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1 TOPOLOGICAL VECTOR SPACES 3

1 Topological Vector Spaces

1.1 Basic Definitions and Properties

As in Analysis I-1II, we write K to denote R or C.

The central topic of (linear) Functional Analysis is the investigation and representation
of continuous linear functionals, i.e. of continuous linear functions f : X — K, where
X is a vector space over K. To know what continuity of f means, we need to specify
topologies on X and K. On K, we will always consider the standard topology (induced
by | - |), unless another topology is explicitly specified. While one will, in general, want
to study many different vector spaces X with many different topologies 7, T should at
least be compatible with the linear structure on X, giving rise to the following definition:

Definition 1.1. Let X be a vector space over K and let 7 be a topology on X. Then
the topological space (X, 7)) is called a topological vector space if, and only if, addition
and scalar multiplication are continuous, i.e. if, and only if, the maps

+: X xX —X, (r,y)—az+y, (1.1a)
S Kx X — X, (\zx)— Az, (1.1b)

are continuous (with respect to the respective product topology).

Example 1.2. (a) Every normed vector space (X, || - ||) over K is a topological vector
space: Let (zx)ren and (yg)ren be sequences in X with limy o 2 = z € X and
limyg oo Yk = y € X. Then limy_,oo (2 + yx) = x + y by [Phil6b, (2.20a)], showing
continuity of addition. Now let (A\g)ren be a sequence in K such that limy ., Ay =
A € K. Then (|Ax])xen is bounded by some M € R and

| Ak —Az|| < || Apxp— ||+ Az —Az|| < M ||xp—z||+| A=A ||z]] = 0 for k — oo,

showing limy_,o (Arxx) = Az and the continuity of scalar multiplication. We will
see in Sec. 1.2 below that, for dim X < oo, the norm topology on X is the only T}
topology on X that makes X into a topological vector space (but cf. (b) below).

(b) Let X be a vector space over K. With the indiscrete topology, X is always a
topological vector space (the continuity of addition and scalar multiplication is
trivial). If X # {0}, then the indiscrete space is not T} and, hence, not metrizable
(cf. [Phil6b, Sec. 3.1]). If X # {0}, then, with the discrete topology, X is never a
topological vector space: While addition is continuous (since X x X is also discrete),
scalar multiplication is not: Let 0 # = € X. Then, while {x} C X is open, the
preimage P := (-)"!({z}) is not open in Kx X: Let (\,y) € P, ie. \y = z. If P were
open, then there had to be an open neighborhood O of A such that O x {y} C P,
in contradiction to A being the unique element of K such that Ay = z.
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Let (Q, A, 1) be a measure space. Then, for each 0 < p < oo, both £P(u) and
LP(u) are topological vector spaces: First, let 1 < p < oo. Then LP(u) is a special
case of (a), and, for, £P(u) one observes that the arguments of (a) still work if the
norm is replaced by a seminorm (since seminormed spaces are still first countable,
cf. [Phil6b, Th. 2.8]). If there exists a nonempty p-null set, then L£P(u) is not
Ty (in particular, not metrizable), cf. [Phil7, Def. and Rem. 2.41]. Now consider
0 < p < 1. We know from [Phil7, Def. and Rem. 2.41] that £P(11) is a pseudometric
space, where the pseudometric d,, is defined by

1/p
byt L2(0) X L) — RS, dylfog) = N2(F —g). N(f) = (/ IfIPdM) |

and LP(u) is the corresponding (factor) metric space. Like metric spaces, pseu-
dometric spaces are first countable and we can show continuity using sequences
according to [Phil6b, Th. 2.8]. Let (fi)ren and (gx)ren be sequences in L£P(u) with
limy, oo fx = f € LP(p) and limy oo g = g € LP(u). Then

[Phil7, (2.51a)]
dp(fi + g1 [ +9) = NE(fi + 9 — (f + 9)) < Ny (fe = )+ N (g — 9)

=dp(fe, f) + dp(gk, g) = 0 for k — oo,

showing continuity of addition. Now let (A;)ren be a sequence in K such that
limy oo A\ = A € K. Then (JAx])xen is bounded by some M € Ry and

dp( Ao fios Af) < dp(Mefies ) + dp( A S, AS)
:/ S — Mf | dp +/ Mef = M| dp
Q Q
< MPdy(fr, f) + | A — AP NP(f) — 0 for k — oo,

showing limy_,oo(Aefr) = Af and the continuity of scalar multiplication. As for
p > 1, if there exists a nonempty p-null set, then £P(u) is not 77 (in particular,
not metrizable), again cf. [Phil7, Def. and Rem. 2.41]. We will see in Ex. 1.11(b)
that, for 0 < p < 1, balls in L?([0, 1], £}, A\!), where £ denotes the usual o-algebra
of Lebesgue-measurable sets and A\! denotes Lebesgue measure, are not convex. In
particular, the metric d,, is not generated by any norm on L?([0, 1], £}, A!).

Consider X := K® = F(R,K), i.e. the set of functions f : R — K, with the
product topology T (i.e. the topology of pointwise convergence). We know from
[Phil6b, Ex. 1.53(c)] that T is not metrizable (however, 7T is Ty by [Phil6b, Prop.
3.5(b)]). We show that (X,7) is a topological vector space over K: According
to [Phil6b, Ex. 2.12(c)], we have to show that, for each f,g : R — K, each
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A € K, and each t € R, (f,g) — f(t) + g(t) is continuous at (f,g), (A, f) = Af(t)
is continuous at (A, f). Due to the continuity of the maps + : K x K — K|
-t Kx K — K, given € € RT, there exist neighborhoods Uy, Uy, U, of f(t), g(t),
and A, respectively, such that

v +w € B f(t)+ g(t)), N € BA(Nf(t)).
(z,w)eUsxUg S <f() g( )) (u,2)€UNXUy Hz ( f( ))

Letting V; := m; ' (Uy), V, := 7, ' (U,), we obtain

Y F(t)+g(t) € B(f(t) + (1)),

(f:g)evfxvg

proving continuity of addition on X. We also have

v nf(t) € B(Af(#),

(1, F)EUNXVy

proving continuity of scalar multiplication.

In certain situations, the following notation has already been used in both Analysis and
Linear Algebra:

Notation 1.3. Let X be a vector space over K, let A C P(X) (where P(X) denotes
the power set of X), A,BC X, z € X, and A € K. Define

r+A={x+a:a€ A}, (1.2a)
A+B:={a+b:a€ A be B}, (1.2b)

M ={)la: a € A}, (1.2¢)
r+A={z+A: Ac A} (1.2d)

Note that, in general, the familiar arithmetic laws do not hold for set arithmetic: For
example, if X # {0}, then X — X = X # {0}; if 0 # 2z € X, A := {—z, 2}, then
0€ A+ A but 0 ¢ 24, ie 24 # A+ A.

Proposition 1.4. Let (X,T) be a topological vector space over K.
(a) For each a € X and each X\ € K\ {0}, the maps
To, My : X — X, T,(z):=x+a, M(x):=\z, (1.3)

are homeomorphisms, where T, =T, M/\’1 = M,-1.
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(b) T s both translation-invariant and scaling-invariant, i.e. the following holds for
each O C X :

O open <& (‘v’ O+a open) & ( vV 2O open).
aeX A€K\ {0}

(c) Let x,a € X, U C X, A€ K\ {0}. Then U is a neighborhood of x if, and only if,
a+ U is a neighborhood of a + x, and if, and only if, N\U is a neighborhood of A\x.

(d) Let z,a € X, BC P(X). Then B is a local base at x (see [Phil6b, Def. 1.38]) if,
and only if, a + B is a local base at a + x.

Proof. (a): T, and M) are clearly bijective with the provided inverses. The continuity
of the maps and their inverses is due to (1.1).

(b) is immediate from (a).

(c) follows from (a) and (b), since T, (U) = a+ U and M,(U) = A\U. Now (d) is another

immediate consequence. |

Proposition 1.5. Let (X,T) be a topological vector space over K.

(a) If W e U(0), then there exists an open U € U(0) such that U satisfies the following
two properties:

U=-U, (1.4a)

U+UCW (1.4b)

(here, and in the following, U(x) denotes the set of all neighborhoods of x € X (cf.
[Phil6b, Def. 1.1]).

(b) Disjoint sets A, K C X, where A is closed and K is compact, can be separated by
disjoint open sets (in particular, topological vector spaces are always T, cf. [Phil6b,
Def. 3.1(c)] ):

v (AﬂK:@:> 3 (AQOl/\KgOgAOlﬁOQ:®>).

AKCX, 01,02€T
A closed,
K compact
(1.5a)
The following reformulation uses the linear structure of X :
v (AmK:®:> = ((A+U)m(K+U):(Z)>). (1.5b)
elosed v

K compact
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(c) Ewvery neighborhood contains a closed neighborhood:

\ \ 3 (xGAQU A Aclosed).
veX  UcU(z) AcU(x)

(d) If (X,T) is Ty, then (X, T) is reqular (i.e. Ty and T3). In particular, (X,T) is
then also Ty (i.e. Hausdorff).

Proof. (a): Since addition is continuous and 0 + 0 = 0, given W € U(0), there exist
open Uy, Uy € U(0) such that Uy + Uy € W. According to Prop. 1.4, —U;, —U; are open
and —Uy, —Uy € U(0) as well. Thus, U := Uy NU; N (=Uy) N (=Usz) € U(0), U open,
U+UCU +Uy; CW, and z € U if, and only if, —z € U, showing U = —U.

(b),(c): Exercise.
(d) is immediate from (c¢) (and since T} + T3 implies T3, cf. [Phil6b, Lem. 3.2(b)]). W

Definition 1.6. Let X be a vector space over K, A C X.

(a) A is called conver if, and only if,

VoY dat(l-nped

(i.e. if, and only if, for each 0 <A <1, AMA + (1 — A)A C A in terms of Not. 1.3).
(b) A is called balanced if, and only if,

v V Xa€A

acA  |N\<1
(i.e. if, and only if, for each A\ € K with [A| < 1, AA C A in terms of Not. 1.3).

Example 1.7. If 0 # x € X (X vector space over K), then {z} is convex, but not
balanced. The set A := ([-1,1] x {0}) U ({0} x [~1,1]) € R? is balanced, but not
convex. Moreover,

{ACR: Abalanced} = {R}U{] =7, r[ r e RT}U{[-r,r]: r e R{},
{ACC: Abalanced} = {C} U{B,(0): r e R"} U{B,(0): r € R }.

Proposition 1.8. Let X be a vector space over K. Let (A;)icr be a family of subsets of
X; A BCX.

(a) If each A; is convex, then so is C' := (,.; Ai. If A, B are convex, then so are A+ B
and aA for each a € K.
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(b) If each A; is balanced, then so are C := (\,c; Ai and D = |J,.; Ai. If A, B are
balanced, then so are A+ B and oA for each o € K.

(c) If A is balanced and 0 < s < t, then sA C tA.

(d) If X is a Cartesian product X = [],.; Xi of vector spaces X; over K and B; C X;
is balanced (resp. convex), then B := 1], ; B; is also balanced (resp. convez).

Proof. Exercise. |

Definition 1.9. Let (X, T) be a topological vector space over K.

(a) Let B C P(X) be a local base at x € X. We call B convez (resp. balanced) if, and
only if, each B € B is convex (resp. balanced).

(b) We call (X, T) locally convez if, and only if, 0 has a convex local base (then, by
Prop. 1.4(d), every x € X has a convex local base).

(c) A set B C X is called bounded if, and only if,

W 14 BCsU.

Uel(0) seRt

(d) We call (X,T) locally bounded if, and only if, 0 has a bounded neighborhood.

Proposition 1.10. Let (X,T) be a topological vector space over K. Let A, B C X.

(a) One has
A= () (A+D).

Ueu(0)
(b) A+ BC A+ B.
(c) If A is a vector subspace of X, then so is A.
(d) If B is open, then so is A+ B.
(e) If A is convex, then so are A and A°.

(f) If A is balanced, then so is A. If A is balanced with 0 € A°, then A° is balanced as
well.

(g) If A is bounded, then so is A.
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Proof. (a): Given x € X, according to Prop. 1.4(c), U C X is a neighborhood of 0 if,
and only if, x + U is a neighborhood of x. Thus,

reEA & < U (a:+U)ﬂA7é(Z)) & ( U xeA—U),
Ueu(0) Uetd(0)
where the last equivalence holds since a € (x4 U) N A if, and only if, there exists u € U
such that a = x +u € A. Using Prop. 1.4(c) again, U is a neighborhood of 0 if, and
only if, —U is a neighborhood of 0, showing the above equivalences prove (a).

(b): Leta € A, b € B, U € U(a+b). By the continuity of addition, there exist U; € U(a)
and Uy € U(b) such that Uy + Uy C U. Since a € A, b € B, there exist z € AN U; and
y € BNU,. Then x+y € (A+B)N(U;+Us) C (A+B)NU # (), showing a+b € A+ B.

(c): Let a,b € A. Then

—~
o
=

a+be A+AC A+ A (1.6a)

According to Prop. 1.4(a),

A= M(A) = M,(A) =
AGKV\{O} A A(A) A(A) = A

>

(1.6b)

As we also have 04 = {0} g_{T} C A, since 0 € A if A is a subspace (note that
{0} € {0} if (X, T) is not T1), A is a subspace of X.

(d): Let B be open, a € A, b € B. Then a + B is an open neighborhood of a 4+ b and
a+ B C A+ B, showing a + b to be an interior point of A+ B, i.e. A+ B is open.

(e): Let A be convex. Then

. __ (1.6b),(b) A convex —r
Vo M4+(1-NA C M+(1-NATETA

0<A<1

showing A to be convex. Furthermore, since A° C A, we have

Vo Ay = A%+ (1= M)A C A+ (1= N\)A 42 4,

0<A<1
Since A, is open by (d) and Prop. 1.4(a), and since A° is the union of all open subsets
of A, we obtain Ay C A°, showing A° to be convex.

(f): Let A be balanced. As in the proof of (c), we obtain AMA C AA for each A € K.
Thus,
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showing A to be balanced. According to Prop. 1.4(a),

AeKv\{o} AA® = My(A®) = (Mi(A))° = (AA)°,

implying

A bal.
A° = (AP CA°,

0<|A<1

Since 0A° = {0} C A° holds by hypothesis, A° is balanced.

(8):

Let A be bounded and U € U(0). According to Prop. 1.5(c), there exists C' € U(0)

such that C C U and C' is closed. Since_ A is bounded, tllere exists s € RT such that
A C sC, where sC' is still closed. Thus, A C sC', showing A to be bounded. [ |

It is an exercise to find counterexamples that show that, in general, Prop. 1.10(b)
does not hold with equality (there exist examples with (X,7) being R with the norm
topology) and that, in general, the second part of Prop. 1.10(f) becomes false if 0 ¢ A°
is omitted from the hypothesis.

Example 1.11. (a) If (X, ||-||) is a normed vector space over K, then it is both locally

(b)

bounded and locally convex: Each ball B.(z), z € X, r € R, is both convex and
bounded: Indeed, if a,b € B,(z) and A € [0, 1], then

| Aa+(1=Nb—z| = [[Aa—Az+(1=X)b—(1=N)z| < A|la—z||+(1=N)||[b—=z| <,

showing Aa + (1 — A\)b € B,(z). Now let ¢ € R*, y € B,.(x), a := ||z]|. Then
lyll < lly — 2| + |lz[| < r + «, showing y € B,4(0). Thus -y € B.(0) and
y € ™2B(0), showing B,(x) to be bounded in the sense of Def. 1.9(c). As a
caveat, it is pointed out that, in general, the topology T of a topological vector
space (X, 7T) can be induced by a metric d on X without the corresponding metric
balls being convex (see (b) below), balanced (see (d) below), or even bounded in the
sense of Def. 1.9(c) (in Ex. 1.43 below, we will construct topological vector spaces

that are metrizable, but not locally bounded).

We come back to the spaces X := LP([0,1],£} A1), 0 < p < 1, with the metric
d, (cf. Ex. 1.2(c)). It is an exercise to show (X,d,) is locally bounded, but not
locally convex (and, actually, ) and X are the only convex open subsets of X).
As mentioned earlier, a main goal of Functional Analysis is the representation of
continuous linear functionals. In the present case, it turns out that A = 0 is the only
continuous linear functional on X: Indeed, let (Y, 7T) be an arbitrary locally convex
topological vector space that is T} (for example, Y = K) and let A: X — Y be
linear and continuous. Let B be a local base of 7 at 0, consisting of convex open
sets. If C' € B, then A~!(C) is convex, open, and nonempty, i.e. A71(C) = X. If
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y €Y,y #0, then, since (Y, T) is T1, there exists U € U(0) such that y ¢ U. Then
there is C' € B such that C' C U. Since A7}(C) = X, y ¢ A(X), showing A = 0.

The topological vector space (KX, T) (where T is the product topology) is locally
convex, but not locally bounded: The set

{ﬂﬂj_l(ng(O)) JCR, 0 <#J < o0, Z} € € R+}
J

jeJ

constitutes a local base at 0 and, by Prop. 1.8(d), each element of this local base is
convex. We now show that 0 does not have a bounded neighborhood: Indeed, if U €
U(0), then U contains a set from the above local base, say B :=();; m (B, (0)),
where J is a nonempty finite subset of R and €; > 0 for each j € J. Let a € R\ J.
Then V := 7' (B;1(0)) is another neighborhood of 0. However,

Vo sV =x,Y(B(0)),

sERT
showing that B € sV and that neither B nor U is bounded.

If we consider R? as a vector space over R and || - || is some norm on R?  then
the balls B,(0) and B,.(0), » € R*, with respect to this norm are R-balanced.
However, if we consider R? = C as a vector space over C, then each norm on R?
still induces a metric and the standard topology on C. However, the balls are not
necessarily C-balanced: For example, consider R? with the max-norm: d(z,w) :=
max{| Re(z — w)|, | Im(z — w)|}. Then 14+i € B1(0), |1 +i| =2, ie. 14+i=+2C
with [¢| = 1. Thus, v2 = (1+4)¢"" ¢ B,(0), showing that B, (0) is not C-balanced.

Proposition 1.12. Let (X,T) be a topological vector space over K.

(a)

(b)

(c)

If U € U(0), then there exists B € U(0) such that 0 € B C U and B is balanced
and open. In particular, (X,T) has a balanced local base at 0.

If U € U(0) is convex, then there exists C € U(0) such that 0 € C C U and C is
convex, balanced, and open. In particular, if (X,T) is locally convex, then (X,T)
has a balanced convex local base at 0.

B C X is bounded if, and only if,

v 3 vV BCtU.

Ueld(0) seRt t>s

(d) A C X is bounded if, and only if, every countable subset of A is bounded.
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(e) If A, B C X are bounded, then so are AUB and A+ B.

(f) If U € U(0) and (rg)ken is a sequence in RY such that limy_, rp = 00, then

keN

(g) If K C X is compact, then K is bounded.
(h) (X, T) is locally bounded if, and only if,

A 3 U bounded.

zeX Uel(x)

(i) If U € U(0) is bounded and (ry)ren 1S a sequence in RT such that limg oo 1 = 0,
then B :={r, U : k € N} is a local base at 0.

Proof. (a): Since scalar multiplication is continuous and 0-0 = 0, given U € U(0), there
exists § > 0 and V' € U(0) open such that aV C U for each o € Bs(0) ={A e K: |\| <
d}. Set B = UaEBg(O)(av)' Then, clearly, B is open, B € U(0), and B C U. Moreover,
B is balanced: Let z € B, A € K, [A\| < 1. Then z = av with o € Bs(0) and v € V.
Then |\a| < |a| < 6, showing Az = Aav € B.

(b): Let U € U(0) be convex. Set

V= [ ().

I\=1

Then V is convex by Prop. 1.8(a). According to (a), there exists B € U(0) such that
B C U and B is balanced and open. Since B is balanced, B C V', showing V' € U(0) as
well as C' := V° € U(0). Since C' is open and convex (by Prop. 1.10(e)), it only remains
to show C' is balanced. By Prop. 1.10(f), it suffices to show V' is balanced. Given a € K
with o] < 1, we write a = r{ with » = || and || = 1. Then

aV =r¢V = () (r¢AU) = () (rAU) € [ (W) =V,

IA|=1 IA|=1 IA=1

where the inclusion holds, as 0 € AU, AU convex, i.e. rz = (1 —r)0 + rx € AU for each
xr € AU. We have, thus, shown V' to be balanced.

(c): That the condition in (c) implies B to be bounded is immediate from Def. 1.9(c).
Conversely, let B be bounded and U € U(0). According to (a), U contains a balanced
neighborhood V of 0. Since B is bounded, there exists s € R* such that B C sV C sU.
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Let t > s. Since V is balanced, Prop. 1.8(c) implies B C sV C tV C tU, proving B to
satisfy the condition in (c).

(d): If A is bounded, then every subset (in particular, every countable subset) is
bounded. Conversely, assume A to be unbounded. We construct an unbounded count-
able subset: As A is not bounded,

= v 3 a, ¢nU.
Uel(0) neN  an€A

Then A :={a, : n € N}isa countable subset of A and A is unbounded: If s € RT and
n €N, n> s, then a, ¢ nU, i.e. A ¢ nU, i.e. A is unbounded according to (c).

(e): Let A, B be bounded. Given U € U(0), according to (c),
3 v AUBCtU,

s1,52€RT  t>max{si,s2}
showing A U B to be bounded. Next, we use Prop. 1.5 to obtain V' € U(0) such that

V +V CU. By (a), we may assume V to be balanced as well. Now choose s1, s5 € Rt
such that A C s,V, B C s5V. Then, for s := max{s, $2},

A+ B C sV + sV CsU,

showing A + B to be bounded.

(f): Fix 2 € X. Since A — Az is continuous, V := {a € K: ax € U} is a neighborhood
of 0 € K. Thus, there exists N € N such that rk_l € V for each kK > N. In consequence,
for k> N, r. 'z € U and z € r,U.

(g): Let K be compact and U € U(0). Moreover, let B C U be a balanced open
neighborhood of 0. Then, by (f) (nB)uen is an open cover of K. Thus, since K is
compact and B is balanced, there exists ny € N such that K C ngB C ngU, showing K
to be bounded.

(h): If U € U(0) is bounded and = € X, then x + U € U(z) and x + U is bounded by
(e) (since {z} is compact and, thus, bounded by (g)).

(i): Let U € U(0) be bounded, V' € U(0). Then there exists s € RT such that U C tV
for each ¢ > s. Choose n € N such that sr,, < 1. Then U C r;lV, ie. r,U CV,
showing B = {r, U : k € N} to be a local base at 0. [ |

We conclude this section with some basic properties of continuous linear maps between
topological vector spaces ([Phil6b, Th. 2.22]):

Theorem 1.13. For a K-linear function A : X — Y between topological vector spaces
(X, Tx) and (Y, Ty) over K, the following statements are equivalent:
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(i) A is continuous.
(ii) There exists &€ € X such that A is continuous in &.

(iii) A 4s uniformly continuous, i.e.

v 3 v (y—er:>Ay—Ax€U>.

UeU(0)CP(Y) VEU(O)CP(X) wyeX
Proof. (i) trivially implies (ii).
“(ii) = (iii)”: Let A be continuous in £ € X. Then
[ X =Y, fx):= Az +§) — A(6),

is continuous in 0 with f(0) = 0. Let U € U(0). Then there exists V' € U(0) such that
f(V)CU. Thus, if z,y € X are such that y — x € V| then

Ay—Arv=Aly—z+§) - Al§) = fly—x) €T,

proving (iii).

“(iif) = (i)”: Let x € X. We show A is continuous at z: If W € U(Az), then
U:=W—Azx € U(0) and W = Ax + U. Choose V € U(0) according to (iii). Then
z+V eU(x)andify € 24V, theny—x € V. Thus, Ay—Az € U and Ay € Az+U = W,
showing A to be continuous at z. |

The following notions of kernel and image of a linear map A : X — Y between vector
spaces are familiar from Linear Algebra:

ker A:= A0} = {z € X : A(z) = 0}, (1.7a)
imA:=AX)={A(z): z € X}. (1.7b)

Theorem 1.14. Let (X,T) be a topological vector space over K. For a K-linear func-
tional A : X — K the following statements are equivalent:

(i) A is continuous.
(i) ker A is closed.
(iii) ker A = X or ker A is not dense in X.
) There exists U € U(0) such that A(U) is bounded.

(iv
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Proof. “(i)=-(ii)”: If A is continuous, then preimages of closes sets are closed. Since
{0} C K is closed, so is ker A = A~{0}.

“(ii)=(ii1)”: If X # ker A and ker A is closed, then ker A = ker A # X, showing ker A
is not dense in X.

“(iil)=(iv)": If ker A = X, then A(X) = {0}, which is bounded. Now suppose ker A is
not dense in X. Then O := X \ ker A is nonempty and open. Let z € O. Since O is
open, there exists U € U(0) balanced, such that

(x+U)Nker A =0. (1.8)

Since A is linear, A(U) C K is a also balanced. If A(U) is bounded, then (iv) holds. If
A(U) is unbounded, then A(U) = K (since A(U) is balanced). Thus, in this case, there
exists y € U such that Ay = —Ax, i.e. z+y € ker AN (2 + U) in contradiction to (1.8).

“(iv)=(1)”: By Th. 1.13, it suffices to show A is continuous at 0. Given € > 0, we have
to find V' € U(0) such that A(V) C B.(0) C K. Using (iv), we know A(U) C By (0)
for some U € U(0) and some M > 0. If V := ZU, then, for each Fu, u € U, we have

A(57u) = 17A(u) € B(0), since |[A(u)| < M. Thus, A(V) C B,(0) as needed. |

1.2 Finite-Dimensional Spaces

In [Phil6b, Th. 3.24], we already stated the important result that the closed unit ball
in a normed vector space X is compact if, and only if, X is finite-dimensional. In the
present section, we will obtain this again as a corollary to the more general statement
that a T7 topological vector space has finite dimension if, and only if, it is locally compact
(cf. Th. 1.19 below). In the process, we will prove in Th. 1.16(b) that finite-dimensional
subspaces of T} topological vector spaces are always closed (again in generalization of
the corresponding result for normed spaces, cf. [Phil6b, Th. E.2]). The remaining main
result of this section is that the norm topology on K" is the only T topology that makes
K" into a topological vector space (see Cor. 1.17).

Lemma 1.15. Let (Y,T) be a topological vector space over K. If A : K" — Y is
K-linear, then A is continuous.

Proof. For each i € {1,...,n}, let a; :== A(e;) be the image of the standard unit vector
e; € K™ Then

n n
v . Az) = Zziai = Zm(z)ai,
)€ i=1 i=1
and, since the projections m; : K” — K are continuous as well as the constant functions
z +— a; and addition and scalar multiplication, so is A. |
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Theorem 1.16. Let (X,T) be a T topological vector space over K and let Y C X be a
finite-dimensional subspace, dimY =n € N. Then the following statements hold true:

(a) If A: K" — Y is a linear isomorphism, then A is also a homeomorphism.

(b) Y s closed.

Proof. (a): The linear isomorphism A is continuous by Lem. 1.15. Let S := 5;(0) =
{z € K" : ||z|]|2 = 1} be the unit sphere in K™. Then S is compact and, by [Phil6b, Th.
3.18], so is K := A(S). Since A(0) = 0 and A is injective, 0 ¢ K. Since (X,7T) is Ty by
Prop. 1.5(d), the compact set K is closed by [Phil6b, Prop. 3.14(b)]. Thus, as (X, 7T)
is T3 by Prop. 1.5(b), there exists an open O € U(0) such that O N K = (). By Prop.
1.12(a), we may also assume O to be balanced as well. Then

U:=A0)=A0NY) CK"

satisfies 0 € U, UNS = (), and U balanced (as A is linear). We claim U C B := B;(0) =
{z € K" : ||z]]a < 1}: Seeking a contradiction, assume z € U with ||z||s > 1. Since U
is balanced and ||z|[;' < 1, this implies 7 € U, in contradiction to U NS = (). But
U C B shows U = A7}(O) to be bounded. Since the n coordinate functions of A~ are
K-linear functionals, the continuity of A~! is now a consequence of Th. 1.14(iv).

(b): Weshow Y =Y: Let 1 €Y. Let A: K* — Y, O C X, and B be as in the proof
of (a). By Prop. 1.12(f), we may choose r € RT such that x € rO. Then x is an element
of the closure of each of the three sets

Y N(rO) C A(rB) C C = A(rB).

As rB is compact, so is C. As above, we conclude C' to be closed as well (as (X,7) is
T3). Thus, z € C C Y, showing Y =Y as desired. [ |
Corollary 1.17. If X is a finite-dimensional vector space over K, then the norm topol-
ogy on X s the unique topology on X that makes X into a Ty topological vector space.

Proof. This is an immediate consequence of applying Th. 1.16(a) with Y := X. [ |

Definition 1.18. A topological space (X, T) is called locally compact if, and only if, for
each x € X, there exists a compact neighborhood of x.

Theorem 1.19. (a) If (X, T) is a Ty topological vector space over K, then X has finite
dimension if, and only if, (X,T) is locally compact.

(b) A normed vector space (X, || - ||) over K is finite-dimensional if, and only if, its
closed unit ball B1(0) is compact.
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Proof. (a): If X has finite dimension and 7 is 77, then, by Cor. 1.17, 7 is the norm
topology on X and that means balls are compact. In particular, (X,7) is locally
compact. Conversely, assume (X, 7T) to be a locally compact 77 space. Then there exist
O, K € U(0) such that O C K, O is open, K is compact. For each z € X, one has
rET+ %O. Thus, (z + %O)zeK is an open cover of K and there exist z,...,x,, € K,
m € N, such that

OQKQU(QCZA—%O). (1.9)
=1

Let Y :=span{zy,...,2,}. ThendimY < m. We will show Y = X. As an intermediate
step, we use an induction to prove

Vv OCY+27*0: (1.10)

keN

The case k = 1 holds due to (1.9). Now let & € N and assume O C Y + 27*0 to hold
by induction hypothesis. Now if € O, then %x € %Y + % 2P0 =Y + 270 (as Y
is a vector space). Thus,

1
OCY+50CY+Y+ 9-(k+D) ) — y 4 9=+,
completing the induction. As a consequence of (1.10), we now obtain
Oc (v +270). (1.11)
keN

Since K is compact, K (and, thus O) is bounded by Prop. 1.12(g), and {27%0 : k € N}
is a local base at 0 according to Prop. 1.12(i). In consequence, we conclude

N v+0)= +27%0)
Uel(0) keN

and (1.11) implies O C Y. Thus, kO C Y for each k € N (since Y is a vector space),
and Prop. 1.12(f) yields Y = X as desired.

Th. 1.16(b) — Prop. 1.10(a)

Y =Y

(b): If X is finite-dimensional, then it is linearly homeomorphic to K", n € N. Thus,
B1(0) € X is compact. Conversely, if B1(0) C X is compact, then the space is locally
compact, hence, finite-dimensional by (a). [ |

1.3 Metrization

Definition 1.20. Let X be a vector space and let d be a metric on X. Then d is called
translation-invariant if, and only if,

v dx + z,y + 2z) = d(z,y). (1.12)

z,y,z€X



1 TOPOLOGICAL VECTOR SPACES 18

Theorem 1.21. Let (X, T) be a topological vector space over K. Then (X, T) is metriz-
able if, and only if, it is both Ty and Cy (i.e. first countable). In that case, there exists
a metric d on X that induces T and has the following additional properties:

(i) B,(0) is balanced for each r € RT.

(i) d is translation-invariant.

If (X, T) is also locally convex, then one can choose d to have properties (i), (ii), and
(iii), where

(i) B,(x) is convex for each x € X and each r € RT.

Proof. 1f (X, T) is metrizable, then it is 7} (and even normal) by [Phil6b, Ex. 3.4(c)]
and C; by [Phil6b, Rem. 1.39(a)]. To prove the converse needs some work. Assuming
(X,T) to be Ty and C4, we need to construct a suitable metric d on X.

Claim 1. There exists a sequence (Vj)gen in U(0) such that each V} is open and balanced
(and convex if (X, T) is locally convex), B := {V} : k € N} is a local base at 0, and

ng Vikr + Vi + Vien + Vit € Vi (1.13)

Proof. One starts with some countable local base at 0, given by sets (W;);en (which
exists as (X, T) is Cy). Letting, for each j € N, U; := (;_, Wy, the sets (U;) ey still
form a local base at zero, but the sets (U,);en are also decreasing in the sense that
Ujt1 € Uj. From the Uj, one inductively constructs a sequence (O,,)nen that satsfies
everything the Vj, are supposed to satisfy, except, instead of (1.13), one has O, 11 C O,:
Suppose Oy, ..., Oy are already constructed, N € Ny. Choose j > N such that U; C Oy
(and j € N arbitrary for N = 0). By Prop. 1.12(a),(b), there exists O € U(0) such that
O C Uj, and O is open and balanced (and also convex for (X, T) locally convex). Thus,
we may set Onyq = O, completing the definition of the O,,. From the O,, we can
now inductively construct the Vj: Set Vi := O;. Now suppose Vi, ..., V; have already
been constructed, J € N. Using Prop. 1.5(a) twice, we obtain U € U(0) such that
U+U+U+U C V. Then there exists n > J such that O, C U (since the O,, are
decreasing and form a local base at 0). Setting V.1 := O,, V;,1 has all the required
properties, including V1 + Vi + Vi + Vi C V5 A

We now define

N(q)
D:=4¢eQ:q=> ci(9)27, aig),-.,cng(g) €{0,1}, N(g) €N

i=1
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Then, clearly, D C [0, 1], and the coefficients ¢(q), . . ., cn(q)(¢) are uniquely determined
by ¢ € D if we require cy(q)(q) = 1 for ¢ # 0 (e.g., due to [Phil6a, Th. 7.99]). We now
define the following functions:

N(Q)C‘ 8 1
A: DU{1} — P(X), Alg) = {Z“ (Q)V taen, (1.14a)
X if g =1,
f: X —10,1], f(z):=inf{ge DU{l}: z € A(g)}, (1.14b)
d: X x X —[0,1], d(z,y) = f(z —y). (1.14¢)

Before we can prove that d constitutes a metric with the desired properties, we need to
establish some properties of the function A:

Claim 2. Let ¢ € D. Then,
nefl,...N(q)} (@< (; @) )

Proof. We prove the claim by an induction on n = N(q),..., 1. Since the V; contain 0,
the claimed inclusion trivially holds for n = N(g). Now assume the inclusion to hold
for some 1 < n < N(gq). Then

Afq) € (n

7

1 (1.13) [ =L

1 i=1

completing the induction. A

Claim 3. Each A(q), ¢ € DU {1} is balanced (also convex it the V; are convex). One
has

A(0) = {0}. (1.15a)

Moreover, for each q,r € D, the following holds:
g+r<1 = Alq) + A(r) C A(g+ 1), (1.15b)
g<r = A(q) C A(r). (1.15¢)

Proof. According to (1.14a) and Prop. 1.8(a),(b), the A(q) are balanced (resp. convex)
if the V; are. Next, A(0) =0-V; = {0} proves (1.15a). We now establish (1.15b), which
is not quite as obvious. If ¢+ = 1, then A(¢ 4+ r) = X and (1.15b) holds. Thus, let
g+ r < 1. We extend the coefficients ¢;(q), ¢;(r),c;(q¢ + 7) to all i € N by setting them
0 for i > N(q), i > N(r), 1 > N(q+ ), respectively. If ¢;(q) + ¢;(r) = ¢;(q + r) hold
for each i € N, then (1.15b) (even with equality) is immediate from (1.14a). Otherwise,
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there exists a smallest n € N such that ¢,(q) + ¢,(7) # c,(¢ +7) (due to ¢+ < 1 no
carry can be left at n = 1). Then ¢,(¢) = ¢,(r) = 0 and ¢,(¢ +r) = 1. Thus,
Cl 2 n+1 (@)= n—1
Alg) € (Y a@vi) + Vi & > @ Vi) + Vi + Vi,
i=1 i=1

Completely analogously, we also obtain

n—1
A(r) C (Z ci(r) Vz’) + Vi1 + Vo
i=1

Since, for 1 <i <n—1, ¢;(q) + ¢;(r) = ¢;(q + r), we now obtain

A(q) + Alr) C (Z cilqg+r) V;) + Vit + Vot + Vgt + Vi

1
(1.13), en(g4r)=1  VLat7)

C Y calg+r)Vi=Alg+r),
=1

proving (1.15b). Finally, (1.15¢) follows from (1.15b), since, for r > ¢, r — ¢ € D and
Alq) € Ag) + A(r — q) € A(r). A

Claim 4. The function d, as defined in (1.14c), constitutes a translation-invariant metric
on X.

Proof. We have f(0) = 0 due to (1.14b) and (1.15a), implying d(z,z) = 0 for each
x € X. Now let x € X, & # 0. Since (X,7T) is T} and the V; form a local base at
0, there exists k € N such that » ¢ Vj, i.e. x ¢ A(27%) = V,. Then (1.15¢) implies
f(z) > 27% > 0, also showing d(z,y) > 0 for x # y. From Cl. 3, we know the A(q) to
be balanced. Thus, z € A(q) if, and only if —x € A(q), implying f(x) = f(—z) and
d(z,y) = d(y,x). Next, we show

T Sty < fl@) + f): (1.16)
Since (1.16) trivially holds for f(x)+ f(y) > 1, it remains to consider the case f(z) +
f(y) < 1. Clearly, D is dense in [0, 1], and, thus,

v 3 (f(q:)<q AN fly)<r A q—l—r<min{1,f(a:)+f(y)—|—e}).

e€Rt+  q,reD

In consequence, x € A(q), y € A(r), and x +y € A(¢+r) by (1.15b). Thus,

flet+y) <qg+r < flo)+ fly) +e
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proving (1.16), since € > 0 was arbitrary. Now, if z,y, 2 € X, then

dz,y)=flx—y)=flz—2+z2-y) < flx—2) + flz —y) = d(z,2) + d(z,y),

proving the triangle inequality for d and that d is a metric. Translation invariance of d
is immediate from (1.14c). A

Claim 5. One has

X for r > 1,
UqED,q<r A(q) forr <1.

Moreover, d induces 7 and all B,(0), » € RT, are balanced. All B,(z), r € R, x € X,
are also convex if (X, 7) is locally convex.

V B0)={zeX: f(z)<r}= { (1.17)

reR+

Proof. The first equality in (1.17) is immediate from (1.14c). For r > 1, the second
equality is also clear. For 0 < r < 1, the second equality is due to

r€B.(0) & flry<r < 3 z€Alq & z¢€ U A(q).

qeD,g<r

Let T4 denote the topology induced by d. As d is translation-invariant, we have B, (x) =
x + B,(0) for each r € R*, z € X. Due to (1.17), B,.(0) € T for each r € R (as each
A(q), ¢ > 0, is open due to Prop. 1.10(d)). Then, for each z € X, B,(x) = z+B,.(0) € T
as well, showing 73 C T. For the remaining inclusion, we recall V;, = A(27%), i.e. (1.17)
implies B,.(0) C V}, for r < 2% showing By := {B,(0) : r € R} to be a local base for
T at 0. In consequence, for each z € X, B, := {B,(x) : » € R"} is a local base for T at
x, showing T C T;. Each A(q) is balanced according (1.14a) and Prop. 1.8(b). Then,
according to (1.17) and Prop. 1.8(b), each B,(0) is balanced as well. If (X, 7)) is locally
convex, then each A(q) is convex by Cl. 3. If z,y € B,(0), then, by (1.17) they must be
in the same (convex) A(q) € B,(0) (for some suitable ¢ € D U {1}), showing B,(0) to
be convex. Then each B,(x) = x + B,(0) is convex as well. A

With the proof of Cl. 5, we have concluded the proof of the theorem. |

Definition 1.22. Let (X, 7) be a topological vector space over K.

