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SIiC growth by physical vapor transport (PVT)

e polycrystalline SiC powder sublimates inside
iInduction-heated graphite crucible at 2000 — 3000 K
and~ 20 hPa

e a gas mixture consisting of Ar (inert gas), Si, SIC
SikC, ... Is created

e an SiC single crystal grows on a cooled seed



Goal:

Stationary and transieonptimal controlof process, using
mathematical modeling, numerical simulation.

Heat Transport Model

Nonlinear heat conduction in material

O¢ ; ,
8—;+dlvqj:fj, qj:—/ﬁleT,

e;: internal energy, T': absolute temperature,

q,: heat flux, &;:thermal conductivity,

f;: power density of heat sources (induction heating).
Interface Conditions

Continuity of the heat flux:

Between solidsq;, en;, = q;, en;, on-y;, .

Between gas and solid

Qdgas ©® ngas_R+J — q; ® Ngas ON7Yj gas;

n;, Ng,s: OUter unit normal, R: radiosity, J: irradiation.

Continuity of temperature throughout apparatus.



Outer Boundary Conditions

Emission according to Stefan-Boltzmann law:

= (15 VT) o = 0¢;(T) (T = Troom)

room

€;: emissivity, Tioom = 293 K.

On surfaces of open cavities:

qjen; — R+ J=0.



Finite Volume Scheme

General theory fofinite volume methodfor systems of
nonlinear evolution equations in space-time domains
Q% [0, %], 2 = J;_, ©;, with disjoint polytopes (bounded
polyhedral sets)};. Type and/or form of the PDEs may
vary from subdomain to subdomain. Typical form:

Obj(uj,x,t) +Vevi(uj,x,t)—Ve(kjujx,t)Vu;)
— fj(Uj,.”L‘,t).
The unknown functions; on2; are connected by

iInterface conditionketween adjacent subdomains.

Typical exampleu; = T; = temperature on the
subdomairf}; (gas, different solid components of the
growth apparatus).

Possible interface conditions between , €2,

o u;, =uj;, (continuity)

o — kL (uj,,x,t)Vu; e n, =&} (uj, — uj,),
(4,521 > 0 (jump condition)

o kj,(uj,,x,t)Vu;, e n, —kj (wjy,x,t) Vu,, o
n, = A,(ui,...,un)(x) (nonlocal operator;
typically: radiatior)



Outer boundary conditions (a¥f2):

Dirichlet, Neumann, Robin, emission, nonlocal radiation.

Discrete Existence Result:

Assume that:

bj ZO; b](,iﬁ,t) /’ bj((),x,) \n
JL>0: |bj(u,z,t)—bj(u,x,t)| > Lju—u| Vj.

f;(-,z,t) locally Lipschitz; f,;(0, z,t) > 0.

k;(-,x,t) locally Lipschitz;k; > 0.

Functions in interface and boundary conditions are
locally Lipschitz and have the “right” monotonicity
properties (valid for heat conduction).

v(u,x,t) = vi(u,x,t) - vao(ax,t), where

v1(0,2,t) =0, wvi(-,x,t) /, wv1islocally
Lipschitz and bounded from below.

The discretization of nonlocal operators satisfies a

technical condition (satisfied for suitable discretization
of radiation operators).

Then the finite volume discretization has a unique solution
in [0, M]™, provided that the time step is sufficiently small
(n: number of discrete unknowna/: independent of time
discretization).



Stationary optimal control problem for the temperature
field

,'sic-c

ans

Qsic-s

Known fact: Crystal surface forms along isotherms.

Goal: Radially constant isotherms during growth.

oT 2 :
Control: [ w(z) W(r,z) d(r,z) — min.

Qgas
PDES(Vgas = 0, f(z,T,P) = f(x, P)):
—div 2 (myvT = o N Qgas,
—div k(z, T)VT =  f(z,P) INnQ\ Qgas.
Constraints
® Tioom < T < Thax In €2,
o Thinsiccc < T < Thaxsic-c onT'sic.c  (need right
polytype),
o T'ogcs> Tlrgic.c +6, 6 > 0 (source temp> seed
temp.+9),

e 0 < P < Phax (bounds for heating poweP (control
parameter)).



Numerical results: Optimization of temperature field

@): T(P = 10.0 kW, zyim = 24.0 cm, f = 10.0 kHz)

=

K

042 K

(b): T(P = 7.98 kW, 2y, = 22.7 cm, f = 165 kHz)
Nelder-Mead res. fof, 5 (7T

—

(€): T(P = 10.3 kW, zyim = 12.9 cm, f = 84.9 kHz),

Nelder-Mead res. fczf“(T);fz’?(T)

-
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