1 Separation of Variables

We consider ODEs of the following form

$$
\left\{\begin{array}{l}
x^{\prime}=f(x) g(t) \tag{1}\\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

Example 1.

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{x}{t} \\
x\left(t_{0}\right)=x_{0} \quad\left(t_{0} \neq 0\right)
\end{array}\right.
$$

We "compute"

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{x}{t} \Rightarrow \frac{d x}{x}=\frac{d t}{t} \\
& \Rightarrow \int \frac{d x}{x}=\int \frac{d t}{t}
\end{aligned}
$$

Hence $\log |x|=\log |t|+C \Leftrightarrow x=C t$
Surely this approach can be formalized.
Theorem 1. Let $I, J \subset \mathbb{R}$ intervals, $g \in \mathcal{C}(I)$ and $f \in \mathcal{C}(J)$.
(i) If $f\left(x_{0}\right)=0$, then $x(t)=x_{0}$ is the global solution to (1).
(ii) If $f\left(x_{0}\right) \neq 0$ then there exists an open interval $D \subset I$ and a unique solution to (1) $x \in \mathcal{C}^{1}(D)$ that satisfies

$$
\begin{equation*}
\int_{x_{0}}^{x(t)} \frac{d \xi}{f(\xi)}=\int_{t_{0}}^{t} g(\tau) d \tau \tag{2}
\end{equation*}
$$

Proof. Assume $x: D \rightarrow U \subset D$ is a solution and $f(x(t)) \neq 0$. Then we compute

$$
\frac{x^{\prime}(t)}{f(x)}=g(t)
$$

Hence by Integration we have

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{d \xi}{f(\xi)}=\int_{t_{0}}^{t} \frac{x^{\prime}(\tau)}{f(x(\tau))}=\int_{t_{0}}^{t} g(\tau) d \tau \tag{3}
\end{equation*}
$$

So let U be the maximal interval with $x_{0} \in U$ and $f(x) \neq 0, x \in U$. With (3) in mind we define (for $x \in U$)

$$
F(x):=\int_{x_{0}}^{x} \frac{d \xi}{f(\xi)} \quad G(t):=\int_{t_{0}}^{t} g(\tau) d \tau
$$

We immediately see that $F \in \mathcal{C}^{1}(U)$ and $F^{\prime}(x)=\frac{1}{f(x)} \neq 0$. Hence F is either strong monotone increasing or decreasing. Thus $F: U \rightarrow V:=F(U)$ is a
bijection with some differentiable inverse $F^{-1}: V \rightarrow U$. Furthermore V is open and $0=F\left(x_{0}\right) \in V$. We define the pre-image $W:=G^{-1}[V] \subset I$, which is open and contains t_{0} since $G\left(t_{0}\right)=0$. So finally let D be the biggest interval around t_{0} that is contained in W, then i.p. $G(J) \subset V$. We now define our candidate for a solution by

$$
\begin{equation*}
x(t):=F^{-1}(G(t)), t \in J \tag{4}
\end{equation*}
$$

Since F^{-1} and G are \mathcal{C}^{1} so is x. Furthermore

$$
\begin{array}{r}
x\left(t_{0}\right)=F^{-1}\left(G\left(t_{0}\right)\right)=F^{-1}(0)=x_{0} \\
x^{\prime}(t)=\frac{1}{F^{\prime}\left(F^{-1}(G(t))\right)} G^{\prime}(t)=f(x) g(t)
\end{array}
$$

The uniqueness follows, since (3) holds for any solution and F^{-1} is a bijection.

2 The easiest PDE

We consider functions $u:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. We denote the derivative w.r.t the first component

$$
\frac{\partial u}{\partial t}(t, x)=u_{t}(t, x)
$$

Consider the following PDE (the transport equation).

$$
(T E) \begin{cases}u_{t}(t, x)+b(t, x) \cdot \nabla u(t, x)=f(t, x) & (t, x) \in(0, \infty) \times \mathbb{R}^{n} \\ u(0, x)=g(x) & x \in \mathbb{R}^{n}\end{cases}
$$

We will solve this PDE by reducing it to a system of ODEs (Note that this is a special case of the methods of characteristics).

Case 1 We consider the special case

$$
b(t, x)=b \in \mathbb{R}^{n} \quad f(t, x) \equiv 0 \quad g \in \mathcal{C}^{1}
$$

Thus the PDE now reads

$$
\begin{align*}
& u_{t}(t, x)+b \cdot \nabla u(t, x)=0 \tag{5}\\
& u(0, x)=g(x) \tag{6}
\end{align*}
$$

Now (5) just says that the derivative of a solution must vanish in the direction $(1, b)$. Suppose u is a solution and define

$$
z(s):=u(t+s, x+s b) \quad s \in[-t, \infty)
$$

Then we can differentiate

$$
\dot{z}=u_{t}(t+s, x+s b)+b \cdot \nabla u(t+s, x+s b)=0
$$

So z is constant. Note that this is expected since $(t+s, x+s b)$ parametrizes the lines through (t, x) in direction $(1, b)$. Furthermore we know that

$$
z(-t)=u(0, x-b t)=g(x-b t) z(0)=u(t, x)
$$

Hence $u(t, x)=g(x-b t)$.
Remark 1. The solution is constant along all lines $(t+s, x+s b), s \in[-t, \infty)$, so it suffices to know the value for one point on each line. This now also justifies the name "transport equation" since the initial condition g is transported along in direction $(1, b)$.

