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Category Theory in EC

Definition (Language)

The language used to write down the axioms for category theory is
built from seven symbols

ob,mor , id , ◦,=o ,=m,
m−→

and the following abbreviations.

x =o y :≡ 〈x , y〉 ∈̇=o

f =m g :≡ 〈f , g〉 ∈̇=m

f ◦ g :≡ ◦(f , g)
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Category Theory in EC

Definition (Category)

Let u be a universe. A Category (relative to u) is a six-tuple
〈ob,mor , id , ◦,=o ,=m〉 which satisfies the following properties
(including (UNIV )):

(CL) R (ob) ∧ R (mor) ∧ R (=o) ∧ R (=m)

(UNIV ) ob ∈̇ u ∧ mor ∈̇ u ∧=o∈̇ u ∧=m∈̇ u

(MOR) (∀m ∈̇ mor)(∃x , y ∈̇ ob)(m = 〈x , y , π2m〉)
(EQO1) (=o⊂̇ ob × ob) ∧ (∀x ∈̇ ob)(x =o x)

(EQM1) (=m⊂̇ mor ×mor) ∧ (∀f ∈̇ mor)(f =m f )

(CMP1) (∀f , g ∈̇ mor)

(π1g =o π0f → (f ◦ g) ↓ ∧ (f ◦ g) ∈̇ mor)

(ID1) (∀x ∈̇ ob)(id(x) ∈̇ mor

∧ π0id(x) =o x ∧ π1id(x) =o x)
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Category Theory in EC

Definition (Category (cont.))

(EQO2) (∀x , y ∈̇ ob)(x =o y → y =o x)

(EQO3) (∀x , y , z ∈̇ ob)(x =o y ∧ y =o z → x =o z)

(EQM2) (∀f , g ∈̇ mor)(f =m g → g =m f )

(EQM3) (∀f , g , h ∈̇ mor)(f =m g ∧ g =m h→ f =m h)

(CMP2) (∀f , g , h ∈̇ mor)(π1g =o π0f ∧ π1h =o π0g

→ (f ◦ g) ◦ h =m f ◦ (g ◦ h))

(ID2) (∀x ∈ ob)(∀f ∈̇ mor)(dom(f ) =o x → f ◦ id(x) =m f )

(ID3) (∀x ∈ ob)(∀f ∈̇ mor)(cod(f ) =o x → id(x) ◦ f =m f )
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Category Theory in EC

Definition

The rest of the usual language of category theory (and other
operations) can now be defined on top of this.

dom(f ) :≡ π0f
cod(f ) :≡ π1f

fF :≡ π2f

f : a
m→ b :≡ f ∈̇ mor ∧ dom(f ) =o a ∧ cod(f ) =o b

homEC (a, b) :≡ {f |f : a
m→ b}
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Definition (Functor)

In the following we will write fo for (π0f ) and fm for (π1f ).
We say a term f is a functor between two categories C and D
(Notation: f ∈̇ functor(C,D) if the conjunction of the following
properties holds:

(F1) x , y ∈̇ obC ∧ x =Co y → fo(x) =Do fo(y)

(F2) g , h ∈̇ morC ∧ g =Cm h→ fm(g) =Dm fo(h)

(F3) g ∈̇ morC → domD(fm(g)) =Do fo(dom(g))

(F4) g ∈̇ morC → codD(fm(g)) =Do fo(cod(g))

(F5) x ∈̇ obC → fm(id(x)) =Dm idD(fo(x))

(F6) g , h ∈̇ morC ∧ dom(g) =Co cod(h)

→ fm(g ◦C h) =Dm fm(g) ◦D fm(h)

All of this can be written as an elementary formula.
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Definition (Natural transformation)

Given two functors f , g ∈̇ functor(C,D) between fixed categories,
we call a tuple η = 〈f , g , ηF〉 a natural transformation (Notation:
η ∈̇ nat(C,D, f , g) or η : f ⇒ g) if

(NAT1) (∀x ∈̇ ob)(ηF(x) : fo(x)
m→ go(x))

(NAT2) (∀h ∈̇ mor)(gm(h) ◦D ηF(dom(h))

=Dm ηF(cod(h)) ◦D fm(h))
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Definition (Functor category)

