of t0).

Thus, with z1, z2, . . . as in Sec. 4.1.2, (z1, . . . , zk) simulates an N(0, Id)-distributed ran-
dom vector, and, according to Rem. 3.28,






x1
...
xk




 := α






t1
...
tk




+ σ








√
t1 0 . . . 0√
t1

√
t2 − t1 . . . 0

...
...

. . .
...√

t1
√
t2 − t1 . . .

√
tk − tk−1













z1
...
zk




 (4.16)

simulates an N(β,Σ)-distributed random vector, i.e. it exactly simulates the desired
joint distribution. Recalling (4.12b), namely

xi := xi−1 + α(ti − ti−1) + zi σ
√

ti − ti−1, for i = 1, . . . , k, (4.17)

we see (4.16) and (4.12b) are equivalent. However, it is actually not advisable to compute
(x1, . . . , xk) via the above matrix multiplication – the recursion is much more efficient.

4.1.4 1-Dimensional Brownian Motion via Brownian Bridge

In the present section, we consider a standard Brownian motion (Wt)t≥0 (i.e. W0 ≡ 0),
in general, with drift α ∈ R and variance σ2 > 0 (except for the formulation of the
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Markov property in Th. 4.10, which can be stated, whithout additional difficulty, for
d-dimensional Brownian motions, both standard and nonstandard).

We still consider 0 = t0 < t1 < · · · < tk. The random walk construction of Sec. 4.1.2
obtains the w1, . . . , wk, simulating (Wt1 , . . . ,Wtk), from left to right, i.e. from 1 through
k in increasing order. However, it is actually possible to obtain the wi using an arbitrary
order on {1, . . . , k}, and it is sometimes desirable to have this flexibility at hand.

Simulating the random variable Wu of a Brownian motion conditional on the distri-
butions of Ws and Wt with s < u < t is referred to as a Brownian bridge. This
kind of sampling is obviously required to obtain w1, . . . , wk for a nonincreasing order
on {1, . . . , k}, which is therefore called a Brownian bridge construction. The condi-
tional sampling is feasible for Brownian motions due to the following theorem regarding
conditional normal distributions:

Theorem 4.9 (Conditioning Formula for Multivariate Normals). Let (Ω,A, P ) be a
probability space, d, k ∈ N, k < d. Suppose the random vector Z : Ω −→ Rd is N(α,Σ)-
distributed, α ∈ Rd, Σ a symmetric positive semidefinite real d × d matrix. Partition
Z = (Z[1], Z[2]) into an Rk-valued map Z[1] := (Z1, . . . , Zk) and an Rd−k-valued map
Z[2] := (Zk+1, . . . , Zd). In the same way, also partition

α =

(
α[1]

α[2]

)

, and Σ =

(
Σ[11] Σ[12]

Σ[21] Σ[22]

)

, (4.18)

i.e., in particular, α[1] ∈ Rk, α[2] ∈ Rd−k, Σ[11] is a k × k matrix, Σ[12] is a k × (d − k)
matrix, Σ[21] is a (d− k)× k matrix, and Σ[22] is a (d− k)× (d− k) matrix.

Then, for each x ∈ Rd−k, the distribution of Z[1] under the condition {Z[2] = x} is

N
(

α[1] + Σ[12]Σ
−1
[22](x− α[2]), Σ[11] − Σ[12]Σ

−1
[22]Σ[21]

)

, (4.19)

where, in general, Σ−1
[22] denotes the generalized inverse of Σ[22] as defined in [Eat83, p.

87] (it coincides with the inverse for invertible Σ[22]).

Proof. See [Eat83, Prop. 3.13]. �

And we need one more property of Brownian motions, namely the so-called Markov
property (it will not be formulated in its most general form, but merely in the form
needed here):

Theorem 4.10 (Markov Property of Brownian Motions). Let α ∈ Rd, d ∈ N, Σ a sym-
metric positive semidefinite real d× d matrix. Let (Xt)t≥0 be a d-dimensional Brownian
motion with drift α and covariance matrix Σ, and 0 ≤ t1 < · · · < tk, k ∈ N, k ≥ 2,
s ∈ [ti−1, ti] for some i ∈ {2, . . . , k}. Then, for each (x1, . . . , xk) ∈ (Rd)k, the following
identity of conditional distributions holds:

(
Xs|Xt1 = x1, . . . , Xtk = xk

)
=
(
Xs|Xti−1

= xi−1, Xti = xi
)
. (4.20)

In other words, conditioning Xs on all times t1, . . . , tk is the same as conditioning Xs

merely on the two times immediately before and after s.
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Proof. For example, the statement follows from combining [Bau02, Th. 40.6(3)] with
[Bau02, Cor. 42.4]. �

In the nth step of a Brownian bridge construction, we need to obtain wj, representing
Wtj . If tj is bigger than all ti previously dealt with, then wj is obtained from the wi

belonging to the largest previous ti via the random walk construction of Sec. 4.1.2. If, on
the other hand, tj falls between previously considered ti, then (4.20) says that we only
need to determine

(
Wtj |WtM = wM , WtN = wN

)
, whereM is the largest index such that

tM < tj and wM has already been constructed, whereas N is the smallest index such
that tj < tN and wN has already been constructed. Letting u := tM < s := tj < t := tN ,
we use the following proposition, which is derived from Th. 4.9.

Proposition 4.11. If (Wt)t≥0 is a 1-dimensional standard Brownian motion with drift
α ∈ R and variance σ2 > 0, then, for each 0 ≤ u < s < t and x, y ∈ R, the conditional
distribution

(
Ws|Wu = x, Wt = y

)
is independent of the drift α and given by

N

(
(t− s)x+ (s− u)y

t− u
,
σ2(s− u)(t− s)

t− u

)

. (4.21)

Proof. According to Rem. 4.7, the (unconditional) distribution of (Wu,Ws,Wt) is

N



α





u
s
t



 , σ2





u u u
u s s
u s t







 . (4.22)

To apply Th. 4.9, we permute the order of the entries: The distribution of (Ws,Wu,Wt)
is

N



α





s
u
t



 , σ2





s u s
u u u
s u t







 . (4.23)

In terms of the notation from (4.18), we have

α[1] = α s, α[2] =

(
αu
α t

)

, Σ[11] = σ2 s, Σ[12] = σ2 (u, s), (4.24a)

Σ[21] = σ2

(
u
s

)

, Σ[22] = σ2

(
u u
u t

)

. (4.24b)

For u > 0, Σ[22] is invertible, where

Σ−1
[22] =

1

σ2 (ut− u2)

(
t −u
−u u

)

=
1

σ2 (t− u)

(
t/u −1
−1 1

)

. (4.24c)

For u = 0, Σ[22] = σ2

(
0 0
0 t

)

is not invertible and the generalized inverse according to

[Eat83, p. 87] is

Σ−1
[22] =

1

σ2 t

(
0 0
0 1

)

. (4.24d)



4 SIMULATING STOCHASTIC PROCESSES 54

Thus, according to Th. 4.9, the expectation value of the conditional distribution is, for
u > 0,

α[1] + Σ[12]Σ
−1
[22]

(
x− αu
y − α t

)

= αs+
(u, s)

t− u

(
tx/u− tα− y + αt
−x+ αu+ y − αt

)

= αs+
tx− uy − sx+ αsu+ sy − αst

t− u
=

(t− s)x+ (s− u)y

t− u
, (4.25a)

as claimed in (4.21); and, for u = 0, taking into account x = 0 for our standard Brownian
motion,

α[1] + Σ[12]Σ
−1
[22]

(
0

y − α t

)

= αs+
(0, s)

t

(
0

y − αt

)

=
αst+ sy − αst

t
=
sy

t
, (4.25b)

again as claimed in (4.21). According to Th. 4.9, the variance of the conditional distri-
bution, divided by σ2, is, for u > 0,

σ−2
(

Σ[11] − Σ[12]Σ
−1
[22]Σ[21]

)

= s− (u, s)

t− u

(
t− s
−u+ s

)

=
st− su− ut+ su+ su− s2

t− u

=
(s− u)(t− s)

t− u
, (4.26a)

and for u = 0,

σ−2
(

Σ[11] − Σ[12]Σ
−1
[22]Σ[21]

)

= s− (0, s)

t

(
0
s

)

=
s(t− s)

t
, (4.26b)

completing the proof. �

4.1.5 Simulating d-Dimensional Brownian Motions

The techniques of random walk and Brownian bridge, used to simulate 1-dimensional
Brownian motions, can also be applied to simulate d-dimensional Brownian motions.
If the d-dimensional Brownian motion has covariance matrix Σ, then a decomposition
Σ = AAt is needed (see Th. 3.32 and Rem. 3.33 regarding how to obtain such a decom-
position).

In the most simple case, i.e. α = 0 (no drift) and Σ = Id, the random walk construction
(4.11) translates directly to the d-dimensional case, with zi and wi now being vectors
in Rd (each zi having to be filled with d random numbers, representing i.i.d. N(0, 1)-
distributed random variables). This is equivalent to independently simulating each
component of the d-dimensional Brownian motion using the 1-dimensional (4.11).

The generalization of (4.12) to d dimensions is

x0 : given initial vector, (4.27a)

xi := xi−1 + α(ti − ti−1) +
√

ti − ti−1Azi, for i = 1, . . . , k, (4.27b)
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with zi, xi ∈ Rd, which is computationally more expensive, as it involves a matrix
multiplication in each step. The computational expenditure becomes even bigger if α
or, especially, if Σ depends on t: Here, (4.13) generalizes to

x0 : given initial vector, (4.28a)

xi := xi−1 +

∫ ti

ti−1

α(u) du + A(ti−1, ti) zi, for i = 1, . . . , k, (4.28b)

where A(ti−1, ti)A(ti−1, ti)
t =

∫ ti

ti−1

Σ(u) du , (4.28c)

i.e., in addition to the matrix multiplication in (4.28b), a matrix factorization according
to (4.28c) needs to be done in each step (not to mention performing the integrals).

For a d-dimensional standard Brownian motion (Wt)t≥0 without drift and Σ = Id, the
Brownian bridge construction can simply be applied independently to each component
ofWt (as was the case for the corresponding random walk construction described above).
To obtain a d-dimensional Brownian motion (Xt)t≥0 with drift vector α and covariance
matrix Σ via a Brownian bridge construction, one still applies the construction to (Wt)t≥0

and obtains Xt by the usual representation Xt = α t+ AWt with Σ = AAt.

4.1.6 Simulating Geometric Brownian Motions

Another important type of stochastic process occurring in models of mathematical fi-
nance is the so-called geometric Brownian motion.

Definition 4.12. Following [Gla04, Sec. 3.2.1], we define an R+-valued stochastic pro-
cess (St)t≥0 to be a 1-dimensional geometric Brownian motion with drift α ∈ R and
variance σ2, σ > 0, if, and only if, (St)t≥0 is a solution to the SDE

dSt

St

= α dt + σ dWt , (4.29)

where (Wt)t≥0 is a 1-dimensional standard Brownian motion with α = 0 and σ = 1.

Caveat 4.13. There is a drift shift between the drift of a geometric Brownian motion
and its corresponding Brownian motion: Let (St)t≥0 denote a 1-dimensional geometric
Brownian motion with drift α ∈ R and variance σ2, σ > 0. Letting

∀
t∈R+

0

Xt := lnSt, (4.30)

Itô’s formula (C.3) yields

dXt =

(
αSt

St

− σ2

2S2
t

S2
t

)

dt +
σSt

St

dWt =

(

α− σ2

2

)

dt + σ dWt , (4.31)

showing (Xt)t≥0 constitutes a 1-dimensional Brownian motion with drift α − 1
2
σ2 and

variance σ2. It is an exercise to show the converse, namely that (Xt)t≥0 defined by (4.30)
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being a 1-dimensional Brownian motion with drift α− 1
2
σ2 and variance σ2 implies (St)t≥0

to be a 1-dimensional geometric Brownian motion with drift α ∈ R and variance σ2.
Using obvious notation, we can summarize the above as

(St)t≥0 is GBM(α, σ2) ⇔ (Xt)t≥0 is BM(α− σ2/2, σ2). (4.32)

Remark 4.14. The relation (4.32) allows to exploit methods for simulating Brownian
motions to also simulate geometric Brownian motions: For example, if (Xt)t≥0 is a
1-dimensional Brownian motion with drift α− 1

2
σ2 and deviation σ, then, for 0 ≤ s < t,

Xt −Xs =

(

α− 1

2
σ2

)

(t− s) + Zσ
√
t− s, (4.33)

where the random variable Z is N(0, 1)-distributed. From Caveat 4.13, we know St :=
exp(Xt) defines a 1-dimensional geometric Brownian motion (St)t≥0 with drift α and
variance σ2. Exponentiating (4.33) yields

St = Ss exp

((

α− 1

2
σ2

)

(t− s) + Zσ
√
t− s

)

. (4.34)

Let 0 = t0 < t1 < · · · < tk and let z1, z2, . . . represent the output of i.i.d. copies of an
N(0, 1)-distributed random variable. Together with the independence of the increments,
(4.34) implies the random walk construction

s0 > 0 : given initial value, (4.35a)

si := si−1 exp

((

α− 1

2
σ2

)

(ti − ti−1) + zi σ
√

ti − ti−1

)

for i = 1, . . . , k, (4.35b)

provides an exact simulation on {t0, . . . , tk} in the sense of Def. 4.2(b) for the 1-
dimensional geometric Brownian motion (St)t≥0. Not surprisingly, (4.35) is precisely
the exponentiated form of (4.12), with α replaced by α− 1

2
σ2.

Definition 4.15. Following [Gla04, Sec. 3.2.3], we define an (R+)d-valued stochastic
process (St)t≥0, d ∈ N, to be a d-dimensional geometric Brownian motion with drift
α ∈ Rd and symmetric positive semidefinite real d× d covariance matrix Σ if, and only
if, St = ((St)1, . . . , (St)d) and (St)t≥0 is a solution to the system of SDE

∀
i∈{1,...,d}

d(St)i
(St)i

= αi dt + σi d(Wi)t , (4.36)

where σi > 0, each ((Wi)t)t≥0 is a standard Brownian motion with α̃i = 0, σ̃i = 1, and
such that

∀
i,j∈{1,...,d}

ρij := Cor
(
(Wi)t, (Wj)t

)
=

Cov
(
(Wi)t, (Wj)t

)

√

V
(
(Wi)t

)
√

V
(
(Wj)t

) =
Cov

(
(Wi)t, (Wj)t

)

t
,

(4.37)

Σ =
(
σiσjρij

)
. (4.38)
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Caveat 4.16. In Def. 4.15, calling α the drift and Σ the covariance matrix of the the
d-dimensional geometric Brownian motion (St)t≥0 is not entirely canonical – according
to (4.36), one would have

(
α1(St)1, . . . , αd(St)d

)
as the actual drift vector of St, and it is

an exercise to show that, for constant (deterministic) S0 ∈ Rd, (4.36) and (4.37) imply
the actual covariances are

∀
i,j∈{1,...,d}

Cov
(
(St)i, (St)j

)
= (S0)i(S0)j e

(αi+αj) t(eρijσiσj − 1). (4.39)

Remark 4.17. Similar to the 1-dimensional case, the relation between geometric Brow-
nian motions and Brownian motions allows to obtain simulation methods for geometric
Brownian motions also in the d-dimensional situation. Noting that, in the situation
of Def. 4.15,

(
σ1(W1)t, . . . , σd(Wd)t

)
is a Brownian motion with drift 0 and covariance

matrix Σ, (4.36) can be written as

∀
i∈{1,...,d}

d(St)i
(St)i

= αi dt + Ai dWt , (4.40)

where (Wt)t≥0 denotes a d-dimensional standard Brownian motion with drift 0 and
trivial covariance matrix Id, and Ai is the ith row of A with Σ = AAt. An argument
analogous to the one in Rem. 4.14 yields, for 0 ≤ s < t,

∀
i∈{1,...,d}

(St)i = (Ss)i exp

((

αi −
1

2
σ2
i

)

(t− s) +
√
t− sAi Z

)

= (Ss)i exp

((

αi −
1

2
σ2
i

)

(t− s) +
√
t− s

d∑

j=1

Aij Zj

)

,

where the random vector Z is N(0, Id)-distributed. Once again, let 0 = t0 < t1 <
· · · < tk and let z1, z2, . . . represent the output of i.i.d. copies of an N(0, Id)-distributed
random vector. Together with the independence of the increments, (4.41) implies the
random walk construction

s0 ∈ (R+)d : given initial vector, (4.41a)

(sl)i := (sl−1)i exp

((

αi −
1

2
σ2
i

)

(tl − tl−1) +
√

tl − tl−1

d∑

j=1

Aij (zl)j

)

for i = 1, . . . , d and l = 1, . . . , k, (4.41b)

provides an exact simulation on {t0, . . . , tk} for the d-dimensional geometric Brown-
ian motion (St)t≥0. Note that one obtains (4.41) from (4.27) by exponentiating each
component after replacing αi by αi − 1

2
σ2
i .

4.2 Gaussian Short Rate Models

4.2.1 Short Rates and Bond Pricing

As a slightly more concrete application of simulating stochastic processes to financial
mathematics, let us consider certain stochastic processes modeling so-called short rates.



4 SIMULATING STOCHASTIC PROCESSES 58

In the motivational Sections 1.2 and 1.3, the interest rate (short rate) r was treated as
a deterministic quantity, i.e. it was modeled as an R+

0 -valued function. However, it is
usually more realistic to consider r as a stochastic quantity to be modeled by a stochastic
process (i.e. by a random variable-valued function, each random variable being, in turn,
R+

0 -valued).

If the short rate rt is instantaneously compounded, then an investment deposit earning
interest rate ru at time u grows from a value of 1 to a value of

βt = exp

(∫ t

0

ru du

)

at time t. (4.42)

As before, a time variable occurring as a subscript indicates a stochastic process, i.e.
the integral in (4.42) is a random variable-valued integral. Under so-called risk-neutral
pricing, if a derivative security pays X at time T , its price at t = 0 is the expected value

E

(
X

βT

)

= E

(

X exp

(

−
∫ T

0

ru du

))

. (4.43)

In particular, one is often interested in the resulting price B(0, T ) of a bond at t = 0 if
the bond pays X = 1 at t = T :

B(0, T ) := E

(

exp

(

−
∫ T

0

ru du

))

. (4.44)

We will now proceed to consider stochastic processes used to model the short rate
r. For background and scope of the respective models, please consult the literature
on mathematical modeling of finance. Here, we will not be concerned with a deeper
discussion of the models and their validity.

Only two types of models will be discussed here, namely continuous-time Ho-Lee and
Vasicek models. All these models fall into the class of Gaussian models, i.e., in each
case, (rt)t≥0 constitutes a Gaussian stochastic process (a process such that the joint
distribution of (rt1 , . . . , rtk) is (multivariate) normal for each finite sequence t1, . . . , tk ≥
0).

4.2.2 Ho-Lee Models

Definition 4.18. An R-valued stochastic process (rt)t≥0 is given by a Ho-Lee model if,
and only if, the process constitutes a solution to the SDE

drt = g(t) dt + σ dWt , (4.45)

with σ > 0, a locally integrable (deterministic) function g : R+
0 −→ R, and (Wt)t≥0

denoting a 1-dimensional standard Brownian motion with drift 0 and variance 1.
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Remark 4.19. Comparing (4.45) with (4.5), one observes that any short rate (rt)t≥0

given by a Ho-Lee model is merely a 1-dimensional Brownian motion with time-depend-
ent drift g(t) and variance σ2:

rt = r0 +

∫ t

0

g(s) ds + σWt. (4.46)

Thus, it can be simulated (exactly) by (4.13), provided the antiderivative of g is available,
or by (4.15) (incurring a discretization error), if the antiderivative of g is not at hand.

—

A short rate (rt)t≥0 given by a Ho-Lee model is still sufficiently simple, such that the
bond price B(0, T ) according to (4.44) can be computed in closed form. To compute
B(0, T ), we need the following result about normally distributed random variables:

Proposition 4.20. If (Ω,A, P ) is a probability space and the random variable X :
Ω −→ R is N(α, σ2)-distributed, α ∈ R, σ ∈ R+

0 , then

E(eX) = eα+
σ2

2 . (4.47)

Proof. If σ = 0, then

E(eX) =

∫ ∞

−∞
ex dPX(x) =

∫ ∞

−∞
ex dδα(x) = eα (4.48a)

as claimed. If σ > 0, then

E(eX)

=

∫ ∞

−∞
ex dPX(x) =

1√
2πσ2

∫ ∞

−∞
ex e−

(x−α)2

2σ2 dx

=
1√
2πσ2

∫ ∞

−∞
exp

(

−x
2 − (2α + 2σ2)x+ α2

2σ2

)

dx

=
1√
2πσ2

exp

(
2ασ2 + σ4

2σ2

)∫ ∞

−∞
exp

(

−x
2 − (2α + 2σ2)x+ α2 + 2ασ2 + σ4

2σ2

)

dx

= eα+
σ2

2
1√
2πσ2

∫ ∞

−∞
exp

(

−
(
x− (α + σ2)2

)2

2σ2

)

dx = eα+
σ2

2 , (4.48b)

completing the proof. �

In addition to Prop. 4.20, the computation of B(0, T ) needs the following result, which
states that integrals of Brownian motions are normally distributed (one can also show
this, more generally, for integrals of Gaussian processes):

Proposition 4.21. If (Ω,A, P ) is a probability space and the R-valued stochastic process
(Xt)t≥0, Xt : Ω −→ R, is a 1-dimensional Brownian motion with drift α(t) and variance
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σ2(t), where α : R+
0 −→ R is locally integrable and σ : R+

0 −→ R+
0 is locally square-

integrable, then

∀
T∈R+

0

IT : Ω −→ R, IT (ω) :=

∫ T

0

Xt(ω) dt , (4.49)

is a normally distributed random variable.

Proof. The statement of the proposition is a simple consequence of the integration by
parts formula for Itô integrals of Th. C.3, which yields

IT =

∫ T

0

Xt dt = T XT −
∫ T

0

s α(s) ds −
∫ T

0

s σ(s) dWs

= T X0 + T

∫ T

0

α(s) ds + T

∫ T

0

σ(s) dWs −
∫ T

0

s α(s) ds −
∫ T

0

s σ(s) dWs

= T X0 +

∫ T

0

(T − s)α(s) ds +

∫ T

0

(T − s) σ(s) dWs ,

showing IT = YT , where (Yt)t≥0 is a 1-dimensional Brownian motion with drift (T−t)α(t)
and variance (T − t)2σ2(t). Thus, IT is normally distributed. �

Theorem 4.22. Fix some T ≥ 0. If the short rate (rt)t≥0 is given by a Ho-Lee model,
i.e. one having the form (4.46), and r0 ∈ R, then the bond price according to (4.44) is

B(0, T ) = exp

(

−r0 T −
∫ T

0

∫ t

0

g(s) ds dt +
σ2 T 3

6

)

. (4.50)

Proof. We already know that (rt)t≥0 is a Brownian motion given by (4.46). Let (Ω,A, P )
be a probability space such that rt : Ω −→ R for each t ≥ 0. According to Prop. 4.21,

IT : Ω −→ R, IT (ω) :=

∫ T

0

rt(ω) dt = r0 T +

∫ T

0

∫ t

0

g(s) ds dt + σ

∫ T

0

Wt(ω) dt ,

(4.51)
constitutes a normally distributed random variable. We proceed to compute its expected
value and variance.

The expected value is

E(IT ) = E

(∫ T

0

rt dt

)

=

∫

Ω

∫ T

0

rt(ω) dt dω = r0 T +

∫ T

0

∫ t

0

g(s) ds dt , (4.52)

since

E

(∫ T

0

Wt dt

)

=

∫

Ω

∫ T

0

Wt(ω) dt dω
Fubini
=

∫ T

0

∫

Ω

Wt(ω) dω dt = 0, (4.53)

as E(Wt) = 0 for each t ≥ 0. The Fubini theorem applies, since one can assume the
Brownian motion (ω, t) 7→ Wt(ω) to be A⊗ B1-measurable.
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Next, we turn our attention to the variance. We find

V (IT ) = V

(∫ T

0

rt dt

)

= σ2V

(∫ T

0

Wt dt

)

, (4.54)

since the first two summands in the right-hand side of (4.51) do not depend on ω ∈ Ω.
We further compute

V

(∫ T

0

Wt dt

)
(4.53)
= E

((∫ T

0

Wt dt

)2
)

=

∫

Ω

∫ T

0

∫ T

0

Ws(ω)Wt(ω) ds dt dω

= 2

∫

Ω

∫ T

0

∫ t

0

Ws(ω)Wt(ω) ds dt dω

Fubini
= 2

∫ T

0

∫ t

0

∫

Ω

Ws(ω)Wt(ω) dω ds dt

= 2

∫ T

0

∫ t

0

Cov(Ws,Wt) ds dt
(4.6)
= 2

∫ T

0

∫ t

0

s ds dt

=
T 3

3
. (4.55)

Combining (4.52), (4.54), and (4.55) yields

IT =

∫ T

0

rt dt ∼ N

(

r0 T +

∫ T

0

∫ t

0

g(s) ds dt ,
σ2 T 3

3

)

, (4.56a)

and

−IT = −
∫ T

0

rt dt ∼ N

(

−r0 T −
∫ T

0

∫ t

0

g(s) ds dt ,
σ2 T 3

3

)

. (4.56b)

Finally, an application of (4.47) implies

B(0, T ) = E(e−IT ) = exp

(

−r0 T −
∫ T

0

∫ t

0

g(s) ds dt +
σ2 T 3

6

)

, (4.57)

completing the proof. �

4.2.3 Vasicek Models

Definition 4.23. An R-valued stochastic process (rt)t≥0 is given by a Vasicek model if,
and only if, the process constitutes a solution to the SDE

drt = α
(
b(t)− rt

)
dt + σ dWt , (4.58)

with α, σ > 0, a locally integrable (deterministic) function b : R+
0 −→ R+

0 , and (Wt)t≥0

denoting a 1-dimensional standard Brownian motion with drift 0 and variance 1. Solu-
tions to (4.58) are also known as Ornstein-Uhlenbeck processes.
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Remark 4.24. According to (4.58), the drift of a short rate given by a Vasicek model
is positive for b(t) > rt and negative for b(t) < rt. Thus, especially for constant b, b
can be interpreted as a long-term interest rate, that the short rate is pulled toward, α
controlling the strength of the pull.

Remark 4.25. According to Itô’s formula [Gla04, Th. B.1.1], if (rt)t≥0 is given by a
Vasicek model, then, for each 0 ≤ u < t,

rt = e−α(t−u)ru + α

∫ t

u

e−α(t−s)b(s) ds + σ

∫ t

u

e−α(t−s) dWs , (4.59)

which, for r0 ∈ R+
0 , defines a Gaussian process. Moreover, the distribution of rt under

the condition {ru = x ∈ R+
0 } is N(αt, σ

2
t ), where

αt = e−α(t−u)x+ α

∫ t

u

e−α(t−s)b(s) ds , (4.60a)

σ2
t = σ2

∫ t

u

e−2α(t−s) ds =
σ2

2α

(
1− e−2α(t−u)

)
, (4.60b)

which, for 0 = t0 < t1 < · · · < tk and z1, z2, . . . representing the output of i.i.d. copies
of an N(0, 1)-distributed random variable, provides the recursion

r0 ∈ R+
0 : given initial value, (4.61a)

ri := e−α(ti−ti−1)ri−1 + α

∫ ti

ti−1

e−α(ti−s)b(s) ds +
zi σ√
2α

√

1− e−2α(ti−ti−1) for i = 1, . . . , k,

(4.61b)

for an exact simulation of (rt)t≥0. Carrying out the integral in (4.61b) exactly might
not always be feasible. Approximating b as constantly equal to b(ti−i) on [ti−1, ti], we
can compute the resulting approximation of the integral:

α

∫ ti

ti−1

e−α(ti−s)b(s) ds ≈ α b(ti−i)

[
eα(s−ti)

α

]ti

ti−1

= b(ti−i)
(
1− e−α(ti−ti−1)

)
. (4.62)

In addition, depending on the situation, it might also be worth gaining some efficiency
(possibly at the price of sacrificing some accuracy) by using the approximation ex ≈ 1+x
in (4.61b) as well as (4.62), replacing it with the (no longer exact) recursion formula

ri :=
(
1− α(ti − ti−1)

)
ri−1 + b(ti−i)α (ti − ti−1) + zi σ

√

ti − ti−1

= ri−1 + α
(
b(ti−i)− ri−1

)
(ti − ti−1) + zi σ

√

ti − ti−1. (4.63)

Remark 4.26. For Ho-Lee models, the bond price B(0, T ) could be computed as a
closed-form formula, cf. (4.50). Even though, Vasicek models are, in general, more
complicated, for a short rate (rt)t≥0 given by a Vasicek model, B(0, T ) according to
(4.44) can still be computed in closed form. The computation is carried out in [Gla04,
pp. 113-114] and yields

B(0, T ) = exp
(
− A(0, T ) r0 + C(0, T )

)
, (4.64)
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where

A(0, T ) :=
1− e−αT

α
, (4.65a)

C(0, T ) := −α
∫ T

0

∫ u

0

e−α(u−s)b(s) ds du +
σ2

2α2

(

T +
1− e−2αT

2α
+

2(e−αT − 1)

α

)

.