(a) (X,T) is called an F-space if, and only if, T is induced by a complete translation-
invariant metric on X.

(b) (X,T) is called a Fréchet space if, and only if, it is a locally convex F-space.

(c) (X,T) is called a normable if, and only if, 7 is induced by a norm on X.
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Remark 1.23. For a normed vector space X, we, clearly, have the equivalences
X Fréchet space << X F-space < X Banach space.

The spaces LP([0,1], £, A1), 0 < p < 1, of Ex. 1.11(b) are examples of nonnormable
F-spaces that are not Fréchet: They are complete by [Phil7, Th. 2.44] (i.e. F'), but they
are not locally convex by Ex. 1.11(b) (i.e. neither Fréchet nor normable). We will see in
Th. 1.41 below that a T topological vector space is normable if, and only if, it is both
locally bounded and locally convex.

We conclude the section with a lemma we will use in the proof of Th. 1.32 below:

Lemma 1.24. (a) Let X be a vector space and let d be a translation-invariant metric
on X (here, we do not assume that d makes X into a topological vector space).
Then

vV YV  d(nz,0) <nd(x,0).
zeX neN

(b) Let (X, T) be a metrizable topological vector space over K and let (z,)nen be a
sequence in X such that lim,_,. x, = 0. Then there exists an increasing sequence
(Np)nen in N such that lim,, o N, = 0o and lim,,_,o Nz, = 0.

Proof. Exercise. [}

1.4 Boundedness, Cauchy Sequences, Continuity

Boundedness and Cauchy sequences are both notions that, in general, do not make sense
in an arbitrary topological space. However, both notions are familiar in metric spaces
and both can be defined in arbitrary topological vector spaces (see Def. 1.9(c) and Def.
1.27, respectively). Unfortunately, if the topology T of a topological vector space is
induced by a metric d, then the resulting notions of boundedness and Cauchy sequences
with respect to 7 and d are, in general, not the same (cf. Rem. 1.26 and Ex. 1.30 below).
Thus, it is necessary to use some care regarding these notions. Some related results will
be presented in the current section.

If we call a subset of a topological vector space bounded, we will always mean bounded
in the sense of Def. 1.9(c). When we need to distinguish this boundedness from the
boundedness with respect to a metric d, then we will speak of d-boundedness in regard
to the metric.

Proposition 1.25. Let (X, T) be a topological vector space over K, A C X. Then the
following statements are equivalent:
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(i) A is bounded.

(ii) For each sequence (x,)nen in A and each sequence (Ap)nen in K one has

lim A, =0 = lim \,x, =0.

n—oo n—0o0

Proof. Suppose, A is bounded. Let (x,),eny be a sequence in A and let (\,;),en be a
sequence in K such that lim, ,, A\, = 0. Let U € U(0). Then there exists B € U(0)
such that B C U and B is balanced. Since A is bounded, there exists ¢t € R* such that
A CtB. Then

= Voot < 1

NeN n>N

We also know ¢!z, € B for each n € N since t A C B. Thus, since B is balanced, for
each n > N, t\,t 'z, = \,x, € B C U, showing lim,_,., A\, 7, = 0. Conversely, if A is
not bounded, then there exists U € U(0) such that no nU, n € N, contains A. For each
n €N, let x, € A\ nU. Then limn_m% =0, but %xn ¢ U for each n € N (otherwise,
n%xn =z, € nU), showing %xn +#» 0 for n — oo. [ |
Remark 1.26. Let (X,7) be a T} topological vector space over K. If Y # {0} is a
vector subspace of X, then Y is not bounded (in general, this is not true without the
Ty hypothesis — e.g., if (X, 7)) is indiscrete, then, clearly, every subset is bounded): Let
0#y €Y. Then (ny)yen is a sequence in Y such that lim, o (tny) =y # 0. If
(X,T) is T, then it is Ty and limits are unique, showing Y not to be bounded by Prop.
1.25. On the other hand, the metric d constructed in the proof of Th. 1.21 is such that
X itself is d-bounded (by 1), showing that each metrizable topological vector space is
metrizable by a translation-invariant bounded metric, even though X # {0} can not be
bounded.

Definition 1.27. Let (X, 7) be a topological vector space over K, and let B be a local
base at 0. Then a sequence (z,)nen in X is called a Cauchy sequence if, and only if,

Ve Y 2, —am, €B. (1.18)

BeB NeN mn>N

Moreover, (X, T) is called complete if, and only if, every Cauchy sequence in X converges
in X.

Proposition 1.28. Let (X,T) be a topological vector space over K.

(a) Then the notion of Cauchy sequence as defined in Def. 1.27 does not depend on the
chosen local base at 0.

(b) If (xn)nen is a convergent sequence in X, then it is a Cauchy sequence.
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(c) If (xn)nen is a Cauchy sequence in X (in particular, if it is a convergent sequence
in X ), then it is a bounded sequence (i.e. {x, : n € N} is bounded).

Proof. (a): Let (x,)nen be a sequence in X, let B,C be local bases at 0. We show
(n)nen is C-Cauchy if it is B-Cauchy: Let C' € C. Then there exists B € B such that
B C C. To B choose N € N according to (1.18). Then

A Tp— Ty € BCC,
m,n>N

showing (x,)nen to be C-Cauchy.

(b): Suppose, lim, ooz, = € X. Then lim, ,o(x, —x) = 0. Let W € U(0).
According to Prop. 1.5, there exists U € U(0) such that U = —U and U+ U C W. Let
N € N such that z,, — x € U for each n > N. Then

W Ty — Ty =Tp—T— (v, —2) €eU-U=U+UCW,

m,n>N

showing (x,)nen to be Cauchy.

(c): Let U € U(0). Then there exists V' € U(0) such that V is balanced and V+V C U.
Since (z,)nen is Cauchy, there exists N € N such that z, — z,,, € V for each m,n > N.
Thus, x, € ry1 + V for each n > N. Choose s > 1 such that zy,; € sV. Then

Prop. 1.8(c)

V x,€sV4+V - sV + sV C sU.

n>N

Since {z,, : n < N} is bounded by Prop. 1.12(e), it follows that {z, : n € N} is
bounded. |

Theorem 1.29. Let (X, T) be a topological vector space over K.

(a) If di,dy are translation-invariant metrics on X that both induce T, then, given a
sequence (T,)nen n X, the following statements are equivalent:

(1) (zn)nen is di-Cauchy.
(i) (zn)nen is do-Cauchy.
(i) (zn)nen is Cauchy in the sense of Def. 1.27.

(b) Ifdy,ds are translation-invariant metrics on X that both induce T, then the follow-
ing statements are equivalent:

(i) (X,dy) is a complete metric space.
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(i) (X,dg) is a complete metric space.

(i) Fvery Cauchy sequence in X converges (i.e. (X,T) is complete).

(c) Let (X,T) beTy. If Y C X is a vector subspace (with the relative topology) and'Y
18 an F'-space, then Y 1is closed in X.

Proof. Exercise. [ |

Example 1.30. Consider

f:R—R, f(x) ::1—{—]1’\'

It is an exercise to verify that
d: RxR— R, dz,y):=|[f(z) - fy)l,

defines a metric on R that is equivalent to the metric induced by |- | (i.e. it induces the
same topology), but, in contrast to (R, | -|), (R, d) is not complete.

Due to Rem. 1.26, a nontrivial linear map A : X — Y between 717 topological vector
spaces can never be bounded in the sense that A(X) is a bounded subset of Y. However,
for such maps, the following definition turns out to be useful:

Definition 1.31. Let (X, 7x) and (Y, 7y) be topological vector spaces over K. Then a
K-linear map A : X — Y is called bounded if, and only if,

v (B bounded = A(B) bounded).

BCX

We can now supplement Th. 1.13 with the following result:

Theorem 1.32. Regarding the following statements (i) — (iii) for a K-linear function
A: X — Y between topological vector spaces (X, Tx) and (Y, Ty) over K, one has the
implications

i) = (i) = (iii).
If (X, Tx) is metrizable, then one also has the additional implications

(i) = (iv) = ()

and all statements (i) — (iv) are equivalent.
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(i) A is continuous.
(i) A is bounded.

(iii) For each sequence (x,,)nen in X such that lim,, ., x, = 0, the sequence (A(x,))nen
18 bounded in'Y .

(iv) For each sequence (xp,)nen in X, one has

lim z,=0 = lim A(z,)=0.
Proof. “(i)=(ii)”: Let A be continuous, let B C X be bounded, and U C Y, U € U(0).
As A is continuous, there exists V' C X, V € U(0) such that A(V) C U. Since B is
bounded,
i1 BCsV,

s€RT

implying
A(B) C A(sV) = sA(V) C sU,

showing A(B) to be bounded.
“(ii)=-(iii)”: Assume A to be bounded and let (z,).en be a sequence in X such that

limy, 00 ©, = 0. Then (z,),en is bounded according to Prop. 1.28(c). Thus, (A(x,,))nen
is bounded due to the boundedness of A.

For the remaining implications, we now assume (X, 7x) to be metrizable.

“(iii)=(iv)”: Let (z,)nen be a sequence in X such that lim, ,,, x, = 0. According
to Lem. 1.24(b), there exists a sequence (N,),eny in N such that lim, ., N, = oo
and lim,,_,. N,x, = 0. Using (iii), (A(N,2n))nen is a bounded sequence in Y. Since
lim,, o N, ' =0, Prop. 1.25(ii) implies

lim A(z,) = lim (N,'N,A(z,)) = 0.

n—o0 n—oo

“(iv)=-(1)”: Since (X, Tx) is metrizable, (iv) implies the continuity of A at 0 by [Phil6b,
Th. 2.8], which, in turn, implies the (global) continuity of A according to Th. 1.13. W

We will see in Ex. 1.42 below that it is possible for a linear map between topological
vector spaces to be bounded without being continuous.
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1.5 Seminorms and Local Convexity

We are already familiar with norms on vector spaces over K. We have also encountered
the seminorms ||- ||, on the spaces £P(u), given a measure space (2, A, ), p € [1, 00] (cf.
[Phil7, Def. and Rem. 2.41(a)] and [Phil6b, Sec. C.3]). In the present section, we inves-
tigate the relation between seminorms and topological vector spaces more thoroughly.
As a main result, we will see in Th. 1.40 that a topological vector space (X, 7T) is locally
convex if, and only if, T is induced by a family of seminorms. Moreover, according to
Th. 1.41, (X, 7)) is normable if, and only if, it is 7} and both locally convex and locally
bounded.

Definition 1.33. Let X be a vector space over K. Then a function p : X — R is
called a seminorm on X if, and only if, the following three conditions are satisfied:

(i) p(0) =0.
(ii) p is homogeneous of degree 1, i.e.

p(Az) = || p(x) for each A € K, z € X.

(iii) p is subadditive, i.e. p satisfies the triangle inequality, i.e.
plx+y) <p(z)+ply)  foreach z,y e X.

If p constitutes a seminorm on X, then the pair (X, p) is called a seminormed vector
space or just seminormed space. Given a seminormed space (X, p), we denote open and
closed balls by

Epm(a:) = {y € X: p($ - y) < 7’}, (119)
veX rekt B, (v)={ye X : plz—y) <r}

Remark 1.34. Let (X, p) be a seminormed vector space over K.

(a) Clearly, p is a norm if, and only if, p(x) # 0 for each z # 0, x € X.

(b) p induces the pseudometric d : X x X — R, d(z,y) := p(x —y), on X (cf.
[Phil6b, Def. C.9]). Since d(z + z,y + 2) =p(z + 2z —y — 2) = d(x,y), it is always
translation-invariant. Related results are

By ()

()

v

Voo (1.20)
rzeX reR+t Bp,

(0),

Bp,r
B, (0)

T+
r +
since

yex+B,,(00) & y=x+zpz)<r & ply—z)<r & yecB,,(r)

(and analogously for the closed balls).
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(c) Let z € X, r € R*. Then the balls B, ,(0), B,,(0) are balanced; the balls B, (),
By.(z) are convex: If p(y) < r (resp. p(y) < r), and A € K, [A| < 1, then
p(Ay) = [Alp(y) < r (vesp. <r). If y,z € B,,(z), then

v Play+ (1 —a)z—z) <plaly —2)) +p((1 - a)(z — 2))
ag0,1] =aply—z)+ (1 —a)p(z—z) <,
with strict inequality for y, z € B, .(z).

Definition and Remark 1.35. Let X be vector space over K, A C X.

(a) A is called absorbing if, and only if,

X=Jra. (1.21)

teRt+

It is then immediate that A absorbing implies 0 € A. If (X,7) is a topological
vector space and U € U(0), then we know from Prop. 1.12(f) that U is absorbing.

(b) If A is absorbing, then we define
pa: X — RE, pa(z) =inf{t e RT: t7'2 € A}, (1.22)

and call py the Minkowski functional of A. Since A is absorbing, for each x € X,
there exists t € R* such that t 'z € A and py is well-defined. It is also immediate
from (1.22) that p4(0) = 0.

We will see in Cor. 1.38(a) below that seminorms are precisely the Minkowski functionals
of balanced convex absorbing sets. The definition of a seminorm that we gave in Def.
1.33 is quite common and it underlines the relation between seminorms and norms.
However, it turns out that nonnegativity and Def. 1.33(i) do not have to be required in
the definition, as they follow from Def. 1.33(ii),(iii), as we will now see as part of Th.
1.36:

Theorem 1.36. Let X be a vector space over K. Then a function p : X — R is
a seminorm on X if, and only if, p satisfies Def. 1.33(ii),(iii). Moreover, if p is a
seminorm, then it further satisfies

(a) [p(z) —py)| < plx —y) for cach z,y € X.
(b) p~'({0}) is a vector subspace of X.
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(c) The unit ball B == {z € X : p(x) < 1} is convex, balanced, and absorbing, with
P=HB-

Proof. Clearly, it suffices to show that each p : X — R with the properties of Def.
1.33(ii),(iii) is a seminorm and satisfies (a) — (¢). Thus, assume p : X — R to have
the properties of Def. 1.33(ii),(iii). We then have

p(0) = p(0-0) " =" o - p(0) =0,
proving Def. 1.33(i). Next, we note that
Def. 1.33(iii)
pe)=plz—y+y) < ple—y)+py),
py) =ply—a+a) = ply—2)+p@) " pla —y) + pla),

proves (a). Applying (a) with y := 0, proves p to be Ry -valued and, thus, a seminorm.
Now let z,y € X such that p(z) = p(y) = 0 and A\, u € K. Then

Def. 1.33(ii), (iii)
0 < p(Ax + py) < |Alp(z) + [p]p(y) = 0,

showing p(Az + py) = 0 and, thus, (b). We know B to be convex and balanced by Rem.
1.34(c). For each z € X,

vV oop(tThe) =t p(a) < 1,
t>p(x)

showing t'z € B. Thus, B is absorbing and pup(z) < p(z). Since z € X was arbitrary,
we have pup < p. Conversely, if 0 < ¢ < p(z), then p(t~'z) = tIp(x) > 1, showing
p(z) < pp(z) and p < pp. |

Theorem 1.37. Let X be a vector space over K and let A, B C X be absorbing with
Minkowski functionals pia, ug. Then the following statements hold true:

(a) If AC B, then pp < pa.

(b) pa(sz) = spa(x) holds for each x € X and each s € R .

(c) If A is balanced, then pa(Ax) = |Npa(z) holds for each x € X and each A € K.
(d) If A is convez, then

v v <s > pa(z) = s'w € A).

zeX  seR*t
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(e) If A is convex, then

Vo pal+y) < pale) + paly).
z,yeX

(f) If A is convex and balanced, then pa is a seminorm on X.

(8) If A is convex, then, for each r € RT, the sets Ba, := {x € X : pa(z) <r} and
Car ={x € X : pa(x) <r} are convex.

(h) Using the notation from (g), one always has A C Cya; and, if A is convez, then
Ba1 CACCay and pup,, = fia = fiCs, -

Proof. (a): If A C B, then

V {teRt:t'rec A} C{teR": t 'z e B},

zeX

proving (a).
(b): 11a(0) = 0 yields the case s = 0. If s > 0, then, for each z € X,

pa(sr) =inf{t e R" : t71sx € A} (;) inf{st e RT: t 1w € A}
=sinf{t e Rt : t7'x € A} = spa(x),
where the equality at (x) holds since, for
M:={tcR":t'sx € A} and N:={stcR":t 12 ec A}

one has

reM < rilste A <C> re€A & reN.
s
(c): If Ais balanced, z € X, 0# XA € K, then z € A if, and only if, %xeA. Thus,

pa(Az) = inf{t e R*: ¢t '\x € A} = inf {t eR": t_l)\%x € A} = pa(|\|x)

b
N palz).

(d),(e): Exercise.

(f) is now a consequence of combining (c¢) and (e) with Th. 1.36.
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(g): Let A be convex and fix z,y € Cy,, r > 0. We use (e) to obtain

() b
L walor 4 (1=a)y) < pafom) +pal(L = 0)y) @ apa(e) + (1 - a)ualy) <7,

with strict inequality for x,y € Ba,., showing ax+ (1 —a)y € Ca,, and ax+ (1 —a)y €
By, for z,y € Ba,.

(h): If z € A, then § € A, showing pa(z) <1 and 2 € Cyy. Now let A be convex. If
r € Bay, then z = § € Aby (d). As we now have Ba; € A C Cay, poy, < pa < iy,
follows from (a). To prove equality, we show pp,, < pc,,: Let v € X. As Cy; is
convex by (g), we can use (d) again to obtain, for each ¢, ,(r) < s <t, s 'z € Capy,
e pa(%) <1, ie pa(%) =2pa(%) <2 <1 Thus, t 'z € Bay, showing ug, ,(x) < t.
Taking the limit ¢ | pc,  (x) yields up,  (z) < pe,, (v) as desired. [ |

Corollary 1.38. Let X be a vector space over K.

(a) A function p : X — R is a seminorm on X if, and only if, there exists an
absorbing, convex, balanced set A C X such that p = 4.

(b) Letp: X — R be a seminorm on X. Then p is a norm on X if, and only if, the
unit ball B,1(0) does not contain a nontrivial vector subspace of X.

Proof. (a): We know “=" from Th. 1.36(c) and “<” from Th. 1.37(f).

(b) is an immediate consequence of Th. 1.36(b). [ |

Definition 1.39. Let X be a vector space over K. A family (p;)ic; (I some index set)
of seminorms on X is called separating if, and only if,

3 pi(z) #0. (1.23)

0#xeX i€l

Theorem 1.40. Let X be a vector space over K.

(a) Let I # 0 be an index set and let P := (p;)icr be a family of seminorms on X. If
S:={B, 1(0): neN,iel},

then
B:={x+ B: x € X, B finite intersection of sets from S}

forms the base of a topology T on X — we call T the topology induced by the family
of seminorms P. Then, for each x € X,

B, :={x+ B: B finite intersection of sets from S}

is a local base for T at x and, moreover, (X, T) is a locally convex topological vector
space with the additional properties:
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(i) Each p;, i € 1, is continuous.
(ii) F C X is bounded if, and only if, each p;, i € 1, is bounded on E.

The space (X,T) is Ty if, and only if, the family P is separating. If (X,T) is Ty
and I =N, then (X,T) is metrizable by each metric

apilr—y) .
d: X x X — RS, dz,y ::max{—:zeN}, 1.24
’ (=:9) 1+ pi(z —y) (1:24)
where (¢;)ien is some sequence in RY converging to 0 (e.g., ¢; :== %). Furthermore,
d is translation-invariant and the set of open metric balls D := {By,(0) : r € RT}
forms a convex balanced local base for T at 0.

(b) Let (X, T) be a topological vector space and let B € U(0) be open and convex. Since
each B is absorbing by Prop. 1.12(f), the corresponding Minkowski functional pg is
well-defined. Then

B=B={re X: up(x) <1} (1.25)

Moreover, if B is a local base for T at 0, consisting of convex balanced open sets
(we know from Prop. 1.12(b) that such a B exists if (X, 7T) is locally convex), then
P = (up)pep constitutes a family of (continuous) seminorms on X, and this family
induces T. Moreover, (X,T) is Ty if, and only if, P is separating.

Proof. (a): To apply [Phil6b, Prop. 1.48] to show B constitutes the base for a topology
T on X, we have to show that B is a cover of X (i.e. X = Jzpz B) and

W4 \ 3 mEngBlﬂBQ

Bi1,BaeB  xz€B1NB2 B3eB

If v € X, thenx € B, 1(x) € Bfori € I shows B to be a cover of X. Now let By, By € B
and x € By N By. There exist 1,29 € X; N1, Ny € N; my,...,my,,n1,...,0n, € N;
and 71, ...,in,, 1, -, JN, € I such that

ﬂ B 1 l’l m Pis» nlk

For each iy, there exists ay € N such that B, . () € B,, 1 (v1), and for each j,
H. mk
there exists by € N such that B, %( x) C ( 2). Lettmg
Tk k

N:zm&x({ak ke{l,..., N\ Uu{b: ke {1,...,N2}}>,

1 2
B3 := m Bpik’%(x) N ﬂ Bpjk%(x) € B,
k=1 k=1
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we have © € B3 C By N By as desired. If z € X and U € U(x), then there exist
B € B such that x € B C U. The previous argument shows there is By € B, such that
x € B3 C B C U, proving B, to be a local base for 7 at x. We now verify the continuity
of addition: Let z,y € X and z := x +y. If U € U(z), then there exist N,n € N and
i1, in € I such that z € B:=_, B, 1(z) CU. If

n

N N
Vo= By, (@), Vyi=()B, L)
k=1 k=1
then
v (a+b— (@ +9)) <plao—2) +pi(b—y) < o= + o — ~
i - > pi\a— T i \O — o T oo T
(a,b)eVaxV, ke{l,..,N} Pi 19 vy Pi Piy 4 2n  2n  n

showing a + b € B C U and the continuity of addition. We proceed to the continuity
of scalar multiplication: Let x € X, A € K, z := \z. Given U € U(z), let B C U be as
above. Let R := 1+ max{p; (z): ke {l,...,N}} e RT, e:=1/(2nR) e R", M € N
such that M > || + ¢,

. 1
Pig>annr

V.= (B (z).

Consider (a,a) € V, x Bc(\). Then |a| < M and, for each k € {1,..., N},

0= Xr) < pi, (00— ) +pi, (0~ Ao) < My (a—) bepiy () < oo =
showing aa € B C U and the continuity of scalar multiplication. Due to Rem. 1.34(c)
and Prop. 1.8(a), the elements of B, are convex, showing (X,7) to be locally convex.
We now fix 7 € I and show p; to be continuous: Let x € X be arbitrary, e € R*, n € N
such that n™! <€, V := B, ,-1(0). Then 2 +V € U(x) and, for each y € x +V € U(x),
we have y —z € V| i.e.

Th. 1.36(a)
Ipi(y) —pi(x)] < pily —x) € [0,¢€],

showing p; to be continuous at x, proving (i). To prove (ii), let £ C X be bounded and fix
i € I. Since B, 1(0) € U(0), there exists M; € R such that E C M;B,, 1(0) = By, a1, (0),
showing p; [g to be bounded by M;. Conversely, suppose each p;, i € I, to be (w.l.o.g.
strictly) bounded by some M; € R* on E, i.e. E C By, 3,(0). Let U € U(0) and choose
B C U as before (with z := 0). If s > nM;, foreach k € {1,..., N}, then E C sB C sU,
showing £ to be bounded, proving (ii). Assume P to be a separating family. We show
(X,T) to be Ty: If x € X \ {0}, then there is i € I with p;(x) # 0. Thus, there exists
n € N such that « ¢ B, ,-1(0) € T, 0 ¢ By, ,-1(z) € T. Now, if y, 2 € X with y # z,
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and Uy € U(0), Uy € U(z — y) are such that z —y & Uy, 0 € Us, then y + Uy € U(y),
y+ Uy € U(z) with z ¢ y+ Uy and y ¢ y + Us, showing (X, 7T) to be T;. Conversely,
assume (X, 7) to be T} and let x € X \ {0}. Then there exists U € U(0) such that
x ¢ U. Once again, we let B C U be as above. Since x ¢ B, there exists k € {1,..., N}
such that z ¢ By, 2-1(0), i.e. p;, (x) # 0, proving P to be separating. If I is countable,
then both & and By are countable, i.e. (X,7T) is Cy. Thus, if (X,7) is also T}, then it
is metrizable by Th. 1.21. The proof that, for I := N and (X, 7T) T}, d as defined in
(1.24) constitutes a metric on X that induces 7 with D = {By,(0) : » € RT} a convex
balanced local base at 0, is left as an exercise.

(b): The inclusion B; C B is due to Th. 1.37(h). For the remaining inclusion, let = € B.
As B is open, there exists U € U(x) such that U C B. Since 1 -x = z, the continuity
of scalar multiplication yields neighborhoods V' of x and O of 1 such that ty € U C B
for each t € O, y € V. In particular, there exists ¢ €]0, 1] such that ¢t 'z € B, implying
pup(r) < 1and z € By, proving (1.25). Moreover, if the local base B for 7 at 0 consists
of convex balanced sets, then P is a family of seminorms according to Th. 1.37(f), which
induces a topology 71 on X according to (a), such that (X, 7;) is a topological vector
space. We then also know from (a) that each pup, B € B, is Ti-continuous and that
(X, Ty) is Ty if, and only if, P is separating. Thus, it remains to prove 7, = T. If B € B,
then, using the notation from (a) as well as (1.25), we obtain B = B,,, 1(0), showing
T € Ti. On the other hand, if n € N and B € B, then nB,, 1(0) = B,,,1(0) = B€ T,

showing B, 1(0) = 1B €T and T; C T, concluding the proof. [ |
Theorem 1.41. Let (X,T) be a Ty topological vector space over K. Then (X,T) is
normable if, and only if, there exists a bounded and convex U € U(0) (i.e. if, and only
if, (X, T) is both locally bounded and locally convex).

Proof. Let ||-]| be anorm on X that induces 7. Then each ball B,.(0), r € RT, is convex
by Th. 1.36(c) and bounded by Th. 1.40(a)(ii). Conversely, let U € U(0) be bounded
and convex. Then, by Prop. 1.12(b), U contains some V € U(0) that is bounded,
convex, balanced, and open. Then || - || := py defines a norm on X: By Th. 1.37(f),
pv is a seminorm. According to Th. 1.40(b), By 1(0) = V, i.e. By1(0) is bounded.
Since i, {0} € By.1(0), uy, {0} is bounded. Since uy,'{0} is also a vector space by Th.
1.36(b) and (X, T) is T3 by hypothesis, uy,' {0} = {0} by Rem. 1.26 and, thus, uy is a
norm by Cor. 1.38(b). Let S be the topology on X induced by || - ||. We still need to
show S =T. Let O € T, 0 € O. Since V = By 1(0) is bounded, V' C sO for suitable
s > 0, showing s 'V = By ~-1(0) C O and T C S. On the other hand, if » € RT, then
BH'”,T‘(O) =7rV €T, showing S C T. |
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1.6 Further Examples

Example 1.42. We provide an example that shows that bounded linear maps between
topological vector spaces need not be continuous. Let X := C([0, 1], K) be the vector
space over K consisting of all K-valued continuous functions on [0, 1]. Define

—1+|f—g| (1.26)

1
d: X x X — R, d(f,g)::/
0

It is an exercise to show d constitutes a translation-invariant metric on X and that the
induced topology S makes X into a topological vector space (X,S). Next, define

Vo opr X — RS, p(f) = f(1)] (1.27)

t€[0,1]

It f,g € X, A€ K, then p(Af) = [Al[f ()] = [Alp(f) and pi(f +g) < [F@)] + [9(t)] =
pe(f) + pi(g), showing p; to define a seminorm on X. Thus, according to Th. 1.40(a),
the family (p;)scpo,1) induces a topology 7 on X such that (X,7) is a topological vector
space as well. We show Id : (X,7) — (X,S) to be bounded, but not continuous: Let
E C X be T-bounded. We show that E is also S-bounded (i.e. Id : (X,7T) — (X,S) is
bounded): According to Prop. 1.12(d), it suffices to consider the case that E' is countable
(and nonempty), say E = {e; : k € N}. As E is bounded, Th. 1.40(a)(ii) implies

V o M;:=sup{lei(t)| : k € N} e R{,

t€[0,1]

and we define
F:[0,1] — RS, F(t):= M,.

Then F' = sup{le;| : k € N} and, as a sup of countably many A'-measurable functions,
F is AM-measurable. In particular, the following integral makes sense (also note that the
integrand is uniformly bounded by 1):

A
o /1+F

Fix r € RT. Since 1+_F < 1, we can apply the dominated convergence theorem (DCT,
[Phil7, Th. 2.20]) to obtain hme_>0 fo <= dX! = 0. In particular, we can fix e := €(r) €
10, 1] such that fo IEF dA\! < L. Next, we note that, for F' > 0 and € €0, 1],

1+€leg|
keN 1 +e€ley| F for £ <1, since % <1 and 11*;6F <1l4efF <2

+ele|

lex] 1+ €F { for 1 < F, since 1% < 1and 2 <2 & 1 < F,
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Thus, due to our choice of € above, for each k € N,

! l+eF F
d(eek,()):/ el gy —/ cles| _1te d\!
0 (F

1+ €|eg| B sop Ltele] F 1+4e€F
1
el 2r
<2 d\' < = =
= /0 L+ cF 2 — "

showing ee, € By, (0), i.e. E C € 'By,(0) and E is S-bounded. However, Id :
(X, T) — (X,S8) is not continuous: We show that B, %(O) ¢ T: Otherwise, accord-
ing to Th. 1.40(a), there must exist N € N, ¢ € R", and ¢;,...,ty € [0, 1] such that
0<t <--<ty<land O :=, By, (0) C Bd%(O). Seeking a contradiction,
we will show that there must exist some f € O\ B, %(O): The idea is to construct
a continuous f such that f is constantly equal to 1 everywhere, except in sufficiently
small neighborhoods to the t;, where it decreases affinely and sufficiently fast to have
f(tx) =0 for each k € {1,..., N}. To avoid special considerations for k = 1 and k = N,
we first define g : R — R and then let f :=g¢ [0,1- In preparation for the definition

of g, let 61 := ﬁ,

5 min{tk+1—tk:k:E{l,...,N—l}} for N > 2,
2::
01 for N =1,

and ¢ := min{dy, do}. We now let

—2 4 2 for ¢, — 3 < s <y,
g: R—Rf, g(s):=¢ 2% -2 fortkgsgtk+g,

1 otherwise.

In particular, note g to be continuous and piecewise affine with g(R) = [0, 1] and, for
each k € {1,...,N}, g(tx — 2) = g(tx + 2) = 1, g(tx) = 0. Moreover, letting, for each
ke{l,...,N}, Iy =ty — $, tx + 2[, we have [; N [, = ) for k # [. Letting I := U]kV:1 I,
one has g[gr\;= 1 and

A(I)=N-§<N§ = N

=5 = NN =

DO | —

Letting f := g[p,1, we obtain f € X and, since f(t;) = 0 for each k € {1,..., N}, we
also have f € O =, By, (0). However,

f

1
_ [ S 4 LY L
d(f,o)_/0 1+fd>\ >/[0’1]\11+fdA 5 A([O,l]\])22

DN | —
e~ =
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showing f & B, 1(0) and B, 1(0) € 7.

We can now conclude from Th. 1.32 that (X,7) is not metrizable (since the linear
map Id : (X,7) — (X,S) is bounded, but not continuous). Another way to see that
(X, T) is not metrizable is to show Id : (X,7) — (X, S) to be sequentially continuous:
Indeed, if (fx)ken is a sequence in X a and f € X such that limy_,y fr = f with respect
to 7T, then

pt cont.

v lim |f — fil(t) = %E%Pt(f —f) 7 = "p(0) =0,

tel0,1] k=N

i.e. the | f — fx| converge pointwise to 0. Since 1J‘rf|;i’}|k| < 1 and 1 is integrable over [0, 1],
we can use DCT to obtain
b Sl

. T 1 DgT
B D =1 T 0

showing limy_.y fr = f with respect to S and sequential continuity of Id : (X,7) —
(X,S). In consequence, by [Phil6b, Th. 2.8], (X,7) is not metrizable.

Example 1.43. Let n € N, and let O C R" be open, X := C(O,K). Let (K;);en be an
exhaustion by compact sets of O, i.e. a sequence of compact subsets of O such that

0=|JK, (1.284)
€N
Yo KiCKY, (1.28b)

(cf. Th. A.2 of the Appendix). Clearly, we may also assume, in addition, K; # ) for
each i € N. We define

Z,EVN pi: X — Ry, pif) =sup{|f(z)]: = € Ki} = || flg,

. (1.29)

Clearly, F := (p;)ien constitutes a family of seminorms on X. Thus, according to Th.
1.40(a), F induces a topology 7 on X such that (X,7) is a locally convex topological
vector space. Due to (1.28b), we have p; < p, < ... and, thus,

{B,,1(0): i € N},
forms a convex balanced local base for T at 0. Moreover, F is separating due to (1.28a),
implying (X, 7) to be T;. Thus, using Th. 1.40(a) once again, (X, 7T) is metrizable by
the metric

2—1'1, — .
d: X x X — R, d(f,g):zmax{%:lel\l}. (1.30)
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We show d to be complete: Let (fx)ren be a Cauchy sequence in X (with respect to
d). Then, for each i € N, (fr [k,)ren is Cauchy with respect to || - ||« (check it!)
and, thus, converges (uniformly) to some continuous F; : K; — K. Due to (1.28b),
Filk,=F, for j >iand F: O — K, F(x) := F;(z) for x € K; well-defines a function
F € X. Since limg o0 pi(fx — F) = limg_y00 pi(fr — F;) = 0 for each i € N. This implies
limy o0 d(fi, F) = 0: Given € € RT, choose iy € N such that 2% < ¢. Then choose
N € N such that, for each k > N and each i < iy, 27" p;(fx — F') < €. Then,

27 pi(fe — F)
k:’N d(fe, F) _maX{l—l—pi(fk—F) Di€ N} <€
showing limy, . d(fi, F) = 0, i.e. d is complete and (X, T) is Fréchet. However, (X, T)
is not locally bounded (and, thus, by Th. 1.41, not normable): It suffices to show that no
B,.(0),7 € N, e € RT, is bounded. Let 0 # f € Co(K? 4\ K;) (cf. [Phil7, Th. 2.49(a)]).
Then Pis1(rf) = rpixa(f) > 0 and p;(rf) = 0 (i.e. rf € By, (0) for each ¢ € RT) for
each r € RT, showing p; 1 is not bounded on By, (0), i.e. By, ((0) is not bounded by Th.
1.40(a)(ii). We conclude the example by showing that 7 does not depend on the chosen
exhaustion by compact sets of O: Suppose (f(z-)ieN is also an exhaustion by compact
sets of O with resulting seminorms p;, metric d, and induced topology 7. Inductively,
we define a sequence of indices (J;);en as follows: Given i € N, since K; is Compact and
(K3 )jen is an open cover of K;, there exists j(i) € N such that K; C K. Ifi=1, set
Ji == j(); if i > 1, set j; :== max{j;—1 + 1,7(7)}. Then (j;)ien is strlctly 1ncreasmg and
f(i C Kj, for each i € N. For each 7 € N and f € X, we obtain

for 1 < p;,(f), since 22U <1

1+p:(f)
~ 1+pj, (f)
b (f)>0 = P _1+pilf) and S0 <2 e L<pil)),
Ji L+p(f) piu(f) — for pj,(f) < 1, since Pz((f)) <1
14p;,
and 11’;51_((]0)) <1+4p;(f) <2,
and, thus,
27 5i(f) _ 27B(f) L (f) pa(f) 27270, (f)
1+ﬁz(f) 1+pz(f) pjz< ) 1+p.71(f) N 1+p]z(f)

In consequence, if 0 € RT and f € Bys(0), then, for each [ € N, [ > 1,

d(f,0) < max{Q—l, max{% i< l}} < max{27!, ¢ 6}, (1.31)

where ¢; := max{27""*i . § < [}. Thus, given ¢ € R, we may choose [ € N such
that 27! < € and then 6 > 0 such that ¢;6 < € as well. Then (1.31) shows that
Bas(0) € By (0), implying T C T. Since the previous argument works exactly the
same with the roles of d and d reversed, we obtain 7 = T as desired.
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Example 1.44. Let n € N, and let O C R™ be open, X := C*(0,K). Moreover, for
each compact K C O, we introduce the notation

Dk = Dk(0,K) :={f € C*(0,K) : supp f C K}, (1.32)
where we recall from [Phil7, Def. 2.48(a)] that the support of f is defined by

supp f:={x € O: f(z) # 0}.

The spaces Dk play an important role in the theory of so-called distributions (see,
e.g., [Rud73, Ch. 6] — we will also make some further remarks on distributions below).
Clearly, each Dy is a vector subspace of X over K. Applying a procedure that is similar
to the one used in the previous Ex. 1.43, we make X into a metrizable topological vector
space: We start with a sequence (K;);en, constituting an exhaustion by compact sets of
O, i.e. such that (1.28) holds. As in Ex. 1.43, we also assume K; # () for each i € N.
This time we define a family of seminorms F := (p;);en by letting, for each i € N,

Di - X—>Rg,
pz(f) :zsup{|3pf(x)|:xEKi,p:@orp:(pl,...,pj)E{l,...,n}j,lgjgi}

= max { (9, I,

Oo:p:Q)OI“pe{1,...,n}j,1§j§i}, (1.33)

where Jyf := f. According to Th. 1.40(a), F induces a topology 7 on X such that
(X, T) is a locally convex topological vector space. Due to (1.28b) and (1.33), we have

p1 < py < ... and, thus,
{B,1(0): i €N},

forms a convex balanced local base for 7 at 0. Moreover, F is separating due to (1.28a),
implying (X,7) to be Ty. Thus, as in Ex. 1.43, (X,7) is metrizable by the metric
defined in (1.30). Once again, we can show d to be complete: Let (fx)ren be a Cauchy
sequence in X (with respect to d). Then, for each i € N and each p € {1,...,n}",
N € N, (fulk)ren and ((0,fx) [k;)ken are Cauchy with respect to || - || (check it!)
and, thus, converge (uniformly) to some continuous F; : K; — K and continuous
F,, : K; — K, respectively. Due to (1.28b), Fj [x,= F; and Fj, [x,= F;, for j > i,
such that F': O — K, F(z) := Fi(z) and F, : O — K, F,(z) := F;,(x) for z € K;
well-define functions F, F), € C'(O,K). Since the convergences f;, — F and (0,fr) — F,
for each p € {1,...,n}", N € N, are uniform on each K;, we can inductively apply
Th. B.1 to all partial derivatives of the fi to obtain F, = J,F and F' € X. Moreover,
limy oo pi(fr — F') = limg_oo pi(fr — F;) = 0 for each i € N, implies limy_, d(fz, F') =0
as in Ex. 1.43, proving d to be complete and (X, 7T) to be Fréchet. For each x € O, e, :
X — K, e,(f) :== f(z), constitutes a continuous linear functional (since convergence
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in (X,7) implies pointwise convergence). Thus, ker e, is closed and, hence, so is

Dy = ﬂ ker e, (1.34)

for each compact K C O, showing the D to be Fréchet as well. Asin Ex. 1.43, it follows
that (X, 7) is not locally bounded (and, thus, by Th. 1.41, not normable): It suffices to
show that no By, (0), i € N, e € R*, is bounded. Let 0 # f € C*(K7, ,\ K;) (cf. [Phil7,
Th. 2.54(d)]). Then pip1(rf) = rpisa(f) > 0 and p;(rf) =0 (ie. rf € By, (0) for each
e € RT) for each r € R, showing p;;1 is not bounded on B, ((0), i.e. By, (0) is not
bounded by Th. 1.40(a)(ii). Finally, that 7 does not depend on the chosen exhaustion
by compact sets of O follows precisely as in Ex. 1.43. Distributions are linear functionals
on the space

D:=DO,K):= |J Dx(OK) (1.35)

K C O compact

that are continuous with respect to a suitable topology & on D. For technical reasons,

one chooses § different from the subspace topology 7p, where S is actually nonmetrizable
(however, Tp,. = Sp,. for each compact K C O, see [Rud73, Sec. 6.2-6.9] for details).

