Project C9

Numerical simulation and control of sublimation growth of semiconductor bulk single crystals

O. Klein, P. Philip, J. Sprekels, F. Tröltzsch, I. Yousept

DFG Research Center MATHEON
Mathematics for key technologies

C-Day, Berlin, May 21, 2007
Applications of Semiconductor Crystals

Light-emitting diodes:
Lifetime: \(\approx 10\) years
Light extraction efficiency \(> 32\) % (light bulb: \(\approx 10\) %)

Blue laser:
Its use in DVD players admits up to 10-fold capacity of disc

SiC-based electronics still works at 600 C; SiC sensors placed close to car engines save resources and costs
Physical Vapor Transport Method

- Polycrystalline SiC powder sublimates inside induction-heated graphite crucible at 2000 – 3000 K and \(\approx 20 \) hPa

- A gas mixture consisting of Ar (inert gas), Si, SiC\(_2\), Si\(_2\)C, ... is created

- An SiC single crystal grows on a cooled seed
Computes and optimizes temperature and magnetic fields in axisymmetric apparatus.

- Computation of temp T accounts for anisotropic conduction [Geiser, Klein, Philip, 2006/7], radiation, and electromagnetic heating.

- Numerical optimization of T field in growth apparatus:
 - Small radial T gradient on crystal surface avoids defects.
 - Large vertical T gradient between source and crystal increases growth rate.
 - **State constraints:** Need prescribed T range on seed, source, and apparatus.

Numerical Results:

Optimization of Temperature Field

(a): Generic (Unoptimized) Temperature Field

(b): Minimized Radial Gradient on Crystal Surface

(c): Minimized Radial Gradient on Crystal Surface & Maximized Vertical Gradient Between Source and Seed
A fairly simplified model for the seeded sublimation growth geometry:

\[\Omega_g \quad \Gamma_r \quad \Gamma_0 \quad \Omega_s \]

Optimization of the gradient temperature \(\nabla y \) in the gas phase \(\Omega_g \) by controlling the heat source \(u \) in the solid phase \(\Omega_s \):

\[
(P) \quad \text{minimize } J(u, y) := \frac{1}{2} \int_{\Omega_g} |\nabla y - y_d|^2 \, dx + \frac{\beta}{2} \int_{\Omega_s} u^2 \, dx.
\]

The temperature distribution \(y \) is given by the solution of the stationary heat equation:

\[
(SL) \quad \begin{cases}
-\text{div}(\kappa_s \nabla y) = u & \text{in } \Omega_s \\
-\text{div}(\kappa_g \nabla y) = 0 & \text{in } \Omega_g \\
\kappa_g \left(\frac{\partial y}{\partial n_r} \right)_g - \kappa_s \left(\frac{\partial y}{\partial n_r} \right)_s = G\sigma |y|^3 y & \text{on } \Gamma_r \\
\kappa_s \frac{\partial y}{\partial n_0} + \varepsilon\sigma |y|^3 y = \varepsilon\sigma y_0^4 & \text{on } \Gamma_0.
\end{cases}
\]
We impose inequality state constraints to avoid melting in Ω_s and to ensure sublimation in Ω_g:

$$y(x) \leq y_m(x) \quad \text{a.e. in } \Omega_s,$$

$$y_a(x) \leq y(x) \leq y_b(x) \quad \text{a.e. in } \Omega_g.$$

Additionally, we consider the following control-constraints:

$$u_a(x) \leq u(x) \leq u_b(x) \quad \text{a.e. in } \Omega_s$$

where u_a and u_b reflect the minimum and maximum heating power.

Theorem (C. Meyer, J. Rehberg and I. Yousept, 2007)

For every $u \in L^2(\Omega_s)$, the state equation (SL) admits a unique solution $y = y(u) \in H^1(\Omega) \cap C(\overline{\Omega})$ and there exists a constant $c > 0$ independent of u such that

$$\|y\|_{H^1(\Omega)} + \|y\|_{C(\overline{\Omega})} \leq c \left(1 + \|u\|_{L^2(\Omega_s)} + \|u\|_{L^2(\Omega_s)}^4 \right).$$
Based on the continuity of y, we established first-order necessary and second-order sufficient conditions for (P).

Lagrange multipliers associated to the pointwise state constraints of (P) are in general Borel measures \Rightarrow Regularization is necessary.

Utilizing a "Moreau-Yosida" type regularization to the optimal control problem (P):

$$
(P_{\gamma}) \quad \begin{cases}
\min_{u \in L^2(\Omega_s)} f(u) := J(u, y(u)) + \frac{\gamma}{2} (\| \max(0, y(u) - y_b) \|_{L^2(\Omega_g)}^2 \\
+ \| \max(0, y_a - y(u)) \|_{L^2(\Omega_g)}^2 + \| \max(0, y(u) - y_m) \|_{L^2(\Omega_s)}^2), \\
\text{subject to} \quad u_a(x) \leq u(x) \leq u_b(x) \text{ a.e. in } \Omega_s.
\end{cases}
$$

Theorem (C. Meyer and I. Yousept, 2007)

Let \tilde{u} be a local solution of (P) satisfying the second-order optimality conditions. Then, there exists a sequence $(u_{\gamma})_{\gamma > 0}$ of local solutions to (P_{γ}) converging strongly in $L^2(\Omega_s)$ to \tilde{u} as $\gamma \to \infty$.
Numerical result

Figure: Control u_h

Figure: State y_h

Figure: Lagrange multiplier μ_h^a

Figure: Lagrange multiplier μ_h^b
Further research

▷ Including Maxwell’s equations in the model analysis.

▷ Study of optimal control of induction heating based on the Maxwell’s equations: First- and second-order optimality conditions, numerical analysis and numerical simulation.

Selected Publications