(4.65b)

5 Variance Reduction Techniques

5.1 Control Variates

Idea: Use the errors in estimates of known quantities to reduce the error in an estimate
of an unknown quantity.

Let (Ω,A, P ) be a probability space and assume all random variables occurring subse-
quently in this section are defined on Ω, if nothing else is indicated.

Suppose, the goal is to estimate the expected value E(Y ) of a real-valued and square-
integrable random variable Y , whereas we already know E(X) for another real-valued
and square-integrable random variable X with positive variance V (X) > 0. If X and
Y are “not too different” in a sense that we will have to make precise below, then
knowledge about X can be used to improve the method for estimating E(Y ).

Assume Y1, Y2, . . . is a sequence of i.i.d. copies of Y . Then, letting

Ȳn :=
1

n

n∑

i=1

Yi for each n ∈ N, (5.1)

the strong law of large numbers Th. B.32 implies

Ȳn → E(Y ) almost surely. (5.2)

That is why Ȳn is often used as a first estimate for E(Y ). Our goal is to improve on this
estimate, employing X. To this end, we assume X1, X2, . . . is a sequence of i.i.d. copies
of X, with the additional property that the sequence of pairs (X1, Y1), (X2, Y2), . . . are
i.i.d. copies of (X, Y ). Analogous to (5.1), let

X̄n :=
1

n

n∑

i=1

Xi for each n ∈ N, (5.3)

such that
X̄n → E(X) almost surely. (5.4)

For each b ∈ R, we define the random variables

Yi(b) : Ω −→ R, Yi(b) := Yi − b
(
Xi − E(X)

)
for each i ∈ N, (5.5)
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and

Ȳn(b) : Ω −→ R, Ȳn(b) :=
1

n

n∑

i=1

Yi(b) = Ȳn − b
(
X̄n − E(X)

)
for each n ∈ N. (5.6)

One calls the Ȳn(b) a control variate estimator of E(Y ) with control X̄n − E(X).

This estimator is unbiased:

E
(
Ȳn(b)

)
= E

(

Ȳn − b
(
X̄n − E(X)

))

= E(Ȳn)− b
(
E(X)− E(X)

)

= E(Ȳn) = E(Y ). (5.7)

This estimator is also consistent, since, in the sense of convergence almost surely:

lim
n→∞

Ȳn(b) = lim
n→∞

(

Ȳn − b
(
X̄n − E(X)

))

= E(Y ). (5.8)

We denote the standard deviations

σX :=
√

V (X), σY :=
√

V (Y ), σ(b) :=
√

V
(
Yi(b)

)
, (5.9)

and the correlation

ρXY := Cor(X, Y ) :=
Cov(X, Y )

σXσY
=
E(XY )− E(X)E(Y )

σXσY
, (5.10)

where it is noted that X, Y ∈ L2(P ) implies XY ∈ L1(P ) (i.e. XY is integrable) by the
Hölder inequality. For each i ∈ N, we compute the variance σ2(b) of Yi(b), confirming it
does not depend on i:

σ2(b) := V
(
Yi(b)

)
= E

((
Yi(b)− E(Yi(b))

)2
)

= E
((
Yi − E(Y )− b (Xi − E(X))

)2
)

= σ2
Y − 2bE

((
Yi − E(Y )

)(
Xi − E(X)

))

+ b2σ2
X

= σ2
Y − 2b σXσY ρX,Y + b2σ2

X . (5.11)

The pairwise independence of the Yi implies Cov(Yi, Yj) = 0 for i 6= j and, thus,

V (Ȳn) =
σ2
Y

n
for each n ∈ N. (5.12)

Pairwise independence of the (Xi, Yi) and Th. B.10 imply the pairwise independence of
the Yi(b), in particular, Cov

(
Yi(b), Yj(b)

)
= 0 for i 6= j. In consequence,

V
(
Ȳn(b)

)
=
σ2(b)

n
for each n ∈ N. (5.13)

Combining (5.11) – (5.13), we see the control variate estimator Ȳn(b) achieves a variance
reduction if, and only if,

σ2
Y − 2b σXσY ρX,Y + b2σ2

X = σ2(b) = nV
(
Ȳn(b)

)
< nV (Ȳn) = σ2

Y , (5.14a)
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i.e. if, and only if,
b2σX < 2b σY ρX,Y . (5.14b)

The derivative (σ2)′(b) = −2σXσY ρX,Y + 2σ2
X b has zero

bmin :=
σY ρX,Y

σX
=

Cov(X, Y )

V (X)
(5.15)

and (σ2)′′ ≡ 2σ2
X > 0, showing the variance of Ȳn(b) becomes minimal at bmin.

Plugging bmin into (5.11) yields the following ratio between the variance of the optimally
controlled estimator and the variance of the uncontrolled estimator, called the variance
reduction ratio:

V
(
Ȳn(bmin)

)

V (Ȳn)
=
σ2(bmin)

σ2
Y

=
σ2
Y − 2σ2

Y ρ
2
X,Y + σ2

Y ρ
2
X,Y

σ2
Y

= 1− ρ2X,Y . (5.16)

Remark 5.1. (a) Thus, the effectiveness of a control variate as measured by the vari-
ance reduction ratio depends on the strength of the correlation ρX,Y between X
and Y . The sign of ρX,Y does not affect the ratio, as it is absorbed in bmin.

(b) Taking the variance as a measure for the accuracy of the estimators Ȳn and Ȳn(bmin),
respectively, the number of steps is reduced from n for the uncontrolled estimator
to n (1− ρ2X,Y ) for the controlled estimator. If the computational effort for Ȳn and
Ȳn(bmin) is approximately the same, then 1/(1− ρ2X,Y ) is the speed-up achieved by
using the control variate estimator as compared to using the uncontrolled one.

(c) Due to the form of (5.16), the usefulness of X drops rapidly with |ρX,Y |: For
example, 1− 0.952 = 0.0975, 1− 0.92 = 0.19, 1− 0.72 = 0.51, i.e. the approximate
speed-up is reduced from a factor of 10 to 5 to 2.

In (5.16) and Rem. 5.1, we made use of the optimal coefficient bmin given by (5.15).
However, since our initial goal was to estimate the unknown quantity E(Y ), it is not
likely that the quantities σY and ρX,Y are better known than E(Y ), i.e. bmin will usually
be unavailable in practice. A possible solution is the introduction of the approximating
random variables

Bn :=

∑n
i=1(Xi − X̄n)(Yi − Ȳn)
∑n

i=1(Xi − X̄n)2
for each n ∈ N (5.17)

and the estimator

Z̄n := Ȳn −
1

n

n∑

i=1

Bn

(
Xi − E(X)

)
for each n ∈ N. (5.18)

Remark 5.2. (a) It is an exercise to show that the strong law of large numbers Th.
B.32 implies, in the sense of convergence almost surely,

lim
n→∞

Bn = bmin. (5.19)
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(b) In general, the estimator Z̄n is no longer unbiased, where the bias is

E(Z̄n)− E(Y ) = −E
(

1

n

n∑

i=1

Bn

(
Xi − E(X)

)

)

= −E
(

Bn

n

n∑

i=1

(
Xi − E(X)

)

)

= −E
(

Bn

(
X̄n − E(X)

))

. (5.20)

In general, the bias in (5.20) is nonzero since Bn and X̄n are not independent. Due
to the law of large numbers and (5.19), limn→∞Bn

(
X̄n −E(X)

)
= 0 almost surely,

such that the introduced bias does usually not pose a significant problem if n is
sufficiently large. It is, however, an issue for small samples (i.e. small n).

Example 5.3. In Sec. 1.1, it was described how to use estimators for the expected value
of random variables to numerically compute integrals. The present example illustrates
the use of control variates in this (rather academic) situation: Suppose, we want to use

Monte Carlo to compute the integral
∫ 1

0
f(x) dx for

f : [0, 1] −→ R, f(x) := 4
√
1− x2. (5.21)

Letting U1, U2, . . . denote a sequence of i.i.d. random variables, uniformly distributed
on [0, 1], and recalling (1.5), in terms of the language of the present section, we set

Yi := f ◦ Ui for each i ∈ N. (5.22)

To obtain a control, we start with a function that is “close” to f , but easy to integrate,
say,

h : [0, 1] −→ R, h(x) := 4− 4x, (5.23)

and set
Xi := h ◦ Ui for each i ∈ N. (5.24)

Since the Ui are i.i.d., so are the Xi and the Yi by Th. B.10. As the pairs (Ui, Ui) are
also i.i.d., so are the pairs (Xi, Yi), once again by Th. B.10, verifying the correct setting
for control variates.

Furthermore,

E(Xi) =

∫ 1

0

h(x) dx = 4

[

x− x2

2

]1

0

= 2 (5.25)

and, for each b ∈ R,

Yi(b) := Yi − b
(
Xi − E(Xi)

)
= f ◦ Ui − b(h ◦ Ui − 2) for each i ∈ N. (5.26)

Moreover,

σ2
Xi

= −4 +

∫ 1

0

h2(x) dx = −4 + 16

[

x− x2 +
x3

3

]1

0

=
4

3
. (5.27)

The example is academic, since the antiderivative of f is not too hard to find – it is
given by

F : [0, 1] −→ R, F (x) = 2
(

x
√
1− x2 + arcsin(x)

)

, (5.28)
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as is easily verified by differentiation, yielding the exact integral

E(Yi) =

∫ 1

0

f(x) dx = 2arcsin(1) = π. (5.29)

On the other hand, this allows us to actually compute the optimal control coefficient
bmin and resulting variance reduction, which we now do, out of curiosity and for the
purpose of illustration. The covariance is

Cov(Xi, Yi) = E(XiYi)− E(Xi)E(Yi) = −2π +

∫ 1

0

(fh)(x) dx

= −2π + 4π − 16

∫ 1

0

x
√
1− x2 dx = 2π +

16

3

[

(1− x2)
3
2

]1

0

= 2π − 16

3
≈ 0.95, (5.30)

implying

bmin =
Cov(Xi, Yi)

σ2
Xi

≈ 3 · 0.95
4

≈ 0.71 . (5.31)

Since

σ2
Yi
= −π2 +

∫ 1

0

f 2(x) dx = −π2 + 16

∫ 1

0

(1− x2) dx = −π2 +
32

3
≈ 0.797, (5.32)

the variance reduction ratio is 1− ρ2XiYi
= 1− Cov(Xi, Yi)

2/(σ2
Xi
σ2
Yi
) ≈ 0.15.

Without the knowledge of bmin, one might have tried b = 1. While less effective than
using bmin, b = 1 still achieves a significant variance reduction:

V
(
Yi(1)

)
=

∫ 1

0

(
f(x)− h(x) + 2

)2
dx −

(∫ 1

0

(
f(x)− h(x) + 2

)
dx

)2

=

∫ 1

0

(

f 2(x)− 2(fh)(x) + h2(x) + 4f(x)− 4h(x) + 4
)

dx − π2

=
32

3
− 8π +

32

3
+

16

3
+ 4π − 4− π2

=
68

3
− 4π − π2 ≈ 0.231, (5.33)

i.e. less than one third of σ2
Yi
.

Example 5.4. While a good control variate will usually need to take advantage of
problem-dependent features, since virtually all simulations start with an i.i.d. sequence
U1, U2, . . . of uniformly distributed, [0, 1]-valued random variables, a control based on
Xi := Ui, E(Xi) =

1
2
is virtually always available. Similarly, for simulations based on an

i.i.d. sequence Z1, Z2, . . . of N(0, 1)-distributed random variables, one can always use
a control based on Xi := Zi, E(Xi) = 0. Such controls are sometimes referred to as
primitive controls.
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Example 5.5. Control variates can often be used in the mathematical finance applica-
tion, where Y represents the unknown price of a derivative security for some underlying
asset S. A reasonable mathematical finance model should at least be arbitrage-free, and
one can show that, for an arbitrage-free model, the discounted price of S, denoted by
S̃, should be a martingale, such that E(S̃t) = s0 for each time t ≥ 0, where s0 is the
initial value for the asset price. If, as in Sec. 1.2, we consider a risk-neutral model with
constant continuously compounded interest rate r, then S̃t = e−rtSt, E(e

−rtSt) = s0,
E(St) = erts0. If we are interested in E(YT ) for some T > 0, then the Yi should be
i.i.d. copies of YT and the Xi should be i.i.d. copies of ST such that the control variate
estimator of (5.6) becomes

∀
b∈R

∀
n∈N

Ȳn(b) =
1

n

n∑

i=1

(

Yi − b
(
X̄i − E(ST )

))

=
1

n

n∑

i=1

(

Yi − b
(
X̄i − erts0

))

, (5.34)

where one would replace b with Bn from (5.17), if a good idea for choosing b is not
available. If Y represents the price of a European call option (which was denoted by
C in Sec. 1.2), then YT = e−rT (ST − K)+, where K is the option’s strike price (cf.
(1.14)). In this case, the correlation between YT and ST , and, thus, the effectiveness
of the control variate, are determined by the distribution of ST and by the size of K
(where the correlation is perfect for K = 0 and typically low for large K).

5.2 Antithetic Variates

The basic setting is still the same as in the previous section on control variates. In
particular, all random variables are assumed to be defined on the probability space
(Ω,A, P ), unless indicated otherwise. The goal is to estimate the unknown E(Y ) for
the random variable Y . Once again, assume Y1, Y2, . . . is a sequence of i.i.d. copies of
the real-valued and square-integrable random variable Y .

The idea for control variates was to reduce variance by modifying the simple estimator
(5.1) by using i.i.d. copies of a random variable X with known E(X). For antithetic
variates, the idea is to use X ∼ Y (i.e. X, Y identically distributed), but X, Y not
independent. As in Sec. 5.1, let X1, X2, . . . be i.i.d. copies of X, where one requires
the sequence of pairs (X1, Y1), (X2, Y2), . . . to be i.i.d. as well. The aim is to use the
correlation between Xi and Yi to reduce variance. As before, the Hölder inequality
implies that XY,X1Y1, X2Y2, . . . are integrable.

To proceed, define the simple estimators Ȳn and X̄n as in (5.1) and (5.3), respectively,
plus the new estimator

∀
n∈N

Ȳn,A :=
Ȳn + X̄n

2
. (5.35)

Clearly, Ȳn,A is unbiased and consistent. To assess if the estimator Ȳn,A constitutes an
improvement over Ȳn, it is incorrect to compare the variances V (Ȳn,A) and V (Ȳn), since
Ȳn,A has twice as many summands as Ȳn. So one needs to compare V (Ȳn,A) and V (Ȳ2n):
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The estimator Ȳn,A achieves a variance reduction if, and only if,

V (Ȳn,A)
(∗)
=

1

n
V

(
Xi + Yi

2

)

< V (Ȳ2n) =
σ2
Y

2n
, (5.36)

where, for the equality at (∗), it was used that, for i, j ∈ N with i 6= j, the pairs (Xi, Yi),
(Xj, Yj) are assumed independent, i.e. Xi+Yi and Xj+Yj are independent by Th. B.10,
implying Cov(Xi + Yi, Xj + Yj) = 0. Clearly, (5.36) is equivalent to

V (X + Y ) < 2V (Y ). (5.37)

Since

V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y ) = 2V (Y ) + 2Cov(X, Y ), (5.38)

both (5.36) and (5.37) are equivalent to

Cov(X, Y ) < 0. (5.39)

This motivates the following definition:

Definition 5.6. The real-valued integrable random variables X, Y with integrable XY
are called antithetic if, and only if, X and Y are identically distributed with Cov(X, Y ) <
0.

—

Antithetic random variables can typically be obtained from monotonicity properties of
the involved random variables, provided such monotonicity properties are present. In
simple situations, the following Th. 5.7 can be applied. Many related, more general,
theorems can be found in the literature.

Theorem 5.7. Let U be a real-valued random variable with range R(U). If h, k :
R(U) −→ R are both integrable, hk is also integrable, and h, k are both nondecreasing
or both nonincreasing, then, defining random variables

Y := k ◦ U, X := h ◦ U, (5.40)

one obtains
Cov(X, Y ) ≥ 0. (5.41)

Proof. Due to the integrability hypotheses, E(X), E(Y ), E(XY ) all exist. Let V be a
random variable such that U, V are i.i.d. Due to the monotonicity hypotheses,

(
h(U)− h(V )

)(
k(U)− k(V )

)
≥ 0. (5.42)

Thus, we can estimate

0 ≤ E
((
h(U)− h(V )

)(
k(U)− k(V )

))

= E
(
h(U)k(U)

)
− E

(
h(U)k(V )

)
− E

(
h(V )k(U)

)
+ E

(
h(V )k(V )

)

(∗)
= 2E

(
h(U)k(U)

)
− 2E

(
h(U)

)
E
(
k(U)

)

= 2Cov
(
h(U), k(U)

)
= 2Cov(X, Y ), (5.43)
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thereby establishing the case. At “(∗)”, it was used that, by Th. B.10, the independence
of U, V implies the independence of h(U), k(V ) and of k(U), h(V ). �

Corollary 5.8. Let U be a random variable, uniformly distributed on [0, 1]. If k :
[0, 1] −→ R is square-integrable and nondecreasing or nonincreasing, then, defining
random variables

Y := k ◦ U, X := k ◦ (1− U), (5.44)

one obtains
Cov(X, Y ) ≤ 0. (5.45)

Proof. We can apply Th. 5.7 with k and

h : [0, 1] −→ R, h(x) := −k(1− x), (5.46)

since k ∈ L2[0, 1] implies h ∈ L2[0, 1] and kh ∈ L1[0, 1] by the Hölder inequality, and
since h has the same monotonicity property as k. Theorem 5.7 yields

−Cov(X, Y ) = Cov(−X, Y ) ≥ 0, (5.47)

proving the corollary. �

Example 5.9. Let us, once again, consider the problem of Ex. 5.3, i.e. the problem
of using Monte Carlo to compute the integral

∫ 1

0
f(x) dx with f given by (5.21), now

employing the method of antithetic variates. If U is a random variable, uniformly
distributed on [0, 1], then the fact that f is decreasing and Cor. 5.8 suggest using

Y := f ◦ U, X := f ◦ (1− U). (5.48)

The corresponding estimator is

Ȳn,A :=
1

2n

n∑

i=1

(
f(Ui) + f(1− Ui)

)
(5.49)

if the Ui are i.i.d. copies of U . Out of curiosity, one can compute E(XY ) numerically,

E(XY ) =

∫ 1

0

f(x)f(1− x) dx =

∫ 1

0

√

x(2− x)(1− x2) dx ≈ 0.581, (5.50)

yielding
Cov(X, Y ) = E(XY )− π2 ≈ −0.578 (5.51)

and the variance reduction ratio

V (Ȳn,A)

V (Ȳ2n)

(5.36)
=

V (X + Y )

2V (Y )
=

2V (Y ) + 2Cov(X, Y )

2V (Y )

= 1 +
Cov(X, Y )

V (Y )

(5.51),(5.32)≈ 0.275. (5.52)
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5.3 Stratified Sampling

We start with a motivating example:

Example 5.10. Suppose we want to poll the job approval of the head of government,
who happens to belong to party A. We might poll n = 1000 people and ask each person
if they approve of the job the head of government is doing. If we model the answer of
the ith person by a {0, 1}-valued random variable Xi, where

Xi =

{

1 for answer “yes”,

0 for answer “no”,
(5.53)

then simple samplingmeans computing 1
n

∑n
i=1Xi, which is the fraction of people having

answered “yes”.

Now suppose we have also asked each person, which party they voted for in the last
election. If it turns out that 50% had voted for party A, 15% for B, 10% for C, and
25% had voted for others or not at all, whereas the true outcome of the election had
been 35% A, 20% B, 10% for C, and 35% others or none, then, considering the head of
government belongs to A, the fraction of people in the sample answering “yes” is likely
to be higher than in the population overall.

This cause of sampling error could be eliminated by stratifying the sampling such that
the sample of 1000 people being polled has precisely the right number from each stratum,
namely, in the described example, 350 A voters, 200 B voters, 100 C voters, and 350
people who voted for others or not at all.

—

Let us consider a corresponding situation more abstractly, where we remain in a similar
general setting as in the previous sections. However, we will introduce an intermediate
layer, i.e., in addition to the probability space (Ω,A, P ), a measurable space (S,B), with
the random variable Y : Ω −→ S is considered, where the goal is to estimate E(f ◦ Y )
for some measurable function f : S −→ R. If Y1, Y2, . . . are i.i.d. copies of Y , then our
simple estimator now is 1

n

∑n
i=1 f(Yi).

Definition 5.11. Let (Ω,A, P ) be a probability space, (S,B) a measurable space, Y :
Ω −→ S a random variable.

(a) A finite sequence (S1, . . . , SM), M ∈ N, of pairwise disjoint measurable subsets of
S, is called a sequence of strata for Y with corresponding probabilities (a1, . . . , aM),
if and only if, there exists a PY -null set S0 such that

S = S0 ∪̇
⋃̇

i=1,...,M

Si, (5.54a)

and
∀

i=1,...,M
ai = PY (Si) = P{Y ∈ Si} > 0, (5.54b)



5 VARIANCE REDUCTION TECHNIQUES 72

i.e. strata partition S (up to a PY -null set) into disjoint subsets of positive proba-
bility with respect to the distribution of Y .

(b) Let f : S −→ R be measurable such that f ◦Y ∈ L2(P ). Moreover, let (S1, . . . , SM)
be strata for Y with corresponding probabilities (a1, . . . , aM) as defined in (a), let
n, n1, . . . , nM ∈ N be such that

n =
M∑

i=1

ni, (5.55)

and, for each i ∈ {1, . . . ,M}, let Y (i)
1 , . . . , Y

(i)
ni : Ω −→ Si be i.i.d. random variables

such that the entire family (Y
(i)
k )i∈{1,...,M},k∈{1,...,ni} is independent, and

∀
i=1,...,M

∀
k=1,...,ni

Y
(i)
k ∼ Y |Si, (5.56a)

i.e.

∀
k=1,...,ni

∀
B∈B

P{Y (i)
k ∈ B ∩ Si} =

P{Y ∈ B ∩ Si}
ai

. (5.56b)

Defining

∀
i=1,...,M

Ti : Ω −→ R, Ti :=
1

ni

ni∑

k=1

f(Y
(i)
k ), (5.57)

the random variable

T : Ω −→ R, T :=
M∑

i=1

aiTi, (5.58)

is called the stratified estimator of E(f ◦Y ) corresponding to the strata S1, . . . , SM .

Note that the stratified estimator does not only depend on the strata and the
a1, . . . , aM , but also on n, n1, . . . , nM . One speaks of proportional allocation pro-
vided ni = nai holds for each i = 1, . . . ,M .

Remark 5.12. From Def. 5.11, we can draw some simple conclusions:

(a) As an immediate consequence of (5.54a) and (5.54b), one obtains

M∑

i=1

ai = 1. (5.59)

(b) From (5.57) and (5.56), one obtains

∀
i=1,...,M

E(Ti) = E(f ◦ Y (i)
1 ) =

∫

Si

f dP
Y

(i)
1

=

∫

Si

f

ai
dPY =:

Ei(f ◦ Y )

ai
. (5.60)

(c) The stratified estimator T of (5.58) is unbiased:

E(T ) =
M∑

i=1

aiE(Ti)
(b)
=

M∑

i=1

∫

Si

f dPY =

∫

S
f dPY = E(f ◦ Y ). (5.61)



5 VARIANCE REDUCTION TECHNIQUES 73

(d) For each i = 1, . . . ,M , due to the independence of the Y
(i)
1 , . . . , Y

(i)
ni , the maps

f ◦ Y (i)
1 , . . . , f ◦ Y (i)

ni are also independent by Th. B.10, and the variance of Ti is

V (Ti) =
V (f ◦ Y (i)

1 )

ni

=
1

ni

(

E
(

(f ◦ Y (i)
1 )2

)

−
(

E(f ◦ Y (i)
1 )
)2
)

(5.60)
=

1

ni

(
∫

Si

f 2 dP
Y

(i)
1

−
(
Ei(f ◦ Y )

ai

)2
)

=
1

ni

(
∫

Si

f 2

ai
dPY −

(
Ei(f ◦ Y )

ai

)2
)

. (5.62)

(e) The independence of the Y
(i)
k implies the independence of T1, . . . , TM (exercise),

such that

V (T ) =
M∑

i=1

a2iV (Ti). (5.63)

Stratified estimators can be useful to reduce variance according to the following result:

Theorem 5.13. In the situation of Def. 5.11, the variance of the stratified estimator T
using proportional allocation (i.e. ni = nai for each i = 1, . . . ,M) satisfies

V

(

1

n

n∑

i=1

f(Yi)

)

= V (T ) +
1

n

M∑

i=1

ai

(
Ei(f ◦ Y )

ai
− E(f ◦ Y )

)2

, (5.64)

where the Ei(f ◦ Y ) are as defined in (5.60). In particular, the variance of the pro-
portionally allocated stratified estimator is strictly less than the variance of the simple
estimator if, and only if, at least one of the summands in (5.64) is positive.

Proof. We compute, starting with the right-hand side of (5.64),

V (T ) +
1

n

M∑

i=1

ai

(
Ei(f ◦ Y )

ai
− E(f ◦ Y )

)2

(5.63),(5.62)
=

M∑

i=1

a2i
1

ni

(
∫

Si

f 2

ai
dPY −

(
Ei(f ◦ Y )

ai

)2
)

+
1

n

M∑

i=1

ai

(
Ei(f ◦ Y )

ai

)2

− 2E(f ◦ Y )

n

M∑

i=1

Ei(f ◦ Y ) +
E(f ◦ Y )2

n

M∑

i=1

ai

ni=nai=
M∑

i=1

a2i
1

nai

(
∫

Si

f 2

ai
dPY −

(
Ei(f ◦ Y )

ai

)2
)

+
1

n

M∑

i=1

ai

(
Ei(f ◦ Y )

ai

)2

− 2E(f ◦ Y )

n
E(f ◦ Y ) +

E(f ◦ Y )2

n

=
1

n

∫

S
f 2 dPY − E(f ◦ Y )2

n
=
V (f ◦ Y )

n
= V

(

1

n

n∑

i=1

f(Yi)

)

, (5.65)
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which establishes the case. �

Remark 5.14. The assumption of proportional allocation in Th. 5.13 might seem like
a strong restriction, since, in particular, it means that nai has to be an integer for each
i. However, in practise, it is often possible to taylor the ai by choosing the strata Si

appropriately. And one can also often still obtain a variance reduction if one rounds nai
to the closest integer, but the computations become more technical.

—

Even though proportional allocation will usually result in a variance reduction according
to Th. 5.13, this choice for the ni and, thus, for the stratified estimator, is, in general,
not optimal, as can be seen from the following result.