2 Main Theorems

2.1 Baire Category

Recall that a subset A of a topological space X is called dense if, and only if, A = X.
The concept of Baire category can be seen as a refinement of the concept of denseness
(cf. Def. 2.1 below). The main result in this section is the so-called Baire category
theorem (Th. 2.6). Its main applications are abstract existence proofs. As applications,
we will prove the existence of continuous maps that are nowhere differentiable (Ex. 2.8)
and the existence of points of continuity for pointwise limits of continuous functions as
well as for derivatives (Th. 2.11).

Definition 2.1. Let (X, 7T) be a topological space, A C X.

(a) A is called nowhere dense in X if, and only if, A has empty interior, i.e. if, and only

if, (A)° = 0.

(b) A is said to be of the first category in X or meager if, and only if, A = (J;~ | Ay is
a countable union of nowhere dense sets Ay, k € N.

(c) A is said to be of the second category in X or nonmeager or fat if, and only if, A is
not of the first category in X.
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Caveat: These notions of category (due to Baire) are completely different from the
notion of category occurring in the more algebraic discipline called category theory.

Lemma 2.2. Let (X, T) be a topological space.

(a) A C X is nowhere dense if, and only if, (A)° is dense.
(b) If AC B C X and B is nowhere dense (resp. of the first category), then so is A.

(c) FEwvery countable union of sets of the first category in X is of the first category in
X.

(d) If A C X is closed and A° = (), then A is nowhere dense (and, in particular, of the
first category in X ).

(e) The notions nowhere dense, of the first category, and of the second category are
topological invariants, i.e. they remain invariant under homeomorphisms.

Proof. (a): For each B C X, we have the disjoint union X = B° UOBU(B)°. Applying
this to A yields X = (A)°UJ(A)U((A)°)°. Since also B = B°U9dB, we obtain

(A)° =0 & X = (A)

as claimed.

(b): _The part regarding “nowhere dense” holds, since, for each C C D C X, one
has C C D and C° C D°. The part regarding “of the first category” holds, since
B =J,~, By and A C B implies A = |, (AN By).

(c) is due to the fact that countable unions of countable sets are countable.

(d): Since A is closed, we have (A)° = A° = ().
e

(e): Let (Y,S) be another topological space and ¢ : X — Y a homeomorphism. If
A C X, then

A=J A & o(4) = o4,
proving (e). [ |

The idea is that sets of the first category are somehow “small” and sets of the second
category are somehow “large” (e.g. in the sense that complements of sets of the first
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category must be dense in many spaces as we will see in Th. 2.6(c)). However, one has
to use care, as sets of the first category can still be “large” in other ways: For example,

they can themselves be dense (see Ex. 2.3(a)) or of full measure in a measure space (see
Ex. 2.3(c),(d)).

Example 2.3. (a) Q is a countable dense subset of R. Thus Q is both dense and of

(b)

(c)

(d)

the first category in R. More generally, in spaces where point sets {x} are closed,
but not open, countable sets are always of the first category, but many spaces (such

as K™) have countable dense sets (we have previously called such spaces separable
in Analysis II/III).

Let (X,7T) be a topological vector space over K and let Y be a vector subspace.
If Y # X, then Y has empty interior (in particular, Y is either dense or nowhere
dense): Let z € X \ 'Y and U € U(0). Then there exists n € N such that x € nU,
ie. n'x € U\ Y, showing 0 not to be an interior point of Y. Since translations
are homeomorphisms in X, no y € Y can be an interior point of Y. Now, if YV is
not dense, then, by Prop. 1.10(c), Y is a proper subspace of X. Then, as we have
just shown, Y has empty interior, and Y is nowhere dense.

Let n € N. Tt is an exercise to show every Lebesgue-measurable set M C R" (i.e.
each M € L") can be written as the disjoint union M = N U A, where N is a A"-null
set and A is of the first category in R™ (use that Q" is dense in R"™ together with
a geometric series). Moreover, if M is any nontrivial interval in R™ (i.e. M° # (),
then A is of the first category in M (and, then, Th. 2.6(c) below implies N to be
of the second category in M).

Another way to obtain sets that are of full measure, but of the first category, is
to adapt the Cantor set construction of [Phil7, Sec. 1.5.3]: In [Phil7, Sec. 1.5.3],
the Cantor set was what was left from [0, 1] after successively removing the (open)
middle third from [0, 1], then the (open) middle thirds of the remaining intervals
etc. Now, consider what occurs if, instead of removing 2"~ ! intervals of length (%)"
in step n, we remove 2" ! intervals of length e(i)”, 0 < e <1, in step n: Then the
total length of intervals removed is

= 2n-t 11 1 €
L= —e (-t —t. )=
P 6(4+8+16+ ) 2

n=1

Thus, the resulting Cantor set C. has measure \'(C,) = 1 — 5. As in [Phil7,

Prop. 1.63], one still finds each C, to be compact with empty interior (i.e. nowhere
dense). Now, if O, := C¢ = [0,1]\ C¢, B := ey O1/n, D := B¢ = U,y Ci/n, then
M(B) =0, A'(D) =1, and D is of the first category in [0, 1].
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(e) We will see in Ex. 2.23 below that, for p,q € [1, 00] with p < ¢ < oo, L%([0, 1], £, A1)
is of the first category in LP([0, 1], £, A1).

The following Baire Category Th. 2.6 holds for complete pseudometric spaces as well
as for locally compact Hausdorff spaces. In preparation for the proof of the variant for
locally compact Hausdorff spaces, we provide the following two propositions:

Proposition 2.4. Let the topological space (X, T) be T.

(a) If (Ki)ier. I # 0, is a family of compact subsets of X such that (,c; K; = 0, then
there exist iy,...,iy € I, N € N, such that ﬂ,ivzl K, =10.

(b) One can separate points from compact sets: Let v € X, K C X, K compact. If
x & K, then there exist open sets O, C X and Ox C X such that

€0, N KCOrg N O, NOx =0.

Proof. (a): Since (X, T) is T5, each K;, i € I, is closed by [Phil6b, Prop. 3.14(b)]. Then
(a) follows, since each compact set has the finite intersection property by [Phil6b, Th.
3.13(i)].

(b): Let K C X be compact and € X \ K. Since (X,7T) is T5, for each a € K, there
exists open O, € U(x) and open U, € U(a) such that O, N U, = 0. Now (U,)ack is an
open cover of K. Since K is compact, there exists a finite set M C K such that (U,)aeem
still covers K: K C Ok := {J,eps Ua € T. On the other hand v € O, 1= (,c),Oa € T
Since O, N Ok = 0, this proves (b). [ |

Proposition 2.5. Let the topological space (X, T) be locally compact and Ty. Then the
following holds:

(a) If O, K C X such that O is open, K is compact, and K C O, then there exists an
open set V- C X such that V' is compact and

KCVCVcCo. (2.1)
(b) (X, T) is Ts (and, thus, regular).

Proof. Exercise. |

Theorem 2.6 (Baire Category Theorem). Let (X, T) be a topological space, X # ),
and suppose at least one of the following two hypotheses holds:
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(i) T is induced by a complete pseudometric on X .

(i1) (X, T) is a locally compact Hausdorff space.
Then, the following conclusions hold as well:

(a) If (Ok)ren is a sequence of dense open subsets of X and

B:= (0 (2.2)
k=1

then B is dense in X as well.

(b) If (Ap)ken is a sequence of closed subsets of X with empty interior, then

has empty interior as well.

(c) If A C X is of the first category in X, then A® is dense in X. In particular, X is
of the second category in itself.

Proof. (a): Let V; € X be open and nonempty. According to [Phil6b, Prop. 1.35(e)],
we need to show VoN B # (). To this end, we construct a sequence (Vj)gen, of nonempty
open subsets of X such that

V Vi CViiNOy. (2.4)
keN

Inductively, assume that, for [ € Ny, [ < k, V; have already been constructed in ac-
cordance with (2.4). The set V;_1 N O is open and nonempty (as Oy is dense) and
we choose x, € Vi_1 N Oy. In Case (i), we now choose ¢, € Rt such that ¢, < % and
B, (71) € Vi N Oy, letting Vj, := B, (x). Then (2.4) is satisfied. In Case (ii), we
use Prop. 2.5(a) to choose an open V; such that {z;} C Vi, €V} C Vi N Oy, with V,
compact. Then, once again, (2.4) is satisfied. We claim

D::ﬂvk#@: (2.5)

keN

In Case (i), | > k implies x; € B, (z)) for each k,l € N, such that (z)ken constitutes
a Cauchy sequence due to limyg_,o, €, = 0. The assumed completeness of X provides a
limit z = limg_,oo 2, € X. The nested form (2.4) of the V; implies x € V. for each
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k € N, proving (2.5). In Case (ii), (2.5) holds, since the compact set V| has the finite
intersection property (cf. [Phil6b, Th. 3.13(ii)]) and

Vo0#£Ve=(V

keN
1<k

In consequence of (2.4), we have D C BN V,, showing Vo N B # () as needed.
(b) follows from (a) by taking complements: We rewrite (2.3) as

B:=C° = (DAk> = ﬁAg.
k=1 k=1

The Oy, := Aj, are open, since the A are closed. Since the A; have empty interior, the
Oy, are dense. Then B is dense by (a) and C' has empty interior.

(c): If Ais of the first category in X, then A = J, .y Ak, with each Ay C X being
nowhere dense. Then A C C = J, oy Ay, where each A is a closed set with empty

interior. By (b), C' (and, thus, A) must have empty interior as well. Thus, A is
dense. |

Remark 2.7. Typical applications of the Baire Th. 2.6 are (nonconstructive) existence
proofs of the following from: To show a space X contains elements having the property
P, one shows X to satisfy the hypotheses of Th. 2.6 and one shows the set A of elements
in X not having the property P to be of the first category in X. Then A° must be
nonempty (and even dense). The following Ex. 2.8, provides an illustration of this
method.

Example 2.8. In [Phil6a, Sec. J.1], one can find the construction of functions f : R —
R that are continuous, but nowhere differentiable. Using the Baire Th. 2.6 together with
the Weierstrass approximation theorem (provided as Th. C.1 in the Appendix), we can
now show that in Cla, b], where a,b € R with a < b, the set B of nowhere differentiable
functions is even dense (and the complement D := Cf[a,b] \ B is of the first category):
If we equip Cla, b] with the max-norm || - ||, then we know it to be a Banach space (a
closed subspace of the Banach space L>([a,b], L', \!)). Define

fl+h)— fz)
Vb] sup{ .

V0, = {feC[a,b]: :0<|h]§%}>n} (2.6)

z€]a,

(to make sure f(z + h) in (2.6) is always well-defined, we extend f € Cfa,b] constantly
by f(a) to the left and constantly by f(b) to the right). Let By := (1, oy On. Clearly,
By C B, i.e. each f € By is nowhere differentiable in [a, b]. If we can show each O, to be
open and dense in C|[a, b], then, by Th. 2.6(a), By (and, thus, B) must be dense as well.
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Taking complements, we obtain Dy := (By)® (and, thus, D) to be of the first category
in Cla, b. It remains to show each O,, is open and dense. We first show O,, to be open:
Let f € O,. Then

PERS (2 L

z€la,b]  SpERT

1

Thus, there exists h, € R with 0 < |h,] < % and %j_ﬂx)

n

> n + d,. Now the

continuity of f (at x) implies

3y V“*h”‘f@ > nt
Us€U(z) t€UL h
Since [a, b] is compact, there exist finitely many z1,...,2x € [a,b], N € N, such that
N
[a,b] C U
We set 6 := min{d,,,...,0:y}, b := min{|hy,|,...,|hay|}, € := 3hd > 0, and show

g € O, for each g € Cla,b] with ||g — f|le < € If g € Cla,b] with ||g — f|l~ < € and
x € |a, b], then there exists i € {1,..., N} with z € U,, and

[f (@ + ha,) = f(2)] < [f(z + ha) — g(x + ha,) (@ + ha,) = g(2)| + lg(z) = f(2)]

Thus,

gl + hs,) = g(x)

LN~ ol :
ha,

1 >n+(5—2ﬁ:n,

>'ﬂx+mﬁ—f@>_
> =

showing g € O,, and O,, open. It remains to show O,, is also dense. From the Weierstrass
approximation Th. C.1, we know the set of polynomials from R to R to be dense in
(Cla,b], || - |loo)- Thus, if @ # O C Cfa,b], O open, then there exist a polynomial
p: R— R and € € R" such that

fecv[a’b] (Hf pr[a,b] ||<>o <e€ = f c O)

For each n € N; define the (continuous and piecewise affine) triangle wave function

nx — k2e for x € [22 Bcte] | € 7,
—nz + (k+1)2¢ for x € [t (kt1) 26] keZ

On: R—10,¢], o¢n(x) = {
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(the slope of ¢,, alternates between n and —n on intervals of length <) and also

gn ‘= ¢n r[a,b]6 C[(I, b]
Then, clearly, ||g,||c <€ (ie. f,:=p+ g, € O) and

N lim gnl@ +h) = ga(2) =n. (2.7)

z€la,b]  h—0 h

One also has, for each x € [a,b] and each h € R,

|gn (2 + 1) = gn ()] < [ful + h) = ful@)] + [p(x + h) = p(2)],

implying, for h # 0,

fle £4) =) o 1) =)ot 1) bt
h - h h
> |2CEN =D e, 23)

where the mean value theorem was used for the last estimate. For each m € N such
that m > n 4+ |[p'[[a4) ||oc, combining (2.8) with (2.7) yields

ap {| 2l 1) o

h
showing f,, € O,, i.e. f,, € ON O, # (). Thus, O, is dense as desired.

1
:0<W§E}Zm—WmMM>m

In [Phil6a, Ex. 8.3(b)], we saw an example of a sequence of continuous functions on
0, 1] converging pointwise to a discontinuous function; in [Phil6a, Ex. 9.14(c)|, we saw
a differentiable function on R with discontinuous derivative. So one might ask, whether
pointwise limits of continuous functions can be everywhere discontinuous and where
derivatives can be everywhere discontinuous. We can use the Baire category Th. 2.6 to
show that the set of points of discontinuity of such a limit as well as of such a derivative
must be of the first category (see Th. 2.11 below). In preparation, we introduce the
oscillation of a real-valued function:

Definition and Remark 2.9. Let M C R, f: M — R. For each nonempty A C M,
define the oscillation of f in A by

w(A) :==sup{f(z): = € A} —inf{f(z): z € A} € [0, 0]. (2.9)
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For each £ € M, the function
ag: RT —[0,00],  ag(h) :=w(MNJE — h, &+ h[),
is decreasing with lower bound 0, such that
w() = ,llig%ag(h) = inf{ag(h): h € R"} € [0, 00] (2.10)

is well-defined. We call w(§) the oscillation of f at &.
Proposition 2.10. Let M CR, f: M — R, £ € M.

(a) f is continuous at & if, and only if, w(§) = 0.

(b) For eache € RT, O, :={x € M : w(x) < €} is open (in M); A := O ={zx e M :
w(z) > €} is closed (in M ).

Proof. (a): Let f be continuous at £ and € > 0. Then there exists h > 0 such that
|f(€) — f(z)| < € for each x € MN|§ — h,& + h, showing ag(h) < 2¢ and w(§) = 0.
Conversely, assume f is not continuous at £&. Then there exists ¢y > 0 such that, for
each h > 0, there exists x € MN|E—h,E+h[ with |f(§) — f(x)| > €0, showing ag(h) > €
and w(&) > ¢ > 0.

(b): Let e € RT and € O,. Then w(§) < € and there exists h € RT such that
w(€) < ag(h) =w(MNJ¢ = h, &+ h]) <e
Thus, w(x) < € for each x € MNJ¢{—h, 4R, showing O, to be open; A, to be closed. W

Theorem 2.11. Let I C R be a nontrivial interval (i.e. I° # 0), let f: I — R, and
let D C I of points, where f is not continuous.

(a) Assume (fn)nen to be a sequence of continuous functions f, : I — R such that
fn — f pointwise on I.

(b) Assume f =g : I — R to be the derivative of some differentiable g : I — R.

In each case, (a) or (b), D is of the first category in I (then, by Th. 2.6(c), I\ D must
be of the second category in I and also dense).

Proof. Exercise. Hints: To show (a) first show, for each e € R*, A, :={z € : w(z) >
€}, where w(z) denotes the oscillation of f at z, to be nowhere dense. Then use Prop.
2.10. Show that (b) follows from (a). [ |
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2.2 Uniform Boundedness Principle, Banach-Steinhaus Theo-
rem

In the present section, we combine the Baire category concept of the previous section
with concepts of continuity, uniformity, and boundedness.

Definition 2.12. Let (X, 7x) and (Y, 7y) be topological vector spaces over K and let
F be a set of functions from X into Y. Then the set F (or the functions in F) are said
to be uniformly equicontinuous if, and only if,

—zeV = V¥ . eU) 2.11
UeU(0)CP(Y) VeU(0)CP(X) zyeX (y * fer f(y) f(x) ( )

(then, for F = {f}, F is uniformly equicontinuous if, and only if, f is uniformly
continuous (cf. Th. 1.13(iii)).

Proposition 2.13. Let (X, Tx) and (Y, Ty) be topological vector spaces over K and let
F be a set of K-linear functions from X into Y.

(a) F is uniformly equicontinuous if, and only if,

= A(V)CU. (2.12)
UeU(0)CP(Y) VEU)CP(X) AEF

(b) If F is uniformly equicontinuous, then F is uniformly bounded in the following
sense: For each bounded E C X, there exists a bounded set F CY such that

vV A(E)CF.
AeF

Proof. (a): If (2.11) holds with f replaced by A, then setting x := 0 proves (2.12).
Conversely, if (2.12) holds, A € F, and y —z € V, then A(y) — A(x) = Ay —z) € U,
proving (2.11).

(b): Let F be uniformly equicontinuous, let £ C X be bounded, and set F :=
Uaer A(E). IfU C Y, U € U(0), then, as F is uniformly equicontinuous, there exists

V C X,V elU(0), such that A(V) C U for each A € F. Moreover, since E is bounded,
there exists s € R* such that £ C sV. Then

Agf A(E) C A(sV) = sA(V) C sU,

showing F' C sU, i.e. F'is bounded. |
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Theorem 2.14 (Uniform Boundedness Principle). Let (X, Tx), (Y,Ty) be nonemtpy
topological spaces, where we assume to have a notion of boundedness on'Y . Consider a
set of continuous functions F C C(X,Y) and define

V. M,:={f(x): feF} (2.13)

zeX

as well as
B :={z € X : M, is bounded}. (2.14)

Assume B to be of the second category in X .

(a) If (Y, Ty) is pseudometrizable (e.g., if (Y, Ty) is a seminormed space), then there
exists a nonempty open set O C X such that F is uniformly bounded on O in the
sense that there exists a (pseudometric-)bounded set F' C'Y such that

v M, CF

€0

(b) If (X, Tx), (Y,Ty) are topological vector spaces over K and the elements of F are
both continuous and linear, then B = X and F is uniformly equicontinuous.

Proof. It F = (), then M, = () for each z € X, F is (in case (b)), trivially, uniformly
equicontinuous, and there is nothing to prove. Thus, let F # ().

(a): Assume Ty to be induced by the pseudometric d on Y, and fix some yo € Y. For
each f € F, k € N, as both f and the y — d(y, yo) are continuous, the set

Ay ={z e X d(f(z),y0) < k}

is an continuous inverse image of the closed set [0, k] and, hence, closed. Since arbitrary
intersections of closed sets are closed, so is

A = ﬂ Ay = {m € X : d(f(x),yo0) <k for each f € ]-"}.
feF

If € B, then M, is bounded, i.e. there exists k € N with d(f(x),y0) < k for each
f € F, implying
B =] A
k=1

Since B is of the second category, there exists ky € N such that A, has nonempty
interior O. In consequence,

V. M, CF:=Byk(y),

zeO
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proving (a).
(b): First, we show F to be uniformly equicontinuous: Let W C Y, W € U(0). Choose

some closed and balanced U € U(0) such that U + U C W. Then, since each A € F is
continuous,
E:=(]A)
AeF

is a closed subset of X. For each x € B, since M, is bounded, there exists k € N such
that M, C kU and z € kE, implying

BC | J(kE).

keN

Since B is of the second category in X, there exists k such that kFE is of the second
category in X. Then, since x — kz is a homeomorphism, E itself must be of the second
category in X. In particular, since E is also closed, E° # (). Let x € E°. Then

Vi=2—Ee€U(0),

implying

7, AW) = Alw) - A(B) S U -U CW.

showing F to be uniformly equicontinuous. Thus, F is uniformly bounded by Prop.
2.13(b) and, since each {z}, x € X, is bounded in X, each M, must be bounded in Y,
proving B = X. |

Using the Baire category Th. 2.6, we now obtain the following corollaries:

Corollary 2.15. As in Th. 2.14, let (X, Tx), (Y, Ty) be nonemtpy topological spaces,
FCCX,)Y), My :={f(x): feF} foreachx € X, B:={x € X : M, is bounded}.

(a) If X is a nonempty complete pseudometric space and Y is a seminormed vector
space with
o, :=sup{||lyl| : y € M.} <oo foreachx € X, (2.15)

then there exists xo € X and ey > 0 such that
sup {0, : @ € Bey(20)} < 00. (2.16)

In other words, if a collection of continuous functions from X into Y s bounded
pointwise in X, then it is uniformly bounded on an entire ball.

(b) If (X, Tx), (Y, Ty) are topological vector spaces over K, where X is an F-space,
B =X (i.e. all M, are bounded), and the elements of F are both continuous and
linear, then F is uniformly equicontinuous.



2 MAIN THEOREMS 52

(c) Banach-Steinhaus Theorem: If X,Y are normed spaces and X is a Banach space
(i.e. complete), B = X (i.e. F is pointwise bounded), then

3V VY |Az] < M, (2.17)
McRS  AeF ||$€||)<(’1

i.e., for each A € F, || Al := sup{||Az| : z € X, ||z|]| < 1} < M. We will see
later that ||A|| (the so-called operator norm of A) does actually constitute a norm
on L(X,Y), the space of continuous linear functions from X into Y. Thus, we can

restate the Banach-Steinhaus theorem by saying that, if F is pointwise bounded,
than it is a bounded subset of L(X,Y).

Proof. (a): According to (2.15), we have that M, is bounded by o, for each x € X i.e.
B = X. Since X is a complete pseudometric space, by the Baire category Th. 2.6(c), X
is of the second category in itself. Thus, Th. 2.14(a) implies F to be uniformly bounded
on a nonempty open set O, such that (2.16) holds with O instead of B, (7). But then
(2.16) also follows, as O contains some closed ball B, ().

(b): Asin (a), we have B = X and the Baire category Th. 2.6(c) yields X to be of the
second category in itself (since an F-space is a complete metric space). Now Th. 2.14(b)
implies F to be uniformly equicontinuous.

(c) follows by combining (b) with Th. 2.13(b). [ |

Under suitable hypotheses, the uniform boundedness principle allows to establish the
continuity of pointwise limits of continuous linear maps. First, we provide a linearity
result:

Proposition 2.16. Let X be a vector space over K and (Y, Ty) a topological vector
space over K. Let (Ap)nen be a sequence of linear maps A, : X — Y and define

C:={reX: (A,(2))nen Cauchy in Y},
L:={x € X: (A,(x))nen converges in Y }.
Then C' and L are vector subspaces of X. If L = X and (Y, Ty) is Ty, then the pointwise
limat
A: X —Y, A(z):= lim A,(z),
n—oo

is linear (if (Y, Ty) is Ty, then it is Ty by Prop. 1.5(d), i.e. limits in' Y are unique and
A is well-defined).

Proof. Exercise. [ ]
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Theorem 2.17. Let (X, Tx), (Y, Ty) be topological vector spaces over K, and let (Ay)nen
be a sequence of linear continuous maps A, : X — Y, F :={A, : n € N}. Define C
and L as in Prop. 2.16 abowve.

(a) If C is of the second category in X, then F is uniformly equicontinuous and X = C.

(b) If F is uniformly equicontinuous, X = L, and (Y, Ty) is Ty (i.e. the A, converge
pointwise to a unique limit), then the pointwise limit

A: X —Y, A(z):= lim A,(x),

n—0o0

18 linear and continuous.

(c) If Y is complete (e.g. and F-space) and L is of the second category in X, then
X = L, and F is uniformly equicontinuous. If Y 1is also Ty, then the pointwise
limit A as above is linear and continuous.

(d) If X is an F-space (e.g. a Banach space) and L = X, then F is uniformly equicon-
tinuous. If, in addition, Y is also Ty, then the pointwise limit A as above is linear
and continuous.

Proof. (a): Since Cauchy sequences are bounded by Prop. 1.28(c), F is pointwise
bounded on C. Thus, Th. 2.14(b) applies, showing F to be uniformly equicontinu-
ous. Moreover, from Prop. 2.16, we know C' to be a vector subspace of X. Since C' is
of the second category, it can not be nowhere dense. Thus, by Ex. 2.3(b), it must be
dense. Let x € X, W C Y, W € U(0), and choose U € U(0) such that U+ U +U C W.
Since F is uniformly equicontinuous, there exists V' C X, V' € U(0) balanced, such that
A, (V) CU for each n € N. As C'is dense, there exists z € C'N(x+ V). Choose N € N
such that
v An(z) — An(z) € U.

m,n>N
Then,
V o Ay(z) = Ap(z) = Ap(z —2) + Au(2) = An(z2) + Ap(z —2) e U+ U +U C W,

m,n>N

showing z € C, i.e. C = X.

(b): A is linear by Prop. 2.16. To see the continuity of A, let W C Y, W € U(0),
and choose U € U(0) such that U C W (which is possible by Prop. 1.5(c)). Since F
is uniformly equicontinuous, there exists V' C X, V € U(0), such that A,(V) C U for
each n € N. Thus, A(V) C U C W, proving A to be continuous.
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(c): Since L C C by Prop. 1.28(b), C' is of the second category in X. Thus, by (a),
F is uniformly equicontinuous and X = C. Since Y is complete, we also have C' C L
and, thus, X = L. If Y is also 77, then (b) applies and we obtain A to be linear and
continuous.

(d): By the Baire category Th. 2.6(c), we know the F-space L = X to be of the second
category in itself. Now C' = X (since covergent sequences are Cauchy), i.e. (a) implies
F to be uniformly equicontinuous. Thus, if, in addition, Y is T}, then A is linear and
continuous by (b). |

Example 2.18. Consider
X ={f € CYR,K): f and f’ are bounded}.

Clearly, (X, || - |l) is a normed vector space over K (e.g. a subspace of L>(R, £!, \!)).
Define the continuous linear functionals

-1
n—)— f(0
vV A, X — K, An(f)::—f( )lf( )
neN n-
Each A, is a difference quotient map (at 0) and a linear combination of two (linear)
evaluation functionals A, = n(m,-1 +m), where the evaluation functionals are precisely
the projections

V 1 KR K m(f) = f(2).

zeR
Since each f € X is differentiable, we have the pointwise convergence A, — A, where
A is the linear functional

A: X — K, A(f):= f(0).

However, A is not continuous: For each k € N, let fx : R — K| fi(2) := (1/k) sin(kz),
fi(z) = k(1/k) cos(kz) = cos(kx). Clearly, fr € X for each k € N with limy_,e || f&|/co =
0, but

kh_)rgo A(fx) = cos(0) =1 # 0 = A(0).

Now Th. 2.17(d) implies that (X,|| - ||«) is not a Banach space (i.e. not complete).
However, we can make X into a Banach space by modifying the norm: Let

s X —Re, A= 1 lloe + 1 oo (2.18)

Suppose (fx)ren is Cauchy in (X, - ||). Then we know the continuous maps fi to
converge uniformly to some continuous f : R — K. Moreover, the continuous maps f;,
also converge uniformly to some continuous g : R — K. Now Th. B.1 implies f to be
continuously differentiable with f' = g, i.e. fr — fin (X, ||-]|) and (X, ]|-||) is a Banach
space. Now Th. 2.17(d) implies the map A from above (evaluating the derivative at 0)
to be continuous (on (X, || -||) — of course, here it is also easy to see that without Th.
2.17(d); also note that, for the fi from above, fi /4 0in (X, | -|))-
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2.3 Open Mapping Theorem

Definition 2.19. Let (X, 7x) and (Y, 7y) be topological spaces, £ € X. A map f :
X — Y is called open at £ if, and only if,

\ 3 UCf(V). 2.19
Veu) Ueu(f(€)) <) ( )

Moreover, f is called open if, and only if, f maps open set to open sets (i.e. f(O) € Ty
for each O € Tx).

Caveat 2.20. While we know that a map is continuous if, and only if, preimages of
open sets are open and also if, and only if, preimages of closed sets are closed, there exist
open maps that do not map closed sets to closed sets: Projections from a product to
the factors are always open maps according to [Phil6b, Ex. 2.12(b)(ii)]. In particular,
7 R? — R, my(s,t) := s, is open. However, A := {(s,t) € R : s >0, st > 1} is
closed, but 7 (A) =|0, co] is not closed.

Proposition 2.21. Let (X, Tx) and (Y, Ty) be topological spaces, f: X — Y.

(a) f is open if, and only if, [ is open at every & € X.

(b) If (X, Tx) and (Y, Ty) are topological vector spaces over K and f is linear, then f
1s open if, and only if, f is open at 0. If f : X — K is linear, then f =0 or f s
open.

(c) If f is bijective, then f~ is continuous if, and only if, f is open. In particular, if f
18 bijective and continuous, then f is a homeomorphism if, and only if, f is open.

Proof. Exercise. [ |

Theorem 2.22 (Open Mapping Theorem). Let (X, Tx), (Y, Ty ) be T} topological vector
spaces over K and assume (X, Tx) to be an F-space. Let A: X — Y be continuous
and linear and assume A(X) to be of the second category in Y. Then the following
assertions hold true:

(a) AX)=Y.
(b) A is an open mapping.

(c) (Y, Ty) is an F-space.
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Proof. (a) follows from (b), since proper vector subspaces can never be open (see Ex.
2.3(b)).

(b): We have to show A is open at 0. To this end, let VVC X, V € U(0). We have to
find U C Y such that U € U(0) and U C A(V). Since (X, Tx) is an F-space, Tx is
induced by some complete, translation-invariant metric d on X. Choose r € R such
that Vp := By,-(0) € V and define

Y Vi = Byony(0) € U(0).

neNy

Let m,n € No, m <n. Then V,, CV,, CVy C V and also, for m < n, V,, =V, CV,,.
Since y +— —y is a homeomorphism, we can apply Prop. 1.10(b) to conclude

YAV — AV,) = AV) + —AV,) € AV — A(V,) € AV). (2:20)

Next, by Prop. 1.12(f), we have

v o X={Jr) = AX) =] kAW)).

neNy
keN keN

Since, by hypothesis, A(X) is of the second category in Y, at least one kA(V},) must be of
the second category in Y. Thus, since y +— ky is a homeomorphism, each A(V},) must be
of the second category in Y, implying A(V},) to have nonempty interior. In other words,
for each n € Ny, there exists a nonempty open set W,, C A(V,,). Then U, := W, — W,
is still nonempty and open, U,, € U(0) and, for n > 1, m < n, U, C A(V,,) by (2.20).
We will still prove

A(VL) C A(V), (2.21)

where we note that (2.21) shows (b), as we can let U := Us. Given y € A(V}), we
inductively construct a sequence (y,)neny in Y such that each y, € A(V,) as follows:
Start with setting y; := y. Then, assuming yi,...,y, to be constructed, y, € A(V,)
means that every neighborhood of y, has nonempty intersection with A(V},). Since
A(V,i1) € U(0), we have y, — A(V,41) € U(y,) and

(v = AVar)) N AWV,) #0.

In other words,

wngvn A(xn) € Yn — A<Vn+1)-
Thus, if we let yp11 =y, — A(z,), then we have y,, 11 € A(V,4+1) as desired. Then the
continuity of A implies
lim y, =0: (2.22)
n—oo
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Indeed, let W C Y, W € U(0). The continuity of A at 0 yields ny € N with A(V,,,) C W
(since the V,,, n € N, form a local base for Tx at 0). Since the V, are decreasing,
A(Vyy) € W proves (2.22). We now define, for each n € N, z, := > " 2; € X. Then,
using translation-invariance of d,

megen Ui 2m) < Z d(zi, 2i-1) Z d(zi—2i-1,0) = i d(x;,0) <7 2": 27,

i=m+1 i=m-+1 i=m+1 i=m+1

showing (z,,)nen to be a Cauchy sequence in X (since the partial sums of the geometric
series form a Cauchy sequence in R). As we assume X to be complete, there exists a
limit z := lim,,_, 2z, € X. Moreover,

n—0o0

d(z,0) = lim d(z,,0) <dez, <T22_i:T,
i=1

showing z € B,,(0) = Vi C V. Using the continuity of A once again, we obtain

2.22)

. . = ) - i 2.
A(z) = lim A(z,) = lim Z_; A(z;) = lim Z_;(y —Yin1) = I (g1 —ynn) "= 1=y

(here we also used that limits in Y are unique), showing y € A(V), (2.21), and (b).

(c): One uses that X being an F-space implies the factor space X/ker A to be an F-
space as well, and shows X/ker A to be homeomorphic to Y (we refer to [Rud73, Th.
2.11(iii)] for the details). [ |

Example 2.23. Let p,q € [1,00| with p < ¢ < co. From [Phil7, Th. 2.42], we know
L([0,1], £ AY) € Lr([0, 1], £, A1) Since

QI

f:0,1] — K, f(t) =1t 4, (2.23)

is in L7([0, 1], £1, ") (by [Phil6a, Ex. 10.35(a)], since £ < 1), but not in L([0, 1], L', \')
(by [Phil6a, Ex. 10.35(b)]), we also know L([0,1], L', A\') € LP([0,1], £} A!). As an
application of Th. 2.22, we can now show that X := L9([0,1], £', \!) is of the first
category in Y := L”([0, 1] LY A\): Let A:=1d: X — Y. Then A is linear. According
to [Phil7, Th. 2.42], we have

vl < 1l

fera

showing A to be bounded. Then, by Th. 1.32, A is continuous. Since X is an F-space
(even a Banach space) and A(X) # Y, Th. 2.22 yields that X must be of the first
category in Y.
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Proposition 2.24. Let (X, | - |x), (Y] - |ly) be normed vector spaces over K and let
FiX Y. If
3 Y IF@ly < aflx, (2.24)

acRt  zeX

then f maps bounded sets into bounded sets. If f is linear, then the converse also holds
(i.e. (2.24) is equivalent to the linear map being bounded).

Proof. Exercise. [ |

Corollary 2.25. Let (X,S), (Y, T) be F-spaces over K (e.g. Banach spaces) and assume
A: X — Y to be continuous and linear. Then the following assertions hold true:

(a) If A is surjective, then A is open.
(b) If A is bijective, then A™' is continuous (i.e. A is then a homeomorphism).
(c) f X=Y andSCT, then S=T.

(d) If (X, || |lx) and (Y,||-|ly) are Banach spaces, where ||-||x induces S, || ||y induces
T, and A is bijective, then
3V alzllx < |Azxfly < Bz (2.25)

a,BeRT X

(e) If X =Y, (X,| -|1) and (X,|| - ||2) are Banach spaces such that || - ||, induces S,
| - [|2 induces T, and
3V lzlh < allzfls, (2.26)

acRt  zeX

then || - |l1 and || - ||2 are equivalent (i.e. S =T ).

Proof. (a): As A is sujective, we have A(X) = Y. Since Y is an F-space, the Baire
category Th. 2.6(c) implies A(X) =Y to be of the second category in itself. Thus, A is
open by Th. 2.22(b).

(b) follows from (a) combined with Prop. 2.21(c).

() IS CT,thenId: (X,7) — (X,S8) is continuous. Then Id : (X,S8) — (X, T)
is continuous by (b), implying 7 C S.
(d): A is continuous by hypothesis, A~! is continuous by (b). Thus, A and A™! are

bounded. According to Prop. 2.24, the boundedness of A implies the second inequality
of (2.25) and the boundedness of A~! implies the second inequality of (2.25): Indeed,

Voo 3 llzlx = A7 (A@)Ix < v 1A@)Ily

>0 zeX
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(set a:=~71).

(e): According to (2.26) and Prop. 2.24, Id : (X, || - |l2) — (X, || - |[1) is bounded and,
thus, by Th. 1.32, continuous, implying S € 7. Now & = 7T holds according to (c). H

Example 2.26. Consider the Banach space (X, || - ||1), where

X ={f € CYR,K): f and f’ are bounded},
L1 == [1f oo + 11f lloo

(cf. Ex. 2.18 and, of course, || - ||; is not the L'-norm). Let

2

o:R— R, ox):=e".

Then we know ¢ € L*(R, £, A\!) and we obtains two other norms on X by setting

1= [ o110,
R
1z = 1A+ 1111
immediately implying
T M= 01 (2.27)
ex

Let (fx)ren be a sequence in X that is || - ||o-Cauchy. Then (2.27) implies (fx)ren to be
| - |[i-Cauchy as well. Thus, there exists f € X with limgo || fx — f|l1 = 0. By the
dominated convergence theorem [Phil7, Th. 2.20], we have limy_, || fx — f]| = 0 as well,
implying limg o || fx — fll2 = 0. In consequence, (X, || -||2) is also a Banach space. Since
(2.27) means that (2.26) is satisfied with o = 1, Cor. 2.25(e) implies || - [|; and || - ||z to
be equivalent.

2.4 Closed Graph Theorem
2.4.1 The Theorem

We start by recalling that, for each function f : X — Y, the graph of f is graph(f) =
{(z,y) € X xY : y= f(z)}. In topological spaces, the graph of f is closely related to
the Hausdorff separation property:

Lemma 2.27. Let (X,T) be a topological space. Then (X, T) is Ty if, and only if,
graph(Id) is closed with respect to the product topology P on X x X (where Id denotes
the identity on X ).
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Proof. The set
A :=graph(ld) = {(z,2) e X x X : 2z € X} (2.28)

is also called the diagonal in X x X. We have

A closed < A€ open

& Y 3 (z,y) €0 CA°
ryeX, z#ty O€EP

& v 3 (z,y) € O, x O, CO C A°
zyeX,v#y  Og,0y€T

e Y 3 (20, nyeo, A 0.0, =)
zyeX,x#y  Og,0y€T

<~ (X, T) 15,

proving the lemma. n

We now proceed to the situation of a continuous map f : X — Y. We know from Lem.
2.27 that, if X =Y, f =1d, and Y is a Ty-space, then graph(f) is closed. We can now
show that, if Y is a Ty-space, then graph(f) is closed for every continuous f: X — Y=

Proposition 2.28. Let (X,S), (Y,T) be topological spaces and f: X — Y. If f is
continuous and (Y, T) is Ty, then graph(f) is closed with respect to the product topology
PonXxY.