A (covariant) functor category from (fixed) categories C to D is a category DC

defined as

ob :≡ functor(C,D)

mor :≡
∑
f ∈̇ob

∑
g∈̇ob

nat(C,D, f , g)

=o :≡ eqo

=m :≡ eqm

id(f ) :≡ 〈f , f , λx .idD(fo(x))〉
(η ◦ ν) :≡ 〈dom(ν), cod(η), λx .(ηFx ◦D νFx)〉

where

eqo :≡ {〈f , g〉 | f , g ∈̇ ob

∧ (∀x ∈̇ obC)(fo(x) =
D
o go(x)))

∧ (∀h ∈ morC)(fm(h) =
D
m gm(h)))}

eqm :≡ {〈ν, η〉 | ν, η ∈̇ mor ∧ (∀x ∈̇ obC)(νFx =D
m ηFx)}
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It is possible to encode (co)cones and (co)limits as pairs 〈c , p〉 and
a term h which uniformly picks the unique map into (out of) the
(co)limit.

d

c

•1

•3 •2

h<d ,q>

q(•1)

q(•3)

q(•2)

p(•1)

p(•3) p(•2)
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The category of “Sets”

We want something which is “close” to the usual category of
sets.

There are several different variants worth considering with
different advantages and drawbacks.

1 Objects are class names, morphisms are operations.
2 Bishop Sets. (Sorry Ulrik, it’s Setoid Hell)
3 One of the above with an added choice operator.

4 Set theoretic maps with choice operator. But then why even
use Explicit Mathematics?
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Variant 2 vs. Variant 3

Classes built from elementary comprehension restricted to
essentially ∃,∨-free formulas. and operations as morphisms.

built from (x ∈ X ), x ↓, (x = y), and ∧,→,∀
allows (AC ) : (∀x ∈ X )∃yϕ(x , y)→ ∃f (∀x ∈ X )ϕ(x , fx)

Bishop Sets

Objects are pairs of names: A carrier and an ordinary
equivalence relation (A class of pairs, giving a slight
trivialization compared to the usual formulation in TT.)
Morphisms are operations which respect relations
No explicit transport operation necessary.
can use full elementary comprehension.

Lukas Jaun Category Theory and Universes in Explicit Mathematics.



Variant 2 vs. Variant 3

Classes built from elementary comprehension restricted to
essentially ∃,∨-free formulas. and operations as morphisms.

built from (x ∈ X ), x ↓, (x = y), and ∧,→,∀
allows (AC ) : (∀x ∈ X )∃yϕ(x , y)→ ∃f (∀x ∈ X )ϕ(x , fx)

Bishop Sets

Objects are pairs of names: A carrier and an ordinary
equivalence relation (A class of pairs, giving a slight
trivialization compared to the usual formulation in TT.)
Morphisms are operations which respect relations
No explicit transport operation necessary.
can use full elementary comprehension.

Lukas Jaun Category Theory and Universes in Explicit Mathematics.



The category of “Sets”

Example: Construction of the image of a morphism in Bishop
Sets.

x x

im(g) z

y y .

g

ig h

g̃

j

n

This does not work for classes & operations without added
choice.
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Image construction

im(g) :≡ 〈dom(g), (x ∼im(g) y)↔ (gFx ∼cod(g) gFy)〉
ig :≡ 〈dom(g), im(g), λx .x〉
g̃ :≡ 〈im(g), cod(g), gF〉
j :≡ 〈im(g), z , hF〉

ig is a regular epi.

the pullback k∗ig along any k : z
m→ cod(g) is the coequalizer

of its kernel pair.

Coequalizers of kernel pairs are stable under pullback.

So in Bishop Sets every morphism has a factorization into
some (regular-)epi and a monomorphism.

coequalizers in general are not stable under pullback.

Bishop Sets are a regular category.
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Other properties:

For all variants we have: LCCC

Exactness (= Every congruence is a kernel pair) is only

possible with choice: Let r
(∂0,∂1)
� x × x be a congruence

{〈∂0s, ∂1s〉 | s ∈̇ r}

r x

x y

?

π1

π0

∂1

∂0
y

f

f

Congruences are, upto renaming, equivalence relations, but we
can’t construct an inverse morphism to r0 7→ 〈∂0r0, ∂1r0〉 w/o
some way to choose an element from the preimage.