Theorem 5.15. Let Y : Ω −→ S and f : S −→ R be as in Def. 5.11, in particular,
f ◦ Y ∈ L2(P ). Fix strata S1, . . . , SM , M ∈ N, for Y with probabilities a1, . . . , aM . Also
fix n ∈ N. Define

∀
i=1,...,M

σi :=

√

V (f ◦ Y (i)
1 ). (5.66)

If

∀
i=1,...,M

ni :=
aiσi

∑M
j=1 ajσj

n ∈ N, (5.67)

then this provides a stratified estimator of minimal variance. More precisely, if for each
tuple (m1, . . . ,mM) ∈ NM such that n =

∑M
i=1mi, the corresponding stratified estimator

is denoted by T (m1, . . . ,mM), then, letting

D :=

∑M
j=1 ajσj

n
, (5.68)

we have
V
(

T (m1, . . . ,mM)
)

≥ V
(

T
(a1σ1
D

, . . . ,
aMσM
D

))

. (5.69)

Proof. The proof is a consequence of the Cauchy-Schwartz inequality, which, for the
Euclidean scalar product on RM , reads

∀
x,y∈RM

(
M∑

i=1

xiyi

)2

= 〈x, y〉2 ≤ ‖x‖22 ‖y‖22 =
(

M∑

i=1

x2i

)(
M∑

i=1

y2i

)

. (5.70)

The right-hand side of the inequality in (5.69) is

V
(

T
(a1σ1
D

, . . . ,
aMσM
D

))
(5.63),(5.62)

=
M∑

i=1

a2i
σ2
i

ni

(5.67),(5.68)
=

M∑

i=1

a2i
σ2
i D

aiσi

=
M∑

i=1

ai σiD
(5.68)
= nD2. (5.71)
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We now apply the Cauchy-Schwartz inequality with xi =
√
mi and yi = aiσi/

√
mi to

obtain

nD2 (5.68)
=

1

n

(
M∑

i=1

ai σi

)2
(5.70)

≤ 1

n

(
M∑

i=1

mi

)(
M∑

i=1

a2i σ
2
i

mi

)

(5.63),(5.62)
= V

(

T (m1, . . . ,mM)
)

. (5.72)

Combining (5.71) and (5.72) proves (5.69). �

Remark 5.16. While interesting from a theoretical point of view, the applicability of
Th. 5.15 is limited, as the values σi are usually not known. Also, the values ni defined
in (5.67) are usually not integers; but one can obtain versions of Th. 5.15 that account
for rounding.

Example 5.17. The problem of using Monte Carlo to compute the integral
∫ 1

0
f(x) dx

with f given by (5.21) was previously considered in Ex. 5.3 and Ex. 5.9. We now want to
apply stratified sampling to this situation. For the strata, we use Si := [ i−1

M
, i
M
[,M ∈ N,

i = 1, . . . ,M , which yield a decomposition of S := [0, 1]. If Y := U : Ω −→ [0, 1] is
uniformly distributed, then ai = 1/M for each i = 1, . . . ,M . Given n, n1, . . . , nM ∈ N

such that n = n1 + · · · + nM , each Y
(i)
k , i ∈ {1, . . . ,M}, k ∈ {1, . . . , ni} is uniformly

distributed on Si. Proportional allocation means using ni = nai = n/M , which is
possible as long as n is a multiple of M .

In this academic example, one is actually able to compute the σi as defined in (5.66),
since the antiderivative F of f is available (cf. (5.28)). However, even for this simple
example, the computations quickly become involved an unattractive. Still, for illustra-
tion purposes, let us at least compute the variance reduction achieved for M = 2 and
proportional allocation. Using the mentioned antiderivative F of f as stated in (5.28),
we obtain

E1(f ◦ U) =
∫ 1

2

0

f(x) dx = F (1/2)− F (0) ≈ 1.9132, (5.73a)

E2(f ◦ U) =
∫ 1

1
2

f(x) dx = F (1)− F (1/2) ≈ 1.2284, (5.73b)

and, thus,

1

n

2∑

i=1

ai

(
Ei(f ◦ Y )

ai
− E(f ◦ Y )

)2
(5.29)≈ (0.5 · 1.91− π)2 + (0.5 · 1.23− π)2

2n

≈ 0.469

n
, (5.73c)

V

(

1

n

n∑

i=1

f(Yi)

)

(5.32)≈ 0.797

n
, (5.73d)

V (T )

V
(
1
n

∑n
i=1 f(Yi)

) ≈ 0.797− 0.469

0.797
=

0.328

0.797
≈ 0.412, (5.73e)
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such that M = 2 and proportional allocation does already achieve a noticeable variance
reduction in this case.

Example 5.18. Let (Wt)t≥0 denote a 1-dimensional standard Brownian motion with
drift α ∈ R and variance σ2 > 0. Motivated by the Bond price formula (4.44), let us
consider the problem of estimating

E

(

exp

(

−
∫ T

0

Wu du

))

, T > 0, (5.74)

even though (Wt)t≥0 does not constitute a realistic short rate model. For the measurable
space (S,B), we use S := C[0, T ], the set of real-valued continuous functions, with B
being the Borel σ-algebra on S induced by the topology of uniform convergence (i.e. the
‖ · ‖∞-norm topology).

To construct the strata, we fix M ∈ N, M ≥ 2, and decompose R into M intervals of
positvie length. More precisely, choose numbers

−∞ =: s0 < s1 < · · · < sM−1 < sM := ∞ (5.75a)

and set
∀

i=1,...,M
Ii :=]si−1, si]. (5.75b)

Then the strata are

∀
i=1,...,M

Si :=
{
g ∈ C[0, T ] : g(0) = 0 ∧ g(T ) ∈ Ii

}
. (5.75c)

We choose a random variable Y : Ω −→ S such that Y ∼ BM(α, σ2), which is supposed
to mean that letting

∀
t∈[0,T ]

Wt : Ω −→ R, Wt(ω) := Y (ω)(t), (5.76)

yields a 1-dimensional standard Brownian motion (Wt)t≥0 with drift α and variance σ2.
That such a Y exists is shown, e.g., in [Bau02, Th. 23.4] (see [Bau02, Sec. 38, Sec.
39, Cor. 40.4]) – there even exists a probability measure µ on (S,B) such that one can
choose (Ω,A, P ) = (S,B, µ) and Y := Id. If we let

f : S −→ R, f(g) := exp

(

−
∫ T

0

g(u) du

)

, (5.77)

then

E

(

exp

(

−
∫ T

0

Wu du

))

=

∫

Ω

exp

(

−
∫ T

0

Y (ω)(u) du

)

dω = E(f ◦ Y ), (5.78)

i.e. the setting is suitable for stratified sampling.



5 VARIANCE REDUCTION TECHNIQUES 77

From Rem. 4.6, we know WT is N
(
Tα, Tσ2

)
-distributed, i.e.

∀
i=1,...,M

ai = P{Y ∈ Si} = P
{
ω ∈ Ω : Y (ω)(T ) = WT (ω) ∈ Ii

}

=
1√
2πσ2

∫ si

si−1

e−
(x−Tα)2

2Tσ2 dx =
1√
2π

∫ si−Tα

σ
√
T

si−1−Tα

σ
√
T

e−ξ2/2 dξ > 0,
(5.79)

as required for stratified sampling.

To obtain a stratified estimate for (5.74), we can now proceed as follows: Choose n,K ∈
N such that n = KM . The idea is to make all ai = 1/M and then use proportional
allocation. To this end, let

g : R −→ R, g(x) := Tα + σ
√
T x, (5.80a)

g−1 : R −→ R, g−1(x) =
x− Tα

σ
√
T

, (5.80b)

∀
i=1,...,M

τi := g−1(si) =
si − Tα

σ
√
T

. (5.80c)

If Φ : R −→ [0, 1], Φ(x) := 1√
2π

∫ x

−∞ e−ξ2/2 dξ denotes the CDF of the standard normal
distribution, then

(

∀
i=1,...,M

1

M
= ai

(5.79)
= Φ(τi)− Φ(τi−1)

)

⇒
(

∀
i=1,...,M

τi = Φ−1

(
i

M

))

.

(5.81)

In practise, one will need code to evaluate Φ and Φ−1. Then one obtains the τi from
(5.81), and one can employ the inverse transform method as in Ex. 3.7 to obtain i.i.d.

random numbers ι
(i)
k ∈ Ii, k = 1, . . . , ni = nai = K, that are distributed according

to WT under the condition Ii, i.e. according to N
(
Tα, Tσ2

)
|Ii: If the random variable

U : Ω −→ [0, 1] is uniformly distributed, then, analogously to (3.14) and (3.15), one
defines

∀
i=1,...,M

Vi : Ω −→ [Φ(τi−1),Φ(τi)], Vi := Φ(τi−1) +
(
Φ(τi)− Φ(τi−1)

)
U

=
i− 1

M
+
U

M
, (5.82a)

∀
i=1,...,M

Wi : Ω −→ R, Wi := Φ−1 ◦ Vi. (5.82b)

Then,

U ∼ Unif[0, 1]
Ex. 3.7⇒ Wi ∼ N(0, 1) | ]τi−1, τi]

Lem. 3.13⇒ g(Wi) ∼ N
(
Tα, Tσ2

)
|Ii. (5.83)



5 VARIANCE REDUCTION TECHNIQUES 78

Ideally, for the stratified estimator

M∑

i=1

ai
ni

ni∑

k=1

f(Y
(i)
k )

ni=nai=K
=

M∑

i=1

1

n

K∑

k=1

f(Y
(i)
k ) (5.84)

according to (5.57) and (5.58), one would like, for each ι
(i)
k ∈ Ii, to sample i.i.d. Y

(i)
k ∈ Si

such that Y
(i)
k ∼ BM(α, σ2) | {WT = ι

(i)
k } and then compute f(Y

(i)
k ) with f as defined in

(5.77). However, an exact evaluation of f(Y
(i)
k ) is not at hand, so one uses a quadrature

formula, for example, by means of the composite rectangle rule

f(Y
(i)
k ) ≈ exp

(

−h
N−1∑

ν=0

Y
(i)
k (ν h)

)

, (5.85)

where h = T/N , N ∈ N, is some step size; and the values Y
(i)
k (ν h) are readily obtained

using the Brownian bridge construction of Sec. 4.1.4.

5.4 Importance Sampling

Importance sampling is another technique for reducing variance when estimating the
expected value of random variables. Here the general setting is the same as previously
in Sec. 5.3. Given a probability space (Ω,A, P ), a measurable space (S,B), a random
variable Y : Ω −→ S, and a measurable function f : S −→ R, the goal is to estimate
E(f ◦ Y ) =

∫

S f(x) dPY (x) and to improve over the simple estimator 1
n

∑n
i=1 f(Yi).

The idea is to change the distribution of Y (more precisely, to replace Y by some suitable
random variable X) such that more weight is given to “important” outcomes. We will
see that the resulting importance sampling estimator is unbiased, but examples will
show one has to use care – while an apt choice of importance sampling estimator can,
depending on the situation, reduce the variance by orders of magnitude, a bad choice
might also increase the variance by orders of magnitude – it can even make the variance
infinite (see Ex. 5.22(a) below).

The idea is to make use of the Radon-Nikodym Th. A.72: According to Th. A.72 and
Th. A.73, if ν is another probability measure on (S,B) such that ν ≪ PY (i.e. ν is
absolutely continuous with respect to PY , i.e. PY (B) = 0 implies ν(B) = 0), then ν has
a unique density g, called the Radon-Nikodym derivative of ν with respect to PY ,

g : S −→ R+
0 , g =

dν

dPY

, (5.86)

cf. Def. A.74.

Definition 5.19. Let (Ω,A, P ) be a probability space, (S,B) a measurable space, and
Y,X : Ω −→ S a random variables, satisfying ν := PX ≪ PY . If g is as in (5.86),
namely the Radon-Nikodym derivative of PX with respect to PY , i.e. PX = gPY , and
X1, X2, . . . are i.i.d. copies of X, then

∀
n∈N

Ȳn,g :=
1

n

n∑

i=1

f(Xi)

g(Xi)
(5.87)
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is called the importance sampling estimator of E(f ◦ Y ) based on g.

Remark 5.20. Note that (5.87) is well-defined P -almost everywhere, since g(Xi) > 0
P -almost everywhere:

P{g ◦Xi = 0} = P
{
Xi ∈ g−1{0}

}
= PX

(
g−1{0}

)
=

∫

g−1{0}
g dPY = 0. (5.88)

Remark 5.21. Consider the situation of Def. 5.19.

(a) One has

E(f ◦ Y ) =

∫

S
f(x) dPY (x) =

∫

S

f(x)

g(x)
g(x) dPY (x) =

∫

S

f(x)

g(x)
dPX(x)

= E

(
f

g
◦X

)

(5.89)

and

∀
n∈N

E(Ȳn,g) = E

(
f

g
◦X

)

= E(f ◦ Y ), (5.90)

showing the importance sampling estimator is unbiased.

(b) The variance of the importance sampling estimator (5.87) is, for n ∈ N,

V (Ȳn,g) =
1

n
V

(
f(X)

g(X)

)

=
1

n

(

E

(
f 2

g2
◦X

)

−
(
E(f ◦ Y )

)2
)

=
1

n

(∫

S

f(x)2

g(x)2
dPX(x) −

(
E(f ◦ Y )

)2
)

=
1

n

(∫

S

f(x)2

g(x)2
g(x) dPY (x) −

(
E(f ◦ Y )

)2
)

=
1

n

(∫

S

f(x)2

g(x)
dPY (x) −

(
E(f ◦ Y )

)2
)

. (5.91)

Example 5.22. We return once more to our standard example of using Monte Carlo
to compute the integral

∫ 1

0
f(x) dx with f given by (5.21), previously considered in

Ex. 5.3, Ex. 5.9, and Ex. 5.17, this time using importance sampling. We will base the
importance sampling estimator on different functions g. First, for the convenience of
the reader, f is restated:

f : [0, 1] −→ R, f(x) := 4
√
1− x2.

We also recall that with uniformly distributed Y := U : Ω −→ [0, 1], it is
∫ 1

0
f(x) dx =

E(f ◦ Y ).

(a) As mentioned above, a poor choice of g can actually increase the variance, and this
first example is designed to illustrate a worst-case scenario: Consider

g : [0, 1] −→ R, g(x) := 2x. (5.92)
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Letting X : Ω −→ [0, 1] be distributed according to g (i.e. PX = gPY = gλ1) with
i.i.d. copies X1, X2, . . . (which could be easily generated from i.i.d. copies of Y = U
using the inverse transform method), the importance sampling estimator based on
g is

∀
n∈N

Ȳn,g =
1

n

n∑

i=1

f(Xi)

g(Xi)
=

1

n

n∑

i=1

4
√

1−X2
i

2Xi

. (5.93)

Bearing in mind the computation of Rem. 5.21(b), we compute the variance

V

(
f

g
◦X

)

=

∫ 1

0

f(x)2

g(x)
dPY (x) −

(
E(f ◦ Y )

)2 (5.29)
=

∫ 1

0

16 (1− x2)

2x
dx − π2

= 8

∫ 1

0

1

x
dx − 8

∫ 1

0

x dx − π2 = ∞, (5.94)

explaining what was meant by g leading to a worst-case scenario.

(b) A better choice of g turns out to be

g : [0, 1] −→ R, g(x) :=
4− 2x

3
. (5.95)

Once again, letting X : Ω −→ [0, 1] be distributed according to g with i.i.d. copies
X1, X2, . . . (which can still be easily generated from i.i.d. copies of Y = U using
the inverse transform method), the importance sampling estimator based on g is

∀
n∈N

Ȳn,g =
1

n

n∑

i=1

f(Xi)

g(Xi)
=

1

n

n∑

i=1

12
√

1−X2
i

4− 2Xi

. (5.96)

To compare variances, we recall from (5.32) that V (f ◦ Y ) ≈ 0.797 and compute

V

(
f

g
◦X

)

=

∫ 1

0

24 (1− x2)

2− x
dx − π2

= 24

[

−6 + 2x+
x2

2
+ 3 ln(x− 2)

]1

0

− π2 ≈ 0.224, (5.97)

showing that this g reduces variance by more than a factor 3.5 when compared with
the simple estimator.

Now that we have seen an example of a g that failed when used in an importance
sampling estimator and one example of a g that worked, let us look more closely at the
general variance formula (5.91) to better understand what makes the difference between
a good and a bad g:

Remark 5.23. To make the variance V (Ȳn,g) small, according to (5.91), one has to make
the integral in the last line of (5.91) small. Indeed, for E(f ◦Y ) 6= 0, it is minimized by
the choice

g :=
f

E(f ◦ Y )
⇒ V (Ȳn,g) =

1

n

(

E(f ◦ Y )

∫

S

f(x)2

f(x)
dPY (x) −

(
E(f ◦ Y )

)2
)

= 0.

(5.98)



6 SIMULATION OF SDE 81

Alas, this choice of g is not available if E(f ◦ Y ) is unknown.

Still, a good importance sampling estimator will have to have g large where f is large
(this is, actually, where the name “importance sampling” comes from – a good g gives
more weight to the “important” values of f). As seen from Ex. 5.22(a), it is crucial not
to have g ≪ f 2 anywhere, whereas g ≫ f 2 for some values would not make the variance
large. Bearing this in mind, one should roughly choose g proportional to f .

6 Simulation of SDE

6.1 Setting

If nothing else is stated, all random variables are assumed to be defined on the probability
space (Ω,A, P ), which, for technical reasons, we also assume to be complete. Moreover,
let T > 0.

The goal is to numerically simulate solutions to the SDE

dXt = a(t,Xt) dt + b(t,Xt) dWt (6.1a)

with initial condition
X0 = Xinit, (6.1b)

where, in the most general situation, the stochastic process (Xt)t∈[0,T ] is Rd-valued,
(Wt)t∈[0,T ] is an m-dimensional standard Brownian motion with drift vector α = 0 and
covariance matrix Σ = Id, the given random variable Xinit : Ω −→ Rd is independent of
the family (Wt)t∈[0,T ], and the maps

a : [0, T ]× Rd −→ Rd, b : [0, T ]× Rd −→ Rd×m (6.2)

are measurable. The first summand on the right-hand side of (6.1a) is often referred to
as the drift term, whereas the second summand is called the diffusion term.

Under suitable hypotheses, it is known that the SDE with initial condition (6.1) admits
a unique strong solution. In preparation to state this result, we need some definitions:

Definition 6.1. An Rd-valued stochastic process (Xt)t∈[0,T ], d ∈ N, is called an Itô
process if, and only if, it can be represented as

∀
t∈[0,T ]

Xt = X0 +

∫ t

0

au du +

∫ t

0

bu dWu , (6.3)

typically written in the shorthand form

∀
t∈[0,T ]

dXt = at dt + bt dWt , (6.4)

where (Wt)t∈[0,T ] denotes a k-dimensional standard Brownian motion with drift vector
α = 0 and covariance matrix Σ = Id, k ∈ N, and the stochastic processes

at : Ω −→ Rd, bt : Ω −→ Rd×k (6.5)
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satisfy

P

{

ω ∈ Ω :

∫ T

0

∥
∥at(ω)

∥
∥ dt <∞

}

= 1 (6.6a)

and

P

{

ω ∈ Ω :

∫ T

0

∥
∥bt(ω)

∥
∥
2
dt <∞

}

= 1, (6.6b)

respectively. Note that conditions (6.6) do not depend on which particular norms on Rd

and Rd×k are chosen.

Definition 6.2. An Itô process (Xt)t∈[0,T ] is called a strong solution to (6.1) if, and only
if,

X0 = Xinit almost surely, (6.7a)

∀
t∈[0,T ]

Xt = X0 +

∫ t

0

a(u,Xu) du +

∫ t

0

b(u,Xu) dWu , (6.7b)

∀
ω∈Ω

the path t 7→ Xt(ω) is continuous, (6.7c)

and
∀

t∈[0,T ]
Xt is Ft-measurable, (6.7d)

where the increasing family of σ-algebras (Ft)t∈[0,T ], Ft ⊆ A, is constructed as follows:

∀
t∈[0,T ]

Gt := σ
(
Xinit, (Ws)s∈[0,t]

)
, (6.8a)

G∞ := σ




⋃

t∈[0,T ]

Gt



 , (6.8b)

N :=

{

N ∈ A : ∃
G∈G∞

(
N ⊆ G ∧ P (G) = 0

)
}

, (6.8c)

∀
t∈[0,T ]

Ft := σ(N ∪ Gt). (6.8d)

Condition (6.7b) is usually stated by saying the process (Xt)t∈[0,T ] is adapted to the
filtration (Ft)t∈[0,T ].

Theorem 6.3. The SDE with initial condition (6.1) has a strong solution if the following
conditions are satisfied:

(a) Xinit is independent of (Wt)t∈[0,T ] and satisfies E
(
‖Xinit‖2

)
<∞.

(b) Both a and b are measurable and globally Lipschitz continuous with respect to x.
More precisely, the Lipschitz continuity means a, b satisfy

∃
L≥0

∀
t∈[0,T ],

x,y∈Rd

∥
∥a(t, x)− a(t, y)

∥
∥+

∥
∥b(t, x)− b(t, y)

∥
∥ ≤ L

∥
∥x− y

∥
∥. (6.9)
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(c) a and b satisfy a linear growth condition with respect to x, which can be expressed
in the form

∃
K≥0

∀
t∈[0,T ],

x∈Rd

∥
∥a(t, x)

∥
∥
2
+
∥
∥b(t, x)

∥
∥
2 ≤ K

(
1 + ‖x‖2

)
. (6.10)

Moreover, this strong solution (Xt)t∈[0,T ] satisfies

∀
t∈[0,T ]

E
(
‖Xt‖2

)
≤ C

(

1 + E
(
‖Xinit‖2

))

eC t <∞ (6.11)

with a constant C ≥ 0 depending only on L, K, and T ; and the strong solution (Xt)t∈[0,T ]

is unique in the sense that, if (Yt)t∈[0,T ] is any strong solution to (6.1), then

P
{
ω ∈ Ω : Xt(ω) = Yt(ω) for each t ∈ [0, T ]

}
= 1. (6.12)

Proof. We just give the idea of the proof and refer to the literature for details. The
uniqueness proof is based on Gronwall’s inequality. Regarding existence, a standard
proof for the existence of solutions to deterministic ordinary differential equations is
to use the integral form of the equation to define a sequence of approximations to the
solution, and then obtain a solution as a limit of an approximating sequence. In the
SDE case, one can proceed analogously, defining an approximating sequence by

∀
t∈[0,T ]

X
(0)
t := Xinit, (6.13a)

∀
t∈[0,T ],
k∈N0

X
(k+1)
t := Xinit +

∫ t

0

a(u,X(k)
u ) du +

∫ t

0

b(u,X(k)
u ) dWu . (6.13b)

For details of the proof see, e.g., [Øk03, Th. 5.2.1] or [KS98, Ch. 5, Ths. 2.5, 2.9] (proof
partially as problems, solutions included). �

6.2 The Euler Scheme

Definition 6.4. In the situation of (6.1), given discrete times 0 = t0 < t1 < · · · <
tN ≤ T , N ∈ N, and an i.i.d. family (Z1, . . . , ZN) of m-dimensional random vectors,
N(0, Id)-distributed, the recursion

X̂0 := Xinit, (6.14a)

∀
i=0,...,N−1

X̂ti+1
:= X̂ti + a

(
ti, X̂ti

)
(ti+1 − ti) + b

(
ti, X̂ti

)
Zi+1

√

ti+1 − ti, (6.14b)

is called an Euler scheme for the SDE (6.1). It defines the discrete stochastic process
(X̂0, . . . , X̂tN ), supposed to approximate the solution to (6.1).

Remark 6.5. For a fixed time step size h > 0, we have ti = ih and, writing X̂i instead
of X̂ti , (6.14b) simplifies to

∀
i=0,...,N−1

X̂i+1 := X̂i + a
(
ih, X̂i

)
h+ b

(
ih, X̂i

)
Zi+1

√
h. (6.15)

—
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As long as a and b are easy to evaluate, implementation of the Euler scheme is straight-
forward, cf. the recursions in Sections 4.1.2 and 4.1.5. We will now address the questions
of how to improve on the Euler scheme and in what sense the process (X̂0, . . . , X̂tN ) ap-
proximates the strong solution (Xt)t∈[0,T ] to (6.1).

6.3 Refinement of the Euler Scheme

Before discussing quantities for gauging the accuracy of discretizations in Sec. 6.4 below,
we present a heuristic derivation of a discretization scheme due to Milstein [Mil75]. For
the sake of simplicity, we will restrict ourselves to autonomous SDE (where a, b do not
explicitly depend on the time variable t) and to equidistant time steps h as in (6.15).

6.3.1 1-Dimensional Case

We consider d = m = 1, in particular, the solution (Xt)t∈[0,T ] to (6.1) is R-valued.

We start with the observation that the approximation of the drift term in (6.15) is
O(h), whereas the approximation of the diffusion term is O(

√
h) (of course, this is not

entirely correct, since Zi+1 is not a function mapping real numbers to real numbers, but
such things happen frequently in heuristic arguments). This yields the idea of trying to
improve the diffusion approximation to make it O(h) as well.

One obtains the Euler scheme (6.15) from (6.7b) by approximating the integrals using
rectangle rules,

∫ t+h

t

a(Xu) du ≈ a(Xt)h, (6.16a)

∫ t+h

t

b(Xu) dWu ≈ b(Xt) (Wt+h −Wt), (6.16b)

approximating the integrands over [t, t+h] by their respective values at the lower bound
t. The idea is now to try to improve on the approximation in (6.16b). To this end, it is
an exercise to assume b to be twice differentiable and to use Itô’s formula (C.3) to show
the process (b(Xt))t∈[0,T ] satisfies the SDE

db(Xt) = αb(Xt) dt + σb(Xt) dWt , (6.17)

where

αb(Xt) := b′(Xt) a(Xt) +
1

2
b′′(Xt) b

2(Xt), (6.18a)

σb(Xt) := b′(Xt) b(Xt). (6.18b)

Now (6.17) is used together with the Euler scheme to approximate b(Xu) for t ≤ u ≤
t+ h:

b(Xu) ≈ b(Xt) + αb(Xt) (u− t) + σb(Xt) (Wu −Wt). (6.19)
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Applying the same order analysis already used at the beginning of this section to (6.19),
one observes O(u − t) for the drift term and O(

√
u− t) for the diffusion term (in the

same, not entirely correct, way as in the situation of the second paragraph of this section
above). Dropping the higher order drift term, one obtains the approximation

∀
u∈[t,t+h]

b(Xu) ≈ b(Xt) + σb(Xt) (Wu −Wt)

= b(Xt) + b′(Xt) b(Xt) (Wu −Wt).
(6.20)

In (6.16b), the approximation b(Xu) ≡ b(Xt) was used. Using (6.20) instead, provides
∫ t+h

t

b(Xu) dWu ≈
∫ t+h

t

(

b(Xt) + b′(Xt) b(Xt) (Wu −Wt)
)

dWu

= b(Xt) (Wt+h −Wt) + b′(Xt) b(Xt)

∫ t+h

t

(Wu −Wt) dWu . (6.21)

To use this in a refined Euler recursion scheme, we need to work on the last integral in
(6.21) a bit further:

∫ t+h

t

(Wu −Wt) dWu =

∫ t+h

t

Wu dWu −Wt

∫ t+h

t

dWu

=

∫ t+h

0

Wu dWu −
∫ t

0

Wu dWu −Wt

(
Wt+h −Wt

)

= Yt+h − Yt −Wt

(
Wt+h −Wt

)
(6.22)

with random variables

Yt :=

∫ t

0

Wu dWu . (6.23)

Noting that the stochastic process (Yt)t∈[0,T ] satisfies the initial condition Y0 ≡ 0 and
the SDE

dYt = Wt dWt , (6.24)

Itô’s formula (C.3) shows (exercise)

Yt =
W 2

t

2
− t

2
. (6.25)

Now this expression is plugged back into (6.22):
∫ t+h

t

(Wu −Wt) dWu =
W 2

t+h

2
− t+ h

2
− W 2

t

2
+
t

2
−Wt

(
Wt+h −Wt

)

=

(
Wt+h −Wt

)2

2
− h

2
. (6.26)

Using (6.26) to replace the integral in (6.21), we obtain the Milstein approximation (i.e.
the refined Euler approximation)

Xt+h = Xt +

∫ t+h

t

a(Xu) du +

∫ t+h

t

b(Xu) dWu

≈ Xt + a(Xt)h+ b(Xt) (Wt+h −Wt) +
1

2
b′(Xt) b(Xt)

(
(Wt+h −Wt)

2 − h
)
.