Proof. Let G := graph(f). We have to show G to be open. To this end, let (z,y) € G°.
Then y # z := f(x). Since Y is Ty, there exist O,,0, € T with y € O,, z € O,, and
O,NO, = (. Since f is continuous, there exists an open U € U(z) such that f(U) C O,.
Then U x O, € P with (z,y) € U x O, C G, showing G° to be open. [ |

While simple examples such as

x~t for x #0,

(2.29)
0 for x =0,

f: R—R, f(x):{

where graph(f) is closed, but f is not continuous, show that the converse of Prop. 2.28
is not true in general, according to the following Th. 2.30, the converse does hold for
linear maps between F-spaces. In preparation, we provide some simple facts regarding
the product of two metric spaces:

Proposition 2.29. Let (X,S), (Y,T) be topological spaces and let P be the product
topology on X x Y. Moreover, let S, T be induced by metrics dx and dy on X andY,
respectively.
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(a) The map
d: (X xY)? —= Ry, d((z1,m), (22, 92)) := dx (21, 72) + dy (y1,52),  (2.30)

defines a metric on X XY that induces P. Moreover, if dx,dy are complete, then
sois d. If (X,S), (Y,T) are topological vector spaces over K, then (X X Y, P)
1 a topological vector space over K; if dx,dy are translation-invariant, then d is
translation-invariant as well.

(b) If f: X — Y, then graph(f) is closed if, and only if, for each sequence (xy)ken
in X such that the limits

r:= lim x, and y:= kh_)rgof(:nk) (2.31)

k—o0

both exist, one has y = f(x).

Proof. Exercise. [ |

Theorem 2.30 (Closed Graph Theorem). Let (X,S), (Y,T) be F-spaces over K (e.g.
Banach spaces) and let A : X — Y be linear. Then the following statements are
equivalent:

(i) A is continuous.
(ii) graph(A) is closed with respect to the product topology P on X X Y.
(iii) For each sequence (xy)ken in X such that the limits

x:= lim xp and y:= klim A(zy) (2.32)
—00

k—o0

both exist with x = 0, one has y = 0.

Proof. The equivalence of (ii) and (iii) is due to Prop. 2.29(b): (ii) implies (iii), since
A(0) = 0. If (iii) holds with limg_,o zx = x and limy_, A(zx) = y, then limy oo (z) —
x) =0, limg 00 A(z, —2) = y— A(x) and (iii) implies y — A(xz) = 0. Thus, y = A(x) and
Prop. 2.29(b) yields (ii). Next, note that (i) implies (ii) according to Prop. 2.28. Thus,
it only remains to show (ii) implies (i). So let G := graph(A) be closed and consider
the map

B: X — XxY, B(z):=(z,Ax)).

Then

y y B(Aa + pb) = (Aa + ub, \A(a) + pA(b))
abeX  Apek = Aa, A(a)) + u(b B(b)) = AB(a) + uB(b)
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shows B to be linear and G = B(X) to be a vector subspace of X x Y. As a closed
subspace of X x Y (which is an F-space by Prop. 2.29(a)), G is itself an F-space. The
projections mx : X XY — X and my : X XY — Y are linear, continuous, and
surjective. Moreover, Tx [¢ is even bijective as well. Thus, (7x [¢)™' : X — G is
continuous by Cor. 2.25(b), showing A = 7y o (7x|g) "' to be continuous as well. W

2.4.2 Application to Sequence Spaces

As an application of Th. 2.30, we will prove a theorem due to Toeplitz (Th. 2.34 below),
regarding linear operators on sequence spaces. We start by recalling/introducing some
notation for various sequence spaces:

Notation 2.31. Let p €]0, oo and define

{ T)ven : T € K} (2.33a)
= { )ren € KV Z lzal? < oo} (2.33b)
k=1
= { Ween € KV o (2 ken bounded}, (2.33¢)
= { k)ken € 1% (k) ken convergent}, (2.33d)
co 1= {(xk)keN €c: limz, = O}. (2.33e)
k—o0
Note that the definition of [ in (2.33b) and (2.33c) is consistent with [Phil7, Def. and
Rem. 2.41(b)]. In particular, each [? is equipped with the norm | - [[,; ¢ and ¢y are
subspaces of (I%°,|| - ||« ). In particular, it makes sense to define
(co) = {(a : co — K) : « linear and continuous}. (2.33f)

We endow (cp)” with the so-called operator norm

||| ::sup{w LT Ec, T F O}

[£41P8

=sup {|a(z)]: z € co, ||z]|c =1} (2.34)

It is a simple exercise to check that the operator norm is, indeed, a norm (we will also
come back to operator norms in a more general context later).
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Proposition 2.32. (a) ¢ and ¢y are Banach spaces over K. Moreover,

A:c— K, /\((mk)keN) = kli}rgoxk, (2.35)

defines a continuous linear functional.

(b) We have the representation (co)' = 1': More precisely, (co) and I* are isometrically
isomorphic, where a linear isometry is given by

b1 I'— (co)', ¢1((ak)keN) ((Ik)keN) = Zakﬁm (2.36a)
o1 (co) —> 1, o1 (f) = (f(er) pen (2.36b)

(ex denoting the kth standard unit vector in KV ).

Proof. (a): Since ¢ and ¢ are subspaces of the Banach space [*°, it suffices to show
they are closed. Since A is, clearly, linear, (a) is proved once we have shown, for each
sequence (2"),ey in ¢ converging to x € 1>, that A\(z™) converges to some L € K and

L := lim A\(z") = lim xy. (2.37)

n—oo k—o0

First, we note that

Y AE") =A™ = M - am)] < e -

implies (A(2"))nen to be Cauchy in K, ie. L := lim, ,, A(z") € K exists. To prove
(2.37), let ¢ > 0. Let N € N be such that

€

2V — 2| <§ and  ]A@Y) — L] < g

and choose M € N such that

Vo2 =A@ < §

n

Then

- N N N Ny e
Y = L fon = ]+ e = M@+ D) - 2 <3 5 =

proving (2.37) and (a).
(b): Exercise. [ ]
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Proposition 2.33. Let A = (a;;) € KN be a double sequence (some authors think of
such an A as a countable matriz). We identify A with the map

A KN — (KN)N, A((Ij)jGN) = (Z aijxj> s (238)

J=1

where each Z;’il a;;x; is meant to be a sequence of partial sums (the series does not
necessarily converge). Let X C KY be a vector subspace. We call A simple on X if,
and only if, A(x) converges (in K) for each x € X; for A simple on X, we also write
A X — KN e we then consider A as a map into KN. A given A might or might
not satisfy some or all of the following conditions (2.39a) — (2.39¢), where

JXN Zli>1rcr)1o a;; =0, (2.39a)
M := sup {Z lai;| = i€ N} < 00, (2.39b)
=1
all Zaij converge with — lim Z a;; = 1. (2.39¢)
1—r 00
=1 =1

The following statements hold true for each double sequence A:

(a) A is linear. If A is simple on X, then A : X — K" is linear as well.

(b) If (2.39b) holds, then A is simple on 1> and A : [*° — I is a continuous linear
map.

(c) If (2.39a) and (2.39b) hold, then A(co) C cy.

(d) (2.39¢) is equivalent to y := A((l)jeN) € ¢ with AM(y) = 1, where X is the functional
of (2.35).

(e) If A is simple on ¢y with A(co) C co, then (2.39b) is equivalent to A : c¢g — ¢

being continuous.

Proof. (a): The linearity of A, in the general as well as in the simple case, is immediate
from the properties of finite sums, series, and limits in K.

(b): If © = (x;)jen € (™ and (2.39b) holds, then

€N

o0
VoY gl o] < M |2l
j=1
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showing A to be simple on [* with ||A(2)||cc < M ||z||o for each z € [*°. In particular,
the linear map A : [°° — [*° is bounded and, thus, continuous.

(c): Exercise.

(d) is immediate from y = A((1)jen) = (D-721 @ij)ien:

(e): For each i € N, let A; := (a;j)jen € KV. Then (2.39b) is equivalent to {A; : i € N}
being a bounded subset of I'. Due to Prop. 2.32(b), (2.39b) is further equivalent to

M = sup {||¢1(A)| : i € N} < o0, (2.40)

where || - || denotes the operator norm on (¢p)’. However, (2.40) is equivalent to

)
E Clijl'j
=1

3 v Vv

| < M|,
M’ERJ 1€EN  xzEco

which is equivalent to

3V A@) e < M|2]l,

M'eR}  T€co
ie. to A: cg — ¢o being bounded, i.e. to A : ¢g — ¢¢ being continuous. [ |

Theorem 2.34 (Toeplitz). Let A = (a;;) € KNN and identify A with the map of (2.38).
Then the following statements (i) and (ii) are equivalent:

(i) A is simple on ¢ (in the sense of Prop. 2.33), maps ¢ into ¢, and satisfies

AMA(z)) = lim E a;r; = lim x; = A(x), (2.41)
i—00 j—o00
i=1

x:=(x;)jen€C

where X is the functional of (2.35).

(ii) A = (a;j) satisfies the above conditions (2.39a) — (2.39¢).

Proof. Theorem 2.30 will be applied to show (i) implies (2.39b). However, we begin
with the other direction:

“(ii)=(1)": Let x € c with £ := A(z) € K. We identify £ with (§);eny € ¢. Then z—¢ € ¢
and A(z — &) € ¢ by Prop. 2.33(c). Since

Alz) = Alz — &) + A(€) = (Z aij(z; — 5)) - (5 Zaﬂ)
J=1 ieN J=1 jEN

1
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with A(A(x — §)) = 0 and, by Prop. 2.33(d), M(A(§)) = £, we obtain A(x) € ¢ with
MA(z)) = MA(z = §)) + AMAE)) = £ = AM(x), as desired.

“(i)=-(ii)”: For each j € N, let e; denote the standard unit vector in KN. Then A(e;) =
(a;j)ien for each j € N and 0 = A(ej) = A(A(e;)) yields (2.39a). Moreover, (2.39¢) is
satisfied by Prop. 2.33(d). It remains to verify the validity of (2.39b). According to Prop.
2.33(e), it suffices to show that A : ¢y — ¢ is continuous. According to the closed
graph Th. 2.30, we have to consider a sequence (z*)ren in g such that limy_ . 2% = 0
and such that y := limy_,,, A(2") exists in ¢y, showing y = 0. For each i € N, we
consider the linear functional

o
A,; L Cop — K, Al(l’) = E ;T
j=1
Moreover, for each i,n € N, we also consider the continuous linear functional
n
Ay i co — K, Ap(x) = E @i T
Jj=1

(where the continuity of A;, can be verified directly, but is also immediate from Prop.
2.32(b)). Then
vV vV Ai(z) = lim A (z),

iEN  xEco n—00

showing the pointwise convergence of A;, to A; for n — oo. Thus, each A; is continuous
(i.e. A; € (¢)) by Th. 2.17(d) and each (a;j)jen € I' by Prop. 2.32(b). Thus,

o0

k k k

oAt = Z; |ai;| 25| < ||(aij)jen]|, 2" e — 0 for k — oo,
j:

showing A(z"*) to converge to 0 in each component (i.e. pointwise). Thus, if y =

limg o A(2F) exists in ¢y (i.e. A(zF) converges with respect to || - ||s, i.e. uniformly),

then y = 0 as desired, showing A to be continuous and completing the proof. |

3 Convexity

3.1 Hahn-Banach Theorems

In the literature, several extension and separation theorems in regard to linear func-
tionals are associated with the name Hahn-Banach. We study such theorems in the
present section. In this spirit, there will not be the Hahn-Banach theorem, but rather a
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number of theorems, each of which might subsequently be referred to as a Hahn-Banach
theorem. It is often not easy to establish the existence of nontrivial continuous linear
functionals (or, more generally, of linear functionals with desired prescribed properties).
The Hahn-Banach theorems are designed to be applied in precisely this kind of situation.
Theorem 3.3 is a dominated extension theorem that does not involve any topology, but
has immediate applications to seminormed spaces in Cor. 3.4. Theorem 3.5 and Cor. 3.7
are separation-type Hahn-Banach theorems holding on topological vector spaces. We
begin with some notation and some simple observations regarding the relation between
R-linear and C-linear functionals:

Definition 3.1. Let (X, Tx), (Y, Ty ) be topological vector spaces over K. We introduce
the following notation:

LX,Y):={(A: X — Y): Alinear and continuous}, (3.1a)
X" = L(X,K). (3.1b)

The space X' is called the dual space (or just the dual) of X (in the literature, one often
also finds the notation X* instead of X').

Clearly,
VC z=Rez+ilmz=Rez—iRe(iz) (3.2)
ze

and every vector space over C is also a vector space over R.

Lemma 3.2. Let X be a vector space over C.

(a) If a: X — C is C-linear, then Rea: X — R is R-linear with

V  a(z) =Rea(z) —i Rea(iz).

reX
(b) If f: X — R is R-linear, then
0: X —C, alz) = f(z) - i f(iz),
is C-linear.

(c) Let (X, T) be a topological vector space over C. Let ov: X — C be C-linear. Then
a is continuous (i.e. o € X') if, and only if, Re v is continuous.

(d) Let (X, T) be a topological vector space over C. Let f: X — R be R-linear and
continuous. Then there exists a unique o € X' such that f = Rea.
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Proof. Exercise (use (3.2) in the proof of (a)). |

Theorem 3.3. Let X be a vector space over R and V' C X a vector subspace. Moreover,
consider a function p: X — R, satisfying

o platy) <pl)+p), (3-3a)
QCEVX ter p(te) = tp(x). (3.3b)

(e.g., each seminorm on X satisfies the above conditions), and a linear functional o :
V — R that is dominated by p, i.e. such that
\ < ) 3.3
¥ afo) < plv) (330
Then « can be linearly extended to X such that the extension is dominated by p on all

of X: More precisely, there exists a linear functional § : X — R such that B ly= «
and

V. —p(—x) < B(z) < pa). (3.4)

zeX
Proof. First note that domination and linearity imply (3.4): If a(v) < p(v) and a(—v) <
p(—v), then —p(—v) < —a(—v) = a(v) < p(v). Thus, if V = X, then we can set 8 := a.
It remains to consider V' # X. We let x; € X \ V and first show how to extend « to

Vii=span(VU{z1}) ={v+ Az : veV, XeR}:

From
Vev a(u) +a(v) =a(u+v) <plu+v) < plu—x1) +p(rg + )
we obtain
o aluw) = plu—21) < plar +v) — afv)
and, hence,
o:=sup{a(u) —plu—z1): veV} <p(z) < oo
Then
Y. alu) - plu— 1) 0 < plas+v) — alo).
implying
UZ’V a(u) — o < plu—xy), (3.5a)
Vo av)+o <p(z+0). (3.5b)
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Define
a;: Vi — R, a;(v+ Axy) == a(v) + Ao

Then, clearly, «; is linear with a; [yy= a. To obtain a; < p, for each A € R, replace u
by A~lu in (3.5a), replace v by A~!v in (3.5b), and multiply the respective result by ¢
to obtain

XV a(u) — Ao < p(u — Azy),
EVV a(v) + Ao < p(Azy + v),

indeed, implying a; < p. We can now apply Zorn’s lemma to finish the proof: Define a
partial order on the set

S:={(W,~): VCW CX, W vector space, y: W — R linear, v[y= a, v < p}

by letting
W) <(W'y) & WCW, olw=r.

Every chain C, i.e. every totally ordered subset of &, has an upper bound, namely
(We,ve) with We == Ugyyee W and ye(z) := y(x), where (W,7) € C is chosen such
that © € W (since C is a chain, the value of ~¢(z) does not actually depend on the
choice of (W,~) € C and is, thus, well-defined). Clearly, W¢ is a vector subspace of
X, V C We, and q¢ extends «, and q¢ < p, i.e. (We,ve) € S (that (We,v¢) is an
upper bound for C is then immediate). Thus, all hypotheses of Zorn’s lemma have been
verified and we obtain the existence of a maximal element (Wiax, Tmax) € S. But then
Winax = X, since, otherwise, we could extend Yax t0 Winax + span{xo}, o € Wiax, as
in the first step of the proof, in contradiction to the maximality of (Wiax, Ymax). Thus,
we can set [ := Ymax t0 complete the proof. |

Corollary 3.4. Let (X, || -||) be a seminormed vector space over K.

(a) Let V C X be a vector subspace of X and let o : V — K be a linear functional
such that
<
Y Ja)] < ol (3.6)
Then there exists f € X' such that fy= a and

v 8@ < [l (3.7)

zeX
(b) For each xy € X, there exists f € X' such that (3.7) holds as well as

B(wo) = [loll (3.8)
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Proof. First note that (3.7) implies /5 to be continuous (e.g., by Th. 1.14(iv), as 5(B1(0))
is bounded).

(a): If K = R, then we merely apply Th. 3.3 with p := || - ||, where (3.7) follows from
(3.4), since p(—z) = || —z|| = ||z]| = p(z). fK = C, then f := Re « is R-linear on V" and
we can extend it to some R-linear map f: X — R, satisfying (3.7) (with 3 replaced
by f). According to Lem. 3.2(a),(b), there exists a unique C-linear 5 : X — C with
Rep = f. Using Lem. 3.2(a) again, then yields S|y = a. Since (3.7), clearly, holds for
p(x) = 0, it only remains to check it holds for each z € X with (z) # 0. However, if

p(x) # 0, then
B (18@L N (1@ 18
ol =5 s =5 (55 ) =1 (=) < [
completing the proof of (a).

(b): If ||xo]| = 0, then 5 = 0 works. If ||zo|| # 0, then, to apply (a), let V := span{zo}
and define

o)
2)

H -

a: V—K, a(ixg):= Aol
Then (3.6) holds and we obtain a linear extension f3, satisfying (3.7) by (a). [ |

Theorem 3.5. Let (X,T) be a topological vector space over K. Assume A, B C X such
that A, B are nonempty and convexr with AN B = ().

(a) If A is open, then there exist « € X' and s € R such that

< . .
CEA bEVB Rea(a) < s < Rea(b) (3.9)
(b) If A is compact, B is closed, and (X,T) is locally convezx, then there exist o € X’
and s1, 8o € R such that
GEA b‘ev’B Rea(a) < s1 < s3 < Rea(b). (3.10)
Proof. Suppose, we have proved the theorem for K = R. Then it also holds for K = C:
We first obtain a continuous R-linear function f : X — R, satisfying (3.9) or (3.10),

respectively (with a replaced by f). Then, by Lem. 3.2(d), there exists a unique o € X’
with Rea = f, proving the case K = C. It remains to prove (a),(b) for K = R.

(a): Fix ag € A, by € B, and set x¢ := by — ag. If C := A — B+ ¢, then C € U(0) (C
is open by Prop. 1.10(d)). Moreover, C' is convex due to Prop. 1.8(a). Let p := uc be
the Minkowski functional of C' as defined in Def. and Rem. 1.35(b). Then

ANB=0 = a20¢C = p(xg) >1.
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The idea is now to apply Th. 3.3, where we note that p satisfies (3.3a) and (3.3b) due
to Th. 1.37(b),(e). Define

Vi =span{zo}, a:V —R, a(lxg):= A\,
and note

A>0 = a(Azg) = A < Ap(xg) = p(Azo),

= a< V,
A <0 = a(Azg) = A <0 < p(Axg) } @=pon

showing p to satisfy (3.3c) as well. Thus, by Th. 3.3, « has a linear extension defined
on X such that a < p holds on all of X. In particular, « <1 on C' and a« > —1 on —C|,
implying |a| < 1on U :=CnN(-C) € U(0). Thus, « € X’ by Th. 1.14(iv). Next, we
observe

V. VvV ala)—ab)+1l=ala—b+x) <pla—b+xo) <1,

acA bEB
where the last inequality is due to @ — b+ 2y € C open and (1.25). Thus, a(a) < a(b),
showing «(A) and a(B) to be disjoint. Since A, B are convex and « is linear, a(A)
and a(B) are also convex, i.e. they are intervals with sup a(A) < inf a(B). Moreover,
« is open by Prop. 2.21(b), i.e. a(A) is open (as A is open by hypothesis). Thus,
supa(A) ¢ a(A) and we can set s := sup «(A) to finish the proof of (a).

(b): If A is compact and B is closed, then, by (1.5b), there exists a convex open
neighborhood V' of 0 in X such that (A+ V)N B = 0. According to (a), there exists
a € X’ such that a(A+V) and a(B) are disjoint intervals with sup a(A+V) < inf a(B).
Now (A + V) is open with a(A) as a compact subinterval, proving (3.10) and (b). W

Definition 3.6. Let I, X, X; besets, i € I # (). Given a family of functions F := (f;):es,
fi: X — X, we say that F separates points on X if, and only if,

r1,r26X

v (xﬁéxg = ig}fi(xl)#i(@)). (3.11)

If Y = X, for each i € I and M C Y, then we say M separates points on X if, and
only if, (f)sem separates points on X.

Corollary 3.7. Let (X,T) be a topological vector space over K that is locally convex
(e.g. a normed space).

(a) If X is Ty, then X' separates points on X.

(b) Let V C X be a vector subspace and zo € X such that xo ¢ V. Then

3 (a lv=0 A azg) = 1).

aeX’
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(c) IfV C X is avector subspace and o € V', then o has a continuous linear extension
to X, i.e.

B = Q.
BEX Blv=«a

(d) Let B C X be convez, balanced, and closed. If xo € X \ B, then

3 (|arB <1 A alzo) E]l,oo[).

acX’

Proof. Exercise. ]

Example 3.8. In an application of Hahn-Banach to sequence spaces, we show that not
every a € (I°°)’ can be represented by some x € [': In other words, we will show that
the map

(b : ll — (loo)/, ¢((ak)k€N) ((xk)kEN) = Zakxk, (312)

is not surjective. First, we note that ¢ is defined by the same formula as ¢; : I — (cp)’
in (2.36a) and that the same estimate used in the proof of Prop. 2.32(b), namely

[p(a)(@)] < Y laran] < o llall,
k=1

shows (axzy)reny € I' and ¢(a) to be bounded (and, thus, continuous, i.e. ¢(a) € (I°°)).
From Prop. 2.32(a), we know the functional

Arc— K| )\((fﬂk)keN) = klggo Tk,

to be linear and continuous. Thus, we can apply Hahn-Banach in the form of Cor. 3.7(c)
with X :=[* and V := ¢ to obtain § € (I*°) such that 5[.= A. Suppose there were
a € I* such that 8 = ¢(a). Letting e; denote the kth standard unit vector in KN, we
obtain

\ A = 5(6k) = )\(ek) = 0,

keN

implying a = 0 and 3 = 0. This contradiction shows 3 ¢ ¢(I1), i.e. ¢ is not surjective.

3.2 Weak Topology, Weak Convergence

Definition 3.9. Let X be a set and let 77,75 be topologies on X. We call T; weaker
or smaller or coarser than Ty, and we call Ty stronger or bigger or finer than 7Ty, if and
only if, 7; C 7.
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Given a topological vector space (X,7T), we know that (by definition) each a@ € X’ is
continuous. It turns out to be useful to also consider another topology 7T, on X, the so-
called weak topology, consisting of the weakest (i.e. the smallest) topology on X making
each a € X’ continuous, cf. Def. 3.14. We will see that, in many interesting cases, Ty
is strictly weaker than 7. The weak topology Ty, is the so-called initial topology on X
with respect to X’. It is a special case of the contruction defined in the following Def.
3.10, which is also of general interest (another initial topology we will encounter shortly
is the so-called weak*-topology on X', cf. Rem. and Def. 3.21)!:

Definition 3.10. Let X be a set and let ((X;,7;))ier be a family of topological spaces,
I # 0. Given a family of functions F := (fi)ier, fi + X — X;, the initial or weak
topology on X with respect to the family (f;):c; (also called the F-topology on X) is
the coarsest topology 7 on X that makes all f; continuous (i.e. 7 is the intersection
of all topologies that make all f; continuous — this intersection is well-defined, since
the discrete topology on X always makes all f; continuous). The name initial topology
stems from the f; being initially in X. If Y = X, for each i € I and M C Y X, then the
M-topology on X is the F-topology on X, where F := (f)rem.

Lemma 3.11. Let X be a set and let ((X;,7T;))icr be a family of topological spaces,
I #0. Given a family of functions (f;)ier, fi: X — X;, the set

S={f10;): O;€T;,iel} (3.13)
is a subbase of the initial topology T on X with respect to the family (fi)icr-

Proof. Let 7(8) be the topology on X generated by S, and let 7’ be an arbitrary
topology on X that makes all f; continuous. Then, clearly, S C 7T, also implying
7(S) C T'. Thus, 7(S) € 7. On the other hand, by the definition of S, 7(S) also has
the property of making every f; continuous, proving 7(S) = 7. [ |

Proposition 3.12. Let X be a set and let ((X;,T;))ier be a family of topological spaces,
T+40.

(a) Given a family of functions (f;)icr, fi + X — X, let T denote the initial topology
on X with respect to the family (f;)icr. Then T has the property that each map
g: Z — X from a topological space (Z,Tz) into X is continuous if, and only if,
each map (f;og) : Z — X; is continuous. Moreover, T is the only topology on X
with this property.

!Some readers might be familiar with the present treatment of initial topologies from [Phil6b, Sec.
D.2].
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(b) Let (xx)ken be a sequence in X, x € X. Then

lima, =2 < V klglolo filzy) = fi(x). (3.14)

k—oo el

Proof. (a): If g is continuous, then each composition f; o g, i € I, is also continuous.
For the converse, assume that, for each i € I, f; o g is continuous. If O € §, where S
is the subbase from (3.13), then there exist i € I and O; € T; such that O = f;1(0;).
Since f; o g is continuous, we have

g (0) =g (fi (0:) = (fiog) " (O:) € Tz,

proving the continuity of g. Now let A be an arbitrary topology on X with the property
stated in the hypothesis. Letting (Z,7z) := (X, .A) and ¢ := Idx, we see that each f;
is continuous with respect to A, implying 7 C A. Now let 7’ be an arbitrary topology
on X that makes all f; continuous. Letting (Z,7z) := (X,7T’), we see that g := Idx
is T'-A continuous (since each f; = Idx of; is T'-7; continuous) i.e., for each O € A,
we have ¢71(0) = O € T’, showing A C 7" and A C T, also completing the proof of
A=T.

(b): If imyg_yo0 ¢, = 2 and ¢ € I, then f; is continuous, implying limy_,, fi(zx) = fi(x).
Conversely, assume limy_ fi(zr) = fi(x) holds for each i € I. Let O € S with = € O,
where S is the subbase from (3.13). Then there exist ¢ € I and O; € 7T; such that
O = f;71(O;). Then there exists N € N such that

(fi(xk) €0, ie 10— fi_l(O,-)>,

k>N
showing limg_,o, x; = = by [Phil6b, Cor. 1.50(a)]. [ |

Example 3.13. (a) The product topology on X = [],.; X; is the initial topology with
respect to the projections (m;);es, m : X — X; (as is clear from Lem. 3.11).

(b) The subspace topology on M C X, where (X, T) is a topological space is the initial
topology with respect to the identity inclusion map ¢ : M — X, «(x) := x: This
is also clear from Lem. 3.11, since

Tu={0NM:0eT}={"0): 0T}

Definition 3.14. Let (X,7) be a topological vector space over K. We call the X’-
topology on X in the sense of Def. 3.10, the weak topology on X, denoted by 7.
We will use terms such as weakly convergent (and write z,, — z to denote such weak
convergence), weakly closed, weakly compact, weakly bounded etc. to refer to notions in
the space (X, Ty); in contrast, T is called the strong or original topology on X and the
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corresponding notions in (X, 7) are sometimes called strongly or originally convergent,
closed, etc.

The following Lem. 3.15 will be used in the proof of Th. 3.16(d).

Lemma 3.15. Let X be a vector space over K, let o, aq,...,qap : X — K be linear
functionals, n € N, and let

N = ﬂ ker o;.
Then (i) - (iil) are equivalent, where

(1) « is a linear combination of o, ..., q,.
(ii) There exists M € R such that
V o |a(z)] £ Mmax {|a;(z)]: i € {1,...,n}}. (3.15)

zeX
(iii) N Ckera.

Proof. “(i) = (ii)”: If (i) holds, then there exist A1,..., A, € Ksuch that o =3 | A\,
implying,

x‘ev’x la(z)| < Z N ()] < (Z |)\Z|> max {|o;(z)|: i € {1,...,n}},

i.e. (3.15) holds with M :=>"" | |\
“(ii) = (iii)” is immediate.
“(iii) = (1)”: Define
A X K", Alz) = (), .. an(2)).

Clearly, A is linear. Moreover, for z,y € X with A(z) = A(y), we have ay(x — y) =
s =an(r—y) =0,ie x—y € N, implying a(z) —a(y) = a(r —y) = 0 by (iii). Thus,
A(x) = A(y) implies a(z) = a(y) and

B:AX) K, B(AW@) = alx).
well-defines a functional on A(X). Moreover,

vy B(AA(z) + pA(y)) = B(AT + py)) = a(Az + py)
MueK  zyeX = )\Oé(l') + Na(y) = )‘B(A(aj)) + uﬁ(A(y)),
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showing (8 to be linear. Thus, [ can be extended to a linear functional g : K" — K.
Then there exist Aq,..., A\, € K such that

(#15...,2n)EK™ —
implying
Y 0l = PAw) = xe)
proving (i). [ |

Theorem 3.16. Let X be a vector space over K with
VC{(A: X —K): A linear}

also being a vector space over K. Let Ty, be the V -topology on X. With each o € V', we
associate the seminorm

Pa: X —RE, pao(z) :=|a(z)]. (3.16)
(a) (X,Tv) is alocally convex topological vector space, where Ty is the topology induced
by the family of seminorms F = (pa)acy according to Th. 1.40(a).
(b) (X, Tv) is Ty if, and only if, V separates points on X.
(c) E C X is Ty-bounded if, and only if, each o € V' is bounded on E.
(d) The dual of (X, Ty) is V.

Proof. (a): Let Ty be the topology induced by F. If To = Ty, then (X, Ty ) is a locally
convex topological vector space by Th. 1.40(a). It remains to show 7y = Ty. Since each
Do 18 To-continuous by Th. 1.40(a)(i), we already know Ty, C 7. For the remaining
inclusion, it suffices to show B C Ty, where B is the base of Ty given by Th. 1.40(a).
Thus, let « € V, n e N, y € X. Then

Byn1(y) ={r € X : py(x—y) < n '} = {x € X: |a(z) —aly)] < nil}

=a (Bua(aly) € Tv,

completing the proof of (a).
(b) and (c) are now a direct consequence of (a) and Th. 1.40(a).
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(d):

Let X{, denote the dual of (X, 7y). Each o € V is Ty -continuous, showing V' C X,

It remains to show X{, C V. Let a € X{,. Then O := a~!(B;(0)) € T,. Thus, according
to Th. 1.40(a), there exist ¢ € R and ay,...,a, € V, n € N, such that

U:= ﬂ{x € X |a(z) <e} CO.

i=1

Asin Lem. 3.15, let N := (;_, ker ;. Suppose, there is x € N such that s := |a(z)| > 0.
Then s7'z € N C U, but |a(s7'z)| = s7's = 1, in contradiction to U C O. Thus,
N C kera, and the equivalence between (iii) and (i) of Lem. 3.15 yields a@ € V| i.e.
X, CV. o

Corollary 3.17. Let (X,T) be a topological vector space over K, Ty denoting the cor-
responding weak topology on X.

()

(b)

(c)
(d)

(e)

(f)

(2)
(h)

(X, Tw) is a locally convex topological vector space, where Ty, is the topology induced
by the family of seminorms F := (pa)acx’ according to Th. 1.40(a) (p. defined by
(3.16)).

(X, Tw) is T1 if, and only if, X' separates points on X ((X,T) being Ty and locally
convex is sufficient by Cor. 3.7(a)). If X' separates points on X, then weak limits
are unique.

E C X is weakly bounded if, and only if, each o € X' is bounded on E.

Let (xy)ren be a sequence in X, x € X. Then

T, =T & QGVX/ kh—>r£10 a(zg) = alx). (3.17)

If V. C X' then Ty C Ty C T (i.e. the weak topology is, indeed, weaker than the
strong topology; in many, but not all, cases, it is strictly weaker, cf. Cor. 3.17(g)
and Ez. 3.18(a),(b) below). In consequence, strong convergence implies convergence
with respect to Ty (in particular, weak convergence) and, if (Y,Ty) is a topological
space, then f: X — Y being Ty -Ty-continuous (e.g. Ty -Ty-continuous) implies
f to be T -Ty-continuous.

The dual of (X, Ty) is still X'.
If Tyw denotes the weak topology corresponding to (X, Ty), then Ty = Tyw-

If E C X, then the strong closure of E is always contained in the weak closure of
E,ie E Ccl,(E).
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Proof. (a) — (c) are just Th. 3.16(a)—(c), respectively, applied with V' := X’ (where,
for (b), we once again use that, for topological vector spaces, T; implies T, and, thus,
uniqueness of limits).

(d) is immediate from Prop. 3.12(b).

(e): Ty € T holds since each « € V' C X' is T-continuous and 7y is the weakest topology
making each @ € V' continuous. Then strong convergence implies 7y -convergence, as
every Ty-neighborhood is a T-neighborhood. If f : X — Y is Ty -Ty-continuous and
O € Ty, then f71(0) € Ty, C T, showing f to be T-Ty-continuous.

(f) is immediate from Th. 3.16(d), but here the proof is actually easier: Let X! denote
the dual of (X, 7). Each o € X’ is Ty-continuous, showing X’ C X! . Conversely, each
a € X! is T-continuous by (e), showing X/, C X'.

(g): Due to Th. 3.16(d), T\, and Ty both are the X’-topology on X.

(h): From (e), we know 7y, € 7. Thus, if £ C X is weakly closed, then it is strongly
closed. In particular, cly(F) is strongly closed, showing E C cl,,(E). [ |

Example 3.18. (a) If (X,7) is a finite-dimensional 7} topological vector space over
K, dim X = n € N, then we know from Th. 1.16(a) that (X, 7T) is linearly homeo-
morphic to K" with the norm topology. Then every linear functional o : X — K
is continuous, i.e. X’ = K" as well. As (X,7) is a normed space, we also know
X' to separate points on X. Thus, by Th. 3.16(b), (X, 7Ty ) is also a 17 topological
vector space. By Cor. 1.17, T, must also be the norm topology on X, i.e. T = T.

(b) Let (X, T) be a topological vector space over K, dim X = oo. Let O C X be a weak
neighborhood of 0. According to Th. 3.16(a) and Th. 1.40(a), there exist ¢ € RT
and ay,...,a, € X', n €N, such that

U= ﬂ{x € X : |a(z) <e} CO.
i=1

Since A : X — K", A(z) = (aq(x),...,a,(x)), is linear with N := ker A =
i, ker o, we have dim N = oo (otherwise, dim X < n 4+ dim N < oo). Since
N C U C O, each weak neighborhood of 0 contains an infinite-dimensional subspace
N. Thus, if Ty, is T (i.e. if X’ separates points on X)), then N is not weakly bounded
by Rem. 1.26 and, thus, (X, 7) is not locally bounded. In particular, if (X,7) is a
normed space, then it is 77, locally convex, and locally bounded, whereas (X, Ty,) is
T, locally convex, but not locally bounded, showing T, to be strictly weaker than
T on each infinite-dimensional normed space.

(c) Consider the space (cg, || - [|«). We will show that for the sequence (ex)ren in co,
where, as before, ej, is the kth standard unit vector in KV, one has e; — 0 for



3 CONVEXITY 79

k — oo, but e, 4 0 strongly for k& — oo: Since |lex||l« = 1 for each k, ex /4 0
strongly is already clear. To show e; — 0, we use the representation (cg)’ = ' of
Prop. 2.32(b): If a € (cg)’, then there exists (a;);eny € I* such that, for each k € N,
a(er) = ag. Thus, limg_,o aeg) = limg_,o ax = 0, proving e — 0.

Remark 3.19. Weak convergence can often be of use when solving minimization prob-
lems: In a first step, it is often easier to show the existence of a sequence that converges
weakly to a potential solution of the problem.

Theorem 3.20. Let (X,T) be a locally convex topological vector space over K, Ty
denoting the corresponding weak topology on X. Let C' be a convex subset of X.

(a) The weak and the strong closure of C' are the same: cl,(C) = C.
(b) C is weakly closed if, and only if, C is strongly closed.

(c) Let AC X, C C A. Then C is weakly dense in A if, and only if, C is strongly
dense in A.

Proof. (a): We know that C' C cl,,(C) always holds according to Cor. 3.17(h). For
the remaining inclusion, we use the Hahn-Banach separation Th. 3.5(b): Let zy € X,
xo ¢ C. We apply Th. 3.5(b) with A := {x¢} and B := C to obtain « € X’ and s € R
with

vV  Rea(zg) < s < Rea(x).

zeC
Thus, W :={z € X : Rea(x) < s} is a weak neighborhood of xy such that WNC = 0,
showing zg ¢ cly(C), proving (a).
(b): If C' is weakly closed, then it is strongly closed, as 7, € 7. If C'is strongly closed,
then, by (a), C' = cl(C) = C, showing C' to be weakly closed.

(c) holds, as

C'is weakly dense in A & ¢l (C)=A W T=4 Cis strongly dense in A,

completing the proof of the theorem. |

Remark and Definition 3.21. Let (X,7) be a topological vector space over K with
dual space X’. The following construction yields a topology on X’ that turns out to be
quite useful: First, define

‘GV’X fo: X' — K, fola) = a(x). (3.18)
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Then each f, is linear, since

fe(Aa+ pB) = (Aa + pf)(x) = Aa(z) + pb(z) = Aala) + pfe(B).

MueK  a,BEX!

The map
o: X —{(f: X' —K): flinear}, &(z):=f,, (3.19)

is also linear, since

v vy DAz + py)(a) = frotuy(@) = oAz + py) = Aa(z) + pa(y)
ApeK  zyeX  aeX’ = Mo(a) + pfyla) = (A0 (2) + p@(y)) ().

We call the ®(X)-topology on X' in the sense of Def. 3.10, the weak star (write: weak™)
topology on X', denoted by Ty.. We will use terms such as weak*-convergent (and write
o, — a to denote such weak*-convergence), weak*-closed, weak*-compact, etc. The

usefulness of the weak*-topology is mainly due to compactness results for the following
Sec. 3.3.

Remark 3.22. Let (X,7) be a topological vector space over K with dual space X',
where the map @ is defined as in (3.19), and Ty, denotes the weak*-topology on X".

(a) ®(X) separates points on X’: Indeed, proceeding by contraposition, if o, f € X’
are such that

then o = .

(b) According to (a) and Th. 3.16(a),(b), (X', Tw«) is a T} locally convex topological
vector space over K, where T, is the topology induced by the family of seminorms
F := (pz)rex, where

Z/X Pz - X, — RS_7 pm(a) = |C¥(l’)|

According to Th. 3.16(d), the dual of (X', Ty.) is ®(X).

