1 Separation of Variables

We consider ODEs of the following form

Example 1.

We "compute"

dx x dx dt
=l s =
dt t x t
/dx /dt
= [ ===
x t

Hence log|x| = log|t| + C < x = Ct

Surely this approach can be formalized.

Theorem 1. Let I, ] C R intervals, g € C(I) and f € C(]).

(i) If f(x0) = O, then x(t) = xq is the global solution to (1).

(ii) If f(xo) # O then there exists an open interval D C I and a unique solution to (1)
x € CY(D) that satisfies

0 dg_
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Proof. Assume x : D — U C D is a solution and f(x(t)) # 0. Then we
compute

t
- /t g(t)dr @)

Hence by Integration we have

*dgortoA(r)
Xo m o t f(x(7)) _/1‘0 g(t)dr 3)

So let U be the maximal interval with xg € U and f(x) # 0,x € U. With (3) in
mind we define (for x € U)

o x d(;f o t
)= [ 7 G= _/t0 ¢(t)dt

We immediately see that F € C!(U) and F'(x) = ﬁ # 0. Hence F is either

strong monotone increasing or decreasing. Thus F : U — V := F(U) is a



bijection with some differentiable inverse F~! : V — U. Furthermore V is open
and 0 = F(xg) € V. We define the pre-image W := G~1[V] C I, which is open
and contains t( since G(f) = 0. So finally let D be the biggest interval around
to that is contained in W, then i.p. G(J) C V. We now define our candidate for
a solution by

x(t) = FYG(t),te] (4)

Since F~! and G are C! so is x. Furthermore

x(to) = F~1(G(to)) = F1(0) = xo

¥() = Fraay © 0 = F0s0

The uniqueness follows, since (3) holds for any solution and F “lisa bijection.
O

2 The easiest PDE

We consider functions u : [0,00) X R"” — R. We denote the derivative w.r.t the
first component

ou
ot
Consider the following PDE (the transport equation).

(t,x) = u(t, x)

u(t,x) +b(t,x) - Vu(t,x) = f(t,x) (t,x) € (0,00) x R"
(TE) {u(O, x) = g(x) x e R”

We will solve this PDE by reducing it to a system of ODEs (Note that this is a
special case of the methods of characteristics).
Case 1 We consider the special case

b(t,x) =beR" f(t,x)=0 gecC!
Thus the PDE now reads

u(t,x) +b-Vu(t,x) =0 (5)
u(0,x) = g(x) (6)

Now (5) just says that the derivative of a solution must vanish in the direction
(1,b). Suppose u is a solution and define

z(s) == u(t+s,x+sb)  se&[—to0)
Then we can differentiate

Z=u(t+s,x+sb)+b-Vu(t+s,x+sb) =0



So z is constant. Note that this is expected since (t + s, x + sb) parametrizes
the lines through (¢, x) in direction (1,b). Furthermore we know that

z(—t) = u(0,x — bt) = g(x — bt)z(0) = u(t, x)

Hence u(t, x) = g(x — bt).

Remark 1. The solution is constant along all lines (t + s, x + sb),s € [—t,0), so
it suffices to know the value for one point on each line. This now also justifies
the name "transport equation" since the initial condition g is transported along
in direction (1,b).

Theorem 2. (TE) with f = 0,b(t,x) = b € R",¢ € C! has a unique solution
u € CH((0,00) x R") N CO([0,00) x R™) given by

u(t,x) == g(x — bt)

Proof. Existence. Check that g(x — bt) is a solution.
Uniqueness. Assume that uq, 1y are solutions and define

wWi=Uyp — Uy
w solves the PDE

wr—b-Vu=20
w(0,x) =0

Define z(s) := w(t + s, x + sb). As above

i(s) =0
and
2(—t) = w(0,x —bt) =0
2(0) = w(t, x)
Hence w = 0. O

Case 2 b(t,-) € C}(R") for all t € [0,00). We try to do the same thing as in
the first case and look for curves along which the solution is constant. Such a
curve is of the following form

I'(s) == (s,7(s)) 7:R - R"
For a curve 7 and a solution u we have

T (u(s,2(6))

u(s,7(s)) +¥(s) x Vu(s, v(s))



Hence if 7 is a curve through (¢, x) € (0,00) x R" then u is constant along 7 if
and only if

{7’(5) = b(s,7(s))
Y(t) = x

(This is an ODE!) In that case

u(t,x) = u(t,v(t)) = u(0,7(0)) = g(v(0))

Theorem 3. Assume u is a solution of (TE) with f = 0 and that for (t,x) € (0, 00)
v solves

{7‘(8) =b(s,7(s))

Then it holds that

u(t,x) =u(s,v(s)),Vs € [0,

Remark 2. Suppose I'is the set of all these solutions vy. Then, as in the first case,
the initial condition is transported along I'. Note that if -y is such a solution
and (t,x) € T'(s) then there might be no s such that I'(s) N {t = 0} # @. That
means that the set of curves that intersect the "zero-plane" might not cover all
of [0,00) x R".

Example 2. (i) b(t,x) =b € R". For (t,x) € (0,00) x R" solve

{fy(s) b
7(t) = x

The solution is y(s) = (x — bt) + s so that by Theorem 3

u(t,x) = g(v(0)) = g(x — bt)
(ii) b(t, x) = x. We have to solve

The solution is y(s) = xe*~*, so by Theorem 3
u(t,x) = g(7(0)) = g(xe™)
Case 3 We consider the General Transport equation, i.e. f € C.

Theorem 4. Under the assuptions of the last theorem with f € C° instead of f = 0
we have that

u(t;x) = g(r(O) + [ £(5,7(5))ds

4



Proof. By an easy computation (since u is a solution):

d .
Z5(s:7(8)) = ue(s, v(s)) +¥(s) - uls, v(s)) = f(s,7(s))
Hence by the fundamental theorem of calculus

u(t,x):u(t,'y(t))—uO'y +/fs'y

—g(7(0))
O

Remark 3. Note that we can not directly say the solution is transported along
the curves I' but it is still uniquely determined by them.

Example 3. Consider

u(0,x) = g(x)
By the last example y(s) = xe ! so by theorem 4

u(t,x) = +/sds
L
2

{ut—l-x-Vu:t



	Separation of Variables
	The easiest PDE