(6.27)
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Using an i.i.d. family (Z1, . . . , ZN) random variables, N(0, 1)-distributed, such that
Wti+h−Wti = Zi+1

√
h, we obtain the following recursion, sometimes called the Milstein

scheme:

X̂0 := Xinit, (6.28a)

∀
i=0,...,N−1

X̂i+1 := X̂i + a
(
X̂i

)
h+ b

(
X̂i

)
Zi+1

√
h

+
1

2
b′(X̂i) b(X̂i) (Z

2
i+1 − 1)h.

(6.28b)

Even though we assumed the autonomous situation in the above heuristic derivation of
the Milstein scheme, it turns out (6.28) generalizes to the nonautonomous case in the
canonical way (see [KP99, Ch. 10, (3.1)]):

X̂0 := Xinit, (6.29a)

∀
i=0,...,N−1

X̂i+1 := X̂i + a
(
ti, X̂i

)
h+ b

(
ti, X̂i

)
Zi+1

√
h

+
1

2
b′(ti, X̂i) b(ti, X̂i) (Z

2
i+1 − 1)h,

(6.29b)

where the prime b′ now means the partial derivative with respect to the second variable.

As compared with the Euler scheme (6.15), the Milstein scheme contains an additional
term that results in both the drift and diffusion term now being O(h).

6.3.2 Multi-Dimensional Case

We now consider the general case of Rd-valued (Xt)t∈[0,T ] and Rm-valued (Wt)t∈[0,T ],
d,m ∈ N. For k = 1, . . . , d and l = 1, . . . ,m, let (Xt)k, ak, and bkl denote the components
of the functions Xt, a, and b, respectively. One proceeds analogous to the 1-dimensional
case: For the components, one obtains from (6.7b):

∀
t∈[0,T−h],
k=1,...,d

(Xt+h)k = (Xt)k +

∫ t+h

t

ak(u,Xu) du +
m∑

l=1

∫ t+h

t

bkl(u,Xu) d(Wl)u . (6.30)

To compare with the formulas from Sec. 6.3.1, we once again assume a, b to have no
explicit time dependence. Then (6.16a) generalizes to

∀
k=1,...,d

∫ t+h

t

ak(Xu) du ≈ ak(Xt)h (6.31)

and, due to Itô’s formula in multiple dimensions [Gla04, Th. B.1.1], (6.21) generalizes
to

∀
k=1,...,d,
l=1,...,m

∫ t+h

t

bkl(Xu) d(Wl)u

≈ bkl(Xt)
(

(Wt+h)l − (Wt)l

)

+
d∑

α=1

m∑

β=1

∂bkl
∂xα

(Xt) bαβ(Xt)

∫ t+h

t

(

(Wu)β − (Wt)β

)

d(Wl)u .

(6.32)
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Thus, introducing the abbreviations

∀
i=0,...,N−1,
l=1,...,m

(∆W )
(i)
l := (Wti+h)l − (Wti)l, (6.33a)

∀
i=0,...,N−1,
β,l=1,...,m

I
(i)
βl :=

∫ ti+h

ti

(

(Wu)β − (Wt)β

)

d(Wl)u , (6.33b)

and reinstating possible explicit time depencencies of a and b, the multi-dimensional
Milstein scheme can be written as

X̂(0) := Xinit, (6.34a)

∀
i=0,...,N−1,
k=1,...,d

X̂
(i+1)
k := X̂

(i)
k + ak

(
ti, X̂

(i)
)
h+

m∑

l=1

bkl
(
ti, X̂

(i)
)
(∆W )

(i)
l

+
m∑

l=1

d∑

α=1

m∑

β=1

∂bkl
∂xα

(
ti, X̂

(i)
)
bαβ
(
ti, X̂

(i)
)
I
(i)
βl .

(6.34b)

To make use of (6.34) in practise is, in general, much more difficult than in the 1-
dimensional case, where the main problem is the approximation of the stochastic inte-
grals I

(i)
βl for β 6= l: While, for β = l, the argument from Sec. 6.3.1 (cf. (6.26)) yields

∀
i=0,...,N−1,
l=1,...,m

I
(i)
ll =

∫ ti+h

ti

(

(Wu)l − (Wti)l

)

d(Wl)u =

(
(Wti+h)l − (Wti)l

)2

2
− h

2
, (6.35)

there is no simple formula to evaluate the mixed integrals I
(i)
βl for β 6= l.

In [KP99, p. 347], it is suggested to reformulate (6.34) in terms of Stratonovich integrals

(rather than the Itô integrals I
(i)
βl ) and they then propose a simulation scheme for the

involved Stratonovich integrals, see [KP99, Ch. 10, (3.7)-(3.10)]. Alternatively, [Gla04,
p. 344] provides references for methods aiming at sampling from the respective distri-

butions of the I
(i)
βl , β 6= l. However, in practise, it is often possible (and advisable), to

take advantage of the special features of the concrete problem at hand to simplify (6.34)

such that sampling the I
(i)
βl for β 6= l can be avoided.

6.4 Convergence Order, Error Criteria

As in the previous section, we will restrict ourselves to equidistant time steps of size
h > 0. The goal is to discuss convergence and error criteria for the Euler scheme (6.15)
and for the Milstein schemes (6.28) and (6.34). In particular, we want to address the
question if the Milstein schemes really constitutes an improvement over the Euler scheme
in any rigorous sense.

So the goal is to compare discrete processes (X̂0, X̂h, . . . , X̂Nh), N := ⌊T/h⌋, given by
(6.15), (6.28), or (6.34), at least for sufficiently small h, with the continuous process
(Xt)t∈[0,T ], constituting the strong solution to (6.1).
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Definition 6.6. A function f : Rd −→ R, d ∈ N, is called polynomially bounded if, and
only if, there exist constants q, k > 0 such that

f(x) ≤ k
(
1 + ‖x‖q

)
for each x ∈ Rd. (6.36)

For each β ∈ N0, let Cβ
P(R

d) denote the set of all f : Rd −→ R such that f has
continuous partials up to order β and such that all these derivatives are polynomially
bounded.

Definition 6.7. Consider a fixed Rd-valued stochastic process (Xt)t∈[0,T ] and, for each

h > 0, a discrete Rd-valued process (X̂0, X̂h, . . . , X̂Nh). We will refer to the family of
discrete processes as the discretization.

(a) The discretization is defined to have strong order of convergence β > 0 if, and only
if,

∃
c>0,
ǫ>0

∀
0<h<ǫ

E
(
‖X̂Nh −XT‖

)
≤ chβ. (6.37)

(b) The discretization is defined to have weak order of convergence β ∈ N if, and only
if,

∀
f∈C2β+2

P (Rd)

∃
c>0,
ǫ>0

∀
0<h<ǫ

∣
∣
∣E
(
f(X̂Nh)

)
− E

(
f(XT )

)
∣
∣
∣ ≤ chβ. (6.38)

Remark 6.8. The terms strong and weak in Def. 6.7(a) and Def. 6.7(b), respectively,
stem from (6.37), roughly, requiring the functions X̂Nh and XT to be close, whereas
(6.38), roughly, requires the distributions of X̂Nh and XT to be close. However, this is
somewhat deceiving: While (6.37) clearly implies (6.38) for d = 1, β ∈ N and f = Id
(since, in that case,

∣
∣E(X̂Nh)−E(XT )

∣
∣ ≤ E(|X̂Nh−XT |), in general, (6.37) does not even

imply E(X̂2
Nh) < ∞. Thus, in general, conditions (6.37) and (6.38) are just different,

and it does not always make sense to try to compare them.

Theorem 6.9. Assume the hypotheses of Th. 6.3. The following statements are meant
with respect to the strong solution (Xt)t∈[0,T ] of (6.1).

(a) If the coefficient functions a, b satisfy the additional following growth condition
(which they do trivially in the case of no explicit time dependence)

∃
C≥0

∀
s,t∈[0,T ],

x∈Rd

∥
∥a(s, x)−a(t, x)

∥
∥+
∥
∥b(s, x)−b(t, x)

∥
∥ ≤ C

(
1+‖x‖

)
|s−t|1/2, (6.39)

then the discretization given by the Euler scheme (6.15) has strong order of conver-
gence 1/2.

(b) If E
(
‖Xinit‖i

)
< ∞ for each i ∈ N and a, b have no explicit time dependence,

satisfying a, b ∈ C3
P(R

d), then the discretization given by the Euler scheme (6.15)
has weak order of convergence 1.
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Proof. For (a), see [KP99, Th. 10.2.2].

(b) is a special case of [KP99, Th. 14.5.2]. �

The following Th. 6.11 regarding the convergence of the Milstein scheme requires con-
ditions that extend conditions (b) and (c) of Th. 6.3 to derivatives of the coefficient
functions a and b. Following [KP99], we introduce the following differential operators
to state these conditions:

Notation 6.10. Define

L0 :=
∂

∂t
+

d∑

k=1

ak
∂

∂xk
, (6.40a)

∀
l=1,...,m

Ll :=
d∑

k=1

bkl
∂

∂xk
, (6.40b)

a := a− 1

2

m∑

l=1

Ll bl, (6.40c)

where bl denotes the lth column of the matrix b. In particular, the definition of a requires
b to have first partials.

Theorem 6.11. Under the hypotheses of Th. 6.3 and additional requirement that a has
first partials, b has first and second partials, and there exist K2, K3, K4 ≥ 0 (using the
same notation for the constants as in [KP99, Th. 10.3.5]) such that

∀
t∈[0,T ],

x,y∈Rd

∥
∥a(t, x)− a(t, y)

∥
∥ ≤ K2‖x− y‖, (6.41a)

∀
t∈[0,T ],

x,y∈Rd,
β,l=1,...,m

∥
∥Lβbl(t, x)− Lβbl(t, y)

∥
∥ ≤ K2‖x− y‖, (6.41b)

∀
t∈[0,T ],

x∈Rd,
λ=0,...,m

∥
∥a(t, x)

∥
∥+

∥
∥Lλa(t, x)

∥
∥ ≤ K3

(
1 + ‖x‖

)
(6.41c)

∀
t∈[0,T ],

x∈Rd,
β,l=1,...,m

∥
∥Lβbl(t, x)

∥
∥ ≤ K3

(
1 + ‖x‖

)
(6.41d)

∀
t∈[0,T ],x∈Rd,

λ=0,...,m
β,l=1,...,m

∥
∥LλLβbl(t, x)

∥
∥ ≤ K3

(
1 + ‖x‖

)
(6.41e)

∀
s,t∈[0,T ],

x∈Rd

∥
∥a(s, x)− a(t, x)

∥
∥ ≤ K4

(
1 + ‖x‖

)
|s− t|1/2, (6.41f)

∀
s,t∈[0,T ],

x∈Rd

∥
∥bl(s, x)− bl(t, x)

∥
∥ ≤ K4

(
1 + ‖x‖

)
|s− t|1/2, (6.41g)

∀
t∈[0,T ],

x,y∈Rd,
β,l=1,...,m

∥
∥Lβbl(t, x)− Lβbl(t, y)

∥
∥ ≤ K4

(
1 + ‖x‖

)
|s− t|1/2, (6.41h)
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the discretization given by the Milstein scheme (6.34) (or, as a special case, by the
1-dimensional Milstein scheme (6.28)) has strong order of convergence 1.

Proof. See [KP99, Th. 10.3.5], which is proved as a special case of [KP99, Th. 10.6.3],
where the proof of [KP99, Th. 10.6.3] uses Itô-Taylor expansions. �

Remark 6.12. It is stated without reference in [Gla04, p. 347] that the discretization
given by the Milstein scheme (6.28) also has weak order of convergence 1 (the same as
the Euler scheme).

6.5 Second-Order Methods

We remain in the setting of equidistant time steps 0 < h < T .

6.5.1 1-Dimensional Case

As before, we will also assume there is no explicit time dependence in a, b during the
following heuristic derivation of the second-order scheme.

In Th. 6.11 , we used the differential operators from (6.40) to make notation more man-
agable. In the following, we will, once again, introduce suitable differentiable operators
to simplify notation.

Notation 6.13. Define

L0 := a
d

dx
+

1

2
b2

d2

dx 2
(6.42a)

L1 := b
d

dx
, (6.42b)

such that, for each twice differentiable f : R −→ R, one has

∀
x∈R

L0f(x) = a(x)f ′(x) +
1

2
b2(x)f ′′(x), (6.43a)

∀
x∈R

L1f(x) = b(x)f ′(x). (6.43b)

Remark 6.14. If the R-valued stochastic process (Xt)t∈[0,T ] satisfies the SDE (6.1a)
in 1 dimension with a, b not explicitly time-dependent, then, for twice differentiable
f : R −→ R, Itô’s formula (C.3) yields

df(Xt) =

(

a(Xt) f
′(Xt) + b2(Xt)

f ′′(Xt)

2

)

dt + b(Xt) f
′(Xt) dWt

Not. 6.13
= L0f(Xt) dt + L1f(Xt) dWt . (6.44)

—
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As for all previous schemes, we start out from

∀
t∈[0,T ],

0<h≤T−t

Xt+h = Xt +

∫ t+h

t

a(Xu) du +

∫ t+h

t

b(Xu) dWu , (6.45)

by approximating the integrals. We obtained the Euler scheme (6.15) by using (6.16) and
the Milstein schemes of Sec. 6.3 by refining the approximation (6.16b) of the diffusion
term. Now we will have to refine the approximation (6.16a) of the drift term as well.

Assuming a to be twice differentiable allows application of (6.44) with f = a, yielding

da(Xt) = L0a(Xt) dt + L1a(Xt) dWt (6.46a)

and

∀
t,u∈[0,T ]

a(Xu) = a(Xt) +

∫ u

t

L0a(Xs) ds +

∫ u

t

L1a(Xs) dWs (6.46b)

≈ a(Xt) + L0a(Xt)

∫ u

t

ds + L1a(Xt)

∫ u

t

dWs . (6.46c)

Recalling, 0 = t0 < t1 < · · · < tN = T , where ti = ih for each i = 0, . . . , N , we use the
approximation (6.46c) for the drift term in (6.45) (with t = ti) to obtain

∀
i=0,...,N−1

∫ ti+h

ti

a(Xu) du ≈ a(Xti)h+ L0a(Xti)

∫ ti+h

ti

∫ u

ti

ds du

+ L1a(Xti)

∫ ti+h

ti

∫ u

ti

dWs du .

(6.47)

Introducing the abbreviations (consistent with (6.33b) above; (6.48c) and (6.48d) will
be used in the approximation of the diffusion term below)

∀
i=0,...,N−1

I
(i)
00 :=

∫ ti+h

ti

∫ u

ti

ds du , (6.48a)

∀
i=0,...,N−1

I
(i)
10 :=

∫ ti+h

ti

∫ u

ti

dWs du , (6.48b)

∀
i=0,...,N−1

I
(i)
01 :=

∫ ti+h

ti

∫ u

ti

ds dWu , (6.48c)

∀
i=0,...,N−1

I
(i)
11 :=

∫ ti+h

ti

∫ u

ti

dWs dWu , (6.48d)

(6.47) reads

∀
i=0,...,N−1

∫ ti+h

ti

a(Xu) du ≈ a(Xti)h+ L0a(Xti) I
(i)
00 + L1a(Xti) I

(i)
10 . (6.49)

Analogously, we now work to approximate the diffusion term in (6.45): Assuming b to
be twice differentiable allows application of (6.44) with f = b, yielding

db(Xt) = L0b(Xt) dt + L1b(Xt) dWt (6.50a)
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and

∀
t,u∈[0,T ]

b(Xu) = b(Xt) +

∫ u

t

L0b(Xs) ds +

∫ u

t

L1b(Xs) dWs (6.50b)

≈ b(Xt) + L0b(Xt)

∫ u

t

ds + L1b(Xt)

∫ u

t

dWs . (6.50c)

As the reader will have expected, we now use the approximation (6.50c) for the diffusion
term in (6.45) (with t = ti) to obtain

∀
i=0,...,N−1

∫ ti+h

ti

b(Xu) dWu ≈ b(Xti) (Wti+h −Wti) + L0b(Xti)

∫ ti+h

ti

∫ u

ti

ds dWu

+ L1b(Xti)

∫ ti+h

ti

∫ u

ti

dWs dWu

(6.48)
= b(Xti) (Wti+h −Wti) + L0b(Xti) I

(i)
01 + L1b(Xti) I

(i)
11 .

(6.51)
Using both (6.49) and (6.51) in (6.45), we arrive at the approximation

∀
i=0,...,N−1

Xti+h ≈ Xti + a(Xti)h+ L0a(Xti) I
(i)
00 + L1a(Xti) I

(i)
10

+ b(Xti) (Wti+h −Wti) + L0b(Xti) I
(i)
01 + L1b(Xti) I

(i)
11

Not. 6.13
= Xti + a(Xti)h+ b(Xti) (Wti+h −Wti)

+

(

a(Xti)a
′(Xti) +

1

2
b2(Xti) a

′′(Xti)

)

I
(i)
00

+

(

a(Xti)b
′(Xti) +

1

2
b2(Xti) b

′′(Xti)

)

I
(i)
01

+ b(Xti)a
′(Xti) I

(i)
10 + b(Xti)b

′(Xti) I
(i)
11 .

(6.52)

In order to make the recursion given by (6.52) implementable, one has to be able to

simulate the double integrals I
(i)
kl . To this end, we first note

I
(i)
00 =

∫ ti+h

ti

∫ u

ti

ds du =
h2

2
. (6.53)

Next, we already know from (6.26) that

I
(i)
11 =

∫ ti+h

ti

∫ u

ti

dWs dWu =

∫ ti+h

ti

(Wu −Wti) dWu
(6.26)
=

(
Wti+h −Wti

)2

2
− h

2
. (6.54)

A relation between I
(i)
01 and I

(i)
10 can be deduced using the stochastic integration by parts

formula (C.4b): Clearly, (C.4b) implies

(ti + h)Wti+h − tiWti =

∫ ti+h

ti

Wu du +

∫ ti+h

ti

u dWu . (6.55)
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Thus

I
(i)
01 =

∫ ti+h

ti

∫ u

ti

ds dWu =

∫ ti+h

ti

(u− ti) dWu

(6.55)
= (ti + h)Wti+h − tiWti −

∫ ti+h

ti

Wu du − tiWti+h + tiWti

= hWti+h −
∫ ti+h

ti

Wu du = h (Wti+h −Wti)−
∫ ti+h

ti

(Wu −Wti) du

= h (Wti+h −Wti)−
∫ ti+h

ti

∫ u

ti

dWs du

(6.48b)
= h (Wti+h −Wt)− I

(i)
10 . (6.56)

So it just remains to find a way to simulate the distribution of

I
(i)
10 =

∫ ti+h

ti

∫ u

ti

dWs du =

∫ ti+h

ti

(Wu −Wti) du . (6.57)

More precisely, we have to be able to simulate the distribution of I
(i)
10 , given Wti = x,

x ∈ R. The trick is to notice that (Wti+h − Wti)|{Wti = x} and I
(i)
10 |{Wti = x} are

jointly normal, albeit not independent, where the details are compiled in the following
proposition:

Proposition 6.15. Let (Wt)t≥0 be a 1-dimensional standard Brownian motion with drift

0 and variance 1, ti ≥ 0, h > 0, and x ∈ R. If I
(i)
10 is according to (6.57) and

(∆W )(i) := Wti+h −Wti , (6.58)

then (
(∆W )(i)

I
(i)
10

) ∣
∣
∣{Wti = x} ∼ N

((
0
0

)

,

(
h h2

2
h2

2
h3

3

))

. (6.59)

Proof. Introducing the abbreviations

∀
t≥ti

W x
t := Wt|{Wti = x}, (6.60a)

X := (∆W )(i)|{Wti = x} = W x
ti+h − x, (6.60b)

Y := I
(i)
10 |{Wti = x} =

∫ ti+h

ti

(W x
u − x) du , (6.60c)

we note (

∀
t≥ti

W x
t ∼ N(x, t− ti)

)

⇒ X ∼ N(0, h). (6.61)

To obtain the distribution of Y , we use the translation invariance of Brownian motions
to observe Y ∼

∫ h

0

(
Wu|{W0 = x}−x

)
du . Then the proof of Prop. 4.21 shows Y = Yh,
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where (Yt)t≥0 is a 1-dimensional Brownian motion with drift 0 and variance (h − t)2.
Thus, Y is normally distributed with

E(Y ) = 0 (6.62a)

V (Y ) =

∫ h

0

(h− t)2 dt =

[
(t− h)3

3

]h

0

=
h3

3
(6.62b)

⇒ Y ∼ N

(

0,
h3

3

)

. (6.62c)

Thus, to establish (6.59), it merely remains to show Cov(X, Y ) = h2

2
. Since E(X) =

E(Y ) = 0, we have

Cov(X, Y ) = E(XY ) =

∫

Ω

(
(
W x

ti+h(ω)− x
)
∫ ti+h

ti

(
W x

u (ω)− x
)
du

)

dω

Fubini
=

∫ ti+h

ti

∫

Ω

(
W x

ti+h(ω)− x
) (
W x

u (ω)− x
)
dω du

=

∫ ti+h

ti

Cov(W x
ti+h − x, W x

u − x) du

(4.6)
=

∫ ti+h

ti

min{ti + h− ti, u− ti} du

=

∫ ti+h

ti

(u− ti) du =
t2i
2
+ 2tih+

h2

2
− t2i

2
− 2tih =

h2

2
, (6.63)

where the translation invariance of Brownian motions was also used to apply (4.6),
since (4.6) required a standard Brownian motion starting at t = 0, whereas (W x

t −x)t≥ti

constitutes a standard Brownian motion starting at t = ti.

Combining (6.61), (6.62), and (6.63) completes the proof of (6.59). �

Putting everything together by making use of the above formulas for the I
(i)
kl and (6.59)

in (6.52), we are now in a position to formulate the 1-dimensional second-order scheme
(it is actually also due to Milstein): Let (Z(1), . . . , Z(N)) be an i.i.d. family of random
vectors such that

∀
i=1,...,N

Z(i) =

(

Z
(i)
1

Z
(i)
2

)

∼ N

((
0
0

)

,

(
h h2/2

h2/2 h3/3

))

. (6.64)
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Then the 1-dimensional second-order scheme reads

X̂(0) := Xinit, (6.65a)

∀
i=0,...,N−1

X̂(i+1) := X̂(i) + a(X̂(i))h+ b(X̂(i))Z
(i+1)
1

+

(

a(X̂(i))a′(X̂(i)) +
1

2
b2(X̂(i)) a′′(X̂(i))

)
h2

2

+

(

a(X̂(i))b′(X̂(i)) +
1

2
b2(X̂(i)) b′′(X̂(i))

)

(Z
(i+1)
1 h− Z

(i+1)
2 )

+ b(X̂(i))a′(X̂(i))Z
(i+1)
2 +

1

2
b(X̂(i))b′(X̂(i))

(

(Z
(i+1)
1 )2 − h

)

.

(6.65b)

Theorem 6.16. Assume the hypotheses of Th. 6.3. The following statements are meant
with respect to the strong solution (Xt)t∈[0,T ] of (6.1).

(a) If E
(
|Xinit|i

)
< ∞ for each i ∈ N and a, b have no explicit time dependence, sat-

isfying a, b ∈ C6(R), where all derivatives are uniformly bounded, then the dis-
cretization given by the 1-dimensional second-order scheme (6.65) has weak order
of convergence 2.

(b) The assertion of (a) remains true if the discretization is given by the follow-

ing simplified 1-dimensional second-order scheme (arising from replacing I
(i)
10 by

(∆W )(i) h/2 and using Zi+1

√
h to simulate (∆W )(i)), using an i.i.d. family of ran-

dom variables (Z1, . . . , ZN), each Zi ∼ N(0, 1)):

X̂(0) := Xinit, (6.66a)

∀
i=0,...,N−1

X̂(i+1)

:= X̂(i) + a(X̂(i))h+ b(X̂(i))Zi+1

√
h

+

(

a(X̂(i))a′(X̂(i)) +
1

2
b2(X̂(i)) a′′(X̂(i))

)
h2

2

+

(

a(X̂(i))b′(X̂(i)) +
1

2
b2(X̂(i)) b′′(X̂(i)) + b(X̂(i))a′(X̂(i))

)

Zi+1
h

3
2

2

+
1

2
b(X̂(i))b′(X̂(i)) (Z2

i+1 − 1)h.

(6.66b)

Proof. Both (a) and (b) are special cases of [KP99, Th. 14.2.4] which, in turn, is proved
as a special case of [KP99, Th. 14.5.2]. �

Example 6.17. For the SDE

dXt = sin(Xt) dt +X2
t dWt , (6.67a)
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we have a(x) = sin(x) and b(x) = x2, i.e. (6.66) takes the form

X̂(0) := Xinit, (6.67b)

∀
i=0,...,N−1

X̂(i+1) := X̂(i) + sin(X̂(i))h+ (X̂(i))2 Zi+1

√
h

+

(

sin(X̂(i)) cos(X̂(i))− 1

2
(X̂(i))4 sin(X̂(i))

)
h2

2

+
(

2X̂(i) sin(X̂(i)) + (X̂(i))4 + (X̂(i))2 cos(X̂(i))
)

Zi+1
h

3
2

2

+ (X̂(i))3 (Z2
i+1 − 1)h.

(6.67c)

6.5.2 Multi-Dimensional Case

To see that this case does not constitute a purely academic exercise, we mention two
examples arising from mathematical finance modeling:

Example 6.18. (a) In the stochastic volatility model according to [Hes93] an asset
price S and the corresponding volatility V are modeled as R-valued stochastic
processes (St)t∈[0,T ] and (Vt)t∈[0,T ], respectively, T > 0, satisfying the coupled system
of SDE

dSt = rSt dt + St

√

Vt d(W1)t , (6.68a)

dVt = κ (θ − Vt) dt +
√

Vt
(
σ1 d(W1)t + σ2 d(W2)t

)
, (6.68b)

where r, κ, θ, σ1, σ2 > 0 and ((W1)t)t∈[0,T ], ((W2)t)t∈[0,T ] are independent 1-dimen-
sional standard Brownian motions with drift 0 and variance 1.

(b) According to the LIBOR1 market model described in [Gla04, Sec. 3.7.1] (actually
somewhat simplified for our purposes here), the so-called forward interest rates
L1, . . . , Ld, d ∈ N, are R-valued processes satisfying the coupled system of d SDE

∀
k=1,...,d

d(Lk)t = (Lk)t µk

(
(L1)t, . . . , (Ld)t

)
dt + (Lk)t σ

t
k dWt (6.69)

with given functions µk : Rd −→ R, σk ∈ Rd (interpreted as column vectors), and
a d-dimensional standard Brownian motion (Wt)t∈[0,T ] with drift 0 and covariance
matrix Id.

Our goal now is to find a multi-dimensional version of the second-order scheme (6.65),
considering the general SDE (6.1) with Rd-valued (Xt)t∈[0,T ] and Rm-valued (Wt)t∈[0,T ],
d,m ∈ N. As before, for k = 1, . . . , d and l = 1, . . . ,m, let (Xt)k, ak, and bkl denote the
components of the functions Xt, a, and b, respectively, where we continue to assume
that a and b are not explicitly time-dependent.