(c) In consequence of (b), weak*-limits are unique. Let (g )ren be a sequence in X',
a € X'. Then, due to Prop. 3.12(b),

ap—a & x\EV/X ’}Lrgo ag(z) = az). (3.20)

(d) In general, one can not expect ® to be injective: For example, we know from
Ex. 1.11(b), that X := LP([0,1], £} A\!) with 0 < p < 1 has X’ = {0}, implying
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¢(X) = {0} and ® is not injective. However, ® is injective if X’ separates points
on X (by Cor. 3.7(a), (X, T) being T} and locally convex is sufficient): If z,y € X
with x # y, then let @ € X’ such that a(z) # a(y). Then

O(z)(a) = fala) = a(z) # aly) = fy(a) = 2(y)(a),

showing ®(x) # ®(y). In cases, where ® is injective, one often identifies ®(X) with
X.

(e) In general, one can not expect ® to be surjective: Let W be a vector space over K.
The set
Wi, ={(A: W —K): A linear}

is known as the linear dual of W. It is a general result of Linear Algebra that always
dimW < dim W}, and dim W = dim W/}, if, and only if, the dimension of W is
finite?. If X is a vector space over K, then, using V := X/ in Th. 3.16, we know
from Th. 3.16(a),(d) that (X, Tx; ) is a topological vector space with dual X’ = X, .

Thus, in this case, if X is infinite-dimensional, then dim X < dim X’ < dim(X’);,
and @ : X — (X')}., can not be surjective.

lin

3.3 Banach-Alaoglu

The proof of the Banach-Alaoglu Th. 3.26 is based on Tychonoff Th. 3.25. A proof
of Th. 3.25 was already provided in [Phil6b, Sec. E.3], using nets. Here we provide
a different proof, based on the Alexander subbase Th. 3.24, that does not require the
use of nets. We start by showing that Zorn’s lemma implies Hausdorff’s Mazimality
Principle (both are actually equivalent, see [Phil6a, Th. A.52]):

Theorem 3.23 (Hausdorff’s Maximality Principle). Every nonempty partially ordered
set (X, <) contains a mazimal chain, where we recall that a chain is a totally ordered
subset.

Proof. To apply Zorn’s lemma, let
P:={C C X : Cisachain}

and note that P is partially ordered by set inclusion C. Now every chain C in P has an
upper bound, namely We := (Jo o C (We € P follows from C being a chain in P). Thus,
Zorn’s lemma yields a maximal element of P, i.e. a maximal chain in X as desired. H

2If the dimension of W is infinite, then dim W < dim W/, in the sense that for each basis B of W
and each basis B’ of WY , one has #B < #B’ (i.e. there does not exist a surjective map f: B — B’).
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Theorem 3.24 (Alexander Subbase Theorem). Let (X,7T) be a topological space and
assume S to be a subbase for T. Let C C X. Then C' is compact if, and only if, every
open cover of C with sets from S has a finite subcover, i.e. if (O;)icr is a family in S
with C C J,c; Oi, then there exist iy,...,ix € I, N € N, such that C' C Ufle O;, .
Proof. Since § C T, one only has to show that the subbase condition implies compact-
ness. We proceed by contraposition and assume C' is not compact. Using Hausdorft’s
Maximality Principle, we will produce a cover of C' with sets from S that does not have
a finite subcover: Let

P:={MCT: Mis cover of C' without finite subcover}

with the partial order given by set inclusion (note X ¢ M for each M € P, as {X}
would always constitute a finite subcover). As C' is not compact, P # ) and, by
Hausdorff’s Maximality Principle of Th. 3.23, we let {2 C P be a maximal chain and set

MQ = U M.

MeQ

Then, clearly, Mg = max2: Mg € P, i.e. Mg is a cover of C' without a finite subcover,
but if we add any new O € T\ Mg, then Mg U{O} does have a finite subcover. Next,
let

Mg = MQ NnS.

By definition, Mg C My, i.e. no finite subset of Mg can cover C'. So far, we have not
excluded Mg = (), but, in the next step, we will even show that Mg must cover C":
Seeking a contradiction, assume there is x € C', x not covered by Ms. Since Mg covers
C, there exists O € Mg such that x € O. As O is open and S is a subbase, there exist
S1,...,9, €8, n €N, such that

re()S<O.
i=1
As z is not covered by Mg, S; ¢ Mg, implying S; ¢ My, for each i € {1,...,n}. Thus,
each Mg U{S;} must have a finite subcover of C'. In other words, for each i € {1,...,n},
there is an open set U;, being a finite union of sets in Mg, such that C' C S;UU;, implying

CClUU---UU,U(S Cliu---UU,UO,

i=1

i.e. Mg has a finite subcover, providing the desired contradiction. Thus, we have shown
M to be a cover of C' with sets from S, not having a finite subcover, thereby proving
the theorem. [}
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Theorem 3.25 (Tychonoff). Let (X;,T;) be topological spaces, i € I. If X = [[,c; Xi
is endowed with the product topology T and each X; is compact, then X is compact.

Proof. For each ¢ € I, we have the projection 7; : X — X, and we define
S, = {7@_1(0) 0 € 7;}.
We know from [Phil6b, Ex. 1.53(a)], that
S = {W{l(Oi) iel, Oe 7;} -Us
iel

constitutes a subbase of 7. Let M C S be a cover of X. By Th. 3.24, it suffices to
show M has a finite subcover. Define

vV M;=MnNS,.

iel
Seeking a contradiction, assume no M; covers X. Then, for each i € I, there is 2* € X
not covered by M;. Let 2! := m;(2%) € X;. Then no x € 7; {2!} can be covered by M;,
since if there exists O € 7T; such that z € U := 7; '(O) € M; with = € 7; '{z!}, then
z' € U as well. Now let z := (z!);c; € X. Then z is not covered by M, the desired
contradiction. Thus, we have shown there exists some iy € I such that M;, covers X.

There exists C C T;, such that M,, = {r;.'(O) : O € C}, i.e. C must be a cover of X;,.
As X, is compact, there must be a finite subcover Oy,...,0Ox € C, N € N. Then

Wi;1<01)7 - ,7'(';01(01\]) € Mio cM
cover X and form a finite subcover of M, completing the proof. [ |

Theorem 3.26 (Banach-Alaoglu). Let (X, T) be a topological vector space over K. If
U e U(0), then

zeU

K :=K({U):= {aGX’: v |oz(x)|§1} (3.21)
is weak*-compact.

Proof. Since U € U(0), we know U to be absorbing. Thus,

v = z € s(x)U,

zeX  s(x)eRT

implying
V Vo a(z)| < s(x).

zeX aeK
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Now define o
P =[] B:w(0) S K¥,

zeX

letting P denote the product topology on P. As each Fs(x)(()) C K'is compact, (P, P) is
compact by Tychonoff’s Th. 3.25. By definition, P consists of all functions f : X — K
(not necessarily linear) such that |f(z)| < s(x) for each # € X. In particular, we have
K C X'N P, i.e. we obtain two relative topologies on K, namely P and (Ty.)x. We
will show:

(1) The relative topologies Pk and (Ty«)x are identical, i.e. Px = (Tys) k-
(2) K is P-closed.

Then K is a closed subset of the compact set P, showing K to be P-compact by [Phil6b,
Prop. 3.14(a)]. Then K is Ty«-compact by (1), proving the theorem. It remains to prove

(1), (2).
(1): We show Pk and (7y«)x to have identical local bases at each o € K. Let o € K.
A local base for P at « is given by

Bp = {Pﬂ ﬂﬂ';l(Be(Oé(x))) cJCX,0<#J < oo, eER*}.

zeJ

A local base for Ty, at « is given by

By == {X’ﬂ ﬂﬂgl(Be(a(a:))) :JCX,0 < #J < o0, eE]R*}.

zeJ

A local base for Px at ais Kp := {BN K : B € Bp}, and a local base for (Ty.)x at «
is Kys :={BNK : B € By.}. Thus, since K C X'N P, we see that Kp = Ky, proving

(1).
(2): Let fo € P be in the P-closure of K. We wish to show fy is linear. To this end, let
z,y € X and A\, u € K and € € RT. Then
O:={feP:|flz)=folx)| <en{feP:|fly) - foly) <€}
N{f € P: [f(Ar+py) — foAr + py)| <€}

is an open P-neighborhood of fy, implying O N K # (. Let f € ONK. As f is linear,
we obtain

’fo(/\x + py) — AMfo(x) — Mfo(y)|

< | foQhw + py) — Az + )| + [M (@) + 1f () — Mo(x) — pfo(y)]
<e+ [N e+ |ule,
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showing fp to be linear, since € > 0 was arbitrary. Now, for x € U, € > 0 and f as
above, we have

[fo(x)| < |folx) = fl2)| + [f(2)] <e+1,
since |f(z)| < 1for z € U and f € K. Thus, |fo(x)| < 1, showing f, € K, proving (2)
and the theorem. [ ]

In preparation for the proof of Th. 3.28 below, we provide the following proposition:

Proposition 3.27. (a) Let Ty and Ty be topologies on a set X. If T1 C Ty, Ty is
Hausdorff (i.e. Ty), and Ty is compact, then Ty = Ty (in particular, if (X,T) is
a compact Ty space, then each strictly weaker topology on X is not Ty and each
strictly stronger topology on X is not compact).

(b) Let (X, T) be a compact topological space. If there exists a sequence F := (fn)nen
of continuous functions f, : X — R such that F separates points on X, then
(X, T) is metrizable.

Proof. Exercise. [ |
Theorem 3.28. If (X,T) is a separable topological vector space over K and K C X' is

weak*-compact, then K is metrizable in its weak*-topology.

Proof. Let the sequence (z,),en in X be dense. Then each
fo: X' — K, fula) = a(z,),
is weak*-continuous by the definition of the weak*-topology. Let o, f € X'. If
Vo fale) = fa(B),

neN

then the continuous maps «, 3 agree on the dense set {z, : n € N}, implying a = /3,
showing (f,)nen to separate points on X’ and, in particular, on K. An application of
Prop. 3.27(b) proves K to be metrizable in its weak*-topology. [ |

Caveat 3.29. Theorem 3.28 does not claim that the dual of a separable topological
vector space is itself metrizable in its weak*-topology. Indeed, in many cases, it is not:
For example, if X’ separates points on X, then it is an exercise to show (X', Ty.) is
metrizable if, and only if, the dimension of X is finite or countable.

Corollary 3.30. If (X,T) is a separable topological vector space over K, U € U(0) and
K as in Th. 3.26, i.e.

K:=KU):= {an’: V |a(z)| < 1},

xzelU
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then K is weak*-sequentially compact, i.e. for each sequence (auy,)nen in K, there exists
a subsequence (o, )ren and a € X' such that
N4 li n = .
Lol en(@) =alz)

Proof. One merely combines Th. 3.26 with Th. 3.28 and recalls that, by [Phil6b, Th.
3.20], compactness and sequential compactness are the same in metric spaces. |

Remark 3.31. For normed spaces (X, ||-]|), we can express the Banach-Alaoglu theorem
by stating that balls in X’ are weak*-compact (weak*-sequentially compact if X is
separable): Since translations and non-zero scalings are homeomorphisms, it suffices to
consider the unit ball

B ={ae X' ||af <1},

where [|a| := sup{|a(z)| : x € X, ||z|| < 1} is the operator norm (cf. Cor. 2.15(c) and
Sec. 4.1 below). If U := {z € X : ||z|| < 1}, then B’ = K(U), which is weak*-compact
by the Banach-Alaoglu Th. 3.26 (weak™-sequentially compact for X separable by Cor.
3.30).

In preparation for the proof of Th. 3.33 below, we provide the following proposition,
which constitutes another variant of the uniform boundedness principle:

Proposition 3.32. Let (X,7) and (Y,S) be topological vector spaces over K, assume
(X,T) to be Ty and K C X to be compact and convex. If F C L(X,Y) is a collection
of continuous linear maps such that

V. M, ={A(x): A€ F} bounded inY, (3.22)

zeK

then F s uniformly bounded in the sense that

vV A(K)C B. (3.23)

=
B CY bounded A€eF

Proof. Exercise. |

Theorem 3.33. Let (X, T) be a locally convex topological vector space over K and
E C X. Then FE is weakly bounded if, and only if, E is strongly bounded.

Proof. Since Ty, C T, every weak neighborhood of 0 is a strong neighborhood of 0, i.e.
it always holds that a strongly bounded set is also weakly bounded. It remains to prove
the converse: Assume E to be weakly bounded and let U C X be a strong neighborhood
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of 0. We have to show there is s € R such that £ C sU. As (X, T) is locally convex,
we can choose a strong neighborhood V' of 0 such that V' is convex, balanced, and closed,
and such that V' C U. As in the Banach-Alaoglu Th. 3.26, let

K :=K(V):= {a e X': VV la(x)] < 1} :
xE
We show that in the present situation
V=V:= {xGX: Z’K |a(x)|§1} ; (3.24)

We have V' C V directly from the definition of K. Now suppose g € X \ V. Applying
Cor. 3.7(d) (with B := V), we obtain

3 (\@rv <1 A afz) E]l,oo[),
i.e. 29 ¢V, proving V C V and (3.24). In the next step, we intend to apply Prop. 3.32,
using (X', Ty) for (X, T), K for YV, K for K, and F := ®(F), where ® is as in (3.19),
ie.

Vo O@):="Ffe, fo:X —K filo):=a).

rzeX

Note that (X', Tw«) is a T topological vector space by Rem. 3.22(b), K is, clearly,
convex, and K is Ty.-compact by the Banach-Alaoglu Th. 3.26. Moreover, each f, is
Tws-continuous by the very definition of 7y,. Since we assume E to be weakly bounded,
by Cor. 3.17(c), each a € X’ is bounded on E, i.e.

Voo 3 Y R = a@)] < pla),

acX’  pla)eRT  zeK

implying
V M, :={a(x): z € E} bounded in K.

acK
Thus, we have verified all hypotheses of Prop. 3.32 and conclude

= V. VYV  a(z)] <M,

MeRt zeE a€eK

which, together with (3.24), yields

YV M'zeVCU.

zeE

In other words,
ECMVCMU,

showing F to be strongly bounded. |
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Corollary 3.34. Let (X, || - ||) be a normed vector space over K, E C X. If

‘V’X sup{|a(z)| : z € E} < o0, (3.25)
acX’
then
= : E} <M. 2
3. sup(le] we B) < (3.20

Proof. As (X, || -||) is locally convex, we can apply Th. 3.33. As (3.25) means that E is
weakly bounded, E must be strongly bounded, which is (3.26). [ |

3.4 Extreme Points, Krein-Milman
Definition 3.35. Let X be a vector space over K.

(a) Let C C X be convex. Then E C C'is called an extreme set of C' if, and only if,
p=sx+(l—s)y€ Fwithz,y € C and 0 < s < 1 implies z,y € F (i.e. extreme
sets of C are precisely those subsets E of C that do not contain interior points of
line segments in C' with endpoints outside of E). Moreover, p € C' is called an
extreme point of C' if, and only if, {p} is an extreme set of C| i.e. if, and only if,

=sx+ (1 —s)y with z,y € C'and 0 < s < 1 implies p = x = y. The set of all
extreme points of C' is denoted by ex(C).

(b) Let A C X be arbitrary. The conver hull of A, denoted conv(A), is the intersection
of all convex subsets of X containing A (by Prop. 1.8(a), conv(A) is convex, i.e. it
is the smallest convex set containing A).

(c) Let A C X be arbitrary and let 7 be a topology on X. The closed convex hull of
A, denoted conv(A), is the T-closure of conv(A).

Lemma 3.36. Let X be a vector space over K, and let C C X be convex.

(@) If (E)ier, I # 0, is a family of extreme subsets of C, then E := (\,.; E; is an

extreme set of C' as well.

el

(b) Forp e C, the following statements are equivalent:

(i) p € ex(C).
(ii)) p= %($ +y) with z,y € C implies p = x = y.
(iii) pt o € C with x € X implies x = 0.

Proof. Exercise. [ |
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Example 3.37. (a) Clearly, for real intervals with a,b € R, a < b, one has ex([a, b]) =

(b)

(c)

(d)

{a,b} and ex(Ja, b[) = 0.

Let (X, || - ||) be a normed vector space over K, dim X > 0, C' := B;(0). Then
ex(C) C€ S51(0) ={z € X : ||z|| = 1}: If x = 0, and [|y|]| = 1, then z +y € C,
showing = ¢ ex(C). If z € X with 0 < ||z|| < 1, then

x
z = ||| (e (1= [l=ll) 0,
showing x ¢ ex(C).
Let (X, (-,-)) be an inner product space over K with induced norm ||z := \/(z, z)

(cf. [Phil6b, Def. 1.66]). Then ex(B1(0)) = S1(0): According to (b), we only have
to show S;(0) C ex(B1(0)). Thus, let p € S1(0) and xz € X with p £z € B1(0):
Then

1> lp 2] = [lp) + 2 Re(p, 2) + ||,
ie. ||z]|?> < F2Re(p, x), i.e. z = 0, showing p € ex(B,(0)).
Consider (co, || - [lo). Then ex(B1(0)) = 0: Let 2 = (x4)ren € S1(0). According to
(b), it suffices to show x ¢ ex(B1(0)). Since limg_,o xx = 0, there exists ky € N

such that |zy,| < 3. Then z + le, € B1(0), where ey, € cq is the standard unit
vector corresponding to ko. Thus, o ¢ ex(B;(0)).

Consider X := L([0,1], £, A\'). Then ex(B;(0)) = 0: Let f € S;(0). According to
(b), it suffices to show f ¢ ex(B;(0)). Since | f|l; = fol |f|dA! =1 and
F: 0] —R, F(s) ::/ F] AL,
0

is continuous, with F'(0) = 0 and F'(1) = 1, there exists s €]0, 1] such that F(so) =
5. Letting f1 := 2 f X{o,50]> fo == 2 f Xiso,11,_ We have Ifilli = ol = 1, fi #
f2# f,but f = 5(fi + fo), showing f ¢ ex(B1(0)).

The following variant of the Hahn-Banach separation Th. 3.5(b) will be used in the
proof of the Krein-Milman Th. 3.39 below:

Proposition 3.38. Let (X,7) be a topological vector space over K with the property
that X' separates points on X. Assume A, B C X such that A, B are nonempty, conver,
and compact with AN B = (). Then there exists o € X', satisfying

sup(Rea)(A) < inf(Re a)(B). (3.27)
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Proof. Let T, denote the weak topology on X. Since A, B are T-compact and Ty, C T,
A, B are also Ty-compact. By assumption, X’ separates points on X, i.e. (X, Ty) is Ty
as a consequence of Cor. 3.17(b). Thus, A, B are Ty-closed as well. As (X, 7y) is locally
convex, we can apply Th. 3.5(b) to obtain a € X/, satisfying (3.27), where X/, denotes
the dual of (X, 7Ty). Since X’ = X[ by Cor. 3.17(f), the proof is complete. [ |

Theorem 3.39 (Krein-Milman). Let (X, T) be a Ty topological vector space over K with
the property that X' separates points on X. If K C X is compact and convex, then K
is the closed convex hull of its extreme points, i.e.

K = conv(ex(K)). (3.28)

Proof. The main ingredients are Prop. 3.38 and another application of Hausdorft’s Max-
imality Principle of Th. 3.23. If K = (), then there is nothing to prove. Thus, assume
K # (. Define

P :={F C K : E nonempty, compact, extreme set of K}

and note K € P. We will use the following two properties of P:

(1) For each O # M C P, we have gy B =0 or (\pep E € P.
(2) If E€P,ae X', and p:= max{Rea(x) : x € E}, then

E, ={x € E: Rea(x) =pu} € P.

(1): Let C := (pep E- Since (X, T) is T3, C'is compact by [Phil6b, Prop. 3.17(b)]; C
is an extreme set of K by Lem. 3.36.

(2): Let £ € P and o € X'. Then p = max{Rea(z) : © € E} is well-defined, since
() # F is compact and Re« is continuous. As a closed subset of the compact set E,
E, is compact. Suppose p = sz + (1 —s)y € E, with z,y € K and 0 < s < 1. Then
p € E implies z,y € F, i.e. Rea(r) < pand Rea(y) < p. Since Rea(p) = p and Rea
is linear, this implies Rea(z) = p = Rea(y), i.e. z,y € E,. Thus, E, is an extreme set
of K, proving (2).

Fix S € P and define
Ps:={EeP: ECSY},

partially ordered by set inclusion. Note Pg # (), as S € Ps. By Hausdorff’s Maximality
Principle of Th. 3.23, Pg contains a maximal chain C. Set

M= )E.

EeC
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Since () ¢ C and C is totally ordered, the intersection over finitely many elements of C is
always nonempty. Morever, each E € C is compact and, thus, closed (having used that
(X,T) is Ty once more). Since the compact set S has the finite intersection property,
we obtain M # () and (1) implies M € Pg and M = minPs. As C is maximal, no
proper subset of M can be an element of P. Now (2) implies that each « € X’ must be
constant on M. Since, by assmumption, X’ separates points on X, M contains precisely
one point, showing M C ex(K). Thus, we have proved

sgp Snex(K) # 0. (3.29)

Next, we have conv(ex(K)) C K, since K is convex, implying conv(ex(K)) C K, since
K is also closed. As a closed subset of the compact set K, conv(ex(K')) must itself be
compact. Seeking a contradiction, assume there exists xg € K \ conv(ex(K)). Then
Prop. 3.38 furnishes o« € X’ such that

max { Rea(z): x € WX([())} < a(xy). (3.30)
Let p:= max{Rea(z) : x € K}. According to (2),
K, :={x € K: Rea(zx)=u} €P.
However, (3.30) implies K, N ex(K) = () in contradiction to (3.29). Thus, K =
conv(ex(K)), completing the proof. [ |

Example 3.40. (a) We apply the Krein-Milman Th. 3.39 to show, for each normed
space X, that the closed unit ball B’ of the dual X’ always has extreme points:
From Rem. 3.31, we know

B ={ae X" |a| <1},

is weak™*-compact. We apply the Krein-Milman Th. 3.39 with (X, 7) replaced by
(X', Tw«) and K := B’: According to Rem. 3.22(b), the dual of (X', Ty.) is ®(X),
which separates points on X’ by Rem. 3.22(a). As (X', Ty) is also 7} and K is
convex and weak*-compact, Th. 3.39 implies

B’ = clr,, (conv(ex(B"))),
in particular, ex(B') # ().

(b) The spaces ¢y and L*([0, 1], £', A!) can not be isometrically isomorphic to the dual
of any normed space: According to Ex. 3.37(d),(e), the closed unit balls of ¢y and of
LY([0,1], £, A1), respectively, do not have any extreme points. On the other hand,
we know from (a), that the closed unit ball of every dual of a normed space always
has extreme points.
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4 Duality, Representation Theorems

4.1 General Normed Space, Adjoint Operators

While the weak*-topology Ty is defined on the dual X’ for every topological vector
space (cf. Rem. and Def. 3.21, Rem. 3.22), for normed spaces (X, || - ||), there turns out
to be an even more natural and useful topology on X', namely the topology induced by
the so-called operator norm on X' (in special cases, we have encountered this norm and
topology before).

Definition 4.1. Let (X, || - ||x) and (Y, - ||y) be normed vector spaces over K and let
A: X — Y be linear (in this context, the map A is often called a (linear) operator).
The number

A
|A]| :=sup { |Az]y crxeX, x# 0}
]l
=sup {[|Az]y : z € X, ||z]lx <1}
=sup {||Az|ly : z € X, ||z|x =1} € [0, 00] (4.1)

is called the operator norm of A induced by ||-||x and || - ||y (strictly speaking, the term
operator norm is only justified if the value is finite, but it is often convenient to use the
term in the generalized way defined here).

From now on, the space index of a norm will usually be suppressed, i.e. we write just
| - || instead of both || - ||x and || - ||y, and also use the same symbol for the operator
norm.

Theorem 4.2. Let (X,|| - ||) and (Y,|| - ||) be normed vector spaces over K.

(a) The operator norm does, indeed, constitute a norm on the set of bounded linear
maps L(X,Y).

(b) If A € L(X,Y), then ||A| is the smallest Lipschitz constant for A, i.e. ||All is a
Lipschitz constant for A and ||Az — Ay|| < Lz — y|| for each x,y € X implies
1Al < L.

(c) If (Y, |l - 1) is @ Banach space, then (L(X,Y),]| - ||) is a Banach space as well (this
holds, indeed, even if (X, || - ||) is not a Banach space).
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Proof. We leave the proofs of (a) and (b) as an exercise.

(c): Assuming Y to be complete, we show (L(X,Y), ] -]|) to be complete: Let (A, )nen
be a Cauchy sequence in £(X,Y). Fix 2 € X. According to (b),

Vo MAm(r) = An(@)] < [[Am = Anl| ||z]], (4.2)

m,neN

showing (A, (z))nen to be Cauchy in Y. As Y is complete, there exists A(z) € Y such
that A(z) = lim, o A, (), defining a map

A: X —Y, A(zx):= lim A,(z).

n—oo

As a pointwise limit of linear maps, A is linear by Prop. 2.16. Let ¢ € RT. From (4.2),
we obtain

3 v v |Am(x) — Ap(z)]] <,

NeN mn>N  zeX,|z||=1

implying, as lim,, ., An(z) = A(x),

[A(z) = An(2)]| < e (4.3)

n>N  zeX, zf=1
Thus,

VoY A@ < AR — Au@)] + A S et 1Al

n>N  zeX,|z|=1

showing A € £(X,Y). From (4.3), we obtain lim, , ||[A — A, | = 0, completing the
proof. |

Corollary 4.3. For a linear map A : X — Y between two normed vector spaces
(X, |- 1)) and (Y, - ||) over K, the following statements are equivalent:

(a) A is bounded.

(b) [JA[l < oo.

(c) A is Lipschitz continuous.
(d) A is continuous.

(e) There is xg € X such that A is continuous at x.
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Proof. The equivalence of (a), (c), (d), (e) is due to Th. 1.32 and [Phil6b, Th. 2.22].
“(b) = (a)”: Let ||A]| < oo and let M C X be bounded. Then there is 7 > 0 such that
M C B,(0). Moreover,

v Azl < (A2l < rllAll
showing A(M) C B,j4(0). Thus, A(M) is bounded, thereby establishing the case.

“(a) = (b)”: Since A is bounded, it maps the bounded set B1(0) € X into some
bounded subset of Y. Thus, there is 7 > 0 such that A(B;(0)) € B,(0) C Y. In
particular, ||Az| < r for each x € X satisfying ||z|| = 1, showing ||A] < r < . [ |

The most important special case of the above considerations is the case Y = K, where
L(X,Y) = X' which we treat in the following corollary:

Corollary 4.4. Let (X, | - ||) be a normed vector space over K and consider (X', | - ||),
i.e. the dual with the operator norm according to Def. 4.1 (X', ||-||) is called the normed
dual of the normed space X ).

(@) (X',|l-1) is a Banach space (even if X is not).

(b) B':={a € X": ||laf| <1} is weak™-compact.
Proof. (a) is due to Th. 4.2(c), as K is a Banach space; (b) is due to Rem. 3.31. [ |

Let (X, |- ||) be a normed vector space over K. Recall the map ® on X from Rem. and
Def. 3.21, z — ®(z) = f,, where

fo: X' =K, fula) = afz).

As X is a normed space, X’ separates points on X, ® is injective, and we may identify
x with ®(z). Thus, if & € X', then « acts on z and z acts on «, the result being a(z)
is both cases. This symmetry (or duality) gives rise to the following notation:

Definition 4.5. Let (X, || - ||) be a normed vector space over K.
(a) The map
() X x X' —K, (z,0) :=a(z), (4.4)
is called the dual pairing corresponding to X.

(b) The normed dual of (X' || - ||) is called the bidual or the second dual of X. One
writes X" := (X')".
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(c) The map & : X — X" is called the canonical embedding of X into X" (cf. Th. 4.6
below). The space X is called reflexive if, and only if, the map ® is surjective, i.e.
if, and only if, ® constitutes an isometric isomorphism between X and its bidual.

Theorem 4.6. Let (X, ||-||x) be a normed vector space over K. The canonical embedding
O X — X" does, indeed, map into X". It constitutes an isometric isomorphism
between X and a subspace ®(X) of X". Moreover, if X is a Banach space, then ®(X)

is closed (i.e. a Banach space).

Proof. By the definition of the operator norm,

WY [e@)(e)] = [a(@)] < alx ]
showing ®(x) to be a bounded linear functional on X’ (i.e. ®(z) € X”) and ||®(z)||x <
|z||x. On the other hand, given z € X, by the Hahn-Banach Cor. 3.4(b), there exists
a € X' such that

[@(x)(a)] = |a(z)] = [|lzlx,

implying [|®(z)||x» = ||z||x. Thus, ® is an isometric isomorphism onto ®(X). In
particular, if X is complete, then so is ®(X), showing ®(X) to be Banach as well as a
closed subspace of X”. [ |

Remark 4.7. Let (X, ||-||) be a normed vector space over K with normed dual (X', [|-]|).

(a) Clearly, the dual pairing, as defined in (4.4), is bilinear.

(b) Consider the following three topologies on X’: The (operator) norm topology T’
(also called the strong topology on X'), the weak*-topology Ty«, and the weak
topology (i.e. the X”-topology) 7. . Since ®(X) C X", we have

T €T. €T,

that means, the strong topology is, indeed, the strongest of the three, whereas the
weak*-topology is the weakest. If dimX = n € N, then X” =2 X’ =2 K" and all
three topologies are the same (cf. Ex. 3.18(a)). If dim X = oo, then dim X' = oo
and we know that 7 is strictly weaker than 7" according to Ex. 3.18(b), implying
o« to be strictly weaker than 77 as well. If X is reflexive, then 7 = Ty, (since
O(X) = X”). In general, Ty. can be strictly weaker than 7/, but 7! does not
appear to be of particular use in such cases (for an example, where Ty, is strictly
weaker, see Ex. 4.8(e) below).

Example 4.8. (a) If (X, | -]|) is a normed vector space over K, dim X =n € N, then
X" = X" =2 K" (cf. Rem. 4.7(b) above). In particular, (X, || - ||) is reflexive.



4 DUALITY, REPRESENTATION THEOREMS 96

(b) If (X, -|) is a normed vector space over K that is not a Banach space, then it can
never be reflexive, since X” is always a Banach space.

(c) In Sec. 4.2 below, we will see that every Hilbert space is reflexive. In Sec. 4.4 below,
we will see that, for each measure space (€2, 4, 1) and each 1 < p < oo, LP(u) is
reflexive.

(d) As a caveat, we note that it can occur that a Banach space (X, ||-||) is isometrically
isomorphic to its bidual, but not reflexive, i.e. the canonical embedding ® is not
surjective, but there exists a different isometric isomorphism ¢ : X = X" ¢ #
®. An example of such a Banach space was constructed by R.C. James in 1951
(see [Werll, Excercise 1.4.8] and [Werll, page 105] for the definition and further
references).

(e) The spaces ¢g and L'([0,1], £, A\!) are not reflexive, since we know from Ex. 3.40(b)
that they are not isometrically isomorphic to the dual of any normed space. For
co, we know (cp)’ = ' from Prop. 2.32(b). In Sec. 4.4 below, we will see that
(co)" = (1Y) =2 1°°. As before, let ex, k € N, denote the standard unit vector in K.
Then (eg)ren is a sequence in ', If # = (z3)pen is in cp, then

(o]
lim (x,e;) = lim in(ek)i = lim z;, =0,
k—o0 k—o0 — k—oo

showing e, weak*-converges to 0. However, o := (1)gen is an element of [* and

o

Vo oaley) = Z(ek)i =1,

keN -
=1

showing that e; does not converge to 0 in the (¢g)”-topology on (co)’, showing the
weak*-topology on (¢g)" to be strictly weaker than the weak topology on (co)” (i.e.
Tws € T, in terms of the notation from Rem. 4.7(b)).

Definition 4.9. Let (X, |- |]), (Y, - ||) be normed vector spaces over K, A € L(X,Y).
Then the map

ALY — X, Y ¥ AB)e) = (2, A(B)) = B(A«2)) = (A2),5)  (4.5)
is called the adjoint operator or just the adjoint of A. Caveat: In Hilbert spaces X,Y,

the present adjoint is, in general, not the same as the Hilbert adjoint to be defined in
Sec. 4.2 below.
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Note that the dual pairings in (4.5) are defined on different spaces. Still, in particular
when dealing with adjoint operators, the dual pairing notation is quite useful, since we
see we can move a linear operator across the comma in a dual pairing, provided we
replace the operator by its adjoint.

Lemma 4.10. Let (X, H ), Y- 1), (Z,] - |]) be normed vector spaces over K and
consider A € L(X,Y), Be€ L(Y,Z). Then

1B o Al < |[Bl[|Al (4.6)

holds with respect to the corresponding operator norms.

Proof. Let z € X with ||lz|| = 1. If Az = 0, then || B(A(z))|| = 0 < ||B|| |A||. If Az # 0,

then one estimates

IBaa)]| = |5 (5 )| < han e,

thereby establishing the case. |

Definition 4.11. Let (X, || - ||) be a normed vector spaces over K and let V' C X be a
vector subspace. Then the vector space

xe

Vii= {a e X’ VV (x,0) = O} (4.7)
is called the annihilator of V (analogously, one can define the annihilator V+ C X of a

subspace V of X’).

Theorem 4.12. Let (X, | - |), (Y] - ||) be normed vector spaces over K.

(a) For each A € L(X,Y), the adjoint A’ is well-defined by Def. 4.9, i.e. A'(B) € X'
for each B € Y'. Moreover, A" is the unique map on Y' such that (4.5) holds.

(b) One has that A — A’ is a (linear) isometric isomorphism of L(X,Y") onto a sub-
space of L(Y', X") (not necessarily surjective onto L(Y',; X"), see Ex. 4.13(c) below).

(C) (Idx)/ = Idxl.
(d) If (Z,]|]|) is another normed vector space over K, A € L(X,Y), B € L(Y, Z), then

(BoA) = A'oB. (4.8)
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(e) If ox : X — X" and Oy : Y — Y are the canonical embeddings, then

\ AHO@X = CDYOA (49)

AeL(X)Y)

(thus, we can interpret A" as an extension of A from X to X"). Moreover, B €
LY, X") is an adjoint of some A € L(X,Y) if, and only if, B'(®x (X)) C &y (Y).

(f) If A€ L(X,Y), then ker(A") = (A(X))*.
(g) If X,Y are both Banach spaces and A € L(X,Y), then A~ € L(Y,X) emists if,
and only if, (A)~t € L(X",Y") exists, and, in that case,
(At = (AT, (4.10)

Proof. (a): If A€ L(X,Y), 8 €Y’ then A(B) = oA € X', as both A and (3 are linear
and continuous. For each f € Y', x — (A(z),f) uniquely determines a map A’(f) on
X, ie. f— A'(P) is uniquely determined by (4.5).
(b): Exercise.
(c): One has

v, v (Idx)'(e)(x) = afz),

aceX’ xeX

showing (Idy)" = Idy.
(d): Exercise.
(e): We have to show A”(®x(x)) = Py (A(x)) for each = € X. To this end, let 5 € Y’
and compute

A"(Px(2))(8) = (Px(2)) (A'(B)) = (A'(8))(2) = B(A(x)) = (v (A(2))) (),
proving the desired identity. Now let B € L(Y’, X’). Suppose, there exists A € L(X,Y)
such that B = A’. Then

(4.9)

B'(®x(X)) = A(®x (X)) =" Dy (A(X)) C Oy (Y).

Conversely, assume B'(®x (X)) C &y (Y). Then we can define
A: X —Y, A= (b;/lOB/O(I)X.

In consequence,

A//Oq)x (g)q)yOA:B,O@X,

implying A” = B’. As we know from (b) that forming the adjoint is an injective map,
A = B.
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(f): We have
feke(d) & ¥ ABE)=(A@).0) =0 & Fe(AX)"
(g): Exercise. |

Example 4.13. (a) Let m,n € N, let X be K" and Y be K™, each with the norm
topology. Then L(X,Y) = K™ and each A € L(X,Y) can be represented by
and m x n matrix A = (@) ke(1,..m}x{1,..n}3- We claim that the adjoint A" of

..........

77777

(B1,. -y Pm) €Y' and x = (21,...,2,)" € X, where we interpret § as a row vector
and x as a column vector such that the application of the respective linear maps is
just matrix multiplication with the representing matrices. Then

(BA)z = (A'B")'x = B(Ax), (4.11)

which holds due to matrix multiplication being associative. Note that, even for
K = C, the adjoint is just the transpose, without complex conjugation (in contrast
to the Hilbert adjoint of Sec. 4.2 below).

(b) Consider the left shift operator
A cop — Cop, A(xl,xz,...):: (562,1'3,...).

We know from Prop. 2.32(b) that (cp)’ = I'. We claim that the adjoint is the right
shift operator

A — 1 Alla,ay,.. ) = (0,a1,a0,...):

Indeed,
v a(Ax) = i = A(a)(z).
a:(ak)kENE(CO)/ x:(xk)kENGCO ( ) ; kL k41 ( )( )

(c) Consider

B:1I' —1' B(a,ay,...):= (Zak,0,0,...>.

k=1

We will see in Sec. 4.4 below that (I')’ 2 [>, where the assignment rule is still the
same as for the isomorphism (cp)’ = I'. Here, we use this to verify

B/: loo_>loo’ B/(bl,bg,...):: <b17b17b17-~~>:
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Indeed,

B=(br)rene(t)  a=(ap)renelt

B(Ba) =Y bay = B'(8)(a).

100

In particular, we see that B'(cy) € ¢o. Thus, according to Th. 4.12(e), B is not
the adjoint of some A € L(co,co), showing ' : L(cg,co) — L((co)’; (¢o)") is not

surjective.

4.2 Hilbert Space, Riesz Representation Theorem I

Let X be a vector space over K and let (-,-) be an inner product (also called a scalar
product) on X. We know from [Phil6b, Prop. 1.65] that the inner product induces a

norm on X via

-1 X — Ry, 2]l == V(z,2).

In [Phil6b, Def. 1.66], we called (X, (-, )) an inner product space or a pre-Hilbert space.
Moreover, we called an inner product space a Hilbert space if, and only if, it was complete

(i.e. a Banach space).

Theorem 4.14. Let (X, (-,-)) be an inner product space over K with induced norm ||-|.

Then the following assertions hold true:

(a) Cauchy-Schwarz Inequality:

v eyl < lz=lHyl-

z,yeX
(b) For each x,y € X, the maps

a,: X — K, aya) = (a,y),
fr: X — K, Bila) = (z,a),

are both continuous (o, is linear, 3, is conjugate-linear).

(c) Parallelogram Law:

v 2 _uli2 =2 2 2y
T eyl e =yl = 2(l20” + llyl)

(d) If K=R, then

Vo (z,y)=

2 o 2
e (I + 9l = 1o = yIP).

A~ =

(4.12)
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If K =C, then

(lz + ylI> = llz — yl* + i |z + iy[]* — i |l — iy|?).

A~ =

vV (1Y) =

z,yeX

Proof. (a) was proved as [Phil6b, Th. 1.64].
(b) holds, as (a) says that a,, and 3, are bounded linear functionals on X.

(¢c): The computation

2+ yll* + [lz = ylI* = ll=l* + (2, y) + (g, 2) + Nyl + l=l* = (2. 9) = (v, 2) + [ly]]*
=2([lzI* + [ly*)
proves (4.12).

(d): If K =R, then
Iz +yll* = llz =yl = 4z, y).

If K= C, then

2+ ylI* = |z = yll* +illz + iyl —illz — iy]|* = 4Re(z, y) + 4i Re(z, iy)
= 4Re(z,y) + 4Im(z,y) =4 (z,y),

proving (d). [ |

One can actually also show (with more effort) that a normed space that satisfies (4.12)
must be an inner product space, see, e.g., [Werll, Th. V.1.7].

