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SiC growth by physical vapor transport (PVT)
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• polycrystalline SiC powder sublimates inside

induction-heated graphite crucible at 2000 – 3000 K

and≈ 20 hPa

• a gas mixture consisting of Ar (inert gas), Si, SiC2,

Si2C, . . . is created

• an SiC single crystal grows on a cooled seed



Goal:

Stationary and transientoptimal controlof process, using

mathematical modeling, numerical simulation.

Heat Transport Model

Nonlinear heat conduction in materialj:

∂εj

∂t
+ div qj = fj , qj = −κj ∇T,

εj : internal energy, T : absolute temperature,

qj : heat flux, κj : thermal conductivity,

fj : power density of heat sources (induction heating).

Interface Conditions

Continuity of the heat flux:

Between solids:qj1 • nj1 = qj2 • nj1 onγj1,j2 .

Between gas and solidj:

qgas • ngas−R+J = qj • ngas onγj,gas,

nj , ngas: outer unit normal,R: radiosity, J : irradiation.

Continuity of temperature throughout apparatus.



Outer Boundary Conditions

Emission according to Stefan-Boltzmann law:

− (κj ∇T ) • nj = σεj(T )
(
T 4 − T 4

room

)
,

εj : emissivity, Troom = 293 K.

On surfaces of open cavities:

qj • nj −R + J = 0.



Finite Volume Scheme

General theory forfinite volume methodsfor systems of

nonlinear evolution equations in space-time domains

Ω× [0, tf ], Ω =
⋃N

j=1 Ωj , with disjoint polytopes (bounded

polyhedral sets)Ωj . Type and/or form of the PDEs may

vary from subdomain to subdomain. Typical form:

∂tbj(uj , x, t) +∇ • vj(uj , x, t)−∇ • (kj(uj , x, t)∇uj)

= fj(uj , x, t).

The unknown functionsuj onΩj are connected by

interface conditionsbetween adjacent subdomains.

Typical example:uj = Tj = temperature on the

subdomainΩj (gas, different solid components of the

growth apparatus).

Possible interface conditions betweenΩj1 , Ωj2 :

• uj1 = uj2 (continuity)

• −kj1(uj1 , x, t)∇uj1 • npj1
= ξ{j1,j2} · (uj1 − uj2),

ξ{j1,j2} > 0 (jump condition)

• kj2(uj2 , x, t)∇uj2 • npj2
− kj1(uj1 , x, t)∇uj1 •

npj1
= Aγ(u1, . . . , uN )(x) (nonlocal operator;

typically: radiation)



Outer boundary conditions (on∂Ω):

Dirichlet, Neumann, Robin, emission, nonlocal radiation.

Discrete Existence Result:

Assume that:
• bj ≥ 0, bj(·, x, t) ↗, bj(0, x, ·) ↘;

∃L > 0 : |bj(u, x, t)− bj(ũ, x, t)| ≥ L|u− ũ| ∀j.

• fj(·, x, t) locally Lipschitz;fj(0, x, t) ≥ 0.

• kj(·, x, t) locally Lipschitz;kj ≥ 0.

• Functions in interface and boundary conditions are

locally Lipschitz and have the “right” monotonicity

properties (valid for heat conduction).

• v(u, x, t) = v1(u, x, t) · v2(x, t), where

v1(0, x, t) = 0, v1(·, x, t) ↗, v1 is locally

Lipschitz and bounded from below.

• The discretization of nonlocal operators satisfies a

technical condition (satisfied for suitable discretization

of radiation operators).

Then the finite volume discretization has a unique solution

in [0,M ]n, provided that the time step is sufficiently small

(n: number of discrete unknowns,M : independent of time

discretization).



Stationary optimal control problem for the temperature

field

Known fact: Crystal surface forms along isotherms.

Goal: Radially constant isotherms during growth.

Control:
R

Ωgas

w(z)
ş∂T

∂r
(r, z)

ť2

d(r, z) −→ min.

PDEs(vgas = 0, f(x, T, P ) = f(x, P )):

− div
ą
κ(Ar)(T )∇T

ć
= 0 in Ωgas,

− div
ą
κ(x, T )∇T

ć
= f(x, P ) in Ω \ Ωgas.

Constraints:

• Troom ≤ T ≤ Tmax in Ω,

• Tmin,SiC-C ≤ T ≤ Tmax,SiC-C on ΓSiC-C (need right

polytype),

• T ¹ΩSiC-S≥ T ¹ΓSiC-C +δ, δ > 0 (source temp.≥ seed

temp.+δ),

• 0 ≤ P ≤ Pmax (bounds for heating powerP (control

parameter)).

ΓSiC-C

Ωgas

ΩSiC-S



Numerical results: Optimization of temperature field

(a): T (P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)
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(b): T (P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz)
Nelder-Mead res. forFr,2(T )
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(c): T (P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz),
Nelder-Mead res. forFr,2(T )−Fz,2(T )
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