The equivalent notion in MLTT does not suffer from this:
Moerdijk, Palmgren (2002). Theorem 12.7: The category Sets
[Bishop Sets] is a stratified pseudotopos [...]
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Categorical Universes

There have been several definitions of universes in categories.
(Without any claim to completeness)

1 Joyal, Moerdijk. Algebraic Set Theory. (1995)

2 Moerdijk, Palmgren. Type theories, toposes and constructive
set theory: Predicative aspects of ast. (2002)

3 Streicher. Universes in Toposes. (2004)

4 Awodey, Warren. Predicative algebraic set theory. (2005)

Lukas Jaun Category Theory and Universes in Explicit Mathematics.



Categorical Universes translated back into Explicit Math.

Let C be a locally cartesian closed category, el be some morphism
in C and S [x ] be a formula. We call S a universe in C if the
following axioms hold.

(U1) h ∈̇ mor ∧ S [h] ∧ f ∈̇ mor → (PB[h, f , g , q]→ S [g ])

• •

• •

g
y

h S [h]⇒ S [g ]
f

(U2) a ∈̇ mor ∧ MONO[a]→ S [a]

(U3) f : b
m→ c ∧ g : a

m→ b ∧ S [f ] ∧ S [g ]→ S [Σf g ]

(U4) f : a
m→ i ∧ g : b

m→ a ∧ S [f ] ∧ S [g ]→ S [Πf g ]

(U5) a ∈̇ mor ∧ S [a]→ ∃f , pr1(f : cod(a)
m→ cod(el) ∧ PB[f , el , a, pr1])

• e

• u

a
y

el

∃f
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Taking S [x ] :≡ x ∈ S , and assuming the existence of S is
inconsistent with elementary comprehension.

The problem is (U2). Closure under all monos is a very strong
condition.

Weakening:

(U2-W) a ∈̇ ob → S [∆(a)]

We only require diagonals ∆(a) : a
m→ a× a to be small.
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Universe Condition

Definition (Universe Condition)

Given some universe of Explicit Mathematics u and a morphism f ,
we say that f is in CU iff there exist h, h−1 and g such that
For all x ∈̇ cod(f )

g(x) ∈̇ u

h(x) : f −1{x} m→ gx

h−1(x) : gx
m→ f −1{x}

iso(h(x), h−1(x))

“For all preimages of f there is some isomorphic class in u.”
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Universe Condition

Theorem

CU is closed under (U1), (U2-W), (U3), (U4), (U5).

Where we have for arbitrary CU[f : a
m→ b, u]

a
∑
x∈̇u

x

b 〈u,∃∼=〉

〈cod(h(fFx)),h(fFx)〉

f

y

el :≡ pr0

g(x)
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Strength

We would like a direct comparison with universes in Explicit
Mathematics.

This definition has a defect.

Closure under the join axiom on the EM side is not required.

Possible Fix: (CA) as defined by Joyal, Moerdijk (1995), &
Moerdijk, Palmgren (2002)
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Collection Axiom (CA)

A commutative square

C B

A X

f g

is called a quasi-pullback whenever the canonical map
C → A×X B is an epi.
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Collection Axiom (CA)

Definition (CA)

For any small∗ morphism a
m→ x and any epi c

m→ a there exists a
quasi-pullback of the form

b c a

y x

where y
m
� x is epi and b

m→ y is small.

(∗) : part of S
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Collection Axiom (CA)

Some Intuition. Let c /∈ S

b c a

y ×x c

y x

∈S

/∈S

Existence of small subcovers.
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May or may not hold for CU

Might give closure under join only indirectly by interpreting
some other system in the internal logic.
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Thank You
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Type theories, toposes and constructive set theory

Pullback stability

h ∈̇ mor ∧ S [h] ∧ f ∈̇ mor → (PB[h, f , g , q]→ S [g ])

• •

• •

g
y

h S [h]⇒ S [g ]
f

Descent: In the pullback square above, if f is epi then
S [h]⇔ S [g ]

S [f : a
m→ b] ∧ S [g : a′

m→ b′]→ S [f + g : a + a′
m→ b + b′]

S [f : b
m→ c] ∧ g : a

m→ b → (S [f ◦ g ]↔ S [g ])
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