Example 4.15. (a) Let (2,4, 1) be a measure space, 2 # (). Then L?(u) constitutes
a Hilbert space, where | - || on L?() is induced by the inner product

() L x P) — K (fg) = [ fadu (4.13)
Q
First, note that (4.13) is well-defined, since fg € L'(u) by the Hélder inequality.

We now verify that (4.13), indeed, defines an inner product: If f € L?(u), f # 0,
then there exists A € A with p(A) > 0 and [, [f[*du > 0, implying

. f) = /ﬂ P du > /A SR >0,

Next, let f,g,h € L?(u) and A, 4 € K. One computes

O+ ng k) = [+ g i = A [ Rt [ g = AR + A (g, )
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Moreover,
= gdu = | Fgdu = (g, f)
(f,9) /Qfg I /Qfg 1=19,f)

showing (-,-) to be an inner product on L?*(x). That the inner product induces the
2-norm on L?(p) is immediate from the definition of the 2-norm. Finally, L?(yu) is
a Hilbert space, since it is complete by [Phil7, Th. 2.44(a)].

F,9€L2 (1)

(b) As aspecial case of (a), consider (S, P(S), 1), where S # 0 is a set and 1 is counting
measure on S (cf. [Phil7, Ex. 1.12(b)]) and define

P(S) = I2(S,P(S), ).
Then [? = [*(N). In general,

{s € S: f(s)# 0} is finite or countable
200y _ : :
l(S)— f'S—>K'aIld2|f<S)|2<OO ,
ses
where, due to the given absolute convergence, the sum Y | f(s)|* can be evaluated
using an arbitrary enumeration of {s € S : f(s) # 0}. If f,g € [*(S), then, by the
Hélder inequality, fg € [*(S) := L*(S,P(S), 1) and

(f.g) = /Sfﬁdu =Y 1(5)96)

seS

is well-defined.

(c) As an example of an inner product space that is not a Hilbert space consider the
space cq of sequences in K that are finally constant and equal to 0 with the 2-norm.
Then ¢y is a vector subspace of 2, but not complete: Define

= (Tp)pen = (2_1, 272 . ),

r, forn <k,
0 forn>k.

s 2k = (l’ﬁ)nem fo =

Then limy_ ;o ¥ = 2 in 12 and (2%)gey is a Cauchy sequence. However, z ¢ cgo,
showing cgo not to be complete.
Definition 4.16. Let (X, (-,-)) be an inner product space over K.

(a) =,y € X are called orthogonal or perpendicular (denoted z L y) if, and only if|
(x,y) = 0.
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(b) Let £ C X. Define the perpendicular space E+ to E (called E perp) by

Bt = {y € X: VE (x,y) = O} . (4.14)
HAS
Lemma 4.17. Let (X, (-, >) be an inner product space over K, E C X.

(a) ENE*+C{0}.

(b) EC (EH)*

(c) E* is a closed vector subspace of X .

Proof. (a): If x € EN E+, then (x,z) = 0, implying = = 0.

(b): If z € E and y € B+, then (x,y) = 0, showing = € (E+)*.
(c): We have 0 € E+ and

v 7A + :X ’ +_ Y :07
MpeK  yyyoeEL  a€E (@, Ayr + pys) (x, 1) + [z, y2)

showing Ay, + uys € B+, i.e. E* is a vector space. Using the notation from Th. 4.14(b),

we have
E* =8, ({0},

el
where each set 3;1({0} is closed (as 3, is continuous), showing E* to be closed as
well. |

Theorem 4.18 (Projection Theorem). Let (H, <,)) be a Hilbert space over K with
induced norm || - ||. Let xg € H. If C C H is nonempty, closed, and convex, then there
exists a unique y € C' such that

ly — zo|| = inf{||z — zo|| : z € C}. (4.15)

Proof. First, consider zy = 0. Set ¢ := inf{||z| : € C}. For x,y € H, apply the
parallelogram law (4.12) to sz and %y to obtain

vty

5 .

1 2 _ 1 2 1 2
Tz =yl = Slel + Syl

If z,y € C, then the convexity of C' implies x—;y € C and, thus,

Vo le =yl <20z + 2)lyl? - 46°. (4.16)
z,yeC



4 DUALITY, REPRESENTATION THEOREMS 104

In particular, if z,y € C with [|z]| = ||y|| = 0, then z = y, proving the uniqueness
statement of the theorem. According to the definition of §, there exists a sequence
(¢n)nen in C such that § = lim,,_, ||c,||. Applying (4.16) with z := ¢, and y := ¢, for
m,n € N, shows (¢,)nen to be a Cauchy sequence in H. As H is complete, there exists
y = lim, ,o ¢, € H. Since C' is closed, we know y € C' as well. By the continuity of
the norm, ||ly|| = lim, o ||cn|| = 6, proving (4.15). Now let 2o € H be arbitrary. Then
we know from above that C' — x(y contains a unique yq such that

lyoll = inf{[|z| : @ € C — o} = inf{[|lz — 20| : = € C},
implying v := yo + zo to be the unique element of C, satisfying (4.15). [ |

Lemma 4.19. Let (X, (-,-)) be an inner product space over K with induced norm || - |.
Let C C X be convex, y € C. Then, given xo € X, (4.15) is equivalent to

vV Re{zg—y,z—1y) <0. (4.17)

zeC

Proof. Exercise. |

Theorem 4.20 (Orthogonal Projection Theorem). Let (H, (-,-)) be a Hilbert space over
K with induced norm || - ||. Let V- C H be a closed vector subspace of H. Then Th. 4.18

gives rise to maps
Py,:H—YV, Py:H-—V

where, given o € H, Py(xg) (resp. Pyi(xg)) is the unique element y € V' (resp. y €
VL), satisfying the equivalent conditions (4.15) and (4.17) with C replaced by V (resp.
with C replaced by V* ). Then the map Py (resp. Py ) is called the orthogonal projection
onto V (resp. onto V*). Moreover, the following assertions hold true:

(a) For each xy € H, Py(x0) and Py 1 (x0) are the nearest points to xo in'V and in V=,
respectively.

(b) Given xy € H, Py(xg) is the unique element of V', satisfying
v <’U,fL’0 - P\/<J}0)> =0 (418)

veV

(justifying the name orthogonal projection ).

(c) Py and Py. are continuous linear maps with ker(Py) = V4 and ker(Py1) = V. If
V # {0}, then |Py|| = 1; if V # H, then ||Py.| = 1.

(d) Pyo —1d—P,.
(e) H=V @V
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(f) V.=(V*H
(g) ||lzl]? = | Py (2)|*> + || Pyr(2)]|* holds for each x € H.

Proof. (a) is merely a restatement of (4.15).
(b): Let o € H. According to (4.17),

vV Re{xg — Py(xg), v — Py(x0)) <0,

veV

which, as v — v — Py(x) is a bijection on V', is equivalent to

VvV Re(zog — Py(x0), v) <0. (4.19)

veV

Since, for each v € V', (4.19) also holds for v replaced by —v and by iv (for K = C), we
see that Py (zo) satisfies (4.18). Conversely, if (4.18) holds, then we can use the bijection
v — v — Py(x9) on V again to conclude

\V/ <I0—Pv(l‘0), U—P\/(l’o)) :O,

veV

which implies (4.17) (even with equality and without Re, which is due to V' being a
vector subspace).

We can restate (b) by saying Py () is the unique element of V' such that xy — Py (xg) €
VL. Thus, if \,u € K and x,, 25 € H, then

()\1,‘1 — )\Pv($1>) + (,Ulé - ,U/PV(x2>) € VL:

showing
Pv(/\l’l + ,Uﬂfg) = )\Pv(l'l) + ,uP\/(Ig),

i.e. Py is linear. Next, we obtain
Pv(ZL‘O) =0 = Ty € VL,

proving ker(Py) = V+. From (4.18), we see that Id — Py is a linear map, mapping H
into V+. Thus, combining

V Ty = Pv(l’o) + o — Pv(l‘o) = Pv(l'()) + (Id —Pv)(l‘o)

ro€EH

with Lem. 4.17(a) proves (e). From Lem. 4.17(b), we know V C (V1)L If z € (V1)1
write # = x1 + 29 with 21 € V, 2y € V. Since 2y = v — 21 € (V1Y) N VL, we obtain
xo =0 and z =z, € V, proving (f).



4 DUALITY, REPRESENTATION THEOREMS 106

To prove (d), note that one can replace V by V<1 in the above arguments, i.e. we
already know P, 1 to be a linear map with ker(Py.) = (V1)+ =V and such that, for
each zy € H, Py () is the unique element of V+ with 2o — Pyi(z0) € (VH)t = V.
Since y := (Id —Py)(zo) € V* has the property zo —y = x9 — xo + Py(z0) € V, the
proof of (d) is complete.

(g): Since, for each x € X, v = Py(z) + Pyi(z) as well as Py(x) L Pyi(z), (g) is
immediate from Pythagoras’ theorem of [Phil6b, (1.48)].

If ||z|| = 1, then (g) implies
[Py ()| =1 = [[Pro(z)] <1,

showing || Py|| < 1. If there exists 0 # v € V, then Py(v) = v, showing || Py| = 1.
Replacing V' by V* shows ||Pyi]| = 1 for V # H, completing the proof of (c) and the
theorem. |

Theorem 4.21 (Riesz Representation Theorem). Let (H, (-,-)) be a Hilbert space over
K with induced norm || - ||. Then the map

v H— H, Y(y) = ay, (4.20)
where
ay: H—K, ay(a)=(a,y),

is the map from Th. 4.14(b), is bijective, conjugate-linear, and isometric (in particular,
each o € H' can be represented by y € H with ||y| = |||, and ¥ is an isometric
isomorphism (i.e. linear) for K =R).

Proof. We already know from Th. 4.14(b) that, for each y € H, o, is linear and contin-
uous, i.e. ¥ is well-defined. Moreover,

y y y O ae)(@) = (0 M+ ) = Ma, y1) + 1i{a, y2)
AnER  yry2€H - acH = (Mp(y1) + m(y2))(a),

showing 1 to be conjugate-linear. By the Cauchy-Schwarz inequality, we have

v @) (a)] < llal |yl

y,a€eH

showing [|¥(y)]] < |ly||. On the other hand, if y # 0, then

LI _ o)
vl vl
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showing [|¢(y)|| = ||ly||, i.e. ¥ is isometric and, in particular, injective (so far, we have
actually not used that H is complete). It remains to show, 1 is surjective. Let o € H’,
a # 0, V := ker(a). Then V is a closed vector subspace of H, H = V @& V+ by Th.
4.20(e), and, as a # 0, V+ # {0}. Let # € H and let z € V+ be such that ||z = 1.
Moreover, let u := (a(x))z — (a(z))z. Then a(u) =0, i.e. u € V and (u,z) = 0. Thus,

alz) = a(x)(z, 2) — (u, z) = a(z){(z, 2).

In consequence, if y := a(z) z, then

DY) (@) = (z,y) = a(z){z, 2) = a(z).

Since z € H was arbitrary, this proves ¥ (y) = «, i.e. ¢ is sujective. [ |

Corollary 4.22. Let (H,(-,-)) be a Hilbert space over K with induced norm || - ||.

(a) H' is a Hilbert space over K, where, using the map ¢ of (4.20),

(v): HxH — K, (a,8) = (7(8),¢7 (), (4.21)
defines an inner product on H', satisfying, with regard to the operator norm on H',
ol = viaay

(b) H is reflexive.

(c) A sequence (xp)ken converges weakly to x € H if, and only if,

Ty ok y) = (@, y). (4.22)
Proof. (a): As we already know (H', ||-||) to be a Banach space, we merely need to check

that (4.21) defines an inner product that induces the operator norm. If 0 # a € H’,
then z := ¢ ~!(a) # 0, i.e. (a,a) = (x,2) > 0. Next, let a, 3,7 € H and A\, x € K. One
computes
Ao+ B, 7) = (W7 (), o7 a+ pB)) = (07 (1), (o) + T (8))
= /\W ) ) + u(e (), ¥ (ﬁ)>
M, y) + p{B,7)-

Moreover,
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proving (4.21) to define an inner product on H’. Moreover,

v el = [~ (@)l = Vo a), v () = Ve, ),

acH'

showing that the inner product defined by (4.21) induces the operator norm on H'.

(b): Asin (a), let v : H — H' be the map of (4.20). Let 7 be the corresponding map
on H', i.e.
7: H — H', 7(a):=f.,

where
fo: H — K, [fu(B) = (B,a) = (v~ (@), 91 (B)).

From Th. 4.21, we know ¢ and 7 to be surjective. Thus, if we can show that the
canonical embedding satisfies

®: H— H', ®=r101, (4.23)
then @ is surjective and H reflexive. Indeed, we have

VoY @) () =al)=(x,y () = (a,9(@) = (1) (@) = (T o) (z)(a),

zeH acH’

proving (4.23) and H to be reflexive.
(c) follows by combining (3.17) with Th. 4.21. [ |

Remark 4.23. Let (H,(-,-)u) be a Hilbert space over K. Let (-,-)y be the inner
product on H’ given by (4.21). Moreover, let (-,-) : H x H — K denote the dual
pairing according to (4.4). If ¢ : H — H’ is the map of (4.20), then

—1

YV ale) = (n,0) = (6,97 @) = (o () (424)
Definition 4.24. Let (X, (-, >) be an inner product space over K and S C X. Then S
is an orthogonal system if, and only if, x L y for each x,y € S with x # y. Moreover,
S is called an orthonormal system if, and only if, S is an orthogonal system consisting
entirely of unit vectors (i.e. S C S1(0)). Finally, S is called an orthonormal basis if, and
only if, it is a mazimal orthonormal system in the sense that, if S C T C X and 7' is an
orthonormal system, then S = T' (caveat: an orthonormal basis of X is not necessarily
a vector space basis of X, see below).

Example 4.25. Consider the Hilbert space H := L*([0,2x], L', A!). For each n € N,
define

sin nt

foi]0,27] — R, fu(t) = N
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Then S := {f, : n € N} constitutes an orthonormal system in H: One computes, for
each m,n € N,

21

1 [ 9 1|t sinntcosnt
o fa) = = in?ntdt = = |- — ———n—| =1,
{n: Jn) 7T/0 S 71'{2 2n L

1 27
(fns fn) = —/ sin mt sin nt dt
0

™

. . . . 2
1 [sm mtcosnt —cosmtsinnt  sinmtcosnt — cosmtsinnt] "
T

2(m —n) a 2(m+n) 0
=0 form #n.
The set S from above is not an orthonormal basis (cf. [Werll, Ex. V.4(a)]).

Theorem 4.26. Let (X, (-,-)) be an inner product space over K with induced norm ||-|.
Let S C X be an orthonormal system.

(a) Bessel Inequality: If S = {e, : n € N}, then
2 (|2
2 Dl ef <l (4.25)

(b) If S ={e,: n €N}, then

z,yeX

VoY (e (e y)| < o

(c) IfS={e,:neN},ze X, andx =37, N\, e, with A\, € K, then \,, = (x,e,) for
eachn € N (i.e. the coefficients, called Fourier coefficients®, are uniquely determined
by S and x).

(d) For each x € X, the set S, :=={e € S: (x,e) # 0} is finite or countable.
Proof. (a): Let # € X. For each N € N, define xy := 2 — 3.2 (z,¢,) e,. Then

ke{lY.,N} (rn,er) = (x,ex) — (z,ex)(ex, ex) =0

3Originally, the term Fourier coefficients comes from the Hilbert space H := L2([0,2x], L1, A1) of
Ex. 4.25, using trigonometric functions such as the f,, of Ex. 4.25 (together with corresponding cosine
functions) as orthonormal basis functions. For f € H, the expansion of f into a series with respect to
such basis vectors is a (traditional) Fourier series and the corresponding coefficients are (traditional)
Fourier coefficients.
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and, from Pythagoras’ theorem [Phil6b, (1.48)],

2

N N 2 N
2] = {|zn + > (e en| = lanl®+ | (e en| = lanll®+ D [(z,en)]”
n=1 n=1 n=1

N
>3 [l
n=1

Letting N — oo in the above inequality proves (4.25).

(b): Let z,y € X. According to (a), the sequences ((z,€,))nen, ((Y,€n))nen are in 2.
Then, by Holder’s inequality, ((z, e,)(en, y))nen € I, proving (b).

(c): Ifx=>""" Aye, with A, € K, then the orthonormality of the e), implies

Vo {(x,en) = Alen, en) = Ap.

neN

(d): Let z € X. According to (a), for each n € N, the set S, ,, :={e € S: [(z,e)| > 1}

must be finite. Thus, S, = UneN Sz, must be finite or countable. |

Example 4.27. Let (H, (-,-)) be a Hilbert space over K with induced norm || - ||. Let
{e, : n € N} C H be an orthonormal system. If & € H’, then, according to the Riesz
Representation Th. 4.21, there exists y € H such that a(z) = (x,y) for each x € X.

Thus,

Vo oale,) = {en,y) (4'—2>5) 0= a(0),

neN

showing e,, — 0. On the other hand (e, ),en does not converge strongly to 0 — actually,
as

€m — €n ={€Em —€n, Em — €Ep
I 12 = ( )

= |lem|* — 2Relem, en) + |len||? =2 for each m # n, (4.26)

(en)nen is not even a Cauchy sequence. A concrete example is given by the orthonormal
sine functions f, from Ex. 4.25.

Definition 4.28. Let (X, ||-||) be a normed vector space over K (the following definition
actually still makes sense if X is merely a topological space on which an addition with
neutral element 0 is defined). Let (x;);c; be a family in X. Then we say that the “series”
> ic1 Ti converges unconditionally to x € X if, and only if, (i) and (ii) hold, where

(i) The set Iy :={i € I : x; # 0} is finite or countable.
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(ii) For each enumeration Iy = {iy,is, ...} of Iy, one has >~ x; = x (where the sum
must be replaced by a finite sum for #I; < co), i.e. the result of Y >  x; does
not depend on the order of summation.

If ., @i converges unconditionally to x € X, then we write )., z; = x.

el

As a caveat it is pointed out that, in contrast to the situation on finite-dimensional
spaces, on infinite-dimensional Banach spaces, the condition of absolute convergence is
strictly stronger than the condition of unconditional convergence (cf. [Werll, p. 235]).

Corollary 4.29 (Bessel Inequality). Let (X, (-, >) be an inner product space over K

with induced norm || - ||. Let S C X be an orthonormal system. Then
2 |2 .
5 Tlwar sl (4.21)

where the convergence is unconditional in the sense of Def. 4.28.

Proof. Let x € X. According to Th. 4.26(d), the set S, := {e € S : (z,e) # 0} is
finite or countable. If S, is finite, then (4.27) is clear. If S, is infinite and (e, ),en is an
enumeration of Sy, then > >° |(x,e,)|* converges absolutely by Th. 4.26(a), i.e. each
rearrangement of the series converges to the same number, i.e. >° ¢ |(z,e)|* converges
unconditionally and (4.27) holds by (4.25). [ |

Theorem 4.30. Let (H,(-,-)) be a Hilbert space over K with induced norm || - ||. Let
S C X be an orthonormal system.

(a) For each x € H, the series ) .o(x,e) e converges unconditionally.

(b) The map
P: H—V:=spanS, P(x):= Z(w,e} e,
ecS

1s the orthogonal projection onto V.

Proof. (a): Fix x € H and set S, := {e € S: (z,e) # 0}. Then (a) is clear if 5, is
finite. Thus, let S, be infinite and let (e,),en be an enumeration of S,. We show that
the partial sums of > 7 (z,e,) e, form a Cauchy sequence in H: The orthonormality
of the e, implies
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and, since Y > |[(z,e,)* converges due to the Bessel inequality (4.25), the partial
sums of > (x,e,)e, are Cauchy. Since H is complete, there exists a limit y =
> (x,en) e, € H. Analogously, if 7 : N — N is a bijection, then there exists a limit
for the rearranged series, Y, = > " (@, €x(n)) €x(n) € H. Now

z\GV/H <y7 Z> - Z<I7 €n> <€m Z) - Z<l‘, eﬂ(”)) <67T(71)7 Z) - <y7r7 Z>7
n=1 n=1

showing y — y, € H+ = {0}, i.e. y = v, proving (a) (at (x), we used that we may
rearrange the series, as it converges absolutely by Th. 4.26(b)).

(b): According to Th. 4.20(b), we have to show

UEVV leH <x — Z(x, €n) €n, v> =0, (4.28)

n=1

where (€, )nen is an enumeration of S, = {e € S: (z,¢e) # 0}, where (4.28) is equivalent
to

eZ’S erH F(e,z) := <3: — i(w, €n) €n, e> = 0. (4.29)

n=1
Fix z € H. Since S forms an orthonormal system, if e € S\ S, then F(e,z) =0—0=0
and (4.29) is valid; if e € S, then F(e,z) = (x,e) — (x,e) - 1 = 0 and (4.29) is valid
again. |
Theorem 4.31 (Orthonormal Basis). Let (H,(-,-)) be a Hilbert space over K with
induced norm || - ||.

(a) If S C H is an orthonormal system, then there exists an orthonormal basis B with
S C BC H (in particular, if H # {0}, then H has an orthonormal basis).

(b) Let S C H be an orthonormal system. Then the following statements are equivalent:

(i) S is an orthonormal basts.

(i) S+ ={0}.

)
)
) H=spans.
(iv) = =" .q(z,e) e holds for each x € H.
)
)

(iii

(v) (2, y) = > .cqlz,€) (e,y) holds for each x,y € H.
(vi) The Parseval Identity holds, i.e.

Izl = l{a.e)

eceS
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(c) Let (K,(-,-)) be another Hilbert space. Let S C H be an orthonormal basis of H
and let T C K be an orthonormal basis of K. Then H and K are isometrically
isomorphic if, and only if, #S = #T (i.e. if, and only if, there exists a bijective
map ¢: S —T).

Proof. (a) follows from Zorn’s lemma: Let

P:={T CH:SCT and T is orthonormal system},

partially ordered by “C”. Let C C P be a chain and define Ty := UTec T. Then S C Tp
and, since C is a chain, T¢ is an orthonormal system, showing Tz € P. Clearly, T¢ is an
upper bound for C. Thus, Zorn’s lemma applies and P must have a maximal element,
i.e. there exists an orthonormal basis containing S. As an aside, we remark that, if
H is separable, then H has a countable orthonormal basis (see below), which can be

constructed without using Zorn’s lemma via Gram-Schmidt orthogonalization (cf. Th.
E.1 in the Appendix).

(b): “(i)=(ii)": If there is 0 # x € S*, then SU{z/||x||} is an orthonormal system, i.e.
S is not maximal.

“(ii)=-(iii)”: Let V := spanS. Then (ii) implies V+ = {0}. Thus, since V is a closed
vector space,
Th. 4.20(f)

% (VHt ={0}* = H.

“(iil)=-(iv)”: If (iii) holds, then, by Th. 4.30(b), the map x >
identity on H.

ccs(®, e) e must be the

“(iv)=-(v)”: Plug the formula for x, given by (iv), into (x,y) to obtain (v) (note the
unconditional convergence due to Th. 4.26(b)).

“(v)=(vi)": Set z =y in (v).

“(vi)=(1)”: If S is not an orthonormal basis, then there exists x € H \ S such that
S U{x} is an orthonormal system. Then ||z|| = 1, but > _¢[(z,€)|* = 0, i.e. (vi) does
not hold.

(c): First, assume ¢ : S — T to be bijective and define

O:H-— K, =Y e ®(z):=> Aodle)

ecS eesS

We need to check that ® is well-defined, where one can argue analogous to the proof of
Th. 4.30(a): Fixx =) __sAee € H and set S, :={e € S: (z,e) # 0}. Note that

e€eS

VoA = (x,€).

eeS
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We need to show that ) __¢ Ac ¢(e) converges unconditionally to some ®(x) € K. This
is clear if S, is finite. Thus, let S, be infinite and let (e,),eny be an enumeration of S,.
We show that the partial sums of Y 77 A, ¢(e,) form a Cauchy sequence in K: The
orthonormality of the ¢(e,) implies

l
D A, dlen)
n=~k

’ 2

2 ! !
=D e =D [ e,
n==k n==k

and, since » ° |(z,e,)|* converges due to the Bessel inequality (4.25), the partial
sums of > 7 A, é(e,) are Cauchy. Since K is complete, there exists a limit y =
> A, ¢(en) € K. But then, for each n € N, A\., = (y, #(e,)) must be the Fourier
coefficient of y with respect to 7', also implying unconditional convergence. Thus, ® is
well defined. If A\, x € K and z,y € H, then

Az + py) = Y Az + py, €) ¢(e)

A
k<l

e€S
=AY (ze)dle) + Y (y, €) dle) = AD(x) + pd(y),
ecS ecs

showing ® to be linear. Also

v (®(x), ®(y) = <Z($,6> d(e), Y (y.e) ¢(6)> = (z,e)(e;y) = (z,y),

z,yeH
ecS eeS eeS

showing ® to be isometric and injective. If

y=>Y (e)ecK, z:=Y (y,e)¢ () €H,

ecT ecT
then ®(z) = y, showing ® to be surjective. Now, conversely, assume ® : H — K to
be an isometric isomorphism. As one can recover the inner product from the norm by
Th. 4.14(d), we then also have
Vo (®(x), (y)) = (z,y).

z,yeH

Thus, if S is an orthonormal basis of H, then ®(S) is an orthonormal basis of K. In
consequence, we may now consider K = H, & = Id, i.e. it only remains to show that,
if S, T are both orthonormal bases of H, then there exists a bijection ¢ : S — T'. If
#S =n € N, then dim H < o0, i.e. we know #71 = n from Linear Algebra. Suppose
S is infinite. For each s € S, let Ty := {t € T : (s,t) # 0}. Then each T is finite or
countable and there exists a bijection ¢ : S — U := |J,.4Ts. However, if ¢ € T, then
0 #t,ie. t € U. Thus, there exists an injective map ¢, : T" — S. One can now switch
the roles of S and T to also obtain an injective map ¢ : S — T'. Then there exists a
bijection ¢ : S — T by the Schroder-Bernstein theorem (cf. [Phil6a, Th. A.56]). W
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Corollary 4.32. Let (H,(-,-)) be a Hilbert space over K with induced norm || - ||.

(a) If S C H is an orthonormal basis, then H = (?(S), i.e. H isometrically isomorphic
to 1?(S), the space defined in Ez. 4.15(b).

(b) The following statements are equivalent for H # {0}:

(c) Riesz-Fischer: [? 2 L2([0,1], L', \1).

Proof. (a) is immediate from Th. 4.31(c), since T := {x(s} : s € S} forms an orthonor-
mal basis of [2(S).

(b): The equivalence of (ii) — (iv) is immediate from Th. 4.31(c).

“(ii)=-(i)”: If S is an orthonormal basis of H, then, clearly, linear combinations of
elements from S with coefficients from Q (for K = R) or from Q + iQ (for K = C) are
dense in H. Thus, if S is finite or countable, then H is separable.

“(1)=(ii)": If S is an orthonormal basis of H, then |le — f| = /2 for each e, f € S with
e # f. Thus, if S is an uncountable orthonormal basis of H and A C H is countable,
then, for each a € A, {vr € H : ||z —q| < ‘/75} can contain at most one element of
S (due to the triangle inequality). Thus, A can not be dense in H and H can not be
separable.

(c) follows from (b), since (? and L*([0, 1], £, \!) both are infinite-dimensional Hilbert
spaces and both separable by [Phil7, Th. 2.47(e)]. [ |

Remark 4.33. Let (H,(-,-)) be a Hilbert space over K and let B C H be an or-
thonormal basis. If dim H < oo, then B is a vector space basis* of H as well. We
show that this only occurs for dim H < oco: If B is not finite and x € H is such that
B, :={e € B: (x,e) # 0} is infinite (clearly, such x € H always exist), then x ¢ span B
(as the Fourier coefficients are unique). Thus, B can not be a vector space basis of H.

Definition 4.34. Let (HI, (- >), (Hg, (-, >) be Hilbert spaces over K. Moreover, let
A € L(Hy, Hy), let A" € L(H), H]) be the adjoint operator according to Def. 4.9, and

4Sometimes called a Hamel basis in this context.
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let ¢y : Hy — H{, 1y : Hy — H}, be the maps given by the Riesz Representation Th.
4.21. Then the map

A*: Hy — Hy, A" = o A oy, (4.30)
is called the Hilbert adjoint of A.
Corollary 4.35. Let (Hy, (), (Ha,(-,-)) be Hilbert spaces over K, where ||-|| denotes

the induced norms.

(a) For each A € L(Hy, Hy), one has A* € L(Hy, Hy), and A* is the unique map
Hy; — Hy such that
v vV o (Azx,y) = (z, A"y). (4.31)

reHy; yc€Hs

(b) One has that A — A* is a conjugate-linear isometric bijection of L(Hy, Hs) onto
L(Hs, Hy).

(C) (IdHl)* = IdH1
(d) I1f (Hg, (-, >) is another Hilbert space over K, A € L(Hy, Hy), B € L(Hs, Hs3), then
(BoA)" = A"o B".
(e) One has
N A = A
AEE(Hl,HQ)
(f) If A € L(Hy, Hy), then ker(A*) = (A(Hy))* .

(g) If A€ L(Hy, Hy), then A~ € L(Ha, Hy) exists if, and only if, (A*)~' € L(H;, H>)
exists, and, in that case,
(A*)—l _ (Ail)*.

(h) A € L(H,, Hy) is isometric if, and only if, A* = A~L.
Proof. (a): Let A € L(Hy, Hs). Then A* € L(H,, H,), since each of the maps ¢, ', A’,

1y is continuous, A’ is linear, and ¥, ' and v, are both conjugate-linear. Moreover, we
know A’ is the unique map on HJ such that

vy AP)(x)=B(Ax)).

ﬁEHé reHy

Thus,

VoY (z Aty = (o (7 0 Ao ne)(y)) = A'(Ya(y))(x) = va(y)(Az) = (Az,y),

reH, yEHo
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proving (4.31). For each y € Hy,  — (Ax,y) uniquely determines a continuous linear
functional o, : H; — K. Then the Riesz Representation Th. 4.21 and (4.31) imply
A*(y) = ¥1 ' (ay), showing A* to be uniquely determined by (4.31).

(b): If A, B € L(H,, Hy) and X € K| then, for each y € Ho,
(A+B)*(y) = (W1 o (A+ B) othy)(y) = (' o (A" + B') o 4hs)(y)
= (g7 0 Ao thy)(y) + (¥1 ' o B o) (y) = (A* + B)(y)
and
(AA)*(y) = (W1 o (AA) o) (y) = Awhy ' 0 A o hy)(y) = (AA) (),

showing A — A* to be conjugate-linear. Moreover, A — A* is isometric, since the maps
1,19, A — A’ all are isometric; A — A* is surjective, since H; and H, are reflexive.

(¢): One has (Idg,)* =¥ o (Idg,) oty = ;' o Idg; oy = Idp, .
(d): Let ¢3 : H3 — HY be given by Th. 4.21. Then
Ao B  =¢toA ooty o B oty =1 o(BoA) oy = (BoA)"

(e): According to (a), A** is the unique map H; — Hs such that
v Vo (A%, x) = (y, A7),

reH1 y€H>

Comparing with (4.31) yields A = A*™.

(f): We have
yeker(A*) & V (1,A%)=0 & V (Az,y)=0 <& yec (A(H))"
recHq reH;
(g): One has

A7V € L(Hy, Hy) exists & (A7Y) = (A)"! € L(H], H)) exists
& (A = (o Aoyt € L(Hy, Hy) exists.
Moreover, if At € L(Hy, Hy) exists, then
(A7 =y o (A7) othy = (A7),
(h): If A is isometric, then
VooV (Any) = (Az, AATYy) = (v, A7),

reHq yEHQ
such that (a) implies A* = A~!. Conversely, if A* = A~!, then
vV o (Au, Av) = (u, A" Av) = (u,v),

u,v€Hy

proving A to be isometric. ]
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Example 4.36. (a) Let m,n € N, let X be K" and Y be K™, each with the norm
topology. Then L£(X,Y) = K™ and each A € L(X,Y) can be represented by and

(b)

,,,,,,,,,,

adjoint A’ of A is represented by the transpose matrix A*. Now consider K" and
K™ with the standard inner product. The map ¢; : X — X’ according to Th.

4.21 is given by
L1

¢1 = (fl,...,fn) .

Tn

Indeed, if « = (1, ...,0a,) € X" and x = (xq,...,2,)" € X, then

a(x) = Zakxk = (z,a").

We claim that the Hilbert adjoint A* of A is represented by the conjugate transpose

..........

Vo Ay = (oA odn)(y) = Ui (G- Um)A)

yey

m

— 1/}1_1 <Z am@k, R Za;m@k> = <Zak1yk, ey Z
k=1 k=1 k=1

k=1

showing A* to be represented by A

Asin Ex. 4.13(b), consider the left shift operator, but this time on the Hilbert space

12
AP — 12 Alxg,29,...) = (22, 23,...).

The Hilbert adjoint A* of A is, once again, the right shift operator
A P — P Ay, ) = (0,91, 92, .. )
Indeed,

y=(Ur)ken€l?  z=(2})KeNEl?

k
i.e. the right shift is the Hilbert adjoint by (4.31).
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4.3 Complex Measures, Radon-Nikodym Theorem

To prove the Riesz representation theorem for LP-spaces, which says that, for every
measure space (€2, A, ), one has an isometric isomorphism (LP(n)) = Li(p) if 1 <
p < oo and ]lj + % = 1, one needs the Radon-Nikodym theorem of measure theory,
constituting itself an extremely important result. While we thoroughly studied [0, oo]-
valued measures in [Phil7], in preparation for the Radon-Nikodym theorem, we will now
have to study so-called complexr measures, which are C-valued measures.

Definition 4.37. Let (£2,.4) be a measurable space. A map pu: A — C is called a
complex measure on (2, A) if, and only if, p satisfies the following conditions (i) and

(ii):
(i) u(®) =0.

(i) p is countably additive (also called o-additive), i.e., if (Ag)ren is a sequence in A
consisting of (pairwise) disjoint sets, then

I (U Ak) =) u(A). (4.32)
k=1 =1

If 11 is a complex measure on (€2, .A), then the triple (€2, A, i) is called a complex measure
space. A signed measure is a complex measure that is R-valued; the corresponding
measure space is then also called a signed measure space. Note that (i) is separately
stated for emphasis only, as it, clearly, follows from o-additivity (as u(f)) = oo is not
allowed). Let Mc(€2,.A) denote the set of complex measures on (€2, .4), let Mg(£2,.A)
denote the set of signed measures on (€2, A).

Remark 4.38. In the present context, we will call the [0, co]-valued measures of [Phil7]
positive measures. Thus, a positive measure is a complex measure if, and only if, it is
finite; a complex measure is a positive measure if, and only if, it is R} -valued.

Lemma 4.39. Let 2511 a; be a series in C. Then Zj; a; converges absolutely if, and

only if, both 37 Rea; and 3277 Ima; converge absolutely.

Proof. Recall from [Phil6a, Th. 5.9(d)] that

VC max{|Rez|,|Imz|} < |z| < |Rez|+ |Im z|.
zE

Thus, if 377, a; converges absolutely, then, as » 377 [a;| dominates both 3 ™% | Re a;]
and > 7, [Imay|, these series converge absolutely as well. Conversely, if both series
> ;-1 Rea;j and 77, Tma; converge absolutely, then > 7% (| Re ;| + | Im a;|) converges
absolutely as well, implying absolute convergence of Zj’;l a;. |
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Remark 4.40. We know from [Phil6a, Th. 7.95(a)] that, if the series 3 7 | a; converges
absolutely, then every rearrangement converges to the same limit. If (Q, A, pu) is a
complex measure space and (Ag)ken is a sequence in A consisting of disjoint sets, then
Def. 4.37(ii) implies that the convergence in (4.32) is absolute: Otherwise, by Lem. 4.39,
Y e Rep(Ag) or Y72 Im p(Ag) were to converge, but not converge absolutely and,
then, Def. 4.37(ii) could not hold due to the Riemann rearrangement theorem [Phil6a,
Th. 7.93].

Example 4.41. (a) Let (€2, .A) be a measurable space. If i1, po, j13, j14 are finite postive
measures on (€2, A), then

p: A—C, = py — g +i(ps — pa),

constitutes a complex measure on (€2,.A): The o-additivity of y is clear, since each
t; is o-additive and finite.

(b) Let (92, A, 1) be a positive measure space and let f: Q@ — C be integrable. Then

fur A= (f) = [ fdu,
defines a complex measure on (£2,.4) in consequence of (a): Since

f=Ref)" = Ref)” +i((Imf)" — (Imf)7),

we know from [Phil7, Prop. 2.62], that each of the measures (Re f)"u, (Re f) g,
(Im f)"p, (Im f)~p is positive, and each of the measures (Re f)*u, (Re f) u,
(Im f)*p, (Im f)~p is finite, since f is integrable.

Definition 4.42. Let (€2, A, 1) be a measure space (positive or complex). One calls the
function

| = A — [0, 00],

|p|(A) := sup {Z |(Agp)| : (Ag)ren is disjoint sequence in A with A = U Ak}

keN

the total variation of the measure p.

Remark 4.43. (a) Clearly, if (2,4, 1) is a positive measure space, then |u| =

(b) Even thought the notation |u| for the total variation of p is customary, one has
to use some care: While |u|(A) > |u(A)| is clear from the definition of |ul, the
inequality can be strict: For example, if Q = {1,2}, u({1}) = 1, p({2}) = —1, then
|1(2)] = 0, but [u[(2) =
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We will show in Th. 4.45 below that the total variation of a complex measure always
constitutes a finite positive measure. In preparation, we provide the following lemma:

Lemma 4.44. Let N € N and zy,...,zy € C. Then there exists a set J C {1,...,N}
of indices such that
>

keJ

1 N
> — . 4.33
> =3 |l (433

k=1

Proof. For each k € {1,...,N}, choose a; € R such that z; = |z;]e’*. For each
0 € [0,27], define J(#) := {k € {1,...,N} : cos(ar — ) > 0} and, using |[e | = 1,
estimate

N
Z 2| = Z e 2| > Re Z e 0z = Z|zk\cos+(ak—9).
k=1

keJ(6) keJ(6) keJ(6)

Now note that the right-hand side in the above inequality constitutes a continuous
function of § and, thus, must assume its maximum on the compact interval [0, 27], say,
at 6y € [0, 27]. Since

2 w/2
/ cos™ (ay — t) dt = 2/ costdt = 2[sint]l’/* =2(1—0) =2,
0 0

one obtains

Z 2k >Z|zk|cos (o — b)) = / <Z|zk|cos ak—90)> dt

keJ (o) k=1
1
> 27T (Z|2k|cos ozk—t> dt :;;PJH,
thereby proving the lemma. |

Theorem 4.45. Let (2, A, 1) be a complex measure space. Then the total variation |u|
of i, as defined in Def. 4.42, constitutes a finite positive measure on (£2, A).

Proof. As p(0) = 0 implies |p|(0) = 0, to prove |u| constitutes a positive measure, we
have to show it is o-additive. Thus, let A € A and let (Ay)ren be a disjoint sequence
in A such that A = (J,cny Ar- If tp € R is such that ¢, < [u|(Ag), then, by the
definition of ||, there exists a disjoint sequence (Ag)ien in A such that Ay = J,cn Aw
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and ¢, < > % [1(Ak)|. Since (Ag)gpenz is a countable disjoint family in A such that
A= U(M)GN2 Ay, one obtains

Zmax{(),tk} < Z [1(Ap)| < [p](A),
k=1 (k1) EN2

implying
; |1l(Ag) = sup {; max{0,tx} : |Vt < |M|(Ak:)} < [ul(A).