1London Interbank Offered Rate
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As in Sec. 6.3.2, our starting point is

∀
t∈[0,T−h],
k=1,...,d

(Xt+h)k = (Xt)k +

∫ t+h

t

ak(Xu) du +
m∑

l=1

∫ t+h

t

bkl(Xu) d(Wl)u . (6.70)

The strategy is to proceed analogous to the 1-dimensional case of Sec. 6.5.1 and to
use Itô’s formula to obtain suitable approximations of the integrals in (6.70). However,
we now need to employ the multi-dimensional version of Itô’s formula, i.e. (C.9). In
preparation, we generalize our differential operators L0,L1 of (6.42):

Notation 6.19. Define

L0 :=
d∑

k=1

ak ∂xk
+

1

2

d∑

k,α=1

m∑

l=1

bklbαl ∂xk
∂xα

(6.71a)

∀
l=1,...,m

Ll :=
d∑

k=1

bkl ∂xk
. (6.71b)

Remark 6.20. If the Rd-valued stochastic process (Xt)t∈[0,T ] satisfies the SDE (6.1a)
with a, b not explicitly time-dependent, then, for twice differentiable f : Rd −→ R, and
using

∀
k,α=1,...,d

Σkα :=
m∑

l=1

bklbαl, (6.72)

Itô’s formula (C.9) yields

df(Xt) =

(
d∑

k=1

∂xk
f(Xt) ak(Xt) +

1

2

d∑

k,α=1

∂xk
∂xα

f(Xt) Σkα(Xt)

)

dt

+
d∑

k=1

∂xk
f(Xt) bk·(Xt) dWt

Not. 6.19
= L0f(Xt) dt +

m∑

l=1

Llf(Xt) d(Wl)t . (6.73)

—

Assuming ak to be twice differentiable allows application of (6.73) with f = ak, yielding

∀
k=1,...,d

dak(Xt) = L0ak(Xt) dt +
m∑

l=1

Llak(Xt) d(Wl)t (6.74a)

and

∀
k=1,...,d,
t,u∈[0,T ]

ak(Xu) = ak(Xt) +

∫ u

t

L0ak(Xs) ds +
m∑

l=1

∫ u

t

Llak(Xs) d(Wl)s (6.74b)

≈ ak(Xt) + L0ak(Xt)

∫ u

t

ds +
m∑

l=1

Llak(Xt)

∫ u

t

d(Wl)s . (6.74c)
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Analogously, assuming the bkl to be twice differentiable allows application of (6.73) with
f = bkl, yielding

∀
k=1,...,d,
l=1,...,m

dbkl(Xt) = L0bkl(Xt) dt +
m∑

β=1

Lβbkl(Xt) d(Wβ)t (6.75a)

and

∀
k=1,...,d,
l=1,...,m,
t,u∈[0,T ]

bkl(Xu) = bkl(Xt) +

∫ u

t

L0bkl(Xs) ds +
m∑

β=1

∫ u

t

Lβbkl(Xs) d(Wβ)s (6.75b)

≈ bkl(Xt) + L0bkl(Xt)

∫ u

t

ds +
m∑

β=1

Lβbkl(Xt)

∫ u

t

d(Wβ)s . (6.75c)

In generalization of (6.48), we introduce for 0 = t0 < t1 < · · · < tN = T , where ti = ih
for each i = 0, . . . , N ,

∀
i=0,...,N−1

I
(i)
00 :=

∫ ti+h

ti

∫ u

ti

ds du =
h2

2
, (6.76a)

∀
i=0,...,N−1,
l=1,...,m

I
(i)
l0 :=

∫ ti+h

ti

∫ u

ti

d(Wl)s du , (6.76b)

∀
i=0,...,N−1,
l=1,...,m

I
(i)
0l :=

∫ ti+h

ti

∫ u

ti

ds d(Wl)u , (6.76c)

∀
i=0,...,N−1,
l,β=1,...,m

I
(i)
lβ :=

∫ ti+h

ti

∫ u

ti

d(Wl)s d(Wβ)u . (6.76d)

Combining the approximations (6.74c) and (6.75c) (for t = ti) with (6.76) yields the
approximations

∀
i=0,...,N−1,
k=1,...,d

∫ ti+h

ti

ak(Xu) du ≈ ak(Xti)h+ L0ak(Xti)

∫ ti+h

ti

∫ u

ti

ds du

+
m∑

l=1

Llak(Xti)

∫ ti+h

ti

∫ u

ti

d(Wl)s du

= ak(Xti)h+ L0ak(Xti) I
(i)
00 +

m∑

l=1

Llak(Xti) I
(i)
l0

(6.77)

and, with
∀

i=0,...,N−1,
l=1,...,m

(∆Wl)
(i) := (Wl)ti+h − (Wl)ti , (6.78)
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the approximations

∀
i=0,...,N−1,
k=1,...,d,
l=1,...,m

∫ ti+h

ti

bkl(Xu) d(Wl)u ≈ bkl(Xti) (∆Wl)
(i) + L0bkl(Xti)

∫ ti+h

ti

∫ u

ti

ds d(Wl)u

+
m∑

β=1

Lβbkl(Xti)

∫ ti+h

ti

∫ u

ti

d(Wβ)s d(Wl)u

= bkl(Xti) (∆Wl)
(i) + L0bkl(Xti) I

(i)
0l

+
m∑

β=1

Lβbkl(Xti) I
(i)
βl .

(6.79)

Plugging (6.77), (6.79) and I
(i)
00 = h2

2
into (6.70) (for t = ti and replacing Xti by X̂

(i)),
we obtain the following multi-dimensional second-order scheme:

X̂(0) := Xinit, (6.80a)

∀
i=0,...,N−1,
k=1,...,d

X̂
(i+1)
k := X̂

(i)
k + ak(X̂

(i))h+ L0ak(X̂
(i))

h2

2
+

m∑

l=1

Llak(X̂
(i)) I

(i)
l0

+
m∑

l=1

(

bkl(X̂
(i)) (∆Wl)

(i) + L0bkl(X̂
(i)) I

(i)
0l +

m∑

β=1

Lβbkl(X̂
(i)) I

(i)
βl

)

.

(6.80b)

Remark 6.21. (a) In practise, one will have to use (6.71) to replace the differential
operators in (6.80b) by the actual derivatives of the components of the coefficient
functions a and b, resulting in polynomials in the components of the coefficient
functions and their first- and second-order partials.

(b) A computation analogous to (6.56) (using stochastic integration by parts) yields

∀
i=0,...,N−1,
l=1,...,m

I
(i)
0l = h (∆Wl)

(i) − I
(i)
l0 (6.81a)

and

∀
i=0,...,N−1,
l=1,...,m

I
(i)
ll =

(
(∆Wl)

(i)
)2 − h

2
(6.81b)

is known from (6.35). So, to make use of (6.80), it “just” remains to sample

the (∆Wl)
(i) together with the I

(i)
l0 and the I

(i)
lβ for l, β = 1, . . . ,m with l 6= m.

Unfortunately, as already remarked at the end of Sec. 6.3.2, this is difficult in this
form, but simplifications as described in Sec. 6.5.3 and Sec. 6.5.4 below do yield
feasible ways to implement the multi-dimensional second order scheme.
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Example 6.22. In order to formulate the second-order scheme recursion (6.80b) for
the stochastic volatility model (6.68) of Ex. 6.18(a) we start by bringing (6.68) into the
form (6.1a) using (Xt)1 := St > 0 and (Xt)2 := Vt > 0. Letting

a : (R+)2 −→ R2, a

(
x1
x2

)

:=

(
r x1

κ (θ − x2)

)

, (6.82a)

b : (R+)2 −→ R2×2, b

(
x1
x2

)

:=

(
x1

√
x2 0

σ1
√
x2 σ2

√
x2

)

, (6.82b)

we have

dSt = d(Xt)1 = a1

(
St

Vt

)

dt + b11

(
St

Vt

)

d(W1)t + b12

(
St

Vt

)

d(W2)t

= rSt dt + St

√

Vt d(W1)t, (6.82c)

dVt = d(Xt)2 = a2

(
St

Vt

)

dt + b21

(
St

Vt

)

d(W1)t + b22

(
St

Vt

)

d(W2)t

= κ (θ − Vt) dt +
√

Vt
(
σ1 d(W1)t + σ2 d(W2)t

)
, (6.82d)

i.e. (6.68) does, indeed, have the form (6.1a). We proceed to compute the relevant
derivatives in preparation for the formulation of (6.80b):

Σ

(
x1
x2

)

= b

(
x1
x2

)

bt
(
x1
x2

)

=

(
x1

√
x2 0

σ1
√
x2 σ2

√
x2

)(
x1

√
x2 σ1

√
x2

0 σ2
√
x2

)

=

(
x21 x2 σ1 x1 x2
σ1 x1 x2 (σ2

1 + σ2
2) x2

)

, (6.83a)

L0 =
2∑

k=1

ak ∂xk
+

1

2

2∑

k,α=1

Σkα ∂xk
∂xα

= r x1 ∂x1 + κ (θ − x2) ∂x2 +
1

2

(

x21 x2 ∂x1∂x1 + σ1 x1 x2(∂x1∂x2 + ∂x2∂x1)

+ (σ2
1 + σ2

2) x2 ∂x2∂x2

)

, (6.83b)

L1 =
2∑

k=1

bk1 ∂xk
= x1

√
x2 ∂x1 + σ1

√
x2 ∂x2 , (6.83c)

L2 =
2∑

k=1

bk2 ∂xk
= σ2

√
x2 ∂x2 , (6.83d)

L0a1

(
x1
x2

)

= r2 x1, (6.83e)

L0a2

(
x1
x2

)

= −κ2 (θ − x2), (6.83f)

L0b11

(
x1
x2

)

= r x1
√
x2 +

κ (θ − x2) x1
2
√
x2

+
1

2

(

σ1 x1
√
x2 −

(σ2
1 + σ2

2) x1
4
√
x2

)

, (6.83g)
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L0b12

(
x1
x2

)

= 0, (6.83h)

L0b21

(
x1
x2

)

=
κσ1 (θ − x2)

2
√
x2

− σ1 (σ
2
1 + σ2

2)

8
√
x2

, (6.83i)

L0b22

(
x1
x2

)

=
κσ2 (θ − x2)

2
√
x2

− σ2 (σ
2
1 + σ2

2)

8
√
x2

, (6.83j)

L1a1

(
x1
x2

)

= r x1
√
x2, (6.83k)

L1a2

(
x1
x2

)

= −κσ1
√
x2, (6.83l)

L1b11

(
x1
x2

)

= x1 x2 +
x1 σ1
2

, (6.83m)

L1b12

(
x1
x2

)

= 0, (6.83n)

L1b21

(
x1
x2

)

=
σ2
1

2
, (6.83o)

L1b22

(
x1
x2

)

=
σ1 σ2
2

, (6.83p)

L2a1

(
x1
x2

)

= 0, (6.83q)

L2a2

(
x1
x2

)

= −κσ2
√
x2, (6.83r)

L2b11

(
x1
x2

)

=
x1 σ2
2

, (6.83s)

L2b12

(
x1
x2

)

= 0, (6.83t)

L2b21

(
x1
x2

)

=
σ1 σ2
2

, (6.83u)

L2b22

(
x1
x2

)

=
σ2
2

2
. (6.83v)

We obtain the recursion by plugging the appropriate terms from above into (6.80b):

Ŝ(i+1) := Ŝ(i) + r Ŝ(i) h+
r2 Ŝ(i) h2

2
+ r Ŝ(i)

√

V̂ (i) I
(i)
10 + Ŝ(i)

√

V̂ (i) (∆W1)
(i)

+ r Ŝ(i)
√

V̂ (i) +

(

κ (θ − V̂ (i)) Ŝ(i)

2
√

V̂ (i)
+

1

2

(

σ1 Ŝ
(i)
√

V̂ (i) − (σ2
1 + σ2

2) Ŝ
(i)

4
√

V̂ (i)

))

I
(i)
01

+

(

Ŝ(i) V̂ (i) +
Ŝ(i) σ1

2

)

I
(i)
11 +

Ŝ(i) σ2
2

I
(i)
21 , (6.84a)
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V̂ (i+1) := V̂ (i) + κ (θ − V̂ (i))h− κ2 (θ − V̂ (i))
h2

2
− κ

√

V̂ (i)
(

σ1 I
(i)
10 + σ2 I

(i)
20

)

+
√

V̂ (i)
(
σ1 (∆W1)

(i) + σ2 (∆W2)
(i)
)

+
(

4κ
(

θ − V̂ (i)
)

− (σ2
1 + σ2

2)
) σ1 I

(i)
01 + σ2 I

(i)
02

8
√

V̂ (i)

+
1

2

(

σ2
1 I

(i)
11 + σ1σ2 I

(i)
21 + σ1σ2 I

(i)
12 + σ2

2 I
(i)
22

)

. (6.84b)

Example 6.23. Consider the LIBOR market model (6.69) of Ex. 6.18(b). To write
(6.69) in the form (6.1a), we let (Xt)k := (Lt)k for k = 1, . . . , d,

a : Rd −→ Rd, a






x1
...
xd




 :=






x1 µ1(x1, . . . , xd)
...

xd µd(x1, . . . , xd)




 , (6.85a)

b : Rd −→ Rd×d, b






x1
...
xd




 :=






x1 σ11 . . . x1 σ1d
...

. . .
...

xd σd1 . . . xd σdd




 , (6.85b)

we have

∀
k=1,...,d

d(Lk)t = d(Xt)k = ak






(L1)t
...

(Ld)t




 dt +

d∑

l=1

bkl






(L1)t
...

(Ld)t




 d(Wl)t

= (Lk)t µk

(
(L1)t, . . . , (Ld)t

)
dt + (Lk)t σ

t
k dWt ,

(6.85c)

i.e. we have succeeded in writing (6.69) in the form (6.1a).

We will formulate the second-order scheme recursion (6.80b) only for d = 2. In prepa-
ration, we compute the following quantities:

Σ

(
x1
x2

)

= b

(
x1
x2

)

bt
(
x1
x2

)

=

(
x1 σ11 x1 σ12
x2 σ21 x2 σ22

)(
x1 σ11 x2 σ21
x1 σ12 x2 σ22

)

=

(
x21 (σ

2
11 + σ2

12) x1x2 (σ11σ21 + σ12σ22)
x1x2 (σ11σ21 + σ12σ22) x22 (σ

2
21 + σ2

22)

)

, (6.86a)

L0 =
2∑

k=1

ak ∂xk
+

1

2

2∑

k,α=1

Σkα ∂xk
∂xα

= x1 µ1(x1, x2) ∂x1 + x2 µ2(x1, x2) ∂x2

+
1

2

(

x21 (σ
2
11 + σ2

12) ∂x1∂x1 + x1x2 (σ11σ21 + σ12σ22) (∂x1∂x2 + ∂x2∂x1)

+ x22 (σ
2
21 + σ2

22) ∂x2∂x2

)

, (6.86b)

L1 =
2∑

k=1

bk1 ∂xk
= x1 σ11 ∂x1 + x2 σ21 ∂x2 , (6.86c)
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L2 =
2∑

k=1

bk2 ∂xk
= x1 σ12 ∂x1 + x2 σ22 ∂x2 , (6.86d)

L0a1

(
x1
x2

)

= L0
(
x1 µ1(x1, . . . , xd)

)
(further expansion omitted here), (6.86e)

L0a2

(
x1
x2

)

= L0
(
x2 µ2(x1, . . . , xd)

)
(further expansion omitted here), (6.86f)

L0b11

(
x1
x2

)

= σ11 x1 µ1(x1, x2), (6.86g)

L0b12

(
x1
x2

)

= σ12 x1 µ1(x1, x2), (6.86h)

L0b21

(
x1
x2

)

= σ21 x2 µ2(x1, x2), (6.86i)

L0b22

(
x1
x2

)

= σ22 x2 µ2(x1, x2), (6.86j)

L1a1

(
x1
x2

)

= x1 σ11
(
µ1(x1, x2) + x1 ∂x1µ1(x1, x2)

)
+ x1x2 σ21 ∂x2µ1(x1, x2), (6.86k)

L1a2

(
x1
x2

)

= x1x2 σ11 ∂x1µ2(x1, x2) + x2 σ21
(
µ2(x1, x2) + x2 ∂x2µ2(x1, x2)

)
, (6.86l)

L1b11

(
x1
x2

)

= x1 σ
2
11, (6.86m)

L1b12

(
x1
x2

)

= x1 σ11σ12, (6.86n)

L1b21

(
x1
x2

)

= x2 σ
2
21, (6.86o)

L1b22

(
x1
x2

)

= x2 σ21σ22, (6.86p)

L2a1

(
x1
x2

)

= x1 σ12
(
µ1(x1, x2) + x1 ∂x1µ1(x1, x2)

)
+ x1x2 σ22 ∂x2µ1(x1, x2), (6.86q)

L2a2

(
x1
x2

)

= x1x2 σ12 ∂x1µ2(x1, x2) + x2 σ22
(
µ2(x1, x2) + x2 ∂x2µ2(x1, x2)

)
, (6.86r)

L2b11

(
x1
x2

)

= x1 σ11σ12, (6.86s)

L2b12

(
x1
x2

)

= x1 σ
2
12, (6.86t)

L2b21

(
x1
x2

)

= x2 σ21σ22, (6.86u)

L2b22

(
x1
x2

)

= x2 σ
2
22. (6.86v)
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We obtain the recursion by plugging the appropriate terms from above into (6.80b):

L̂
(i+1)
k := L̂

(i)
k + L̂

(i)
k µk

(
L̂
(i)
1 , L̂

(i)
2

)
h+ L0ak

(
L̂
(i)
1 , L̂

(i)
2

) h2

2

+

(

L̂
(i)

k̃
L̂
(i)
k σk̃1 ∂xk̃

µk

(
L̂
(i)
1 , L̂

(i)
2

)

+ L̂
(i)
k σk1

(

µk

(
L̂
(i)
1 , L̂

(i)
2

)
+ L̂

(i)
k ∂xk

µk

(
L̂
(i)
1 , L̂

(i)
2

))
)

I
(i)
10

+

(

L̂
(i)

k̃
L̂
(i)
k σk̃2 ∂xk̃

µk

(
L̂
(i)
1 , L̂

(i)
2

)

+ L̂
(i)
k σk2

(

µk

(
L̂
(i)
1 , L̂

(i)
2

)
+ L̂

(i)
k ∂xk

µk

(
L̂
(i)
1 , L̂

(i)
2

))
)

I
(i)
20

+ L̂
(i)
k

(
σk1 (∆W1)

(i) + σk2 (∆W2)
(i)
)
+
(

σk1 I
(i)
01 + σk2 I

(i)
02

)

L̂
(i)
k µk

(
L̂
(i)
1 , L̂

(i)
2

)

+ L̂
(i)
k σ2

k1 I
(i)
11 + L̂

(i)
k σk1σk2

(

I
(i)
12 + I

(i)
21

)

+ L̂
(i)
k σ2

k2 I
(i)
22 , (6.87)

for k = 1, 2, where 1̃ := 2 and 2̃ := 1.

6.5.3 Commutativity Condition

As mentioned in Rem. 6.21(b), the presence of the mixed integrals I
(i)
lβ , l 6= m, in (6.80)

means that simplifications are usually required to make use of the scheme in practise.

Sometimes (certainly not always), the situation is such that the following commutativity
condition (6.88) holds, which then facilitates a useful simplification of the scheme.

Definition 6.24. We say the (diffusion) coefficient function b : Rd −→ Rd×m satisfies
the commutativity condition if, and only if, it has first partials and

∀
k=1,...,d,
l,β=1,...,m

Llbkβ = Lβbkl, (6.88)

where the differential operators are according to (6.71b).

Remark 6.25. If the commutativity condition (6.88) holds, then

∀
i=0,...,N−1,
k=1,...,d

m∑

l=1

m∑

β=1

Lβbkl I
(i)
βl

(6.88)
=

m∑

l=1

Llbkl I
(i)
ll +

m∑

l=1

m∑

β=l+1

Lβbkl

(

I
(i)
βl + I

(i)
lβ

)

. (6.89)

Proposition 6.26. If (Wl)t∈[0,T ] and (Wβ)t∈[0,T ] denote components of an m-dimension-
al standard Brownian motion with drift 0 and covariance matrix Id, then

∀
i=0,...,N−1,
l,β=1,...,m,

l 6=β

I
(i)
lβ + I

(i)
βl = (∆Wl)

(i) (∆Wβ)
(i), (6.90)

where we made use of the notation of (6.76d) and (6.78).
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Proof. Exercise (hint: apply Itô’s formula (C.9) with Yt := Wt und f(t, x1, . . . , xm) :=
xl xβ, cf. [Gla04, p. 354]). �

Using (6.89), (6.90), and (6.81) in (6.80), we obtain the following multidimensional
second-order scheme, simplified via the commutativity condition:

X̂(0) := Xinit, (6.91a)

∀
i=0,...,N−1,
k=1,...,d

X̂
(i+1)
k := X̂

(i)
k + ak(X̂

(i))h+
m∑

l=1

bkl(X̂
(i)) (∆Wl)

(i) + L0ak(X̂
(i))

h2

2

+
m∑

l=1

((

Llak(X̂
(i))− L0bkl(X̂

(i))
)

I
(i)
l0 + L0bkl(X̂

(i))h (∆Wl)
(i)

)

+
m∑

l=1

(

Llbkl(X̂
(i))

(
(∆Wl)

(i)
)2 − h

2

+
m∑

β=l+1

Lβbkl(X̂
(i)) (∆Wl)

(i) (∆Wβ)
(i)

)

.

(6.91b)

Remark 6.27. To actually implement (6.91), one applies Prop. 6.15 for each l =
1, . . . ,m, yielding

∀
i=0,...,N−1,
l=1,...,m,

x∈R

Z
(i)
l :=

(
(∆Wl)

(i)

I
(i)
l0

) ∣
∣
∣{(Wl)ti = x} ∼ N

((
0
0

)

,

(

h h2

2
h2

2
h3

3

))

, (6.92)

where one can show that the independence of the (Wl)t for l = 1, . . . ,m implies the

independence of the Z
(i)
l for l = 1, . . . ,m.

Theorem 6.28. Assume the hypotheses of Th. 6.3. If E
(
‖Xinit‖i

)
<∞ for each i ∈ N

and a, b have no explicit time dependence, satisfying a, b ∈ C6(Rd), where all derivatives
are uniformly bounded, then, with respect to the strong solution (Xt)t∈[0,T ] of (6.1), the
discretization given by the multi-dimensional second-order scheme (6.80) has weak order
of convergence 2. In particular, if, additionally, the commutativity condition (6.88) is
satisfied, then the discretization given by the simplified multi-dimensional second-order
scheme (6.91) has weak order of convergence 2.

Proof. Since (6.80) is the same as [KP99, (14.2.6)], the statement of our theorem is
included in the statement of [KP99, Th. 14.2.4] which, as remarked before, is proved as
a special case of [KP99, Th. 14.5.2]. �

Example 6.29. The commutativity condition is satisfied for the LIBOR market model
of Ex. 6.18(b) and Ex. 6.23: For each k = 1, . . . , d, each l, β = 1, . . . ,m, and each
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x ∈ Rd, we have

Llbkβ(x) =
d∑

k=1

bkl(x) ∂xk
bkβ(x) =

d∑

k=1

xk σkl ∂xk
(xk σkβ) =

d∑

k=1

xk σkl σkβ,

Lβbkl(x) =
d∑

k=1

bkβ(x) ∂xk
bkl(x) =

d∑

k=1

xk σkβ ∂xk
(xk σkl) =

d∑

k=1

xk σkl σkβ.

6.5.4 Simplified Second-Order Scheme

For the simplified second-order scheme (6.91) of the previous section, we had to assume
the commutativity condition (6.88). However, as it turns out, there exist simplicications
of (6.80) that retain the weak order of convergence 2 even if (6.88) is not available.

These simplifications consist of the following replacements

∀
i=0,...,N−1,
l=1,...,m

I
(i)
l0 ≈ (∆Wl)

(i) h

2
, (6.93a)

∀
i=0,...,N−1,
l,β=1,...,m,

l 6=β

I
(i)
lβ ≈

(∆Wl)
(i) (∆Wβ)

(i) − V
(i)
lβ

2
, (6.93b)

where the random variables Vlβ satisfy

∀
i=0,...,N−1,
l,β=1,...,m

V
(i)
lβ : Ω −→ {−h, h}, (6.94a)

∀
i=0,...,N−1,
l,β=1,...,m,

l 6=β

V
(i)
lβ = −V (i)

βl , (6.94b)

∀
i=0,...,N−1,
l,β=1,...,m,

l 6=β

P{V (i)
lβ = h} = P{V (i)

lβ = −h} =
1

2
, (6.94c)

∀
i=0,...,N−1,
l,β=1,...,m

V
(i)
ll ≡ h, (6.94d)

(

V
(i)
lβ

)

l<β
is independent and independent from

(
(∆Wl)

(i)
)

l=1,...,m
. (6.94e)

Note that (6.93a) is analogous to the replacements that were used in the 1-dimensional
case to obtain (6.66) from (6.52). For explanations and justifications regarding the use
of (6.93), we refer to [Gla04, p. 355f] and [KP99, p. 467].

Using (6.93), (6.94d), and (6.81) in (6.80), we obtain the following simplified multi-
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dimensional second-order scheme:

X̂(0) := Xinit, (6.95a)

∀
i=0,...,N−1,
k=1,...,d

X̂
(i+1)
k := X̂

(i)
k + ak(X̂

(i))h+
m∑

l=1

bkl(X̂
(i)) (∆Wl)

(i) + L0ak(X̂
(i))

h2

2

+
1

2

m∑

l=1

(

Llak(X̂
(i)) + L0bkl(X̂

(i))
)

(∆Wl)
(i) h

+
1

2

m∑

l=1

m∑

β=1

Lβbkl(X̂
(i))
(

(∆Wl)
(i) (∆Wβ)

(i) − V
(i)
lβ

)

.

(6.95b)

Theorem 6.30. Assume the hypotheses of Th. 6.3. If E
(
‖Xinit‖i

)
<∞ for each i ∈ N

and a, b have no explicit time dependence, satisfying a, b ∈ C6(Rd), where all derivatives
are uniformly bounded, then, with respect to the strong solution (Xt)t∈[0,T ] of (6.1), the
discretization given by the simplified multi-dimensional second-order scheme (6.95) has
weak order of convergence 2.

Proof. Since (6.95) is the same as [KP99, (14.2.7)], the above statement is, once more,
included in the statement of [KP99, Th. 14.2.4]. �

A Measure Theory

A.1 σ-Algebras

A.1.1 σ-Algebra, Measurable Space

Notation A.1. For each set Ω, let P(Ω) denote its power set.

Definition A.2. Let Ω be a set. A collection of subsets A ⊆ P(Ω) is called a σ-algebra
on Ω if, and only if, it satisfies the following three conditions:

(a) ∅ ∈ A.

(b) If A ∈ A, then X \ A ∈ A.

(c) If (An)n∈N is a sequence of sets in A, then
⋃

n∈NAn ∈ A.

If A is a σ-algebra on Ω, then the pair (Ω,A) is called a measurable space. The sets
A ∈ A are called A-measurable (or merely measurable if A is understood).
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A.1.2 Inverse Image, Trace

Proposition A.3. Consider sets Ω, Ω′, and a map f : Ω −→ Ω′. If A ⊆ P(Ω) is a
σ-algebra on Ω, then B := {B ⊆ Ω′ : f−1(B) ∈ A} is a σ-algebra on Ω′.

Proof. Since ∅ = f−1(∅) ∈ A, we have ∅ ∈ B. If B ∈ B, then Ω′ \ B ∈ B, since
f−1(Ω′ \B) = Ω \ f−1(B) ∈ A, as Ω \ f−1(B) ∈ A due to A being a σ-algebra. Finally,
if (Bn)n∈N is a sequence of sets in B, then

f−1

(
⋃

n∈N
Bn

)

=
⋃

n∈N
f−1(Bn) ∈ A, (A.1)

as A is a σ-algebra. Thus,
⋃

n∈NBn ∈ B, which completes the proof that B is a σ-algebra
on Ω′. �

Proposition A.4. Consider sets Ω, Ω′, and a map f : Ω −→ Ω′. If A ⊆ P(Ω′) is a
σ-algebra on Ω′, then f−1(A) = {f−1(A) : A ∈ A} is a σ-algebra on Ω.