Theorem 2. (TE) with $f \equiv 0, b(t, x)=b \in \mathbb{R}^{n}, g \in \mathcal{C}^{1}$ has a unique solution $u \in \mathcal{C}^{1}\left((0, \infty) \times \mathbb{R}^{n}\right) \cap \mathcal{C}^{0}\left([0, \infty) \times \mathbb{R}^{n}\right)$ given by

$$
u(t, x):=g(x-b t)
$$

Proof. Existence. Check that $g(x-b t)$ is a solution.
Uniqueness. Assume that u_{1}, u_{2} are solutions and define

$$
w:=u_{1}-u_{2}
$$

w solves the PDE

$$
\left\{\begin{array}{l}
w_{t}-b \cdot \nabla u=0 \\
w(0, x)=0
\end{array}\right.
$$

Define $z(s):=w(t+s, x+s b)$. As above

$$
\dot{z}(s)=0
$$

and

$$
\begin{aligned}
& z(-t)=w(0, x-b t)=0 \\
& z(0)=w(t, x)
\end{aligned}
$$

Hence $w \equiv 0$.
Case $2 b(t, \cdot) \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ for all $t \in[0, \infty)$. We try to do the same thing as in the first case and look for curves along which the solution is constant. Such a curve is of the following form

$$
\Gamma(s):=(s, \gamma(s)) \quad \gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

For a curve γ and a solution u we have

$$
\begin{aligned}
& \frac{d}{d s}(u(s, \gamma(s))) \\
& u_{t}(s, \gamma(s))+\dot{\gamma}(s) \times \nabla u(s, \gamma(s))
\end{aligned}
$$

Hence if γ is a curve through $(t, x) \in(0, \infty) \times \mathbb{R}^{n}$ then u is constant along γ if and only if

$$
\left\{\begin{array}{l}
\dot{\gamma}(s)=b(s, \gamma(s)) \\
\gamma(t)=x
\end{array}\right.
$$

(This is an ODE!) In that case

$$
u(t, x)=u(t, \gamma(t))=u(0, \gamma(0))=g(\gamma(0))
$$

Theorem 3. Assume u is a solution of $(T E)$ with $f \equiv 0$ and that for $(t, x) \in(0, \infty)$ γ solves

$$
\left\{\begin{array}{l}
\dot{\gamma}(s)=b(s, \gamma(s)) \\
\gamma(t)=x
\end{array}\right.
$$

Then it holds that

$$
\begin{aligned}
& u(t, x)=g(\gamma(0)) \\
& u(t, x)=u(s, \gamma(s)), \forall s \in[0, t]
\end{aligned}
$$

Remark 2. Suppose Γ is the set of all these solutions γ. Then, as in the first case, the initial condition is transported along Γ. Note that if γ is such a solution and $(t, x) \in \Gamma(s)$ then there might be no s such that $\Gamma(s) \cap\{t=0\} \neq \varnothing$. That means that the set of curves that intersect the "zero-plane" might not cover all of $[0, \infty) \times \mathbb{R}^{n}$.
Example 2. (i) $b(t, x)=b \in \mathbb{R}^{n}$. For $(t, x) \in(0, \infty) \times \mathbb{R}^{n}$ solve

$$
\left\{\begin{array}{l}
\dot{\gamma}(s)=b \\
\gamma(t)=x
\end{array}\right.
$$

The solution is $\gamma(s)=(x-b t)+s$ so that by Theorem 3

$$
u(t, x)=g(\gamma(0))=g(x-b t)
$$

(ii) $b(t, x)=x$. We have to solve

$$
\{\dot{\gamma}(s)=\gamma(s) \gamma(t)=x
$$

The solution is $\gamma(s)=x e^{s-t}$, so by Theorem 3

$$
u(t, x)=g(\gamma(0))=g\left(x e^{-t}\right)
$$

Case 3 We consider the General Transport equation, i.e. $f \in \mathcal{C}^{0}$.
Theorem 4. Under the assuptions of the last theorem with $f \in \mathcal{C}^{0}$ instead of $f \equiv 0$ we have that

$$
u(t, x)=g(\gamma(0))+\int_{0}^{t} f(s, \gamma(s)) d s
$$

Proof. By an easy computation (since u is a solution):

$$
\frac{d}{d s} u(s, \gamma(s))=u_{t}(s, \gamma(s))+\dot{\gamma}(s) \cdot u(s, \gamma(s))=f(s, \gamma(s))
$$

Hence by the fundamental theorem of calculus

$$
u(t, x)=u(t, \gamma(t))=\underbrace{u(0, \gamma(0))}_{=g(\gamma(0))}+\int_{0}^{t} f(s, \gamma(s)) d s
$$

Remark 3. Note that we can not directly say the solution is transported along the curves Γ but it is still uniquely determined by them.

Example 3. Consider

$$
\left\{\begin{array}{l}
u_{t}+x \cdot \nabla u=t \\
u(0, x)=g(x)
\end{array}\right.
$$

By the last example $\gamma(s)=x e^{s-t}$ so by theorem 4

$$
u(t, x)=g\left(x e^{-t}\right)+\underbrace{\int_{0}^{t} s d s}_{=\frac{t^{2}}{2}}
$$