To prove the opposite inequality, let (E})en also be a disjoint sequence in A such that
A = ey Ei- Then, for each k € N, (A N E))en is a disjoint sequence in A such that
Ay = Ujen(Ax N Ey), and, for each [ € N, (A N E))en is a disjoint sequence in A such
that El = UkeN(Ak’ N El) Thus,

Z p(Ax N Ep)

k=1

o0

ZWEZ :Z

=1

<) AN E) |<Z|M| (Ag).

=1 k=1

As we may take the sup on the left-hand side, we obtain |u|(A) < Y7 |ul(Ay), com-
pleting the proof of the o-additivity of || and showing || to be a positive measure.

It remains to show |u| is finite, which we will accomplish arguing by contraposition.
Consider an arbitrary set £ € A such that |u|(E) = oo and set t := m(1+ |u(E)|). Then
t € R™ and there exists a disjoint sequence (Ej)ren in A such that £ = J, oy Er and
t < SN |u(Ey)| for some N € N. We apply Lem. 4.44 with z, := u(E}) to obtain a
set J C {1,..., N} such that

(um)|-

Letting A := J,o, Ex and B := E'\ A, this yields

1 t
> E)l > —>1.
_W;’M( k’)‘ o=

ZM(Ek)

keJ

0(B)| = [1(E) = p(A) > [1(A)] = |0(B)| > = ~ |u(B)| = 1

Thus, we have decomposed E into disjoint sets A, B with |u|(A) > |u(A)] > 1 and
lu|(B) > |u(B)] > 1. Since we already know |u| to be a positive measure and |u|(F) =
00, |p|(A) or |u|(B) must be infinite. If |u|(£2) = oo, then we can now use an inductive
construction to obtain a disjoint sequence (Ay)gen in A such that |u(Ag)| > 1 for each
k € N. But then Y 7, u(Ax) does not converge absolutely and 4 can not be a complex
measure. |
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One of the advantages of complex (or signed) measures over positive measures is that
they form vector spaces:

Remark 4.46. Let (€2, A) be a measurable space. From the rules for convergent series
in K| it is immediate that X := Mg(Q,.A) forms a vector space over K (a subspace of
the vector space K of K-valued functions on A). We can make X into a normed space
over K by defining

-1 X — Ry, el = |ul(€) :

Let © € X. Then p = 0 implies ||u|| = 0. If g # 0, then there exists A € A with
u(A) # 0 implying [|p|| = |[p[(2) > [p(A)] > 0. If A € K and (A)ken is disjoint
sequence in A with Q = J, . Ak, then

> (A = 1A (A,

showing [|Aul] = [Ap|(€2) = [A[ || (€2) = [A[ |l TE ;v € X and (Ag)ren as before, then

Do+ ) (A < Y (Al + Y (A,

k=1
showing |[p + v = |+ v[(Q) < [ul(Q) + [V[(Q) = [|ull + (]

Definition and Remark 4.47. (a) Let (2,4, ) be a signed measure space. The
measures

1 1
+._ -._ = _
ptoi= 2(Iul +p), p 2(|M| t)

are called the positive variation and negative variation of uu, respectively. Both mea-
sures put, u~ are actually positive, since |u|(A) > |u(A)| for each A € A. Clearly,

p=pt =, fpl=pt e,

where the decomposition p = ut — = into the difference of the two positive mea-
sures put, u~ is known as the Jordan decomposition of p.

(b) Let (2,.A, 1) be a complex measure space. Then, clearly, both Re pu and Im p are
signed measures. Thus, by (a), we obtain the decomposition

p=Rep)" — Rep)” +i((Imp)* — (Imp)”).

Definition 4.48. Let (€2, A) be a measurable space. Let A, 1 be measures on (2, .4),
where p is positive and A is arbitrary (i.e. positive or complex; note that a positive
measure may be infinite).
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(a) We call X absolutely continuous with respect to p (denoted A < ) if, and only if,

Y (MA) —0 = AA) :o).

(b) A is said to be concentrated on A € A if, and only if,

Y ME) = AENA). (4.34)

(c) If v is another arbitrary measure on (€2, A), then A\, v are called mutually singular
(denoted A L v) if, and only if, there exist disjoint sets A, B € A such that A is
concentrated on A and v is concentrated on B.

Proposition 4.49. Let (2, A) be a measurable space. Let o, \, v be measures on
(Q,.A), where 1 is assumed to be positive.

(a) A is concentrated on A € A if, and only if,

v (EmA:@ = /\(E):()). (4.35)

EecA

(b) If X is concentrated on A € A, then so is |A|.

(c) If A,B € A and X is concentrated on A as well as concentrated on B, then X is
concentrated on AN B.

(d) If X L v, then || L |v].

(e) If a, A are complex with o L v and A\ L v, then o+ \ L v.
(£) If a, X are complex with o < p and A < i, then o+ \ < p.
(8) If A< p, then |\ < p.

(h) Ifa < pand A L p, then o L p.

(1) If \< pand X L p, then A =0.

Proof. (a): It is immediate that (4.34) implies (4.35). Conversely, assume (4.35). If
E € A, then

(4.35)

ME)=AMENA)+ANE\A) MENA) +0=ANENA),

proving the validity of (4.34).



4 DUALITY, REPRESENTATION THEOREMS 125

(b): We use (4.35): Let E € A with ENA =
A such that E = |J, .y Ek, then £, N A = () an

ul(E) =
(c): Let E € A. Then

(Eyx)ken is a disjoint sequence in

0. It
d u(Ey) = 0 for each k € N, implying

AME)=ANENA) =XNENANB),

showing A to be concentrated on AN B.
(d) is immediate from (b).

(e): There exist disjoint Ay, By € A such that « is concentrated on A; and v concen-
trated on B;. Likewise, there exist disjoint Ay, By € A such that A is concentrated on
Ay and v concentrated on B,. Then, by (c), v is concentrated on By N By. Moreover,
for each F € A,

(a+ M) (FE)=a(ENA)+NENA,)
a(EN (AU A) NA) + A(EN (AU Ay) N Ap)
= (a+ ) (EN (A UA)),
showing o + A to be concentrated on A; U Ay. Since A; U As and By N By are disjoint,
we have o + A L v.
(f) is clear.

(g): Let £ € A with p(E) = 0. If (Ej)ken is a disjoint sequence in A such that
E = Upen B, then pu(Ey) = ME)) = 0 for each £ € N, implying |A|(£) = 0 and
Al < p.

(h): Assume o < g and A L p. Due to A L p, there exists A € A such that A is
concentrated on A and u(A) = 0. Then a(E) = 0 for each E' € A with E C A, implying

E\ZA a(E)=a(ENA)+a(ENA°) =a(EnNA°.

Thus, « is concentrated on A°, showing o L p.

(i): A < pand A L g, then (h) implies A L A. Thus, X is concentrated on two disjoint
sets. Then (c) implies A to be concentrated on (), i.e. A = 0. [ |

Example 4.50. Let (€2, A, 1) be a positive measure space and let f : @ — C be
integrable. We noted in Ex. 4.41(b) that

fp: A—C, (fu)(A /fdﬂa
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defines a complex measure on (€2, A). It is then immediate that fu < p. The Radon-
Nikodym Th. 4.53(b) below will show that, for o-finite i, every complex measure that
is absolutely continuous with respect to p is obtained in this way.

In preparation for Th. 4.53, we need two more lemmas:

Lemma 4.51. Let (Q, A, ) be a finite positive measure space, let f € LY(Q, A, ), and
let C C C be closed. If

1
() >0 > () = M/Afdu e 0). (4.36)
then f(x) € C for u-almost every x € €.

Proof. Let z € C\ C and r € R" such that B,(z) CC\ C. Let A:= f~1(B,(z)). We
claim p(A) = 0: Indeed, if u(A) > 0, then

/A(f—Z)du‘Sﬁ/AV—ddu <r

in contradiction to (4.36). Since there are sequences (74 )keny in RT and (z;) € C\ C
such that C\ C' = oy Br, (2k), we obtain p(f~'(C\ C)) = 0, proving the lemma. M

1

|za(f) — 2| = 2(A)

Lemma 4.52. Let (2, A, i) be a positive o-finite measure space.

(a) There exists w € L) such that 0 < w < 1.

(b) There exists a finite positive measure v on (2, A) such that the set of p-null sets is
identical with the sets of v-null sets.

Proof. (a): As juis o-finite, there exists a sequence (Ay)xen in A such that Q = [,y Ak
and u(Ag) < oo for each k € N. Define

- Q 1 =
kZ/N W — [07 [7 Wy 1+H(Ak) XAy

as well as
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Then, as a series of nonnegative measurable functions, w is measurable. Moreover,
0 < w is clear, whereas w < 1 is seen by estimating w from above by the the geometric
series. Similarly,

- < Fe-

showing w to be integrable.
(b): Let w € L'(1) be as in (a) and set v := w. [ |

Theorem 4.53. Let (2, A) be a measurable space. Let A, be measures on (2, A),
where 1 1s positive and o-finite, and X is complex.

(a) Lebesgue Decomposition: There ezists a unique pair (A, \s) of complex measures
on (Q, A) such that

A=t A A da<<py A AL (4.37)

The pair (Aa, A\s) is called the Lebesgue decomposition of A relative to . Moreover,
if A is positive and finite, then so are A\, As.

(b) Radon-Nikodym: There exists a unique h € L*(u) such that

¥ A= /A hdu (4.38)

(one then calls h the Radon-Nikodym derivative of A\, with respect to ).

Proof. We start with the uniqueness statements. Suppose (A,, \.) is another Lebesgue
decomposition of A relative to p. Then

Prop. 4.49(f) Prop. 4.49(e)

= da=No—A  N=XA < p N-=X L o

S

and X, = A, as well as A\, = )\ follows from Prop. 4.49(i). The uniqueness of the
Radon-Nikodym derivative h € L'(u) is due to [Phil7, Th. 2.18(d)].

The following argument will show both the existence of the Lebesgue decomposition
and the existence of the Radon-Nikodym derivative. First, assume A to be positive as
well. As p is positive and o-finite, we use Lem. 4.52(a) to obtain w € £!(u) such that
0 <w < 1, v := wu. Then the measure ¢ := X\ + v is still positive and finite. If
f: Q2 —10,00] is A-measurable, then

/Qfdga :/Qfd)\ +/Qfdu (4.39)
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(as (4.39) holds for f = x4 with A € A, it then holds for simple f, and then also for
nonnegative measurable f). For each f € L*(p), we know f € L'(p) (as ¢ is finite, cf.
[Phil7, Th. 2.42]) and we estimate

/QfdA‘s/QlfldA S/Qlfldso < (/QIfIstO)% (o),

where the last estimate holds by the Cauchy-Schwarz inequality. Thus,

[N

a: (o) — K, af) ::/Qfd)\,

defines a bounded linear functional on L*(¢). By the Riesz Representation Th. 4.21,
there exists a unique g € L?(¢) such that

v alh) = /Q fdx = /Q fgdy. (4.40)

Instead of g € L?(¢p), we will now consider a representative g € £L2(¢p) (still denoted by
g for simplicity of notation). From (4.40), we obtain

o )‘(A>:/QXAd>\ z/Agdso,

implying, since 0 < A < ¢,

(SO(A)>0=> OS%A)/AQ(M:%@)'

Thus, Lem. 4.51 yields g(x) € [0, 1] for p-almost every x € €. By changing g on a -null
set, we see that there exists g € £?(p) such that (4.40) holds and

\
AeA

Vo 0<g(x)<1.

e
We can combine (4.39) and (4.40) to obtain
v /(1 —g)fdA :/fgdu :/fgwdu. (4.41)
feL2(v) Q Q Q
Set

E={reQ:0<g(x)<1}, F:={zeQ:g(x)=1}
and define measures

Mt A— RS, MN(A)=NANE), (4.42a)
MN: AR, A(A) = AANF). (4.42D)
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Next, we use f := yp in (4.41) to conclude

0= [a=gax= [ av =u(F) = u(p)

showing A; L p. Since ¢ is finite and ¢ is bounded, for each A € A and each n € N, we
may apply (4.41) with
f=0+g+ - +9")xa

to obtain

neN

v /(l—g”“)d/\ :/g(1+g+---+g”)wdp. (4.43)
A A

If v € F, then 1 — g"*!(z) = 0 for each n € N; if z € E, then lim,, (1 — ¢""'(x)) = 1.
Thus, by the dominated convergence theorem [Phil7, Th. 2.20],

lim [ (1 —¢"™)d\ = AMANE) = \(A). (4.44)

n—oo A

As the nonnegatvie integrands on the right-hand side of (4.43) increase monotonically,
we obtain a measurable pointwise limit

h = le gl+g+--+g"w

and the monotone convergence theorem [Phil7, Th. 2.7] together with (4.43) and (4.44)
implies

Aa(A)=lim [ gl+g+ -+ ¢")wdu :/Ahdu,

n—oo A

thereby proving (4.38). Since [,hdp = AN E) < oo, we have h € L'(u), concluding
the proof of (b). Since (4.38) also implies A\, < p, the proof of (a) is also complete.
Finally, if A is complex, then we decompose A according to Def. and Rem. 4.47(b) and
apply the positive case to (ReA\)™, (ReA)™, (Im A)*, and (Im A\)~, which, in combination
with Prop. 4.49(e),(f), establishes the case. |

4.4 [P-Spaces, Riesz Representation Theorem II

Proposition 4.54. Let (2, A, 1) be a positive measure space and p,q € [1, 00| such that
1—1) + é = 1. For each g € L(u), define the map

00 : D) — K, aylf) = [ Fodn (4.45)

(a) For each g € L(p), the map o is continuous and linear with ||yl < ||g|,-
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(b) If 1 < p < o0 orp =1 and p is o-finite, then, for each g € L(u), one has
legll = llgllq-
Proof. Let g € L(p).

(a): According to the Hélder inequality of [Phil7, Th. 2.7], fg € L*(u) for f € LP(u)
and oy is well-defined. The linearity of oy is immediate from the linearity of the integral.
Using the Holder inequality again, we estimate

/Qfgdu

showing both the continuity of a, and ||yl < ||g]l,-

Vo el =

JFeLP(p)

< / Faldi < £l gl

(b): In view of (a), it remains to show ||| > ||g]l4- Let g € £9(n) denote a representa-
tive of g € LI(p). If ||g]|; = O, then there is nothing to prove. Thus, assume |/g|/, > 0.
Let 1 < p < oo. Define

o) EZ for g() £ 0,
0 for g(xz) = 0.

f:Q—K, f(x):{

Then f is measurable with

Lirdn = [lapean = [ jgirau < o,
Q Q Q

showing f € L£P(u). Moreover,

1/q 1-1/q
)= [ !g!qduz(/ﬂ Iglqdu) (/ Iglqdu) = lglla 11

showing |lay|| > ||g]l; as desired. Now let p be o-finite, p = 1, ¢ = co. Recalling
lgllc > 0, we consider an arbitary 0 < s < ||g||. Then u({|g| > s}) > 0 and, since p
is o-finite,

3 (A gl = s} A 0<p(a) < o).
Define

()
P — _ xa@) gy for g(@) £0,
! R {O " g(z) = 0.

Then f, is measurable with | fi|ly = [, [fs|dp = p(As) < oo, showing f, € L'(u).
Moreover,

ay(f,) = /A gldu > s p(AL) = | full.

Since s €0, ||g||| Was arbitrary, we obtain ||ay|| > ||g]|« also in this case. [ |
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Theorem 4.55 (Riesz Representation Theorem). Let (2, A, i) be a positive measure
space, p € [1,00[, q €]1,00] such that % + % = 1. Consider the map

o L) — (L), ¢lg) = ay, (4.406)

where oy is as in (4.45), i.e.

ag: LP(p) — K, oy(f) = / fgdp.
Q
If1<p<ooorp=1and u is o-finite, then ¢ is a (linear) isometric isomorphism.

Proof. The map ¢ is well-defined by Prop. 4.54(a) and its linearity is, once again, an
immediate consequence of the linearity of the integral. Let 1 < p < oo or p=1 and u
is o-finite. Then ¢ is isometric (and, thus, injective) by Prop. 4.54(b). In consequence,
it only remains to show ¢ is surjective.

First, let u be finite. Given o € (LP(p))’, we will construct g € L(p) such that oy = «,
using the Radon-Nikodym Th. 4.53(b). If A € A, then p(Q2) < oo implies x4 € LP(u).
Thus, we can define

A A— K, ANA) :=alxa).

We verify A to be a complex measure: Let (Ag)ren be a disjoint sequence in A and let
A= Jyen Ak Then

Tim Iy, 4, = xallp = lim g ( U Ak) =0,
k=n+1

showing xyr_, 4, — xa in LP(u). Thus, we can apply the linearity and continuity of o
to obtain

n

D o AMAW) = lim > AA) = lim D alya,) "= lim alay, 4.) = alxa) = MA),
k=1 k=1

n—00
k=1

proving A to be o-additive and a complex measure. Next, we note A < pu: Indeed, if
A e A with p(A) = 0, then [[xall, = 0, i.e. A(A) = a(xa) = 0. We now apply the
Radon-Nikodym Th. 4.53(b) to obtain g € L'(u), satisfying

AA) = /Agdu.

AcA

We need to show g € L(p) and o = ay, i.e.

a(f) Z/Qfgdu = ay(f) (4.47)
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holds for each f € LP(x). Due to the continuity of o and ¢, it suffices to show they
agree on a dense subset of LP(u). From [Phil7, Th. 2.47(a)], we know the set of simple
functions

S :=span{xa: A€ A}

to be dense in LP(u) for p < oo (as p is finite). Since g € L*(u), so far, we know o, (f)
to be defined for each f € L*°(u) and, in particular, for each f € S (as p is finite, which
also implies L>(u) C LP(p)). If A € A, then

a(xa) = MA) = /Agdu = ay(xa),

i.e. (4.47) holds for each f = ya, A € A, and, in consequence, for each f € S. It
remains to show g € L9(u). To this end, it will be useful to verify (4.47) holds for
each f € L>®(u). Let f € £°(u) be a representative that is bounded everywhere by
| flloo- Then, by [Phil7, Th. 1.90], there exists a sequence (¢ )ren in S that satisfies
|Dklloo < || fl|oo for each k& € N and converges uniformly to f (i.e. ¢ — f both in L>(pu)
and pointwise). Again using p to be finite, limy oo [|[0r — fllp, = limg 00 ||x — flloo = 0,
implying limg o a(¢r) = a(f). Since ¢grg — fg pointwise with |¢prg| < ||flloolg], We
can apply dominated convergence to obtain

a(f) = lim a(gr) = kli_gloag(%) = l}ilgo/§2¢kgdﬂ = /Qfgdﬂ = ay(f),

k—o00

proving (4.47) to hold for each f € L*(u). For the verification that g € L7(u), let
g € LY(n) be a representative. Consider ¢ = oco. For each A € A, define

' _ Jxalz) |ﬁ| for g(x) # 0,
fa: Q—K, falz): {XA(iE) for g(z) = 0.

Then fa € £(u) and we use (4.47) to obtain

/A gldu = / fagdn = a(fa) < llal| [fall = / o .

Then [Phil7, Th. 2.18(d)] yields |g| < |la|| p-almost everywhere, in particular, g €
L>(p). Consider 1 < g < co. For each s € RT, let As := {|g| < s} and define

fo: Q—K, fz):= {XAs(x) lg(z)]e? ‘B‘ for g(x) # 8,

Xa. () lg(x) |7~ for g(x) =
Then f; € £>°(u) and we use (4.47) to obtain

1/p
/As 9" dp = /Qfsgdu = a(fs) < llall || fllp = [l (/A !9!qu> :
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1/q
7d < .
2 ([l < e

If we take the limit s — oo (by use of the monotone convergence theorem), we obtain
lgllq < lledll, in particular, g € L(u).

Thus,

Second, let u be o-finite. As before, given o € (LP(u))’, we need to find g € L9(u) such
that oy, = a. Using Lem. 4.52(a), choose w € L£'(u) such that 0 < w < 1, v := wp.
Define

a: IP(v) — K, a(F):=a(w'?F).

Clearly, & is well-defined, linear, and bounded, i.e. & € (LP(v))’. As v is finite, we
already know there exists G € L?(v) such that

\ &(F)—/FGdV —/FGwd,u.
0 0

FeLr(v)

Set g := w'/G (i.e. g := G for ¢ = 00). Then

L / 9| dp ——/ Gl7dv = ||G||, < o0 = g€ Li(p),
<g<oo Q O

Since

alf)=a(w VP = [ wPfGdv = | wYPw Vi fgdy
| eln=aniy Jwrcar ~ [ g

JFELP(p) — / w—lfgw dp = ag(f)?
Q

we have established the case.

Third, and last, let p be arbitrary, 1 < p < co. Once again, given a € (LP(p))’, we
need to find g € L9(p) such that o, = . For each A € A, we can restrict p to A|A,
obtaining 4 := 44, and we can consider LY, := LP(A, A|A, j1a) as a subspace of
LP(p) by extending f € L) by 0 to A°. Let aq := gy . Define

B:={A€A: uyais o-finite}.

From the o-finite case, for each B € B, there exists a unique gg € L% such that
lgsllq = llas|l and

vV an(f) = /B Fos . (1.48)

feLt,
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Note that, if A € A, then restriction f +— f[4 is well-defined as a map from L"(u) to L7:
If f1, fo € L7(n) both are representatives of f, then f;[4 and fy[4 are representatives
of the same element of L"(u), which we define to be f [4. Now, if By, By € B are
disjoint, then the uniqueness of gp, and gp, implies gp, = 9B,uB, By, 9B, = 9B,UB, | B, -
In consequence (here we use 1 < ¢ < ),

lasuml* = llgsius, g = llgm. g + llgs.llg = s, I + lles, || (4.49)

Since

o = sup{||ag| : B € B} <|a < oo,
there exists a sequence (By)ren in B such that o = limy_ [|ap,||. Let B := [J; oy Bi-
Clearly, B € B. Since (4.49) implies

- <
C’,DveB (C CD = Jacll < HOKDH),

we conclude o = ||ag||. Moreover, as B € B, there exists gg € L% such that(4.48) holds.
Note that o = ||ag|| together with (4.49) implies

C\ZB ac\B =0.

Now let f € LP(u), C:={f # 0}. Given n € N, define C, := {|f| > }. Then

p
u(Cn)Z/ = dp S/nplflpdu < o0,
c, nf Q

showing C,, € B. Since C' =, .y Cn, we have C' € B as well. Thus,

neN
a(xpef) = alxpacf) +alxenpef) =0+ ac\s(fle\s) =0,

and
a(f) = alxsf) + alxsf) = as(f 1) = /B Foudu = / Fasdn = agy (/)

completes the proof. [ |
Example 4.56. Let (€2, A, 1) be a positive finite measure space. Consider the contin-

uous linear function

A: K — L' p), A(s):=f,=s.
We want to find the adjoint A’ : (L'(u)) — K. From the Riesz Representation Th.
4.55, we know (L'(u)) = L>(u), and we know the adjoint is uniquely determined by
the condition

VoY Alg)s = Alg)(s) = glA(s) = s / gdu. (4.50)

geL>(u) s€K

Thus, A'(g) = |, gdp for each g € L™(p).
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4.5 Borel Measures on Locally Compact Hausdorff Spaces and
Riesz Representation Theorems III and IV

Recall from [Phil7, Def. 2.48(a)] that, given a topological space (X,7) and a function
f: X — K, the support of f is defined by

supp f :={z € X : f(z) # 0},

and that C.(X) denotes the set of continuous functions from X into K with compact
support.

Definition 4.57. Let (X, 7T) be a topological space. Define

CT(X):={feC(X): fisRj-valued},
CHX) :={f € C(X): fis R}-valued}.

C

We call a function F': C(X) — K (resp. a function F': C.(X) — K) positive if, and
only if, F'(f) € R§ for each f € CT(X) (resp. for each f € CF(X).

Remark 4.58. In the situation of Def. 4.57, let F' be positive and linear.

(a) F is monotone in the sense that g < f implies F'(g) < F(f): Indeed, if ¢ < f, then
f =920, implying F(f) = F(g) = F(f —g) 2 0 and F(g) < F(f).

(b) If —F is also positive, then F' = 0: If f > 0, then F/(f) > 0 and —F(f) > 0, showing
F(f) =0. Thus, for arbitrary f: F(f)=F(ft—f")=F(f")—F(f~) =0, proving
F=0.

Definition 4.59. Let (X,7) be a topological space and let B := o¢(7) denote the
corresponding Borel sets. Let (X, A, 1) be a measure space (positive or complex).

(a) p is called a Borel measure on X if, and only if, B C A.

(b) If p is a positive Borel measure, then it is called locally finite if, and only if, for
each € X, there exists an open neighborhood U of z such that u(U) < oc.

Lemma 4.60. Let (X,T) be a T, topological space and let (X, A, p) be a positive mea-
sure space. Assume u to be a locally finite Borel measure.

(a) If K C X is compact, then p(K) < oo.
(b) Ce(X) C LY (p).
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Proof. (a): Since (X,7T) is T5, the compact set K is closed, i.e. K € A and pu(K) is
defined. Since p is locally finite, for each # € K, there exists an open neighborhood U,

of x such that u(U,) < oco. Since K is compact, there exist finitely many z1,. .., x,,
n € N, such that K C J_, U,,. Thus, u(K) C > 7" 1(Us,) < o0.

(b): If f € C.(X), then

/X i < 1 oo plsupp £) 2 oo,

proving f € LY(p). [ |

Example 4.61. Let (X,7) be a Ty topological space and let (X,.A, ) be a positive
locally finite Borel measure space. Then C.(X) C £'(u) by Lem. 4.60(b) and we can
define

a: C(X) — K, aff) = /de,u. (4.51)

It is then clear from the properties of the integral that (4.51) defines a linear functional
that is positive in the sense of Def. 4.57.

Example 4.61 now raises the question if every positive linear functional on C.(X) can
be written in the form (4.51) with a suitable Borel measure p (for the time being, there
is no continuity involved). This turns out to be a difficult question in general and there
are several subtleties. We will show in Th. 4.63 below that the answer is positive if
(X, T) is alocally compact T5 space (one can actually even obtain such a representation
for the larger class of so-called completely regular spaces, cf. [Els07, Sec. VIIL.2]). It
also turns out that, in general, a functional can be represented by several different Borel
measures. To select a specific measure, it is customary to impose regularity properties.
Many different variants can be found in the literature (again, we refer to [Els07, Sec.
VIIIL.2] and references therein). Here, we will mostly follow [Rud87, Th. 2.14]. The
following Prop. 4.62 will be employed in the proof of Th. 4.63.

Proposition 4.62. Let the topological space (X, T) be locally compact and Ty. If O, K C
X such that O is open, K is compact, and K C O, then

< f< = - .
feCECI(X) <0_f_1/\ffK 1/\suppf_0)

Proof. According to Prop. 2.5(a), there exists an open set V' C X such that V is compact
and -
KCcVvCcVvcCco.
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Since (X, T) is T, K is closed. As a compact T} space, (V, T;7) is normal (in particular,
T,) by [Phil6b, Prop. 3.30]. Thus, we can apply the Tietze-Urysohn theorem [Phil6b,
Th. 3.11] to the closed disjoint sets K and A :=V \ V. If K = (), then we set f := 0.
Now assume K # (). If A # (), then [Phil6b, Th. 3.11] provides a continuous map
f:V — 0,1 with f[4= 0 and f [x= 1. If we extend f to all of X by setting
f1x\w=0, then [ is still continuous. Also

suppf CV CO (4.52)
with V compact. In particular, supp f is itself compact and [ satisfies all required
conditions. If A = (), then V =V and V is both open and closed. In this case, we define

FoX s (01], fla) = {1 forx eV,

0 forxzg¢V.

Then the sets that occur as preimages under f are precisely (), V, X \ V, X, which are
all open, showing f to be continuous. Note that (4.52) also holds, such that f, clearly,
once again, satisfies all required conditions. |

Theorem 4.63 (Riesz Representation Theorem). Let the topological space (X,T) be
locally compact and Ty. Moreover, let o : C.(X) — K be a positive linear func-
tional. Then there exists a unique positive locally finite Borel measure space (X, B, ),
B = o(T), such that « is given by (4.51) and such that p has the following reqularity
properties:

(i) u(K) < oo for each compact K C X.

(ii) It holds that
p(A) =inf{u(0) : AC O, O open}.

AeB

(iii) It holds that

Azzs ((A open V u(A) < o0o) = u(A) =sup{u(K): K CA K compact}).

One can also obtain a complete Borel measure space (X, A, ) with the above properties
(with B replaced by A) by letting (X, A, 1) be the completion of (X, B, ) in the sense
of [Phil7, Def. 1.51]. In the above situation, we then say that « is represented by the
measure ji : B — [0,00] (resp. by the measure p: A — [0, 00] ).

Proof. As before, since (X, T) is Tz, each compact set K is closed, i.e. K € B, u(K) is
defined. In particular, statements (i) and (iii) make sense.
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Uniqueness: If p satisfies (iii), then its values on compact sets uniquely determine its
values on all open sets. If it satisfies (ii) as well, then it is uniquely determined on each
A € B (and on each A € A in case of the completion due to [Phil7, Th. 1.50(a)]). Thus,
it suffices to show that if u,v : B — [0, 00| are measures satisfying the conditions of
the theorem, then p(K) = v(K) for each compact K C X. Let p, v be such measures
and K C X compact. Fix e € R*. As a consequence of (i) and (ii), there exists an open
O C X with K C O and v(0O) < v(K) + €. Due to Prop. 4.62,

< < = - .
feCHC(X) (O_f_l/\ffK 1/\suppf_0>

Thus,

4.51) (4.51)

u<K>=/Xdeu S/deu 420 o) 42 /dev sAdeu:u<o><v<K>+e,

implying u(K) < v(K), as € € RT was arbitrary. As we can switch the roles of p and
v, we obtain u(K) = v(K), completing the proof that p is unique on 5.

It remains to show the existence of p, which requires some work. The idea is to define
an outer measure g @ P(X) — [0,00] (cf. [Phil7, Def. 1.32]) such that the restriction
of p to A (i.e. to the completion of B) is a measure with all desired properties. We first
define p on open sets O by letting

1(0) ==sup{a(f): f e Ce(X),0< f <1, supp f CO}. (4.53)

Note that f =0 € C.(X) with supp f = 0 C O for each O, such that u(O) is well-defined
by (4.53). If 01,05 C X are open with O; C Os, then p(Op) < u(0,) is immediate
from (4.53). Thus, if we define

p: P(X) —[0,00], p(A):=inf{pu(O): AC O, O open}, (4.54)
then the values given by (4.53) and (4.54) are the same.

Claim 1. p is an outer measure on X.

Proof. We have to show () = 0, p is monotone, and o-subadditive. Since, for each
f € C.(X), we have supp f = 0 if, and only if, f = 0, (@) = 0 is clear from (4.53)
as well as p > 0. If A;, Ay € X with A7 C A, then pu(A;) < p(Ay) is immediate
from (4.54), proving monotonicity. To prove o-subadditivity, we first consider open sets
O1,...,0y € X, N e N Let f e Ce(X)withO < f <1 andsuppf C UijilOi-
Then (O, ...,0Ox) is an open cover of the compact set supp f and Th. F.1 provides a
corresponding partition of unity, i.e. ¢1,...,pn € C.(X) such that

N
i <0 < <1 A suppy; C Oz’); (Z 90i> [supp .= 1,
i=1

e{1,...,N}
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implying

/N
021
o

o
=N
;S
=
N
S
S
A\
5
—
IN
—_
N——
S~
I
5
=

and

u(Lﬂ%)SE:MOJ (4.55)

Now let (Ax)ren be a sequence of subsets of X, A := |, .y Ar. We need to prove
p(A) <> p(Ay). (4.56)

k=1

If there exists k € N with p(Ag) = oo, then (4.56) holds. Thus, we now assume
wu(Ag) < oo for each k € N. Fix e € RT. Then, by (4.54),

kZN okzlgx (Ok open A A C O, A p(Oy) < pu(Ag) + 62"“).

Then O := (J,cy Ok is open. Consider f € C.(X) with 0 < f < 1 and supp f C O.
Since supp f is compact, there exists N € N such that supp f C U]k\[:1 Og. Then

Oé (4<53) 12 (U Ok> 4<55 Z/J Ok S i Ak
k=1

As f e C.(X) with 0 < f < 1 and supp f C O was arbitrary, we obtain u(0) <
> ro  u(Ay) + €. Since A C O, this implies

u(A) < u(0) <Y p(Ay) +e

Since € € RT was arbitrary, (4.56) holds. A
We now define the following collections of subsets of X:
&= {A CX:u(A) <oo A u(A)=sup{u(K): K CA K Compact}}, (4.57)

M::{AQX: v AmKeg}. (4.58)

K C X compact
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It now suffices to show that M is a g-algebra with B C M and that x| is a complete
measure, satisfying (4.51) and (i) — (iii) with B replaced by M (then, in particular,
BCACM).

Claim 2. If K C X is compact, then K € £ and

p(K) =inf{a(f): feC(X),0< f <1, flx=1}. (4.59)
Proof. Let K C X be compact and let f € C.(X) with 0 < f <1 and f[x= 1. Define
v Os = f_l(]S,OO[).

s€]0,1]

Then each Oy is open, K C O,, and

V \v < C Os < < —1 )
s€]0,1]  geCe(X), Supp g = = sg<f =>g9g<sf
0<g<1
Thus,
(4.53) i
T ) < p(0,) "= sup{a(g): g € Cu(X), 0 g <1 suppg € O} < 57l (f).

For s — 1, the above inequality yields

nw(K) < a(f),

showing u(K) < oo and K € €. Now fix e € RT. By (4.54), there exists O C X open
with K C O and pu(O) < pu(K) + €. As before, Prop. 4.62 yields

< < = - .
feCHC(X) (O_f_l/\ffK 1/\suppf_0>

Then pu(K) < a(f) < p(O) < u(K) + €, proving (4.59), as € € R was arbitrary. A
Claim 3. If O C X is open with p(O) < oo, then O € €.

Proof. Let O C X be open with u(O) < co. Let s € R with s < p(O). Then, by (4.53),
there exists f € C.(X) with 0 < f < 1,supp f C O, and s < a(f). Let K :=supp f. If
W C X is open with K C W, then o(f) < u(W), again by (4.53). Now (4.54) yields
s < a(f) < pu(K). Since K C O and s < u(K), the proof of O € £ is complete. A

Claim 4. Let (Ey)ren be disjoint sequence in £, E := (J, oy Er- Then
pE) = pu(By). (4.60)
k=1

If u(E) < oo, then E € £.
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Proof. We first show that, if Ky,..., Ky C X are disjoint and compact, N € N, K :=
UY,, then

TSED I OE (4.61)

It suffices to consider N = 2, since, then, (4.61) follows by induction. So let N = 2 and
fix e € RT. Due to Prop. 4.62,

3 <0< <1 A =1 A cX K).
e < f< e supp f € X \ K

Moreover, by (4.59),

3 (o< <1, Aglxk=1 A < (K )
e <g< 9k a(g) < p(K) +e

Then fg7 (1 - f)g € CC<X)7 0< fg> (1 - f)g7 (fg) lez 15 ((1 - f)g> fKQE 17 such that
(4.59) and the linearity of o imply

p(Ky) + p(K) < alfg) +alg — fg) = alg) < u(K) + e

As e € RT was arbitrary, we obain u(K7) + pu(Ky) < p(K). Since we already know p
to be o-subadditive, (4.61) is proved. Next, notice that the o-subadditivity of p also
implies (4.60) in the case, where u(E) = oo. In the case, where u(E) < oo, we, again,
fix e € R". For each k € N, since E}, € &, there exists a compact K, C X, K C Ej,
such that

p(Ky) > p(Ey) — 27"

If we now let Hy := Ule K;, then (4.61) implies

k k

W(E) > p(He) = S ulk) > S ulEy) — e

i=1 i=1

As the previous inequality holds for each & € N and each ¢ € R", we have u(E) >
Y e 1(Eg). As the opposite inequality holds due to the o-subadditivity of p, (4.60) is
proved. A

Claim 5. For each F € £ and each € € RT, there exist O, K C X such that O is open,
K is compact, K C E C O, and pu(O\ K) < e.

Proof. Let E € £ and € € R*. From the definition of yx, we optain an open O C X,
E C O, and from the definition of £, we obtain a compact K C FE, satisfying

H(0) = 5 < u(B) < p(K) + 5.
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As O\ K is open, we have O \ K € £ by Cl. 3. Thus, by CL. 3,

u(K) + p(O\ K) = p(0) < p(K) + e,
thereby establishing the case. A
Claim 6. f E,F € &, then E\F e &, FUF €& and ENF €€.

Proof. Let E,F € £ and fix e € RT. According to Cl. 5, there exist Oy, Oy, K, Ky C
X such that Oy, Oy are open, K, Ky are compact, K1y C EF C Oy, Ky C F C 0O,
w(O1\ K1) < e and p(Oy \ K3) < €. Then, since

ENF CO1\ Ky C(O1\ K1) U (K1 \ O2) U (V2 \ K>)
the o-subadditivity of p shows
p(E\F) <e+ pu(K;\ Os) + e (4.62)

As K\ O, is compact, (4.62) and the definition of € show EF'\ F € £&. Then EU F =
(E\F)UFe&byCl.dand ENF=FE\(E\F) € as well. A

Claim 7. M is a o-algebra and B C M.

Proof. Let K C X be compact. Suppose A € M. Then ANK € £ and AN K =
K\ (ANK) € & by CL 6. Thus, A° € M by the definition of M. Now let (Ax)ren be
a sequence in M and A := UkeN Ap. Set By .= A; N K and

k-1
¥, Bri= (Ax N K)\ L_Jl E;.
Then, CL 6, (By)ren is a disjoint sequence in &£, implying AN K = (J, .y Ex € € by CL
4. Thus, A € M by the definition of M. Now let C' C X be closed. Then C N K € &,

since C'N K is compact. As B is generated by the closed subsets of X, we obtain B C M
and the claim is proved. A

Claim 8. We have &€ = {F € M : u(E) < co}.

Proof. Denote F :={F € M : u(F) < oo} Let E € £. Then u(E) < oo and, if K C X
is compact, then £ N K € &, showing F € F. Conversely, let £ € M with u(FE) < oo
and fix e € RT. Since p(E) < oo, there exists an open set O C X such that £ C O.
Since O € &, there exists a compact set K C O with pu(O \ K) < e. Moreover, since
ENK €&, there exists a compact set H C E N K with

p(ENK) < u(H)+e
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Thus, we use £ C (ENK)U (O \ K) to obtain
n(E) < W(ENK)+ p(O\ K) < p(H) + 2,
showing F € £ as desired. A

Claim 9. ulaq is a locally finite complete measure.