Proof. As ∅ = f−1(∅), ∅ ∈ f−1(A). If A ∈ A, then Ω \ f−1(A) = f−1(Ω′ \ A) ∈ f−1(A)
since Ω′ \A ∈ A due to A being a σ-algebra. Finally, if (An)n∈N is a sequence of sets in
A, then, as A is a σ-algebra,

⋃

n∈NAn ∈ A. Then

⋃

n∈N
f−1(An) = f−1

(
⋃

n∈N
An

)

∈ f−1(A), (A.2)

completing the proof that f−1(A) is a σ-algebra on Ω. �

Definition A.5. Let Ω be a set, and let E ⊆ P(Ω) be a collection of subsets. If B ⊆ Ω,
then let E|B := {A ∩ B : A ∈ E} denote the trace of E on B, also known as the
restriction of E to B.

Proposition A.6. Consider sets Ω, B, such that B ⊆ Ω. If A ⊆ P(Ω) is a σ-algebra
on Ω, then the trace A|B is a σ-algebra on B.

Proof. Consider the canonical inclusion map f : B −→ Ω, f(a) = a. Note that, for
each A ⊆ P(Ω), one has

f−1(A) = {f−1(A) : A ∈ A} = {A ∩B : A ∈ A} = A|B, (A.3)

such that the proposition follows immediately from Prop. A.4. �

A.1.3 Intersection, Generated σ-Algebra

Proposition A.7. Let Ω be a set. Each intersection of σ-algebras on Ω is again a
σ-algebra on Ω. More precisely, if ∅ 6= I is an index set and (Ai)i∈I is a family of
σ-algebras on Ω, then

⋂

i∈I Ai is a σ-algebra on Ω.
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Proof. Let A :=
⋂

i∈I Ai. Since ∅ ∈ Ai for each i ∈ I, we have ∅ ∈ A. If A ∈ A, then
A ∈ Ai for each i ∈ I, implying Ω \ A ∈ Ai for each i ∈ I, implying Ω \ A ∈ A. If
(An)n∈N is a sequence of sets in A, then An ∈ Ai for each i ∈ I and each n ∈ N. In
consequence A :=

⋃

n∈NAn ∈ Ai for each i ∈ I, implying A ∈ A. �

Definition and Remark A.8. Let Ω be a set. If E is a collection of subsets of Ω,
i.e. E ⊆ P(Ω), then let σΩ(E) denote the intersection of all σ-algebras on Ω that are
supersets of E (i.e. that contain all the sets in E). According to Prop. A.7, σΩ(E) is a
σ-algebra on Ω. Obviously, it is the smallest σ-algebra on Ω containing E . It is, thus,
called the σ-algebra generated by E .

—

The following Th. A.9 can be seen as a generalization of Prop. A.4.

Theorem A.9. The forming of generated σ-algebras commutes with the forming of
inverse images: If Ω,Ω′ are sets, f : Ω −→ Ω′, and F ⊆ P(Ω′), then

σΩ
(
f−1(F)

)
= f−1

(
σΩ′(F)

)
. (A.4)

Proof. Since F ⊆ σΩ′(F), one has f−1(F) ⊆ f−1(σΩ′(F)), which implies the ⊆-part of
(A.4), as f−1

(
σΩ′(F)

)
is a σ-algebra by Prop. A.4. To prove the ⊇-part of (A.4), define

B :=
{

B ⊆ Ω′ : f−1(B) ∈ σΩ
(
f−1(F)

)}

. (A.5)

Then F ⊆ B, B is a σ-algebra by Prop. A.3, implying σΩ′(F) ⊆ B. This, in turn,
yields f−1

(
σΩ′(F)

)
⊆ f−1(B) ⊆ σΩ

(
f−1(F)

)
, which is precisely the ⊇-part of (A.4),

completing the proof. �

Corollary A.10. Let Ω be a set, let A be a σ-algebra on Ω, B ⊆ Ω, and E ⊆ A. If
A = σΩ(E), then A|B = σB(E|B).

Proof. One merely has to apply Th. A.9 to the canonical inclusion map f : B −→ Ω,
f(a) = a:

A|B (A.3)
= f−1(A) = f−1

(
σΩ(E)

) (A.4)
= σB

(
f−1(E)

) (A.3)
= σB(E|B), (A.6)

establishing the case. �

Notation A.11. Let Ω be a set, and let E ⊆ P(Ω). Define

E• :=

{
⋃

n∈N
An : An ∈ E or (Ω \ An) ∈ E for each n ∈ N

}

.

Theorem A.12. Let Ω be a set and E ⊆ P(Ω). Moreover, let ω1 denote the smallest
uncountable ordinal. Let E0 := E ∪ {∅}, and, using the notation from Not. A.11, for
each 0 < α ∈ ω1, define

Eα :=

(
⋃

β∈α
Eβ
)•

. (A.7)
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It then holds that
σΩ(E) =

⋃

α∈ω1

Eα. (A.8)

Proof. See [Els07, Sec. I.4.1]. �

A.1.4 Borel σ-Algebra

Definition A.13. Let (Ω, τ) be a topological space. Then σΩ(τ), i.e. the σ-algebra
generated by the open sets of Ω, is called the Borel σ-algebra on (Ω, τ) (or on Ω if the
topology τ is understood).

Corollary A.14. Let (Ω, τ) be a topological space and let B denote the Borel σ-algebra
on (Ω, τ). If B ⊆ Ω, then B|B is the Borel σ-algebra on B with respect to the relative
topology on B, i.e. B|B = σB(τ |B).

Proof. Since B = σΩ(τ), the statement is a special case of Cor. A.10. �

Notation A.15. For each n ∈ N, let Bn denote the Borel σ-algebra on Rn (with respect
to the usual norm topology on Rn). By a slight abuse of notation, for each A ⊆ Rn, we
also write (A,Bn) to denote the measurable space consisting of A and Bn|A.
Remark A.16. It is often useful to know that the Borel σ-algebra Bn on Rn is also
generated by the closed sets in Rn, n ∈ N, or by the set of all closed (respectively,
open, half-open with upper endpoint included, half-open with lower endpoint included)
n-dimensional intervals in Rn, and, in each case, even by the (countable!) set of all such
intervals with rational endpoints.

A.2 Measure Spaces

A.2.1 Measures and Measure Spaces

Definition A.17. Let (Ω,A) be a measurable space.

(a) A map µ : A −→ [0,∞] is called a measure on (Ω,A) (or on Ω is A is understood)
if, and only if, µ satisfies the following conditions (i) and (ii):

(i) µ(∅) = 0.

(ii) µ is σ-additive, i.e., if (An)n∈N is a sequence in A consisting of pairwise disjoint
sets, then

µ

( ∞⋃

n=1

An

)

=
∞∑

n=1

µ(An). (A.9)

If µ is a measure on (Ω,A), then the triple (Ω,A, µ) is called a measure space. In
the context of measure spaces, the sets A ∈ A are sometimes called µ-measurable
instead of A-measurable.
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(b) Let (Ω,A, µ) be a measure space. The measure µ is called finite or bounded if, and
only if, µ(Ω) <∞; it is called σ-finite if, and only if, there exists a sequence (An)n∈N
in A such that Ω =

⋃∞
n=1Ai and µ(An) <∞ for each n ∈ N.

Proposition A.18. If (Ω,A, µ) is a measure space and A ∈ A, then the restriction
ν := µ↾A|A is a measure on (A,A|A).

Proof. According to Prop. A.6, A|A is a σ-algebra on A, and A ∈ A implies A|A ⊆ A
such that ν is actually defined for each A′ ∈ A|A. Moreover, ν(∅) = µ(∅) = 0, and, as ν
is the restriction of µ, ν inherits the σ-additivity from µ, proving that ν is a measure. �

A.2.2 Null Sets, Completion

Definition A.19. Let (Ω,A, µ) be a measure space. Then N ∈ A is called a µ-null set
(or merely a null set if µ is understood) if, and only if, µ(N) = 0.

Definition A.20. Let (Ω,A, µ) be a measure space. The measure µ is called complete
if, and only if, every subset of a µ-null set is µ-measurable, i.e. is itself a µ-null set.

Theorem A.21. Let (Ω,A, µ) be a measure space, and let N denote the collection of
all subsets of µ-null sets. Define

Ã := {A ∪N : A ∈ A, N ∈ N}, (A.10a)

µ̃ : Ã −→ [0, µ], µ̃(A ∪N) := µ(A). (A.10b)

Then Ã is a σ-algebra on Ω, µ̃ is well-defined by (A.10b) and constitutes a complete
measure on Ω. Moreover, µ̃ is the smallest complete measure extending µ in the sense
that each complete measure extending µ to a σ-algebra on Ω containing A must be an
extension of µ̃.

Proof. See, e.g., [Els07, Sec. II.6.3]. �

Definition A.22. Let (Ω,A, µ) be a measure space. Then the measure space (Ω, Ã, µ̃)
provided by (A.10) is called the completion of (Ω,A, µ) and µ̃ is called the completion
of µ.

Proposition A.23. Let (Ω,A, µ) be a measure space, let N be the collection of all
subsets of µ-null sets, and B ∈ A. Then the completion of the trace is the trace of the
completion, i.e.

{(A ∩ B) ∪ (N ∩ B) : A ∈ A, N ∈ N} = {(A ∪N) ∩ B : A ∈ A, N ∈ N}. (A.11)

Proof. Since (A ∩ B) ∪ (N ∩ B) = (A ∪N) ∩B, the equality in (A.11) is clear. �
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A.2.3 Uniqueness Theorem

Definition A.24. Let Ω be a set. A collection of subsets C ⊆ P(Ω) is called a ∩-stable
if, and only if, it satisfies

A,B ∈ C ⇒ A ∩ B ∈ C. (A.12)

Theorem A.25 (Uniqueness of Measures). Let (Ω,A) be a measurable space, let C ⊆
P(Ω) be a ∩-stable generator of A, and let µ, ν : A −→ [0,∞] be measures. If µ, ν
satisfy

(i) µ↾C= ν↾C, i.e. µ(A) = ν(A) for each A ∈ C;

(ii) µ(An) = ν(An) <∞ for some sequence (An)n∈N with Ω =
⋃

n∈NAn;

then the measures are equal, µ = ν.

Proof. See, e.g., [Els07, Th. II.5.6]. �

A.2.4 Lebesgue-Borel and Lebesgue Measure on Rn

Definition and Remark A.26. Let n ∈ N.

(a) Let
Hn := {∅} ∪

{
[a, b[: a, b ∈ Rn, a < b

}
(A.13)

denote the set of all n-dimensional half-open intervals with left boundary included
(plus the empty set). We already noted in Rem. A.16 that Hn is a generator for
Bn. Clearly, Hn is also ∩-stable. Thus, from Th. A.25, we obtain the existence of
a unique measure βn : Bn −→ [0,∞], satisfying

βn
(
[a, b[

)
=

n∏

i=1

(bi − ai) for each a, b ∈ Rn with a < b. (A.14)

This unique measure is called the Lebesgue-Borel measure on Rn or n-dimensional
Lebesgue-Borel measure (also just called n-dimensional Borel measure in the litera-
ture, but we will call it Lebesgue-Borel measure to distinguish it from general Borel
measures and to emphasize its relation to the Lebesgue measure introduced in (b)
below.

(b) The completion as given by Def. A.22 of the Lebesgue-Borel measure βn is called
the Lebesgue measure on Rn (or n-dimensional Lebesgue measure) and is denoted
by λn. In particular, λn ↾Bn= βn and one did not even need to use the symbol βn
at all. However, βn is used where one wants to emphasize one is merely considering
the smaller σ-algebra Bn.

(c) A set A ⊆ Rn is simply called measurable if, and only if, it is λn-measurable.
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A.3 Measurable Maps

A.3.1 Definition, Composition

Definition A.27. Let (Ω,A) and (Ω′,A′) be measurable spaces.

(a) A map f : Ω −→ Ω′ is called A-A′-measurable if, and only if,

f−1(B) ∈ A for each B ∈ A′. (A.15)

Proposition A.28. Let (Ω,A) and (Ω′,A′) be measurable spaces. If C ′ ⊆ P(Ω′) is a
generator of A′, then a map f : Ω −→ Ω′ is A-A′-measurable if, and only if,

f−1(B) ∈ A for each B ∈ C ′. (A.16)

Proof. Since C ′ ⊆ A′, (A.15) implies (A.16). To prove the converse, define

Q′ :=
{
B ⊆ Ω′ : f−1(B) ∈ A

}
, (A.17)

and note that Q′ is a σ-algebra on Ω′. Now, (A.16) implies C ′ ⊆ Q′. Thus, as Q′

is a σ-algebra, we obtain A′ = σΩ′(C ′) ⊆ Q′, completing the proof that f is A-A′-
measurable. �

Example A.29. (a) Constant maps are always measurable. More precisely, if (Ω,A)
and (Ω′,A′) are measurable spaces, f : Ω −→ Ω′, f ≡ c, c ∈ Ω′, then, for each
B ∈ A′, there are precisely two possibilities: c ∈ A′, implying f−1(B) = Ω ∈ A;
c /∈ A′, implying f−1(B) = ∅ ∈ A. Thus, f is A-A′-measurable.

(b) Continuous maps are always Borel measurable: Let (Ω, τ) and (Ω′, τ ′) be topological
spaces with corresponding Borel σ-algebras σ(τ) and σ(τ ′). If f : Ω −→ Ω′ is
continuous, then f−1(U) ∈ τ ⊆ σ(τ) for each U ∈ τ ′ and Prop. A.28 implies f is
σ(τ)-σ(τ ′) measurable.

(c) IfM ⊆ Rn and f : M −→ Rm is continuous (n,m ∈ N), then f is Borel measurable,
i.e. Bn-Bm-measurable, which is merely an important special case of (b) (cf. Not.
A.15 and Cor. A.14).

Proposition A.30. The composition of measurable maps is measurable – more pre-
cisely, if (Ω,A), (Ω′,A′), and (Ω′′,A′′) are measurable spaces, f : Ω −→ Ω′ is A-A′-
measurable, and g : Ω′ −→ Ω′′ is A′-A′′-measurable, then g ◦ f is A-A′′-measurable.

Proof. For each B ∈ A′′, we have A := (g ◦f)−1(B) = f−1
(
g−1(B)

)
. Then g−1(B) ∈ A′,

since g is A′-A′′-measurable. In consequence, A ∈ A, since f is A-A′-measurable,
proving the A-A′′ measurability of g ◦ f . �
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A.3.2 Generated σ-Algebra, Pushforward Measure

Definition A.31. Let Ω be a set, (Ωi,Ai)i∈I a family of measurable spaces, and (fi :
Ω −→ Ωi)i∈I a family of maps, each fi defined on Ω and mapping into Ωi. Then

σ ((fi)i∈I) := σ

(
⋃

i∈I
f−1
i (Ai)

)

(A.18)

is called the σ-algebra generated by the family of maps (fi)i∈I and by the family of
measurable spaces (Ωi,Ai)i∈I (note that the dependence on the measurable spaces is
suppressed in the notation in (A.18) – the measurable spaces are supposed to be under-
stood from the context). If I = {i1, . . . , in}, n ∈ N, is finite, we also use the notation

σ(fi1 , . . . , fin) := σ ((fi)i∈I) . (A.19)

Remark A.32. (a) Clearly, in the context of Def. A.31, σ ((fi)i∈I) is the smallest σ-
algebra on Ω with respect to which all the maps fi are measurable.

(b) If, in the context of Def. A.31, I has just one element, I = {i0}, then, letting
f := fi0 , according to Prop. A.4, one has σ(f) = f−1(Ai0). Moreover, if A is an
arbitrary σ-algebra on Ω, then f is A-Ai0-measurable if, and only if, σ(f) ⊆ A.

Proposition A.33. Let (Ω,A, µ) be a measure space and (Ω′,A′) a measurable space.
If f : Ω −→ Ω′ is A-A′-measurable, then

µf : A′ −→ [0,∞], µf (B) := µ
(
f−1(B)

)
, (A.20)

defines a measure on A.

Proof. µf (∅) = µ(∅) = 0 follows without difficulty, and, if (Bn)n∈N is a sequence of
pairwise disjoint sets in A′, then (f−1(Bn))n∈N is a sequence of pairwise disjoint sets in
A, implying

µf

( ∞⋃

n=1

Bn

)

= µ

(

f−1

( ∞⋃

n=1

Bn

))

= µ

( ∞⋃

n=1

f−1(Bn)

)

=
∞∑

n=1

µ
(
f−1(Bn)

)

=
∞∑

n=1

µf (Bn), (A.21)

verifying σ-additivity of µf and completing the proof. �

Definition A.34. We remain in the context of Prop. A.33. The measure µf is called a
pushforwardmeasure – the measure µ is pushed forward fromA toA′ by f . Alternatively
to µf , one also finds the notation f(µ) := µf .

Proposition A.35. The forming of push forward measures commutes with the compo-
sition of maps: If (Ω,A, µ) is a measure space, (Ω′,A′) and (Ω′′,A′′) are measurable
spaces, f : Ω −→ Ω′ is A-A′-measurable, and g : Ω′ −→ Ω′′, then

µg◦f = (µf )g or (g ◦ f)(µ) = g(f(µ)). (A.22)
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Proof. Since (A.22) claims the equality of the two maps µg◦f and (µf )g, we have to verify
µg◦f (C) = (µf )g(C) for each C ∈ A′′. To this end, for each C ∈ A′′, one calculates

µg◦f (C) = µ
(
(g ◦ f)−1(C)

)
= µ

(
f−1
(
g−1(C)

))
= µf

(
g−1(C)

)
= (µf )g(C), (A.23)

thereby establishing the case. �

A.3.3 Review: Order on, Arithmetic in, and Topology of R

The material of the present section should mostly be familiar from a previous class on
Calculus or Advanced Calculus. Here, it is included for the reader’s convenience and for
the convenience of easy reference.

Notation A.36. By R := R ∪ {−∞,∞}, we denote the set of extended real numbers.

—

The extended real numbers are useful in many contexts, an important example being
the Lebesgue integral of R-Valued measurable maps of the following Sec. A.4.1. We now
review the respective definitions of order, arithmetic, and topology on R, which, as far
as possible, constitute extensions of the respective definitions on R.

Definition A.37. (a) The (total) order on R is extended to R by setting −∞ < a <∞
for each a ∈ R. The absolute value function is extended from R to R by defining
|∞| := | −∞| := ∞.

(b) Addition, subtraction, and multiplication are extended from R to R by defining:

∀
a∈R

a+ (±∞) := (±∞) + a := ±∞, (A.24a)

∀
a∈R

a− (±∞) := −(±∞) + a := ∓∞, (A.24b)

∞+∞ := ∞, −∞+ (−∞) := −∞, −(±∞) := ∓∞, (A.24c)

∀
a∈R

a · (±∞) := (±∞) · a :=

{

±∞ for a ∈]0,∞],

∓∞ for a ∈ [−∞, 0[,
(A.24d)

0 · (±∞) := (±∞) · 0 := 0, (A.24e)

∞−∞ := −∞+∞ := 0. (A.24f)

Remark A.38. The definitions of (A.24a) – (A.24d) are required to naturally extend
properties and rules from R to R as far as possible (for example, (A.24a) guarantees
that, for each a ∈ R, the map x 7→ a+x is continuous on R with respect to the topology
defined in Def. A.39 below). The definitions of (A.24e) are required in the context
of integration theory (see Sec. A.4.1 below), where, e.g., the integral of an ∞-valued
function over a set of measure 0 has value 0. The definitions of (A.24f) can be seen as
arbitrary. Caveat: Some familiar rules of arithmetic do not hold on all of R: Addition is
not associative on R and distributivity does not hold in general (however, addition and
multiplication are still commutative, multiplication is associative, and the restriction of
addition to ]−∞,∞] as well as to [−∞,∞[ is associative).
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Definition A.39. The set of open intervals I in R is defined to consist of R plus all
open intervals in R plus all intervals of the form [−∞, a[ or ]a,∞], a ∈ R:

I :=
{
R
}
∪
{
]a, b[: a, b ∈ R, a < b

}
∪
{
[−∞, a[: a ∈ R∪{∞}

}
∪
{
a,∞] : a ∈ R∪{−∞}

}
.

(A.25)
Then the (standard) topology on R is defined by calling a set O ⊆ R open if, and only
if, each element x ∈ O is contained in an open interval I ∈ I that is contained in O, i.e.
x ∈ I ⊆ O. In other words, I is defined to be a local base (also known as a neighborhood
basis) for the topology on R.

Remark A.40. R with the topology defined in Def. A.39 constitutes a so-called com-
pactification of R, i.e. it is a compact topological space such that the topology on R is
recovered as the relative topology when considering R as a subset of R.

Notation A.41. Let B denote the Borel sets on R, i.e. the Borel sets with respect to
the topology defined in Def. A.39.

Lemma A.42. For the Borel sets on R, we have the following identities:

B =
{
B ∪ E : B ∈ B1, E ⊆ {−∞,∞}

}
, (A.26a)

B|R = B1. (A.26b)

Proof. Let A denote the right-hand side of (A.26a). Since {−∞} and {∞} are closed
sets in R, every E ⊆ {−∞,∞} is a Borel set, implying A ⊆ B. To verify the remaining
inclusion, note σR(I) = B, I ⊆ A, and A is a σ-algebra.

Since the topology on R is the relative topology inherited from R, (A.26b) follows from
Cor. A.14. Alternatively, (A.26b) is immediate from (A.26a). �

A.3.4 R-, Rn-, and Cn-Valued Measurable Maps

Definition A.43. (a) An R-valued map f : Ω −→ R is simply called measurable
(with respect to some understood measurable space (Ω,A)) if, and only if, f is A-B
measurable (in particular, if f is R-valued, then it is measurable if, and only if, it
is A-B1-measurable.

(b) Let n ∈ N. An Rn-valued map f : Ω −→ Rn is simply called measurable (with
respect to some understood measurable space (Ω,A)) if, and only if, f is A-Bn

measurable.

(c) Let n ∈ N. A Cn-valued map f : Ω −→ Cn ∼= R2n is simply called measurable (with
respect to some understood measurable space (Ω,A)) if, and only if, f is A-B2n

measurable.

Theorem A.44. If (Ω,A) is a measurable space and f : Ω −→ R, then the following
statements (i) – (v) are equivalent:

(i) f is measurable.
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(ii) f−1]α,∞] ∈ A for each α ∈ R.

(iii) f−1[α,∞] ∈ A for each α ∈ R.

(iv) f−1[−∞, α[∈ A for each α ∈ R.

(v) f−1[−∞, α] ∈ A for each α ∈ R.

The equivalences remain true if, in each statement, α ∈ R is replaced by α ∈ Q.

Proof. Since

B = σ
{
]α,∞] : α ∈ R

}
= σ

{
]α,∞] : α ∈ Q

}

= σ
{
[α,∞] : α ∈ R

}
= σ

{
[α,∞] : α ∈ Q

}

= σ
{
[−∞, α[: α ∈ R

}
= σ

{
[−∞, α[: α ∈ Q

}

= σ
{
[−∞, α] : α ∈ R

}
= σ

{
[−∞, α] : α ∈ Q

}
, (A.27)

everything follows from Prop. A.28. �

Theorem A.45. Let n ∈ N and let (Ω,A) be a measurable space. A function f =
(f1, . . . , fn) : Ω −→ Rn is measurable if, and only if, each of the component functions
f1, . . . , fn : Ω −→ R is measurable. In particular, g : Ω −→ Cn is measurable if, and
only if, both Re g and Im g are measurable.

Proof. See, e.g., [Els07, Th. III.4.5]. �

Theorem A.46. Let (Ω,A) be a measurable space and let (fi)i∈N be a sequence of mea-
surable functions fi : Ω −→ R. Then supi∈N fi, infi∈N fi, lim supi→∞ fi, lim infi→∞ fi,
and (if it exists in R) limi→∞ fi all are measurable. In particular, for each n ∈ N,
max(f1, . . . , fn) and min(f1, . . . , fn) are measurable.

Proof. See, e.g., [Els07, Th. III.4.3]. �

Theorem A.47. Let (Ω,A) be a measurable space, f, g : Ω −→ R measurable functions,
and α, β ∈ R. Then αf + βg, fg, f/g (with (f/g)(ω) set to some arbitrary fixed γ ∈ R

for g(ω) = 0), f+, f−, |f | all are measurable.

Proof. For αf + βg and fg see [Els07, Th. III.4.7]. The proof given there also works
for f/g. For the remaining cases note f+ = max(f, 0), f− = −min(f, 0), and |f | =
f+ − f−. �

Corollary A.48. Let n ∈ N and let (Ω,A) be a measurable space.

(a) If f, g : Ω −→ Rn are measurable functions, and α, β ∈ R, then the componentwise-
defined functions αf+βg, fg, f/g (with (fi/gi)(ω) set to some arbitrary fixed γi ∈ R

for gi(ω) = 0), f+, f−, |f | all are measurable.
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(b) (a) remains true for f, g : Ω −→ Cn measurable. In addition, f̄ is also measurable.

Proof. (a) follows when combining Th. A.47 with Th. A.45.

Since, for each k = 1, . . . , n,

fkgk = Re fk Re gk − Im fk Im gk + i(Im fk Re gk + Re fk Im gk),

fk/gk =
Re fk Re gk + Im fk Im gk

(Re gk)2 + (Im gk)2
+ i

Im fk Re gk − Re fk Im gk
(Re gk)2 + (Im gk)2

,

|fk| =
√

(Re fk)2 + (Im fk)2,

f̄k = Re fk − 2i Im fk,

(b) follows from (a) and Th. A.47. �

Definition A.49. Let Ω be a set and A ⊆ Ω. Then

χA : Ω −→ R, χA(ω) :=

{

1 for ω ∈ A,

0 for ω /∈ A,
(A.28)

is called the characteristic or indicator function of A.

Remark A.50. If (Ω,A) is a measurable space and A ∈ A, then the characteristic
function χA is measurable if, and only if, A ∈ A (since χ−1

A ({1} = A).

Definition A.51. Let (Ω,A) be a measurable space. A function f : Ω −→ R is called
a simple function or step function if, and only if, it is a linear combination of measurable
characteristic functions.

Remark A.52. A simple function is always measurable, since it is, by definition, a
linear combination of measurable functions.

Theorem A.53. Let (Ω,A) be a measurable space.

(a) A function f : Ω −→ [0,∞] is measurable if, and only if, there exists an increasing
sequence (φi)i∈N of simple functions such that f = limi→∞ fi.

(b) Every bounded measurable R-valued function f : Ω −→ [0,∞] is the uniform limit
of an increasing sequence (φi)i∈N of simple functions.

(c) Every measurable f : Ω −→]−∞,∞], which is bounded from below is the pointwise
limit of an increasing sequence (φi)i∈N of simple functions.

(d) Every measurable f : Ω −→ R is the pointwise limit of a (not necessarily increasing)
sequence (φi)i∈N of simple functions.
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Proof. (a): See, e.g., [Els07, Th. III.4.13].

(b): The proof of [Els07, Th. III.4.13] also shows the uniform convergence for nonneg-
ative, bounded, measurable f . For R-valued bounded, measurable f , let m ∈ R be a
lower bound (the nontrivial case is m < 0, i.e. −m > 0). Then we obtain an increasing
sequence (φi)i∈N of simple functions uniformly converging to f−m ≥ 0. Then (φi+m)i∈N
is an increasing sequence of simple functions uniformly converging to f .

(c): As in (b), one applies (a) to f −m ≥ 0, where m ∈ R is a lower bound for f .

(d): One writes f = f+ − f− and applies (a) to f+ and f−. �

A.4 Integration

A.4.1 Lebesgue Integral of R-Valued Measurable Maps

We define the Lebesgue integral in the usual way, first for nonnegative simple functions
in Def. A.54(a), then for nonnegative measurable functions in Def. A.54(b), and then for
so-called integrable functions in Def. A.54(c). The definitions of the Lebesgue integral
for nonnegative simple functions and for nonnegative measurable functions make use of
representations, where Th. A.55 then states that the value of the integral does actually
not depend on the representation of the integrated function.

Definition A.54. Let (Ω,A, µ) be a measure space.

(a) Let f : Ω −→ R+
0 be a simple function, where

f =
N∑

i=1

αi χAi
(A.29a)

with N ∈ N; α1, . . . , αN ≥ 0; and A1, . . . , AN ∈ A. Then

∫

Ω

f dµ :=

∫

Ω

f(x) dµ(x) :=
N∑

i=1

αi µ(Ai) ∈ [0,∞] (A.29b)

is called the Lebesgue integral of f over Ω with respect to µ.