Proof. To see that p [ is a measure, one merely observes that u is o-additive on M
as a consequence of Claims 4 and 8. Moreover, for each x € X, {z} is compact, i.e.
il is locally finite as a consequence of Cl. 2 and (4.54). To see that u[ is complete,
let A € M with pu(A) = 0 and £ C A. Then pu(F) = 0 and also A € £ by ClL 8.
Since 0 = pu(E) = sup{u(K) : K C FE, K compact, we have £ € & C M, proving
completeness. A

Claim 10. p satisfies (4.51), i.e.

v a<f>=/deu.

feCe(X)

Proof. Let f € C.(X). As f =Re f +iIm f, it suffices to prove (4.51) for R-valued f.
Next, we observe it suffices to show

a(f) < /X fdu (4.63)

feC(XR)

If (4.63) holds, then

feC(X,R)

—a(f)za(—f>s/X<—f>du =—/deu,

showing (4.63) to imply (4.51). It remains to prove (4.63). Let f € C.(X,R), K :=
supp f. As f is continuous, f(X) = f(K) U {0} is compact. In particular, there exist
a,b € R such that a < b and f(X) C [a,b]. Fix e € RT. Now choose s, s1,...,5, € R,
n € N, such that

sp<a<s<---<S,=b A W S; — Si_1 < €: (4.64)

If6:=(b—a)/(e/2) ¢ N, then let n:= min{i € N: b—i(¢/2) < a} and sy := b—n(e/2).
If 6 € N, then v := (b —a)/(¢/v2) ¢ N (otherwise, v/2 = 2v/5 € Q). In this case, let
n:=min{i € N: b—i(e/v2) < a} and sy := b — n(e/+/2). Next, define

v E,=Kn{reX: s_<f(x)<s}
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and observe that each F; € B due to the continuity of f. Moreover, Fi,..., E, are,
clearly, disjoint with K = |J;_, E;. Since each E; € &, there exist open sets Oy, ..., 0, C
X, satisfying

v (E CO;C (=008 +e) A uO:) < u(E)+ %) (4.65)

As the Oy, ...,0Opn cover K, we can apply Th. F.1 to obtain a corresponding partition
of unity, i.e. ¢1,...,pn € Ce(X) such that

v (OS i <1 A su iQOi>7 i =1,
N @ pp ¢ <;so>h<

implying f = >"  (¢if). From CL 2, we obtain

n

WK) <a (Z 901‘) => a(p). (4.66)

=1

Next, we observe that (4.64) and (4.65) imply

i (apifﬁ(smte)goi A si—e<si_1<f[Ei), (4.67)

and, using the monotonicity of «, we estimate

of) = Y S Ylitaale)

— Z(|a\ + s; +€) a(p;) —Z|a|0‘(%’>

i=1 i=1

(4.53),(4.66)

< ;ﬂa\ + i+ €) W(0;) — |a| n(K)
e é(m\ i) (B + ) = lal ()
- Z( — O ulE) + 2e (i) + < ﬁ;w bt
e /X J i+ e(20(K) + la] + b+ €). (4.68)

As e € R was arbitrary, (4.68) proves (4.63) and the claim. A
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Now (i) holds by CL. 2, (ii) (with B replaced by M) holds by (4.54), (iii) (with B replaced
by M) holds by CL. 8, and p satisfies (4.51) by CL. 9. Since B C M and pu[ 4 is complete,
A C M, concluding the proof. [ |

Corollary 4.64. Let the topological space (X,T) be locally compact and Ty. Moreover,
let a: C.(X) — K be a positive linear functional. Then o is continuous with respect
to ||+ ||ee on Co(X) if, and only if, the measure u, representing o and given by Th. 4.63,
is finite. Moreover, in that case, |a|| = u(X).

Proof. If y is finite, then

(4.51)
\vd =
recle, 1

L/mﬁs/mwswmmm,
X X

implying « to be continuous with ||| < p(X). On the other hand, if « is continuous,
then

ey D= Nl 1 Nl

Let K C X be compact. Due to Prop. 4.62,

= <0§fK§1/\foK51>-

freCe(X)
Then
(4.51)
Mm=/mw§/hmc:MMSMMM®ﬂw,
X X
implying
p(X) " = sup {u(K) : K € X, K compact} < |,

showing p to be finite and, in combination with ||a|] < u(X) from above, |af =

w(X). [ |

Corollary 4.65. Let the topological space (K,T) be compact and Ty. Moreover, let
a: C(K) — K be a positive linear functional.

(a) Then the measure u, representing o and given by Th. 4.63, is finite and satisfies

AEA u(A) = inf{u(0): AC O, O open}, (4.69a)
Y w(A) =sup{u(H): HC A, H compact}, (4.69Db)

where, as in Th. 4.63, (X, A, u) is the completion of (X, B, ).

(b) « is continuous.
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Proof. If (K,T) is compact, then it is locally compact and Th. 4.63 applies, yielding
the measure pu, representing o. Then g is finite by Th. 4.63(i). In consequence, « is
continuous by Cor. 4.64, proving (b). Moreover, (4.69a) is the same as Th. 4.63(ii), and
(4.69Db) is implied by Th. 4.63(iii), thereby proving (a). [ |

While Th. 4.63 and Cor. 4.64 provided representations of positive (resp. continuous
positive) linear functionals on C.(X) for X being a compact T5 space, one would also
like to obtain representations for continuous linear functionals that are not necessarily
positive (i.e. a representation of the dual of (Ce(X), | - |loo))- It turns out we can build
on Th. 4.63 and Cor. 4.64 to achieve the desired representation in the following Th.
4.76. First, we still need some preparations:

Proposition 4.66. Let (X,.A) be a measurable space and let p,v : A — [0,00] be
positive measures. If p < v and f: X — K is v-integrable, then it is p-integrable.

Proof. Let f: X — K be v-integrable. If A € A and f = x4, then [, fdu = p(A) <
v(A) = fX fdv < oo, showing f to be p-integrable. Thus, the assertion also holds if f
is a nonnegative simple function. If f is an arbitrary v-integrable nonnegative function,
then let (¢ )reny be an increasing sequence of v-integrable nonnegative simple functions
with ¢ T f. Then, by the monotone convergence theorem,

/fdu:hm/@dug lim/gbkduz/fdl/<oo,
X k—oo [ x k—oo [x X

showing f to be u-integrable also in this case. Finally, if f is an arbitrary v-integrable
function, then |f| is v-integrable, implying | f| to be p-integrable, which, in turn, implies
f to be p-integrable. |

Remark 4.67. (a) Let (X,.A, ) be a signed measure space, where |u| denotes the
total variation of p. From Def. and Rem. 4.47(a), we recall the decomposition
l| = p™ + p~, where the positive measures put, u~ were also defined in Def. and
Rem. 4.47(a). Thus, if f: X — K is |u|-integrable, then Prop. 4.66 implies f to
be pu*-integrable and g~ -integrable.

(b) Let (X,A,u) be a complex measure space. Since, for each z € C, one has the
estimate max{|Rez|,|Imz|} < |z|, Def. 4.42 implies, for the total variations,
max{|Re ul, [ Im p|} < |u|. Thus, if f: X — K is |u|-integrable, then (a) and
Prop. 4.66 imply f to be (Repu)*-, (Rep) -, (Im p)*-, and (Im p)~-integrable.

Given a complex measure p, recall the decomposition

p=Reu)" — (Rep)” +i((Imp)" — (Imp)7).
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from Def. and Rem. 4.47(b). This gives rise to the following definition:

Definition 4.68. Let (X, A, 1) be a complex measure space. For each f € L£'(|ul),
define the integral

/fdu—/deeu /deeu (/fdlmu /fdlmu )

where all integrals in this definition are well-defined by Rem. 4.67(b)

Proposition 4.69. Let (X, A, u) be a complex measure space.

(a) The integral, as defined in Def. 4.68, is linear on L'(|u|).

v a </ dlul.
e \ /X Fau| < [ 1f1d

Note: Using the Radon-Nikodym theorem, one can even show the above inequality
to hold for each f € L*(Ju|) (cf. [Rud87, Th. 6.12, Eq. 6.18(1)]). In the following,
we will only need the inequality for f € L>(|p|), which allows a more elementary

proof.

(b) One has

Proof. (a): One computes, for each s € K, f € C.(X),

[ stdu=s [ ramen —s/fd(Reu)‘
e
ZS/deu

and, for each f,g € C.(X),

/X(f+g)du =/X<f+g>d<Reu>+ —/X(f+g)d(Reu)‘

vi ([ aamn - [+ g amp)

—/fdu+/gdu7
X X

proving the linearity of the integral.
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(b): Let A € A. Then

[ xadi = (Re)*(4) = (Rep)(4) 4 (m o) (4) = (1m )(4)) = (),

148

Thus, if f = S0 Aixa, N €N, with Ay,..., Ay € C and A;,..., Ay € A disjoint,

then

(a) N N
Fap| < el < X Pellaltan) = [ 171l
X — X

k=1

proving (b) to hold for each simple function f € S(|u|). Now let f € L>(Ju|) be
arbitrary. Then, by [Phil7, Th. 1.90], there exists a sequence (¢x)ren in S(|u|) that
satisfies ||dk|lo < ||f]|oo for each k € N and converges pointwise (and even uniformly)

to f. Thus, the dominated convergence theorem applies, yielding

/fdu‘z k}im/mdu‘é i [ Jouldlul = [ 17lalal,
X —oo Jx k—o00 X X

completing the proof of (b).

Proposition 4.70. Let (X,.A) be a measurable space.

(a) If p,v are complex measures on (X,.A), then

v /d+u=/d+/dy.
feLt(juhnLt (lv)) xf et v) Xf : Xf

(b) If uis a complex measure on (X, A) and s € C, then

d(sp) =s d
feﬁl(lul /f M /f -

Proof. (a): It is an exercise to prove the case, where pu, v are positive measures.

N=p+v, feLlL|u])nL(|v|). If u,v are signed measures, then
N +p +v =pt+vh 4\

and, thus, the case of positive measures yields

/){fd/\++/)(fdu_+/)(de_:/)<fdu++/dev—i——F/de)\_

Let
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and
[ rawew = [ rax= [ gav— [ gax
[ rawt e [ par = [ pae = [ gar = [ rans [ e

The case of general complex measures now also follows, since Re A = Re t + Rev and
ImA=Imp+Imv.

(b): First, we consider the case, where p is a positive measure, s € Rj: If A € A, then

/XXAd(SM) :SM(A):S/XXAdM-

Thus, as the integral is linear, the claimed equality holds for each simple function f €
ST(A). If f is nonnegative and measurable, then there exists a sequence (fi)ren in
ST(A) with fi, 1 f, implying

/de(su) :lcli—{go/xf’“d(sﬂ) :Sgifglo/)(fkdu Zs/)(fdu.

The general case of f € £!(x) now also follows, since

f=@Ref)" —Ref)” +i(Imf)" —(Imf)).

Now let u be a general complex measure, f € L'(|u|). If s € R], then

/fdsu /deesu /dees,u
+z(/fd1msM /fdlmsp )
/fds Re ) /fds Re )™
+z(/fdslmu /fdslmu )
:3/deu.

The case s = —1 is obtained from

/de( /deep /dee,u
([ o)
_/deﬂ.
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Since tp = 2 Re p — Im pu, the case s = i is obtained from

/fdw (/dee,u /deeu >
()
=z'/deu,

completing the proof. [ |

In the following Def. 4.71, we define so-called reqular Borel measures. As a caveat, it is
pointed out that one finds several variations of this definition in the literature, so one
should always verify what precisely is meant by a regular Borel measure in any given
text.

Definition 4.71. Let (X,7) be a Ty topological space and let (X,.A, 1) be a Borel
measure space (positive or complex).

(a) If p is positive, then p is called outer regular if, and only if,

=1 : AC .
AzA w(A) = inf{u(O): AC O, O open}

If ;v is complex, then pu is called outer regular if, and only if, each of the positive
measures (Re )™, (Rep)™, (Imp)*, (Im p)~ is outer regular.

(b) If p is positive, then p is called inner regular if, and only if, u(K) < oo for each
compact K C X and

Y pu(A) =sup{pu(K): K C A, K compact}.
€

If 1 is complex, then p is called inner regular if, and only if, each of the positive
measures (Re )™, (Rep)™, (Imp)*, (Im p)~ is inner regular.

(c) pis called regular if, and only if, p is both inner and outer regular.

Moreover, let Mk (X, A) denote the set of all K-valued regular measures on \A.

Example 4.72. (a) Let n € N. If A € £" (i.e. if A C R” is Lebesgue-measurable),
then (A, L£" \") is a regular Borel measure due to [Phil7, Th. 1.61(a)] (also cf.
[Phil7, Ex. 1.59]).
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(b) Let (X,7) be a T topological space and a € X. Then the Dirac measure

1 ifa€A,

do : P(X) — {0,1}, d,(A) = {O fadA

is a regular Borel measure: Let A C X. Then

1 =10.({a}) = du(X) ifac4,
0a(A) == {0 _ (5a<@) =0,(X\{a}) ifaé¢A,

where {a}, () are compact and X, X \ {a} are open, showing 4, to be regular.
Proposition 4.73. Let (X, T) be a Ty topological space.
(a) If (X, A, ) is a complex Borel measure space, then p is reqular if, and only if, for

each A € A and for each e € R, there exist K,O C X, where K is compact, O is
open, K CACO, and |p|(O\ K) <e.

(b) If (X, A) is a measurable space with B C A, then Mg (X, A) is a vector subspace
of the normed vector space Mg (X, A) over K.

Proof. (a): Suppose p is regular. Let A € A and € € RT. First, assume pu to be positive,
i.e. p = |p|. By the regularity of u, there exist K,O C X, where K is compact, O is
open, K CACO, u(O\ A) <5, and u(A\ K) < §. Then

O\ K) = p(O\A) + p(A\K) < S+ 5 =,

as desired. If p is K-valued, then the positive measures p; := (Rep)™t, po := (Rep)™,
pz = (Im p) ™, py := (Im p)~ are all regular. For each k € {1,...,4}, choose K}, Oy C
X, where Kj, is compact, Oy is open, K € A C Oy, and (O \ Ki) < {. Let
K = U;‘;Zl Ky, O := ﬂi:l Og. Then K is compact, O is open, K C A C O, and

k
lu|(O\ K) < kZ:: H(O\ K) <4Z:

as desired. For the converse, assume pu to satisfy the condition of (a). Let A € A and
set

M :=inf{|u|(O): AC O, O open}, m :=sup{|u/(K): K C A, K compact}.

The condition of (a), clearly, implies m = M. Since m < |u|(A) < M, this yields m =
|| (A) = M, showing |u| to be regular. Now let v € {(Re p)™, (Re )™, (Tm o)t (Im 1)~ }.



4 DUALITY, REPRESENTATION THEOREMS 152

Then v = |v| < |p| (cf. Rem. 4.67(b)). Thus, if A € A, ¢ € R and K, O are given
according to the condition of (a), then v(O \ K) < |u|(O \ K) < e. Thus, by what we
have already shown above, v is regular, showing p to be regular as well.

(b): Clearly, 0 € Mg, (X, A). Let pu, v € Mg,(X,.A). We have to show p+v is regular.
Let A € A and ¢ € RY. As p,v are regular, by (a), there exist K,, K,,0,,0, C
X, where K, K, are compact, O,,0, are open, K, € A C O,, K, € A C O,,
1O\ Kp) < 5, and [v|(O,\ K,) < §. Let K := K, UK,, O:=0,N0,. Then K is
compact, O is open, K C A C O, and

i+ vI(O\K) < ul(O\K) + MO\ K) < 5 +5 =€

showing 1 + v to be regular by (a). Now let 0 # s € K and let A, €, u be as before.
This time, choose K,O C X, where K is compact, O is open, K C A C O, and
lp[(O\ K) < &. Then

€
Isl

[spl(O\ K) = [s]|pl(O\ K) < s]

€
p— E,
5]

showing sy to be regular and completing the proof. |

Example 4.74. Let (X,7) be a T topological space and let (X,.A, u) be a Borel
measure with g being K-valued. As C.(X) C £!(|u|) by Lem. 4.60(b) and we can define

a,: C(X) — K, a,f) = /de,u. (4.70)

Then, by Prop. 4.69(a),(b) c, constitutes a continuous linear functional on the normed
space (Ce(X), || - [|o), where

()] =

/fdu‘ S/ 1 dlul < A lloe [l (X) = {[.f lloo [l
X X

v
feLee(lu)

shows
vl < [l a]- (4.71)

Proposition 4.75. Let (X,T) be a topological space.

(a) Let o : (C(X,R), || - |[w) — R be linear and continuous. Then there exists a
unique decomposition

a=at —a (4.72)

of a into positive linear maps o™, o~ : Co(X,R) — R that is minimal in the sense

that, for each decomposition o = —- with positive linear maps 3,7 : Ce(X,R) —

R, the map  — a™ = ~v — a~ is positive. Moreover, o™, a~ are then continuous

and

v at(f) =sup{a(h): he CFH(X,R),0< h < f}. (4.73)
feCcH(XR)
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(b) Let a : (Co(X,C), || - |oo) —> C be linear and continuous. Then there exists a
unique decomposition
a=a"—a +i(at—a") (4.74)
of a into positive linear maps a™,a”,a",a” : C(X,C) — C that is minimal in
the sense that, for each decomposztzon a=p—-v+1 (B ) with positive lznear
maps B,7, 5,7 : Co(X,C) — C, the maps B—at =y—a~ and f—at =5 —a~
are positive. Moreover, o, a~ a*, &~ are then all continuous.

Proof. (a): Uniqueness: If the decompositions « = a™ — o~ and o = v — (8 of « into
positive linear maps a™,a~, 3,7 : C.(X,R) — R are both minimal in the stated sense,
then f —a®™ =~ —a~ is positive as well as (—f —a™) = —(y—a~). Thus, § = a™ and
v = a~ by Rem. 4.58(b). Existence: For f € CF(X,R), we define at by (4.73) and note
0 <af(f) <oo: a(0) =0 yields a™(f) > 0, whereas a™(f) < oo, since the continuous
linear map a maps the bounded set {a(h) : h € CFH(X,R), 0 < h < f} C Byy..(0) into
a bounded set. Next, we show

v at(f+g)=a"(f) +a"(g): (4.75)
f,9€CE (X,R)

Let f,g € CHX,R). If hy,h, € CHX,R) with 0 < hy < f and 0 < hy, < g, then
hy+ hy € CHX,R) with 0 < hy + hy, < f 4 g. Thus, a(hy) + alhy) = alhs + hy) <
a®(f + g), showing a™(f) + at(g) < a™(f + g). To show the opposite inequality, let
h € CHX,R) with 0 < h < f+ g. Define hy := (h — g)*, hy := min(h, g). Then
hy,h, € CF(X,R) with

Oghfgf A Oghggg N hf—i-hgzh.

Thus, a(h) = alhy) +alhy) < a™(f) +a™(g), showing o™ (f +g) < a™(f) +a(g) and
proving (4.75). Moreover, we also have

v v at(sf)=sat(f): (4.76)

seRy  feCd(X,R)
For s = 0, there is nothing to prove. If s € RT and f € CF(X,R), then

at(sf) =sup{a(h): he CHX,R),0<h <sf}
= sup{a(h) : h c CHX,R),0< s 'h < f}
= ssupfa(s™'h): he CH(X,R),0< s 'h < f}
— ssupla(h) : he CHX,R), 0< h < f} = sa*()),
proving (4.76). Now we can extend ot to C.(X,R) by defining

at: C(X,R) — R, af(f)=a"(f")—a’(f). (4.77)
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We claim at to be positive, linear, and continuous: As positivity was built into the
definition of a*, we proceed to show linearity. Let f,g € C.(X,R), h:= f + g. Then

t+f+g =f"4+g"+h,
such that (4.75) implies
a"(h)+a™(f7)+at(g7) =a"(f7) +a"(g") +a"(h7),
that means
a'(f+g)=a’(h)=a"(h") —a"(h7)=a"(f") +a’(¢g") —a"(f ) —a'(g)
=a’(f) +a"(g).
If s € R}, then

_|_

«

at(sf) = at(sfr) —at(sf7) L sat (1) —sat(f7) = sat(f).
As also
ot (=f) = ¥ (f) — at(f*) = —a*(f),

the linearity proof for a™ is complete. Still considering f € C.(X,R), we now estimate

(4.73)
e (Nl <o () +a™(f7) < 2alllflle
showing a* to be bounded and, thus, continuous. If we now let
a : C(X,R) — R, a =a'—aq,

then the validity of (4.72) is clear as well as the linearity and continuity of a~. If
f € CH(X,R), then, by (4.73), a*(f) = a(f), implying a~ (f) = a*(f) — a(f) = 0,
verifying o~ to be positive. It remains to show the minimality of the decomposition: Let
a = [ — ~y with positive linear maps 3,7 : C.(X,R) — R. Consider f,h € C.(X,R)
with 0 < h < f. Then B(f) > B(h) > a(h). Thus, (4.73) implies B(f) > at(f),

showing f — a™ = v — a~ to be positive.

(b): By Lem. 3.2, « satisfies
a(f) =Rea(f) —i Rea(if),

feC.(X,C)

where Rea is R-linear and continuous. By (a), there exists a unique decomposition
(Rea)lc.(xm= (Rea)” —(Rea)” of Re « into positive R-linear maps (Rea)*, (Rea)™ :
C.(X,R) — R that is minimal in the sense of (a). If we define

Ima: C(X,C) — R, Ima(f):=—Realif),
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then there also exists a unique decomposition (Im )¢, (xr)= (Ima)* —(Im o)~ of Im «
into positive R-linear maps (Ima)™, (Ima)™ : C.(X,R) — R that is minimal in the
sense of (a). Uniqueness: If we have a decomposition of o according to (4.74) that
is minimal in the stated sense, then a™ — o~ is a minimal decomposition of Re o and
at —a~ is a minimal decomposition of Im «, such that the uniqueness follows from the

uniqueness statement of (a). Existence: Define

a’: Co(X,C) — a’(f) = (Rea)"(Re f) +i(Rea)"(Im f),
a”: Ce(X,C) — a”(f) = (Rea)”(Re f) +i(Rea)” (Im f),
at: C(X,C) — at(f):==Ima)"(Re f) +i(Ima)"(Im f),
a : C(X,C) — a (f)=(Ima) (Ref)+i(Ima) (Im f)

Then at, a~, @™, @~ are C-linear: Let f,g € C.(X,C) and r, s € R. Then

at(f+9)=Rea) (Ref +Reg) +i(Rea)" (Im f +Img)
= (Rea)*(Re f) +i(Rea)"(Im f) + (Rea)" (Reg) + i (Rea)™ (Im g)

=a'(f)+a’(g)

as well as

at((r+is)f) = (Rea)"(rRef —sIm f) +i(Rea)" (rIm f + sRe f)
=r(Rea)"(Re f) — s(Rea)™(Im f)
+i(r(Rea)™(Im f) + s(Rea) " (Re f))
= (r+is)a™(f),

showing a™ to be C-linear. Analogously, the C-linearity of o=, a*, @~ follows. The
positivity of ™, @, &, &~ is an immediate consequence of the positivity of (Rea)™,
(Rea)”, (Ima)™, (Ima)~, respectively. Likewise, the continuity of a™, o=, at, a~
is an immediate consequence of the continuity of (Rea)™, (Rea)”, (Ima)*, (Ima)™,
respectively. For each f € C.(X,R), we compute

alf) =Rea(f) —1 Re&(z'f)
= (Rea)™(f) = (Rea)™(f) +i ((Ima)™(f) — (Ima)~(f))
=a*(f) —a~(f) +i(a"(f) —a~(f)),
proving (4.74) on C.(X,R). However, as both sides of the above equality are C-linear,
(4.74) then also holds on C.(X,C). Finally, the claimed minimality of the decomposi-

tion (4.74) follows from (Rea)™ — (Rea)™ being a minimal decomposition of Re v and
(Ima)™ — (Im @)~ being a minimal decomposition of Tm a. [ |
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Theorem 4.76 (Riesz Representation Theorem). Let the topological space (X, T) be
locally compact and Ty, B := o(T). Consider the map

@ Mg (X, B) — (Ce(X)), o) == oy, (4.78)

where a, is as in (4.70). Then ¢ is a (linear) isometric isomorphism (in particular,
My (X, B) is a Banach space).

Proof. From Ex. 4.74, we know ¢ to be well-defined; its linearity is a consequence
of Prop. 4.70. We verify surjectivity next: Let a € (C.(X)). According to Prop.
4.75, v can be written as a linear combination of positive continuous K-valued linear
functionals a; € (C.(X))" (in the form (4.72) or in the form (4.74)). For each «;, the
Riesz representation Th. 4.63 yields a positive Borel measure ji; such that a; = «y,.
Moreover, the p; are finite by Cor. 4.64 and, thus, regular, by Th. 4.63(ii),(iii). In
consequence, j; € Mg, (X,B) with ¢(u;) = a,, = a;. As ¢ is linear, this proves
surjectivity. Thus, it merely remains to prove that ¢ is isometric (which, as usual, then
also yields ¢ to be injective as well as the continuity of ¢ and ™ '). Let u € Mg (X, B).
While Ex. 4.74 already yields ||¢(p)|| < ||ll, it remains to show the opposite inequality.
To this end, fix e € RT. By the definition of |u|, there exist disjoint sets Ay, ..., A, € B,
n € N, such that

Do (AR > pl(X) = e = [|u]| — e

As pis regular, |u| is regular and there exist compact sets K7, ..., K, such that K; C Ay
and

> u(ER)| > ]| — 2e.

k=1
Moreover, as a consequence of Prop. 2.5(a), there exist disjoint open sets Oy, ...,0, C X

with K} C Og. Due to Prop. 4.73(a), we see we can even choose the disjoint open sets
O4,...,0, C X such that they also satisfy

VoIl G <

with compact sets C, .. ., C,, such that Kj, C Cy C Ay and still Y7 |p(Cy)| > || pl] —2¢
(by possibly making the original Oy, ..., O, smaller). We now use Prop. 4.62 to conclude

\4 3 <0§fk§1 A frle,=1 /\SUppfkgOk>-

Define

MG _ N
f._zu(ok”fk, Lo={ke{l,....n}: u(Cy) #0}.
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As the Oy are disjoint, we have || f]/s < 1. Due to

ki:/okfdu —‘/deu—i/ok\ckfdu

one estimates

Prop. 4.69(b)
<

/deu'+k§n;/0k\ck £l dlu]

o(a)(f)] = /deu‘ >

;/Ckfdu ‘;/Ok\ok'f‘d’“'

C n
> ‘M(Tk)du =3 Ju(C) — e > [lul) - 3e.
kel, J Cr 1(Cy)| —1

v

As e € RT was arbitrary, this shows ||¢(u)|| > ||p]| and concludes the proof. [ |

Corollary 4.77. Let the topological space (K, T) be compact and Ty, B := o(T). Then

the map
¢ Mia(K,B) — (C(K)), () = a

where a,, is as in (4.70), constitutes a (linear) isometric isomorphism (in particular,
My (K, B) is a Banach space).

Proof. Since (K,T) is compact, C.(K) = C(K), and the corollary is merely a special
case of Th. 4.76. [ |

Corollary 4.78. Let a,b € R, a < b. Let (fi)ren be a bounded sequence in (Cla,b], |- ||)-
Then the following statements are equivalent:

(1) (fx)ken converges weakly to 0.
(i) (fx)ren converges pointwise to 0.
Proof. “(i)=-(ii)”: If fr — 0, then

N li =0.
ae(Cla,b])’ kl—>néolo a(fk)

Thus, as [a,b] is a compact 15 space, Cor. 4.77 implies

lim frdpw =0. (4.79)

IJ‘GMK,r([avaBl) k—oc0 [a7b]
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According to Ex. 4.72(b), §; € My ([a,b], B) for each t € [a, ], implying

b O =00 e =0

i.e. fr, = 0 pointwise (note that we did not actually used the boundedness of the sequence
for this direction).

“(ii)=-(i)": As [a, b] is a compact T space, fr — 0 is actually equivalent to (4.79). Thus,
it remains to show that f; — 0 pointwise implies (4.79). Let u € Mg ,([a,b], B') Since
(fr)ren is bounded, there exists M € R{ such that, for each k¥ € N, |fy] < g = M,
where ¢ is |u|-integrable, since || is finite. Thus, if f — 0 pointwise, then (4.79) holds
by the dominated convergence theorem. |

A Exhaustion by Compact Sets

Definition A.1. Let (X, 7) be a topological space, A C X. Let (K;);en be a sequence
of compact subsets of A. Then this sequence is called an exhaustion by compact sets of
A if, and only if, it satisfies the following two conditions:

A= JK, (A.1a)
€N
YK CK, (A.1D)

(where (A.1b) says that K; lies in the interior of K;,1).

Theorem A.2. Let n € N, and let O C K" be open. Then there exists an exhaustion
by compact sets of O.

Proof. If O = K", then the closed balls (B;(0));en (with respect to some fixed norm,

e.g., || - |l2), clearly, form an exhaustion by compact sets of O. If O # K", then the
function
d: O —R{, d(z):=dist(z, 0%, (A.2)
is well-defined and continuous (cf. [Phil6b, Ex. 2.6(b)]). Define
_ 7 ~1(11
iEVN K; = B;(0)nd ' ([3, 00[). (A.3)

Then (K;);en is a sequence of compact subsets of O. We show the sequence to be an
exhaustion by compact sets of O: If x € O, then it is immediate that there exists
iy € N such that z € B;,(0). Since O is open, there also exists i € N such that
red! ([%, 00[). Thus = € Kyaxfirip}, showing (A.1a) to hold (with A replaced by O).
If z € K;, i € N, then dist(z,0) < ¢+ 1 and dist(z, O°) > H%, showing x € K7, ;. Thus,
(A.1b) holds, completing the proof. [ |
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B Interchanging Derivatives with Pointwise Limits

While interchanging derivatives with pointwise limits is not always admissible, it does
work if the derivatives converge uniformly:

Theorem B.1. Leta,b € R, a <b. Foreachn € N, let f,, : [a,b] — K be continuously
differentiable. Let f : [a,b] — K and assume f,, — f pointwise in [a,b]. If there ezists
g : la,b] — K such that f! — g uniformly in [a,b], then f is continuously differentiable
with f' =g, i.e.

Vo) = (i f) (@) = lim £ () = g(a) (B.1)

z€a,b] n—00

Proof. Since the f) are continuous, the uniform convergence to g implies g to be con-
tinuous, and we can compute, for each x € [a, b],

[Phil6a, Th. 10.20

N tim (fu(@) = fula)

n—oo

/g(t)dt [Phil7, Prop. G.4] im () dt

n—oo

= f(x) = f(a). (B.2)

Since g is continuous, [Phil6a, Th. 10.20(a)] implies the left-hand side of (B.2) to be
differentiable with respect to z with derivative g. In consequence, (B.2) implies f to be
differentiable with f’ = ¢ as desired. [ |

C Weierstrass Approximation Theorem

Theorem C.1 (Weierstrass Approximation Theorem). Let a,b € R with a < b. For
each continuous function f € Cla,b] and each € > 0, there exists a polynomial p : R —
R such that ||f — pliay llso < €, where pliap denotes the restriction of p to [a,b].

Theorem C.1 will be a corollary of the fact that the Bernstein polynomials corresponding
to f € C|0,1] (see Def. C.2) converge uniformly to f on [0, 1] (see Th. C.3 below).

Definition C.2. Given f : [0,1] — R, define the Bernstein polynomials B, f corre-
sponding to f by

Bof: R—R, (Bf)(z):= i f (%) (Z) 2/(1—2)"" foreachn € N. (C.1)
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Theorem C.3. For each f € C|0,1], the sequence of Bernstein polynomials (B, f)nen
corresponding to f according to Def. C.2 converges uniformly to f on [0,1], i.e

T (L f = (Buf) T lleo = 0. (C.2)
Proof. We begin by noting
(B.f)(0) = f(0) and (B,f)(1)= f(1) foreach n € N. (C.3)
For each n € N and v € {0,...,n}, we introduce the abbreviation
Gnv () = (Z) /(1 —x)" . (CA4)
Then
1= (z+(1-2) qu, for each n € N (C.5)
implies
F@) = (B.0)@) = 3 (£@) = £ (£)) o) Tor cach € 0.1, n e,
V=0
and

¢uv(z) foreach z €[0,1],neN.  (C.6)

() - Z\f (%)

As f is continuous on the compact interval [0, 1], it is uniformly continuous, i.e. for each
e > 0, there exists ¢ > 0 such that, for each z € [0,1], n € N, v € {0,...,n}:

14 €

‘x—%‘<5 = ‘f(a:)—f(5>)<§. (C.7)

For the moment, we fix € [0, 1] and n € N and define
v

Ny = {UE{O,...,n}: ‘x——‘<(5},
n

Ny = {UE{O,...,n}: ‘x—z‘25}.
n

Then

HOESDBIMOEED SIMOET NN
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and with M := || f||s,

S [ -1 () ol E )

= Sl

2
vEN2 vEN, J
2M 2
To compute the sum on the right-hand side of (C.9), observe
2 2
(:c — Z) —? 2l <Z) (C.10)
n n n
and
n n o 1
v=0 v=1
as well as
- n v n—v (Y 2 _Z - n—1 v—1 (n—1)—(v—1) Z
;()x(l—x) (ﬁ) —ﬁ;(y—l)(y_l)x (1— 1) -
2 " /n—2
_ -1 v—2 1 — (n—2)—(v—2)
m-n Y (1T5) e 2
1
= 22 (1——>+f:x2+5(1—x). (C.12)
n n n

Thus, we obtain

" 2
Z anx(ﬂi) (:c — Z) (C.10),(C.5)éc.11),(c.12) I S z (1 B :1:)
n n

1
< — foreach z € [0,1], n € N,
4n
and together with (C.9):
2M 1 € M
VeZ‘f ( )qnu()§?R<§ foreach:ce[(),l]n>57 (C.13)
Combining (C.6), (C.8), and (C.13) yields
€ € M
‘f(x)—(an)(x)‘<§+§:e foreachxe[o,l],n>ﬁ,

proving the claimed uniform convergence. ]
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Proof of Th. C.1. Define

01 [a.b] — 0.1, o) = 5.

o' [0,1] — [a,b], ¢ '(z):=(b—a)r+a.

Given € > 0, and letting

g:[0,1] — R, g(z):=f(¢"(2)),

Th. C.3 provides a polynomial ¢ : R — R such that ||g — ¢[jo1] || < €. Defining

p:R—R, px):=q(s(x)) =q <z:z>

(having extended ¢ in the obvious way) yields a polynomial p such that

(@) = p(@)] = |9(¢(x)) — a(é(2))| < € for each x € [a, ]

as needed. [ |

D Topological Invariants

[Phil6b, Prop. D.7] already provides several topological invariants (i.e. properties pre-
served under homeomorphisms). The following Prop. D.1 provides additional topological
invariants relevant to the present class:

Proposition D.1. Let (X, Tx) and (Y, Ty) be topological spaces, let f: X — Y be a
homeomorphism, A C X.

(a) (X, Tx) is locally compact if, and only if, (Y, Ty) is locally compact.

(b) A is nowhere dense (resp. of the first category, resp. of the second category) in X
if, and only if, f(A) is nowhere dense (resp. of the first category, resp. of the second
category) in'Y.

Proof. We will make use of the topological invariants already proved in [Phil6b, Prop.
D.7]. Since f is a homeomorphism if, and only if, f~! is a homeomorphism, it always
suffices to prove one direction of the claimed equivalences.

(a): If (X, Tx) is locally compact and = € X, then there exists a compact C' € U(x).
Then f(C) is a compact neighborhood of f(x), showing (Y, Ty) to be locally compact.
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(b): If A is nowhere dense, then (A)° = (), implying

(7)) = (r(4)) = 1(cAr) = rw) =0,

showing f(A) to be nowhere dense. If A is of the first category, then A = J;—, Ay
with nowhere dense sets Ay, k € N. Then f(A4) = U,—, f(Ax) with f(A;) nowhere
dense, showing f(A) to be of the first category. If A is of the second category, then A is
not of the first category, i.e. f(A) is not of the first category, i.e. f(A) is of the second
category. |

E Orthogonalization

Theorem E.1 (Gram-Schmidt Orthogonalization). Let (X, (-,-)) be an inner product

space with induced norm || - ||. Let xq,x1,... be a finite or infinite sequence of vectors
i X. Define vy, vy, ... recursively as follows:
n—1 <LE v >
Vo 1= To,  Up = Ty — Z L’;vk (E.1)
2 o]
vk#(’]

for each n € N, additionally assuming that n is less than or equal to the maz index of
the sequence xg,x1,... if the sequence is finite. Then the sequence vy, vy, ... constitutes
an orthogonal system. Of course, by omitting the vy, = 0 and by dividing each v, # 0 by
its norm, one can also obtain an orthonormal system (nonempty if at least one vy # 0).
Moreover, v, = 0 if, and only if, z, € span{xg, ..., T, 1}. In particular, if the xg,x1, . ..
are all linearly independent, then so are the vy, vy, . ...

Proof. We show by induction on n, that, for each 0 < m < n, v, L v,. For n =0,
there is nothing to show. Thus, let n > 0 and 0 < m < n. By induction, (vg, v,,) =0
for each 0 < k,m < n such that k& # m. For v, =0, (v, v;,) = 0 is clear. Otherwise,

(Un, U) = <xn — i ka, vm> = (Tp, V) — M (U, V) = 0,

[[om 2

thereby establishing the case. So we know that vy, vy,... constitutes an orthogonal
system. Next, by induction, for each n, we obtain v, € span{zo,...,z,} directly from

(E.1). Thus, v, = 0 implies z,, = Z;%), % vy € span{zg, ..., z, 1}. Conversely, if
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x, € span{zg,..., T, 1}, then
dim span{vy, ..., v,_1,v,} = dimspan{zo, ..., z,_1,2,} = dimspan{zg, ..., x, 1}
= dimspan{vy, ..., v,—1},
which implies v,, = 0. Finally, if all 2, z1, ... are linearly independent, then all vy # 0,
k=0,1,..., such that the vy, vy,... are linearly independent. [ |

F Partition of Unity

Theorem F.1. Let the topological space (X,T) be locally compact and Ty. Moreover,
let O1,...,0n € X be open, N € N, and let K C X be compact. If (O1,...,0y) forms
an open cover of K, then there exists a corresponding partition of unity, i.e. there exist
functions p1,...,on € Co(X) such that

v (0< <1 A z‘COi> F1
e < < supp ¢; C (F.1)
and
N
hA Zlapi(x) —1. (F.2)

Proof. For each x € K, there exists i(z) € {1,..., N} such that x € Oj(). Then, by
Prop. 2.5(a), there exists an open set V,, C X such that V, is compact and

As K is compact, there exist zq,...,2) € K such that K CV, U---UV,,,, M € N.
Define
J@)={kef{l,... M}:V, CO}, H:= ]V, CO
keJ(i)
Then each H; is compact and Prop. 4.62 provides f; € C.(X), satisfying
0<fi<lA filg=1 A supp f; € O;.

From the f;, we can now define
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(recall the convention that empty products are defined to be 1). Then, clearly, ¢; €
C.(X) for each i € {1,..., N}. Since supp ¢; C supp f; C O; and since, as a product of
0, 1]-valued functions, ¢; is [0, 1]-valued, we see (F.1) to be satisfied. To verify (F.2),
we prove

je{l,v...,N} ZZ pi=1- H(l = [) (F.3)

via induction on j: For j = 1, we have 1 —(1— f;) = fi1 = ¢ asrequired. For 1 < j < N,
we compute

i+ j j j j+1
S " g 1-T[0-f) = fin [Ja-fy+1-TJa-f) =1-T[ - f).

=1 =1 i=1 =1 i=1

proving (F.3). Finally, if z € K, then there exists k € {1,..., M} such that z € V,, C
Vi C Oi(ay), implying © € Hy(,,y. Thus, fi,)(x) =1 and (F.3) yields 327 pi(x) = 1,
proving (F.2) and the theorem. l
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