(b) Let f : Ω −→ [0,∞] be measurable, where (φi)i∈N is an increasing sequence of
simple functions such that f = limi→∞ φi. Then

∫

Ω

f dµ :=

∫

Ω

f(x) dµ(x) := lim
i→∞

∫

Ω

φi dµ ∈ [0,∞] (A.30)

is called the Lebesgue integral of f over Ω with respect to µ (the limit in (A.30)
exists, since (A.29b) implies

∫

Ω
φ dµ ≥

∫

Ω
ψ dµ for simple functions φ ≥ ψ, see

[Els07, IV.1.3(c)]).
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(c) A function f : Ω −→ R such that
∫

Ω
f+ dµ < ∞ and

∫

Ω
f− dµ < ∞ is called

integrable. For integrable functions f ,

∫

Ω

f dµ :=

∫

Ω

f(x) dµ(x) :=

∫

Ω

f+ dµ −
∫

Ω

f− dµ ∈ R (A.31)

is called the Lebesgue integral of f over Ω with respect to µ.

If f : Ω −→] − ∞,∞] is nonnegative measurable or integrable and A ∈ A, then one
also defines ∫

A

f dµ :=

∫

A

f(x) dµ(x) :=

∫

Ω

f χA dµ . (A.32)

Theorem A.55. Let (Ω,A, µ) be a measure space.

(a) The value of the integral in (A.29b) does not depend on the representation of the
simple function f : If M,N ∈ N; α1, . . . , αN ≥ 0; β1, . . . , βM ≥ 0; A1, . . . , AN ∈ A;
and B1, . . . , BM ∈ A are such that

f =
N∑

i=1

αi χAi
=

M∑

i=1

βi χBi
, (A.33a)

then
N∑

i=1

αi µ(Ai) =
M∑

i=1

βi µ(Bi). (A.33b)

(b) The value of the integral in (A.30) does not depend on the representation of the non-
negative measurable function f : If (φi)i∈N and (ψi)i∈N both are increasing sequences
of simple functions, then

f = lim
i→∞

φi = lim
i→∞

ψi ⇒ lim
i→∞

∫

Ω

φi dµ = lim
i→∞

∫

Ω

ψi dµ . (A.34)

In particular, (A.29b) and (A.30) are consistently defined.

Proof. (a): See, e.g., [Els07, Lem. IV.1.1].

(b): See, e.g., [Els07, Th. IV.2.1 and Cor. IV.2.2]. �

Theorem A.56. Let (Ω,A, µ) be a measure space, let f, g : Ω −→ R be both nonnegative
measurable or both integrable, let A,B ∈ A, and let α, β ∈ R (α, β = ∞ is allowed for
f, g nonnegative measurable).

(a) The Lebesgue integral is linear:

∫

A

(αf + βg) dµ = α

∫

A

f dµ + β

∫

A

g dµ . (A.35a)
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(b) If A,B are disjoint, then

∫

A∪B
f dµ =

∫

A

f dµ +

∫

B

f dµ . (A.35b)

(c) The Lebesgue integral is isotone:

f ≤ g ⇒
∫

A

f dµ ≤
∫

A

g dµ . (A.35c)

(d) The Lebesgue integral satisfies the triangle inequality:

∣
∣
∣
∣

∫

A

f dµ

∣
∣
∣
∣
≤
∫

A

|f | dµ . (A.35d)

(e) Mean Value Theorem for Integration: If there exist numbers m,M ∈ R such that
m ≤ f ≤M on A, then

mµ(A) ≤
∫

A

f dµ ≤M µ(A). (A.35e)

The theorem’s name comes from the fact that, for 0 < µ(A) < ∞, µ(A)−1
∫

A
f dµ

is sometimes referred to as the mean value of f on A.

(f) If f is nonnegative measurable, then

∫

Ω

f dµ = sup

{∫

Ω

φ dµ : φ : Ω −→ R+
0 simple, φ ≤ f

}

. (A.35f)

(g) If f is nonnegative measurable, then

∫

Ω

f dµ = 0 ⇔ µ
(
{f > 0}

)
= 0. (A.35g)

Proof. (a): For the nonnegative measurable case, see e.g., [Els07, Lem. IV.2.4(a)]. Then
the integrable case follows by writing f = f+ − f− and g = g+ − g−.

(b): Since fχA∪B = fχA + fχB, (A.35b) is immediate from (a).

(c): For the nonnegative measurable case, see e.g., [Els07, Lem. IV.2.4(b)]. Then the
integrable case follows from (a) by applying the nonnegative measurable case to g−f ≥
0.

(d) follows from (c), since f ≤ |f | and −f ≤ |f |.
(e) is also an easy consequence of (c).

(f): The ≤-part of (A.35f) follows from (A.35c), whereas the ≥-part follows from (A.30).

(g): See, e.g., [Els07, Th. IV.2.6]. �
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Theorem A.57 (Monotone Convergence). Let (Ω,A, µ) be a measure space. For every
increasing sequence (fi)i∈N of nonnegative measurable functions fi : Ω −→ [0,∞], the
following holds true: ∫

Ω

(

lim
i→∞

fi

)

dµ = lim
i→∞

∫

Ω

fi dµ . (A.36)

Proof. See, e.g., [Els07, Th. IV.2.7]. �

A.4.2 Lebesgue Integral of Rn- and Cn-Valued Measurable Maps

Definition A.58. Let n ∈ N. Let (Ω,A, µ) be a measure space and f = (f1, . . . , fn) :
Ω −→ Cn. We call f integrable if, and only if, for each k = 1, . . . , n, Re fk and Im fk
are both integrable in the sense of Def. A.54(c). Then, define the Lebesgue integral of f
over Ω with respect to µ componentwise:

∫

Ω

f dµ :=

(∫

Ω

Re f1 + i

∫

Ω

Im f1 dµ , . . . ,

∫

Ω

Re fn + i

∫

Ω

Im fn dµ

)

. (A.37)

As before, one also defines

∀
A∈A

∫

A

f dµ :=

∫

Ω

fχA dµ . (A.38)

Remark A.59. Clearly, (A.35a) and (A.35b) remain valid for integrable f, g : Ω −→ Cn

and α, β ∈ C.

A.4.3 Lp-Spaces

Notation A.60. (a) We use the symbol K to denote either R or C. Thus, if K occurs
in a statement or definition, then the statement or definition is meant to be valid
for K replaced by R and for K replaced by C.

(b) Analogous to (a), we use the symbol K̂ to denote either R or C.

Notation A.61. Let (Ω,A, µ) be a measure space. Using the convention

∀
p∈R+

∞p := ∞, (A.39)

we define for every measurable f : Ω −→ K̂:

∀
p∈[1,∞[

Np(f) :=

(∫

Ω

|f |p dµ
)1/p

∈ [0,∞] (A.40a)

and

N∞(f) := inf

{

sup
{
|f(ω)| : ω ∈ Ω \N

}
: N ∈ A, µ(N) = 0

}

∈ [0,∞], (A.40b)

where the number N∞(f) is also known as the essential supremum of f .
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Theorem A.62 (Hölder Inequality). Let (Ω,A, µ) be a measure space and p, q ∈ [1,∞]
such that 1

p
+ 1

q
= 1. If f, g : Ω −→ K̂ are measurable, then

N1(fg) ≤ Np(f)Nq(g), (A.41)

where (A.41) is known as Hölder inequality.

Proof. See, e.g., [Els07, Th. VI.1.5]. �

Definition A.63. Let (Ω,A, µ) be a measure space and p ∈ [1,∞].

(a) Let Lp := Lp
K := Lp

K(µ) := Lp
K(Ω,A, µ) denote the set of all measurable functions

f : Ω −→ K such that Np(f) <∞. It is common to introduce the notation

∀
f∈Lp

‖f‖p := Np(f). (A.42)

(b) Let N denote the set of measurable f : Ω −→ K that vanish µ-almost everywhere.
Clearly, both N and each Lp are vector spaces over K, where N is a subspace of
each Lp. Thus, it makes sense to define the quotient spaces

Lp := Lp
K := Lp

K(µ) := Lp
K(Ω,A, µ) := Lp

K(Ω,A, µ)/N . (A.43)

If f, g ∈ Lp represent the same element of Lp, i.e. [f ] = [g] ∈ Lp, then ‖f‖p = ‖g‖p.
Thus, it makes sense to define

∀
f∈Lp

‖[f ]‖p := ‖f‖p. (A.44)

Remark A.64. In practise, it is very common not to properly distinguish between
elements [f ] ∈ Lp and their representatives f ∈ Lp, and, in most situations, one gets
aways with it without getting into trouble. There are circumstances, however, such as
traces on boundaries and integration in product spaces, where one has to use caution
while being lax with [f ] and f .

Theorem A.65. Let (Ω,A, µ) be a measure space and p ∈ [1,∞].

(a) ‖ · ‖p constitutes a seminorm on Lp
K(µ), i.e. it makes Lp

K(µ) into a seminormed
vector space over K. However, if there exists a nonempty µ-null set in A, then ‖·‖p
is not a norm on Lp

K(µ) and the resulting topology on Lp
K(µ) is not Hausdorff.

(b) ‖ · ‖p constitutes a norm on Lp
K(µ), i.e. it makes Lp

K(µ) into a normed vector space
over K.

Proof. See, e.g., [Els07, Th. VI.2.2 and Th. VI.2.3]. �

Theorem A.66 (Riesz-Fischer). Let (Ω,A, µ) be a measure space and p ∈ [1,∞]. All
the spaces Lp

K(µ) and L
p
K(µ) are complete. In particular, all Lp

K(µ) are Banach spaces.

Proof. See, e.g., [Els07, Th. VI.2.5 and Cor. VI.2.6]. �
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A.4.4 Measures with Density

Proposition A.67. If (Ω,A, µ) is a measure space and f : Ω −→ [0,∞] is measurable,
then

fµ : A −→ [0,∞], (fµ)(A) :=

∫

A

f dµ , (A.45)

defines a measure on (Ω,A).

Proof. We have (fµ)(∅) =
∫

∅ f dµ = 0 and, if (Ai)i∈N is a sequence in A consisting of
pairwise disjoint sets, then

(fµ)

( ∞⋃

i=1

Ai

)

=

∫

Ω

(

f

∞∑

i=1

χAi

)

dµ
(A.36)
=

∞∑

i=1

∫

Ω

f χAi
dµ

=
∞∑

i=1

∫

Ai

f dµ =
∞∑

i=1

(fµ)(Ai), (A.46)

thereby establishing the case. �

Definition A.68. If µ, ν are measures on the measurable space (Ω,A), then a measur-
able function f : Ω −→ [0,∞] is called a density of ν with respect to µ if, and only if,
ν = fµ with fµ as in (A.45).

—

Clearly, in general, given a measure space (Ω,A, µ), not every measure ν on (Ω,A) has
a density with respect to µ (see Ex. A.71 below). The existence of a density is related
to the following notion to absolute continuity of measures:

Definition A.69. If µ, ν are measures on the measurable space (Ω,A), then ν is called
absolutely continuous with respect to µ (or sometimes just µ-continuous), denoted ν ≪
µ, if, and only if, every µ-null set is a ν-null set, i.e.

ν ≪ µ :⇔ ∀
A∈A

(

µ(A) = 0 ⇒ ν(A) = 0
)

. (A.47)

Lemma A.70. If µ, ν are measures on the measurable space (Ω,A) and ν = fµ with
a measurable function f : Ω −→ [0,∞] (i.e. ν has a density with respect to µ), then
ν ≪ µ.

Proof. If A ∈ A and µ(A) = 0, then ν(A) =
∫

A
f dµ = 0 as claimed. �

Example A.71. If (Ω,A) is a measurable space and ω ∈ Ω, then

δω : A −→ [0,∞], δω(A) :=

{

1 if ω ∈ A,

0 if ω /∈ A,
(A.48)

defines a measure on (Ω,A) (as is readily verified), the so-called Dirac measure concen-
trated in ω. Nonnegative countable linear combinations of Dirac measures are called
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discrete: A measure µ on (Ω,A) is called discrete if, and only if, there exist sequences
(ωi)i∈N in Ω and (ai)i∈N in [0,∞] such that

µ : A −→ [0,∞], µ(A) =
∑

i∈N
ai δωi

(A). (A.49)

If (Ω,A) = (Rn,Bn), n ∈ N, and µ 6= 0 is a discrete measure as above, then

µ
(
{ωi : i ∈ N}

)
=
∑

i∈N
µ
(
{ωi}

)
=
∑

i∈N
aiδωi

(
{ωi}

)

=
∑

i∈N
aiδωi

(Rn) = µ(Rn) 6= 0 = βn
(
{ωi : i ∈ N}

)
,

(A.50)

i.e., by Lem. A.70, no (nontrivial) discrete measure can be absolutely continuous with
respect to βn (or λn). However, there are also nondiscrete measures on (Rn,Bn) that
do not have a density with respect to βn (or λn) – this is related to the fact that there
exist uncountable sets N ∈ Bn with βn(N) = 0 (even for n = 1, see [RF10, Prop. 2.19]).

—

For σ-finite measures, the converse of Lem. A.70 holds as well:

Theorem A.72 (Radon-Nikodym). Let µ, ν be given measures on the measurable space
(Ω,A). If µ is σ-finite (see Def. A.17(b)) and ν ≪ µ, then ν has a density f with
respect to µ, i.e. there exists a measurable f : Ω −→ [0,∞] such that ν = fµ, i.e.
ν(A) =

∫

A
f dµ for each A ∈ A.

Proof. See, e.g., [Bau92, Th. 17.10]. �

Theorem A.73. Densities with respect to a σ-finite measure µ are unique µ-almost
everywhere: If µ, ν are measures on the measurable space (Ω,A), µ is σ-finite, and
there are measurable functions f, g : Ω −→ [0,∞], then f = g µ-almost everywhere.
Moreover, ν is σ-finite if, and only if, f is R-valued µ-almost everywhere (i.e. if, and
only if, µ({f = ∞}) = 0).

Proof. See, e.g., [Bau92, Th. 17.11]. �

Definition A.74. If µ, ν are measures on the measurable space (Ω,A), µ is σ-finite, and
ν ≪ µ, then the unique density f : Ω −→ [0,∞] that ν has with respect to µ according
to Ths. A.72 and A.73 is called the Radon-Nikodym derivative of ν with respect to µ;
in consequence, it is sometimes denoted by

dν

dµ
:= f. (A.51)
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A.5 Product Spaces

A.5.1 Product σ-Algebras

Definition A.75. (a) Given a family of sets (Ωi)i∈I , the Cartesian product of the Ωi

is the set of functions

Ω :=
∏

i∈I
Ωi :=

{(

f : I →
⋃

j∈I
Ωj

)

: ∀
i∈I

f(i) ∈ Ωi

}

, (A.52)

and the maps defined by

∀
i∈I

πi : Ω −→ Ωi, πi(f) := f(i), (A.53)

are called the corresponding projections.

(b) Given a family of measurable spaces (Ωi,Ai)i∈I , and Ω :=
∏

i∈I Ωi, define the
product σ-algebra

A :=
⊗

i∈I
Ai := σ((πi)i∈I), (A.54)

i.e. A is the smallest σ-algebra on Ω with respect to which all projections πi, i ∈ I,
are measurable.

Proposition A.76. If (Ωi,Ai)i∈I is a family of measurable spaces and (Ei)i∈I is a family
of generators (i.e. Ei ⊆ Ai and σ(Ei) = Ai for each i ∈ I), then

E :=






E ×

∏

i∈I\{j}
Ωi : j ∈ I, E ∈ Ej






(A.55)

is a generator of the product σ-algebra A :=
⊗

i∈I Ai.

Proof. We have

∀
j∈I

∀
E∈Ej

π−1
j (E) = E ×

∏

i∈I\{j}
Ωi, (A.56)

showing σ(E) ⊆ A. For the opposite inclusion, we note that (A.56) implies

E =
⋃

j∈J
π−1
j (Ej), (A.57)

in particular,
∀
j∈I

π−1
j (Ej) ⊆ E ⊆ σ(E). (A.58)

Thus,

∀
j∈I

σ(πj)
Prop. A.4

= π−1
j (Aj) = π−1

j (σ(Ej)) Th. A.9
= σ

(
π−1
j (Ej)

) (A.58)

⊆ σ(E), (A.59)

implying A ⊆ σ(E). �
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Proposition A.77. If (Ωi,Ai)i∈I is a finite family of measurable spaces (i.e. #I = n ∈
N) and (Ei)i∈I is a family of generators (i.e. Ei ⊆ Ai and σ(Ei) = Ai for each i ∈ I)
such that

∀
i∈I

∃
(Ei,k)k∈N in Ei

Ωi =
⋃

k∈N
Ei,k, (A.60)

then

E :=

{
∏

i∈I
Ei : ∀

i∈I
Ei ∈ Ei

}

(A.61)

is a generator of the product σ-algebra A :=
⊗

i∈I Ai.

Proof. See, e.g., [Els07, p. 113]. �

Proposition A.78. Forming product σ-algebras is associative: If (Ωi,Ai)i∈I is a family
of measurable spaces, K is a nonempty index set, and (Iκ)κ∈K is a family of nonempty
subsets of I such that I =

⋃

κ∈K Iκ, then, in the sense of the canonical identification
between

∏

κ∈K
(∏

i∈Iκ Ωi

)
and

∏

i∈I Ωi, the following holds:

⊗

κ∈K

(
⊗

i∈Iκ
Ai

)

=
⊗

i∈I
Ai. (A.62)

Proof. See, e.g., [Els07, Ex. III.5.5(a)]. �

A.5.2 Product Borel σ-Algebras

A natural and important question is if forming products of Borel σ-algebras commutes
with forming the product topology and then taking the resulting Borel σ-algebra. The
short answer is that, unfortunately, in general the above constructions do not(!) com-
mute in general, but that everything works fine (they do commute) for Rn.

We start by recalling the definition of the product topology, which is completely analo-
gous to the definition of the product σ-algebra in Def. A.75(b) above:

Definition A.79. Given a family of topological spaces (Ωi, τi)i∈I , and Ω :=
∏

i∈I Ωi,
define the product topology

τ :=
⊗

i∈I
τi (A.63)

to be the smallest topology on Ω with respect to which all projections πi, i ∈ I, are
continuous. Then, clearly, τ is generated by the subbase of open sets

S :=






O ×

∏

i∈I\{j}
Ωi : j ∈ I, O ∈ τj






. (A.64)

If Ω and τ are as above, then one says that (Ω, τ) is the topological product of the
(Ωi, τi)i∈I .
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Theorem A.80. Given a family of topological spaces (Ωi, τi)i∈I with topological product
(Ω, τ), one always has

σ(τ) ⊇
⊗

i∈I
σ(τi), (A.65)

i.e. the Borel σ-algebra of the product topology always contains the product of the Borel
σ-algebras.

Proof. By definition, the product of the Borel σ-algebras, i.e. the σ-algebra on the right-
hand side of (A.65) is the smallest σ-algebra with respect to which all the projections
are measurable. However, since all projections are τ -continuous, all projections are
σ(τ)-measurable, thereby proving (A.65). �

Caveat A.81. Without additional hypotheses, such as the ones given in Th. A.82 below,
equality can not be expected in (A.65): An entire class of examples, where equality fails
even for just two factors is given by [Els07, Rem. III.5.16], whereas [Els07, Exercise
III.5.3] provides a concrete example.

Theorem A.82. If (Ωi, τi)i∈N is a countable family of topological spaces such that each
topology τi has a countable base, and if (Ω, τ) denotes the topological product, then

σ(τ) =
⊗

i∈I
σ(τi), (A.66)

i.e. the Borel σ-algebra of the product topology is the same as the product of the Borel
σ-algebras.

Proof. See, e.g., [Els07, Th. III.5.10]. �

Corollary A.83. Let m,n ∈ N. For the Borel σ-algebras Bm and Bn of Rm and Rn,
respectively, we have

Bm+n = Bm ⊗ Bn, Bn = ⊗n
i=1B1. (A.67a)

Proof. To apply Th. A.82, one merely has to note that the (usual) topology on R

has a countable base (e.g. given by the collection of all open intervals with rational
endpoints). �

A.5.3 Product Measure Spaces

Definition A.84. Let n ∈ N and let (Ωi,Ai, µi)
n
i=1 be a finite family of measure spaces,

Ω :=
∏n

i=1 Ωi, A := ⊗n
i=1Ai. Then a measure µ on (Ω,A) is called a product measure if,

and only if,

∀
(A1,...,An)∈

∏n
i=1 Ai

µ

(
n∏

i=1

Ai

)

=
n∏

i=1

µi(Ai). (A.68)

Theorem A.85. Let n ∈ N and let (Ωi,Ai, µi)
n
i=1 be a finite family of measure spaces,

Ω :=
∏n

i=1 Ωi, A := ⊗n
i=1Ai.
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(a) There always exists at least one product measure on (Ω,A).

(b) If each measure µi is σ-finite, then there exists a unique product measure µ on
(Ω,A), denoted by ⊗n

i=1µi := µ. Moreover, ⊗n
i=1µi is itself σ-finite and, defining

∀
M⊆Ω

∀
xn∈Ωn

Mxn
:= {(x1, . . . , xn−1) : (x1, . . . , xn) ∈M}, (A.69a)

one has
∀

M∈A
xn 7→

(
⊗n−1

i=1 µi

)
(Mxn

) is measurable (A.69b)

and

∀
M∈A

(⊗n
i=1µi) (M) =

∫

Ωn

(
⊗n−1

i=1 µi

)
(Mxn

) dµn(xn). (A.69c)

In terms of the canonical identification (
∏n−1

i=1 Ωi)× Ωn
∼=
∏n

i=1 Ωi, one has

(⊗n−1
i=1 µi)⊗ µn = ⊗n

i=1µi. (A.69d)

Proof. For n = 2, see, e.g., [Els07, Th. V.1.2/1.3]. The general case then follows by
induction (cf. [Els07, Th. V.1.12]). �

Caveat A.86. In general, the conclusion of Th. A.85(b) does not hold if the µi are not
all σ-finite: Several different product measures can exist (see [Els07, Ex. V.1.4] for an
example with n = 2) and the map in (A.69b) can be nonmeasurable so that (A.69c)
does not even make sense (see [Beh87, p. 96] for an example with n = 2).

A.5.4 Theorems of Tonelli and Fubini

Theorem A.87. Let (Ω1,A, µ) and (Ω2,B, ν) be σ-finite measure spaces.

(a) Tonelli’s Theorem: For each nonnegative (A ⊗ B)-measurable function f : Ω1 ×
Ω2 −→ [0,∞], the functions given by

ω1 7→
∫

Ω2

f(ω1, ω2) dν(ω2) ∈ [0,∞], ω2 7→
∫

Ω1

f(ω1, ω2) dµ(ω1) ∈ [0,∞],

(A.70)
are A-measurable (resp. B-measurable) and

∫

Ω1×Ω2

f(ω1, ω2) d(µ⊗ ν)(ω1, ω2)

=

∫

Ω2

∫

Ω1

f(ω1, ω2) dµ(ω1) dν(ω2)

=

∫

Ω1

∫

Ω2

f(ω1, ω2) dν(ω2) dµ(ω1). (A.71)
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(b) Fubini’s Theorem: For each (µ ⊗ ν)-integrable function f : Ω1 × Ω2 −→ K̂, the
function f(ω1, ·) is ν-integrable for µ-almost every ω1 ∈ Ω1 – in particular,

A := {ω1 ∈ Ω1 : f(ω1, ·) is not ν-integrable} ∈ A; (A.72a)

the function f(·, ω2) is µ-integrable for ν-almost every ω2 ∈ Ω2 – in particular,

B := {ω2 ∈ Ω2 : f(·, ω2) is not µ-integrable} ∈ B; (A.72b)

the functions given by

ω1 7→
∫

Ω2

f(ω1, ω2) dν(ω2), ω2 7→
∫

Ω1

f(ω1, ω2) dµ(ω1), (A.73)

are µ-integrable over X \ A (resp. ν-integrable over Y \B) and

∫

Ω1×Ω2

f(ω1, ω2) d(µ⊗ ν)(ω1, ω2)

=

∫

Ω2\B

∫

Ω1

f(ω1, ω2) dµ(ω1) dν(ω2)

=

∫

Ω1\A

∫

Ω2

f(ω1, ω2) dν(ω2) dµ(ω1). (A.74)

(c) If f : Ω1 × Ω2 −→ K̂ is (µ⊗ ν)-measurable and one of the integrals

∫

Ω1×Ω2

|f | d(µ⊗ ν),

∫

Ω2

∫

Ω1

|f(ω1, ω2)| dµ(ω1) dν(ω2),

∫

Ω1

∫

Ω2

|f(ω1, ω2)| dν(ω2) dµ(ω1),

(A.75)

is finite, then all three integrals are finite and equal, f is (µ⊗ ν)-integrable and, in
particular, all the assertions of (b) hold.

Proof. See, e.g., [Els07, Sec. V.§2]. �

B Probability Theory

B.1 Basic Concepts and Terminology

B.1.1 Probability Space, Random Variables, Distribution

Definition B.1. A measure space (Ω,A, P ) is called a probability space if, and only if,
P (Ω) = 1. Then Ω is called the sample space, elements A of A are called events, P is
called a probability measure or probability distribution, and P (A) is called the probability
of the event A.
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Definition B.2. Let (Ω,A, P ) be a probability space and (Ω′,A′) a measurable space.

(a) A function X : Ω −→ Ω′ is called a (Ω′,A′)-random variable if, and only if, X
is A-A′-measurable. If A′ is understood, then X is just called an Ω′-valued ran-
dom variable, for (Ω′,A′) = (R,B1), (Ω′,A′) = (R,B), or (Ω′,A′) = (C,B2) just
random variable; and for (Ω′,A′) = (Rn,Bn) or (Ω′,A′) = (Cn,B2n), n ∈ N, an
n-dimensional random variable or random vector.

(b) The distribution of a random variable X : Ω −→ Ω′ is the pushforward measure
PX = X(P ) on (Ω′,A′) (cf. Def. A.34 and Prop. A.33), i.e.

PX(B) =
(
X(P )

)
(B) = P

(
X−1(B)

)
for each B ∈ A′. (B.1)

If PX is the distribution ofX, then one also says thatX is PX-distributed and writes
X ∼ PX . A family of random variables (Xi)i∈I is called identically distributed if,
and only if, they all have the same distribution, i.e. if, and only if, PXi

= PXj
for

all i, j ∈ I. If PXi
= PX for all i ∈ I, then one sometimes calls the Xi identically

distributed copies of X.

B.1.2 Expected Value, Moments, Standard Variation, Variance

Definition B.3. Let (Ω,A, P ) be a probability space and let X : Ω −→ K̂ be a random
variable.

(a) If X ≥ 0 (in particular R-valued) or X is integrable, then

E(X) :=

∫

Ω

X dP ∈ K̂ (B.2)

is called the expected value of X.

(b) Let p ∈ [1,∞[, α ∈ K. For each X ∈ Lp(P,K), we call

E(|X − α|p) ∈ R+
0

the pth absolute moment of X centered at α.

(c) For each X ∈ L1(P,K), we call

V (X) := E
(
(X − E(X))2

)
∈ [0,∞] (B.3)

the variance of X and
σ(X) :=

√

V (X) ∈ [0,∞] (B.4)

the standard deviation of X. It is also customary to write σ2(X) instead of V (X).

Definition B.4. Let (Ω,A, P ) be a probability space and let X : Ω −→ Kn, n ∈ N, be
a random vector. If X ∈ L1(P,Kn), then

E(X) :=
(
E(X1), . . . , E(Xn)

)
(B.5)

is called the expectation vector of X.
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Theorem B.5. Let (Ω,A, P ) be a measure space, let X : Ω −→ R be measurable.

(a) Markov’s inequality holds for each p, α ∈ R+:

P
(
{|X| ≥ α}

)
≤ 1

αp

∫

Ω

|X|p dP , (B.6)

where, as is customary, {|X| ≥ α} was written instead of {ω ∈ Ω : |X(ω)| ≥ α}.

(b) The Chebyshev inequality holds for each α ∈ R+, provided that (Ω,A, P ) is a
probability space and X ∈ L1(P ):

P
(
{|X − E(X)| ≥ α}

)
≤ 1

α2
V (X). (B.7)

Proof. (a): For each α > 0, we have Aα := {|X| ≥ α} ∈ A and compute

∫

Ω

|X|p dP ≥
∫

Aα

|X|p dP ≥
∫

Aα

αp dP = αp P (Aα), (B.8)

proving (a).

(b) immediately follows from (a) by applying Markov’s inequality with p = 2 and X
replaced by X − E(X). �

B.1.3 Independence

Definition B.6. Let (Ω,A, P ) be a probability space and I 6= ∅ an index set. The
family (Ai)i∈I of events from A is called independent if, and only if, for each nonempty
finite subset of I with distinct elements i1, . . . , in:

P (Ai1 ∩ · · · ∩ Ain) = P (Ai1) · · ·P (Ain). (B.9)

The events (Ai)i∈I are called pairwise independent if, and only if, (B.9) holds for each
two-element subset of I with elements i1, i2.

Example B.7. Simple examples show that, in general, pairwise independence does not
imply independence. The following standard example arises from modeling rolling a
fair die independently for two consecutive times: Let A1 (resp. A2) be the event that
the first (resp. the second) rolling resulted in an odd number, and let A3 be the event
that the sum of both rollings was odd. Then the events are pairwise independent, but
not independent: Let (Ω,A, P ) be the probability space, where Ω := {1, 2, 3, 4, 5, 6}2,
A := P(Ω), P{(i, j)} := 1/36 for each (i, j) ∈ Ω,

A1 := {(i, j) ∈ Ω : i is odd}, (B.10a)

A2 := {(i, j) ∈ Ω : j is odd}, (B.10b)

A3 := {(i, j) ∈ Ω : i+ j is odd}. (B.10c)
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Since

P (A1 ∩ A2) =
1

4
=

1

2
· 1
2
= P (A1) · P (A2), (B.11a)

P (A1 ∩ A3) =
1

4
=

1

2
· 1
2
= P (A1) · P (A3), (B.11b)

P (A2 ∩ A3) =
1

4
=

1

2
· 1
2
= P (A2) · P (A3), (B.11c)

A1, A2, A3 are pairwise independent. However, since

P (A1 ∩ A2 ∩ A3) = 0 6= 1

8
=

1

2
· 1
2
· 1
2
= P (A1) · P (A2) · P (A3), (B.12)

A1, A2, A3 are not independent.

—

For mostly technical reasons, it turns out that the following generalization of Def. B.6
is useful:

Definition B.8. Let (Ω,A, P ) be a probability space and I an index set. The family
(Ei)i∈I of sets ∅ 6= Ei ⊆ A is called independent if, and only if, for each nonempty
finite subset of I with distinct elements i1, . . . , in and each possible choice Aiν ∈ Eiν ,
ν ∈ {1, . . . , n}, the equality (B.9) is valid.

Definition B.9. Let (Ω,A, P ) be a probability space, I an index set, and, for each
i ∈ I, (Ωi,Ai) measurable spaces, Xi : Ω −→ Ωi random variables. Then the family
(Xi)i∈I is called independent if, and only if, the family (σ(Xi))i∈I of generated σ-algebras
is independent (recall from Rem. A.32(b) that σ(Xi) = X−1

i (Ai)).

—

It is tremendously useful that independence is always preserved under compositions:

Theorem B.10. Let (Ω,A, P ) be a probability space, I an index set; for each i ∈ I,
let (Ωi,Ai) and (Ω′

i,A′
i) be measurable spaces, Xi : Ω −→ Ωi random variables, and

Yi : Ωi −→ Ω′
i measurable maps. Then the independence of the family (Xi)i∈I implies

the independence of the family (Yi ◦Xi)i∈I .

Proof. For each i ∈ I and each B ∈ A′
i, one has (Yi ◦ Xi)

−1(B) = X−1
i

(
Y −1
i (B)

)
,

implying σ(Yi ◦ Xi) = (Yi ◦ Xi)
−1(A′

i) ⊆ X−1
i (Ai) = σ(Xi). Thus, if

(
σ(Xi)

)

i∈I is

independent, then so is
(
σ(Yi ◦Xi)

)

i∈I . �

Theorem B.11. Let (Ω,A, P ) be a probability space, (Ω1,A1), . . . , (Ωn,An) measurable
spaces, n ∈ N, and Xi : Ω −→ Ωi random variables, i = 1, . . . , n. Then the finite family
X1, . . . , Xn is independent if, and only if,

P{X1 ∈ A1, . . . , Xn ∈ An} =
n∏

i=1

P{Xi ∈ Ai} (B.13)
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for each possible choice Ai ∈ Ai. The statement remains valid if the last part is replaced
by “for each possible choice Ai ∈ Qi”, where, for each i = 1, . . . , n, Qi ⊆ P(Ωi) is a
∩-stable generator of Ai (i.e. Ai = σΩi

(Qi) and Qi is ∩-stable (cf. Def. A.24)).

Proof. See, e.g., [Bau02, Th. 7.2]. �

Theorem B.12. Let (Ω,A, P ) be a probability space. If X1, . . . , Xn, n ∈ N, are K-
valued, independent random variables on Ω such that all Xi ≥ 0 (in particular, R-valued)
or all Xi are integrable, then

E

(
n∏

i=1

Xi

)

=
n∏

i=1

E(Xi). (B.14)

In particular, if all Xi are integrable, then so is the product
∏n

i=1Xi.

Proof. See [Bau02, Th. 8.1] for the R-valued case and [Bau02, p. 185] for the C-valued
case. �

Definition B.13. Let (Ω,A, P ) be a probability space. If X, Y are K-valued, integrable
random variables on Ω such that XY is also integrable, then define the number

Cov(X, Y ) := E
(

(X − E(X))(Y − E(Y ))
)

= E(XY )− E(X)E(Y ), (B.15)

called the covariance of X and Y . Moreover, X and Y are called uncorrelated if, and
only if, Cov(X, Y ) = 0.

Remark B.14. According to Th. B.12, if X and Y are independent, then they are also
uncorrelated. However, simple examples, such as the following Ex. B.15, show that the
converse is not true.

Example B.15. Let (Ω,A, P ) be the probability space, where Ω := {1, 2, 3}, A :=
P(Ω), and P{i} = 1/3 for i = 1, 2, 3. Moreover, define

X : Ω −→ R, X(i) :=







1 for i = 1,

0 for i = 2,

−1 for i = 3,

(B.16)

Y : Ω −→ R, Y (i) :=







0 for i = 1,

1 for i = 2,

0 for i = 3.

(B.17)

Since
E(XY ) = 0 = E(X) = E(X)E(Y ), (B.18)

X, Y are uncorrelated. However, since

P{X = 1, Y = 1} = 0 6= 1

3
· 1
3
= P{X = 1} · P{Y = 1} (B.19)

and Th. B.11, X, Y are not independent.
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B.1.4 Product Spaces

Definition B.16. Let (Ω,A, P ) be a probability space, I an index set, and, for each
i ∈ I, (Ωi,Ai) measurable spaces, Xi : Ω −→ Ωi random variables. The Xi are
called identically distributed if, and only if, they all have the same distribution, i.e.
PXi

= PXj
for all i, j ∈ I. If the family (Xi)i∈I is also independent, then the Xi are

called independent identically distributed (i.i.d.).

—

It is a remarkable and nontrivial result that i.i.d. families of every cardinality and of
every distribution exist. This is related to the fact that one can form products of
arbitrarily many probability spaces (see Cor. B.18 below).

Theorem B.17. Let I be an index set and let (Ωi,Ai, Pi)i∈I be a family of probability
spaces. Moreover, let (cf. Def. A.75)

(Ω,A), where Ω :=
∏

i∈I
Ωi, A :=

⊗

i∈I
Ai. (B.20)

For each finite J ⊆ I, the projection

πJ : Ω −→
∏

j∈J
Ωj, πJ(ωi)i∈I = (ωj)j∈J , (B.21)

is A-⊗j∈JAi-measurable and there exists a unique measure P on (Ω,A) (called the
product measure of the Pi, also denoted ⊗i∈IPi := P ), satisfying

∀
J⊆I: #J<∞

PπJ
= ⊗j∈JPj, (B.22)

where ⊗j∈JPj denotes the unique product measure of the (Pj)j∈J given by Th. A.85(b).

Moreover, P is a probability measure and

∀
J⊆I: #J<∞,

(Aj)j∈J∈
∏

j∈J Aj

P




∏

j∈J
Aj ×

∏

i∈I\J
Ωi



 =
∏

j∈J
Pj(Aj). (B.23)

Proof. See, e.g., [Bau02, Th. 9.2]. �

Corollary B.18. Let I be an index set. For each family (Ωi,Ai, Pi)i∈I of probability
spaces, there exists a probability space (Ω,A, P ) and an independent family (Xi)i∈I of
random variables Xi : Ω −→ Ωi such that

∀
i∈I

PXi
= Pi, (B.24)

namely the product space with (Ω,A, P ) as defined in Th. B.17, where the Xi are given
by the projections Xi = πi : Ω −→ Ωi. In particular, choosing all (Ωi,Ai, Pi) to be the
same probability space (Ω1,A1, P1) yields an i.i.d. family of random variables (Xi)i∈I
with distribution P1.
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Theorem B.19. Let (Ω,A, P ) be a probability space, I 6= ∅ an index set, (Ω′,A′) a
measurable space, and (Xi)i∈I a family of independent random variables Xi : Ω −→ Ω′

satisfying
∀
i∈I

∃
Ai∈A′

0 < P{Xi ∈ Ai} < 1. (B.25)

Moreover, let J 6= ∅ be another index set, (Ij)j∈J a family of subsets Ij ⊆ I, where all Ij
have the same cardinality #Ij = κ 6= ∅, K a reference set with #K = κ, and, for each
j ∈ J , let φj : Ij −→ K be a bijection. If

∀
j∈J

Yj : Ω −→ (Ω′)K , Yj := (Xφ−1
j (k))k∈K , (B.26)

then the family (Yj)j∈J is independent if, and only if, the Ij are pairwise disjoint.

Proof. Exercise. �

B.1.5 Condition

Definition B.20. Let (Ω,A, P ) be a probability space, B ∈ A, and P (B) > 0.

(a) The map

PB := P |B : A −→ [0, 1], PB(A) := (P |B)(A) :=
P (A ∩ B)

P (B)
, (B.27)

is called the conditional probability under the hypothesis B.

(b) If (Ω̃, Ã, P̃ ) is a probability space, (Ω′,A′) is a measurable space and X : Ω −→ Ω′,
Y : Ω̃ −→ Ω′ are random variables, then Y is said to be distributed according to
X under the condition B (denoted Y ∼ X|B) if, and only if, Y (P̃ ) = X(PB), i.e.
if, and only if,

∀
A∈A′

P̃{Y ∈ A} = P̃
(
Y −1(A)

)
= PB

(
X−1(A)

)
=
P
(
B ∩ {X ∈ A}

)

P (B)
. (B.28)

Proposition B.21. Let (Ω,A, P ) be a probability space, B ∈ A, and P (B) > 0.

(a) The conditional probability PB as defined in (B.27) constitutes a probability measure
on (Ω,A).

(b) The restriction PB : A|B −→ [0, 1] constitutes a probability measure on (B,A|B).

(c) Let (Ω′,A′) be a measurable space and X : Ω −→ Ω′ a random variable. Then,
considering the probability space (B,A|B,PB),

Y : B −→ Ω′, Y := X↾B, (B.29)

is a random variable satisfying Y ∼ X|B.
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Proof. (a): Since B ∈ A, we have A ∩ B ∈ A for each A ∈ A, i.e. PB is well-defined.
Moreover, PB(∅) = 0 and PB(Ω) = 1 are both immediate from (B.27). If (An)n∈N is a
sequence of pairwise disjoint sets in A, then

PB

( ∞⋃

n=1

An

)

=
1

P (B)
P

(

B ∩
∞⋃

n=1

An

)

=
1

P (B)
P

( ∞⋃

n=1

An ∩B
)

=
1

P (B)

∞∑

n=1

P (An ∩ B) =
∞∑

n=1

PB(An), (B.30)

verifying the σ-additivity of PB.

(b) is an immediate consequence of Prop. A.18 and PB(B) = 1.

(c): If A ∈ A′, then Y −1(A) = B ∩X−1(A) ∈ A|B, since X is A-measurable. Thus, Y
is A|B-measurable. To verify Y ∼ X|B, we calculate

∀
A∈A′

PB{Y ∈ A} = PB

(
Y −1(A)

)
= PB

(
B ∩X−1(A)

)
=
P
(
B ∩ {X ∈ A}

)

P (B)
, (B.31)

which establishes the case. �

B.1.6 Convergence

Definition B.22. Let (Ω,A, P ) be a measure space, let (Ω′, τ) be a topological space,
and let X,Xn : Ω −→ Ω′, n ∈ N.

(a) The Xn converge to X pointwise P -almost everywhere if, and only if, there exists a
P -null set N ⊆ Ω such that limn→∞Xn(ω) = X(ω) for each ω ∈ Ω\N . If (Ω,A, P )
is a probability space, then one usually says that the Xn converge to X almost
surely or with probability 1 (note that measurability of Xn, X is actually not needed
here).

(b) Let p ∈ [1,∞[ and assume Xn, X ∈ Lp(P,K). Then the Xn converge to X in the
pth mean or simply in Lp(P ) if, and only if,

lim
n→∞

‖X −Xn‖pp = lim
n→∞

∫

Ω

|X −Xn|p dP = 0. (B.32)

If (Ω,A, P ) is a probability space, then (B.32) can be written as

lim
n→∞

E
(
|X −Xn|p

)
= 0. (B.33)

(c) Let Xn, X : Ω −→ K be measurable. The Xn converge to X in measure if, and
only if,

lim
n→∞

P
(
{|X −Xn| ≥ α} ∩ A

)
= 0 for each α > 0 and A ∈ A with P (A) <∞.

(B.34)
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If (Ω,A, P ) is a probability space, then (B.34) is equivalent to

lim
n→∞

P
(
{|X −Xn| ≥ α}

)
= 0 for each α > 0, (B.35)

and one says that the Xn converge to X in probability.

Notation B.23. Let Cb(R
n) denote the set of all continuous and bounded real-valued

functions on Rn, n ∈ N.

Definition B.24. (a) Let (Rn,Bn, P ), (Rn,Bn, Pi), i ∈ N, be probability spaces, n ∈
N. Then the Pi converge to P weakly (denoted limi→∞ Pi = P ) if, and only if,

lim
i→∞

∫

Rn

f dPi =

∫

Rn

f dP for each f ∈ Cb(R
n). (B.36)

(b) Let (Ω,A, P ) be a probability space and X, Xi, i ∈ N, Rn-valued random variables,
n ∈ N. The Xi converge to X (or, more generally, to a probability measure µ on
Bn) in distribution if, and only if, the distributions PXi

converge weakly to PX (or,
more generally, to µ).

Theorem B.25. Let (Ω,A, P ) be a probability space, and let X : Ω −→ R, Xi : Ω −→
R, i ∈ N, be random variables. If the Xi converge to X in probability, then they converge
to X in distribution.

Proof. See, e.g., [Bau02, Th. 5.1]. �

B.1.7 Density and Distribution Functions

Definition B.26. Let (Ω,A, P ) be a probability space, let (Ω′,A′, µ) be a measure
space, and let f : Ω′ −→ [0,∞] be measurable.

(a) If P ′ is a probability measure on (Ω′,A′), then f is called a probability density
function (PDF) for P ′ with respect to µ if, and only if, P ′ = fµ, i.e. if, and only if,
f is a density for P ′ with respect to µ in the sense of Def. A.68, i.e. if, and only if,

∀
B∈A′

P ′(B) =

∫

B

f dµ . (B.37a)

(b) If X : Ω −→ Ω′ is a random variable, then f is called a probability density function
(PDF) of X and one says X is distributed according to f if, and only if, f is a PDF
for the distribution of X in the sense of (a), i.e. if, and only if,

∀
B∈A′

PX(B) = P{X ∈ B} =

∫

B

f dµ . (B.37b)

Corollary B.27. In the situation of Def. B.26, let the measure µ be σ-finite. Then the
probability measure P ′ (resp. the random variable X) has a PDF with respect to µ if,
and only if, P ′ (resp. PX) is absolutely continuous with respect to µ (cf. Def. A.69).
Moreover, the density is unique µ-almost everywhere.
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Proof. Existence is given by the Radon-Nikodym Th. A.72 (and Lem. A.70). Uniqueness
is given by Th. A.73. �

Definition B.28. Let P be a probability measure on (R,B1).

(a) The function
FP,r : R −→ [0, 1], FP,r(x) := P ]−∞, x], (B.38a)

is called the right-continuous (r.c.) cumulative distribution function (CDF) or just
(r.c.) distribution function of P (cf. Th. B.29 below). Sometimes it is convenient
to extend the r.c. CDF to R by defining

FP,r : R −→ [0, 1], FP,r(x) :=







0 for x = −∞,

P ]−∞, x] for x ∈ R,

1 for x = ∞.

(B.38b)

(b) The function
FP,l : R −→ [0, 1], FP,l(x) := P ]−∞, x[, (B.39a)

is called the left-continuous (l.c.) cumulative distribution function (CDF) or just
(l.c.) distribution function of P (cf. Th. B.29 below). Sometimes it is convenient
to extend the l.c. CDF to R by defining

FP,l : R −→ [0, 1], FP,l(x) :=







0 for x = −∞,

P ]−∞, x[ for x ∈ R,

1 for x = ∞.

(B.39b)

Theorem B.29. Define

F↑ :=
{
(f : R −→ [0, 1]) : f increasing, lim

x→−∞
f(x) = 0, lim

x→∞
f(x) = 1

}
, (B.40a)

R↑ :=
{
f ∈ F↑ : f right-continuous

}
, (B.40b)

L↑ :=
{
f ∈ F↑ : f left-continuous

}
. (B.40c)

If P denotes the set of all probability measures on (R,B1), then the maps

R : P −→ R↑, R(P ) := FP,r, (B.41a)

L : P −→ L↑, L(P ) := FP,l, (B.41b)

are both bijective.

Moreover, if P ∈ P, then both FP,r and FP,l are continuous at x ∈ R if, and only if,
P ({x}) = 0, i.e. if, and only if, x is not a so-called atom.

Proof. See [Bau92, Ths. 6.5,6.6] for the bijectivity of (B.41b); the bijectivity of (B.41a)
can be proved completely analogously.
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Let x ∈ R and P ({x}). Consider an increasing sequence (xn)n∈N in R such that
limn→∞ xn = x. Then

lim
n→∞

FP,r(xn) = lim
n→∞

P ]−∞, xn] = P ]−∞, x[

= P ]−∞, x] if, and only if, P ({x}) = 0, (B.42a)

showing that FP,r is continuous if, and only if, P ({x}) = 0. Similarly, if (xn)n∈N is a
decreasing sequence in R such that limn→∞ xn = x. Then

lim
n→∞

FP,l(xn) = lim
n→∞

P ]−∞, xn[= lim
n→∞

(
1− P [xn,∞[

)
= 1− P ]x,∞[

= 1− P [x,∞[ if, and only if, P ({x}) = 0, (B.42b)

showing that FP,l is continuous if, and only if, P ({x}) = 0. �

B.2 Important Theorems

B.2.1 Laws of Large Numbers

Definition B.30. Let (Ω,A, P ) be a probability space. A sequence (Xi)i∈N of R-valued,
integrable random variables on Ω is said to satisfy the weak (resp. strong) law of large
numbers if, and only if,

lim
n→∞

1

n

n∑

i=1

(
Xi − E(Xi)

)
= 0 (B.43)

in the sense of convergence in probability (resp. in the sense of convergence almost
surely).

Theorem B.31 (Khintchine, Weak Law of Large Numbers). Let (Ω,A, P ) be a prob-
ability space. If a sequence (Xi)i∈N of R-valued, integrable, and pairwise uncorrelated
random variables on Ω satisfies

lim
n→∞

1

n2

n∑

i=1

V (Xi) = 0, (B.44)

then it also satisfies the weak law of large numbers.

Proof. See, e.g., [Bau02, Th. 10.2]. �

Theorem B.32 (Etemadi, Kolmogorov, Strong Law of Large Numbers). Let (Ω,A, P )
be a probability space. Each sequence (Xi)i∈N of R-valued, integrable, identically dis-
tributed, and pairwise independent random variables on Ω satisfies the strong law of
large numbers (Kolmogorov had proved the theorem under the stronger hypothesis that
the entire sequence is independent).

Proof. See, e.g., [Bau02, Th. 12.1]. �
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B.2.2 The Central Limit Theorem

Notation B.33. For each α ∈ R, σ > 0, let gα,σ2 denote the function

gα,σ2 : R −→ R+, gα,σ2(x) := (2πσ2)−
1
2 e−

(x−α)2

2σ2 . (B.45)

Remark B.34. Recalling

(2π)−
1
2

∫ ∞

−∞
e−x2/2 dx = 1, (B.46)

a simple change of variables shows

∫ ∞

−∞
gα,σ2(x) dx = 1 for each α ∈ R, σ > 0. (B.47)

Definition and Remark B.35. For each α ∈ R, σ > 0, the measure on B1 defined by

N(α, σ2) := να,σ2 := gα,σ2 λ1 (B.48)

is called the normal or the Gaussian distribution on R, centered in α and with variance
σ2. One calls N(0, 1) the standard normal distribution. From Rem. B.34, we know
each N(α, σ2) defines a probability measure on B1. If (Ω,A, P ) is a probability space
and X : Ω −→ R a random variable such that PX = N(α, σ2), then one says X is
N(α, σ2)-distributed. For N(α, σ2)-distributed X, one checks that

E(X) = α, (B.49a)

V (X) = σ2. (B.49b)

Theorem B.36 (Central Limit Theorem). Let (Ω,A, P ) be a probability space, and let
(Xi)i∈N be a sequence in L2(P ), consisting of independent and identically distributed
(i.i.d.) R-valued random variables on Ω with σ := σ(Xi) > 0.

(a) It holds that

lim
n→∞

(

1

σ
√
n

n∑

i=1

(
Xi − E(Xi)

)

)

(P ) = N(0, 1), (B.50)

i.e. the random variables occurring on the left-hand side of (B.50) converge in
distribution to the standard normal distribution.

(b) If F1, F2, . . . is the sequence of distribution functions corresponding to the distribu-
tions of the random variables occurring on the left-hand side of (B.50) and if F is
the distribution function of N(0, 1), then the Fn converge to F uniformly on R.

Proof. (a): See, e.g., [Bau02, Th. 27.1].

(b) follows by combining (a) with [Bau92, Th. 30.13]. �
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C Stochastic Calculus

C.1 Itô’s Formula and Integration by Parts

C.1.1 1-Dimensional Case

Definition C.1. Let (Ω,A, P ) be a probability space. A pair of R-valued stochastic
processes (at, bt)t≥0, at, bt : Ω −→ R for each t ∈ R+

0 , is called Itô-admissible if, and only
if, the paths t 7→ at(ω) are locally integrable almost surely, and the paths t 7→ bt(ω) are
locally square-integrable almost surely, i.e. if, and only if,

P

{

ω ∈ Ω : ∀
T∈R+

0

∫ T

0

|at(ω)| dt <∞
}

= 1, (C.1a)

and

P

{

ω ∈ Ω : ∀
T∈R+

0

∫ T

0

|bt(ω)|2 dt <∞
}

= 1. (C.1b)

Theorem C.2 (Itô’s Formula). Let (at, bt)t≥0 be Itô-admissible stochastic processes.
Moreover, let O ⊆ R be open. If the O-valued stochastic process (Yt)t≥0 is a solution to
the SDE

dYt = at dt + bt dWt , (C.2)

where (Wt)t≥0 denotes a 1-dimensional standard Brownian motion with drift 0 and vari-
ance 1, and

f : R+
0 ×O −→ R, (t, x) 7→ f(t, x),

has continuous first partials with respect to t and continuous second partials with respect
to x, then (Ỹt)t≥0, where Ỹt := f(t, Yt) for each t ∈ R+

0 , is a solution to the SDE

dỸt =

(

∂tf(t, Yt) + at ∂xf(t, Yt) + b2t
∂xxf(t, Yt)

2

)

dt + bt ∂xf(t, Yt) dWt . (C.3)

The relation (C.3) is known as Itô’s formula.

Proof. See, e.g., [KP99, Th. 3.3.2]. �

We can use Itô’s formula to prove a simple version of the integration by parts formula
for Itô integrals (much more general versions exist in the literature):

Theorem C.3 (Integration by Parts). Let α : R+
0 −→ R be locally integrable and let

σ : R+
0 −→ R+

0 be locally square-integrable. If (Xt)t≥0 denotes a 1-dimensional Brownian
motion with drift α and variance σ2, then the integration by parts formula reads

d(tXt) = Xt dt + t dXt (C.4a)
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or, written in the more explicit integral form,

tXt =

∫ t

0

Xs ds +

∫ t

0

s α(s) ds +

∫ t

0

s σ(s) dWs (C.4b)

with (Wt)t≥0 as in Th. C.2.

Proof. As (Xt)t≥0 is a 1-dimensional Brownian motion with drift α and variance σ2,
according to Rem. 4.5, it satisfies the SDE

dXt = α(t) dt + σ(t) dWt. (C.5)

We apply Itô’s formula (C.3) with Yt = Xt,

f : R+
0 × R −→ R, f(t, x) := t x, (C.6)

i.e. Ỹt = tXt, obtaining

dỸt =
(
Xt + α(t) t

)
dt + σ(t) t dWt , (C.7)

which is precisely (C.4). �

C.1.2 Multi-Dimensional Case

In generalization of Th. C.2 and (C.3), one has:

Theorem C.4 (Itô’s Formula). Let d,m ∈ N. Let (at, bt)t≥0 be Itô-admissible stochastic
processes, where (at)t≥0 is Rd-valued and (bt)t≥0 is Rd×m-valued (this is supposed to
mean (at, bt)t≥0 satisfy (C.1) with |at(ω)| replaced by ‖at(ω)‖ and |bt(ω)| replaced by
‖bt(ω)‖, respectively, i.e. (at)t≥0 has locally integrable paths and (bt)t≥0 has locally square-
integrable paths). Moreover, let O ⊆ Rd be open. If the O-valued stochastic process
(Yt)t≥0 is a solution to the SDE

dYt = at dt + bt dWt , (C.8)

where (Wt)t≥0 denotes an m-dimensional standard Brownian motion with drift 0 and
covariance matrix Id, and

f : R+
0 ×O −→ R, (t, x) 7→ f(t, x),

has continuous first partials with respect to t and continuous second partials with respect
to x, then the (1-dimensional, i.e. R-valued) process (Ỹt)t≥0, where Ỹt := f(t, Yt) for
each t ∈ R+

0 , is a solution to the SDE

dỸt = ∂tf(t, Yt) +
d∑

i=1

∂xi
f(t, Yt) d(Yi)t +

1

2

d∑

i,j=1

∂xi
∂xj

f(t, Yt) Σt,ij dt (C.9a)

=

(

∂tf(t, Yt) +
d∑

i=1

∂xi
f(t, Yt) at,i +

1

2

d∑

i,j=1

∂xi
∂xj

f(t, Yt) Σt,ij

)

dt

+
d∑

i=1

∂xi
f(t, Yt) bt,i· dWt , (C.9b)
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where bt,i· denotes the ith row of bt and

∀
t≥0

Σt := bt b
t
t ∈ Rd×d. (C.9c)

The relation (C.9) is known as (the multi-dimensional version of) Itô’s formula.

Proof. Many textbooks, including [KP99], merely prove the 1-dimensional version of
Itô’s formula and state that the multi-dimensional version can be proved analogously.
However, [HT94, Th. 4.46] does include a proof for the multi-dimensional version of Itô’s
formula formulated for semi-martingales, and our version constitutes a special case. �

Remark C.5. Clearly, (C.9) reduces to (C.3) for m = d = 1.
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