
1 Separation of Variables

We consider ODEs of the following form{
x′ = f (x)g(t)
x(t0) = x0

(1)

Example 1. {
x′ = x

t
x(t0) = x0 (t0 6= 0)

We "compute"

dx
dt

=
x
t
⇒ dx

x
=

dt
t

⇒
∫ dx

x
=

∫ dt
t

Hence log|x| = log|t|+ C ⇔ x = Ct

Surely this approach can be formalized.

Theorem 1. Let I, J ⊂ R intervals, g ∈ C(I) and f ∈ C(J).
(i) If f (x0) = 0, then x(t) = x0 is the global solution to (1).
(ii) If f (x0) 6= 0 then there exists an open interval D ⊂ I and a unique solution to (1)
x ∈ C1(D) that satisfies ∫ x(t)

x0

dξ

f (ξ)
=

∫ t

t0

g(τ)dτ (2)

Proof. Assume x : D → U ⊂ D is a solution and f (x(t)) 6= 0. Then we
compute

x′(t)
f (x)

= g(t)

Hence by Integration we have∫ x

x0

dξ

f (ξ)
=

∫ t

t0

x′(τ)
f (x(τ))

=
∫ t

t0

g(τ)dτ (3)

So let U be the maximal interval with x0 ∈ U and f (x) 6= 0, x ∈ U. With (3) in
mind we define (for x ∈ U)

F(x) :=
∫ x

x0

dξ

f (ξ)
G(t) :=

∫ t

t0

g(τ)dτ

We immediately see that F ∈ C1(U) and F′(x) = 1
f (x) 6= 0. Hence F is either

strong monotone increasing or decreasing. Thus F : U → V := F(U) is a

1



bijection with some differentiable inverse F−1 : V → U. Furthermore V is open
and 0 = F(x0) ∈ V. We define the pre-image W := G−1[V] ⊂ I, which is open
and contains t0 since G(t0) = 0. So finally let D be the biggest interval around
t0 that is contained in W, then i.p. G(J) ⊂ V. We now define our candidate for
a solution by

x(t) := F−1(G(t)), t ∈ J (4)

Since F−1 and G are C1 so is x. Furthermore

x(t0) = F−1(G(t0)) = F−1(0) = x0

x′(t) =
1

F′(F−1(G(t)))
G′(t) = f (x)g(t)

The uniqueness follows, since (3) holds for any solution and F−1 is a bijection.

2 The easiest PDE

We consider functions u : [0, ∞)×Rn → R. We denote the derivative w.r.t the
first component

∂u
∂t

(t, x) = ut(t, x)

Consider the following PDE (the transport equation).

(TE)

{
ut(t, x) + b(t, x) · ∇u(t, x) = f (t, x) (t, x) ∈ (0, ∞)×Rn

u(0, x) = g(x) x ∈ Rn

We will solve this PDE by reducing it to a system of ODEs (Note that this is a
special case of the methods of characteristics).

Case 1 We consider the special case

b(t, x) = b ∈ Rn f (t, x) ≡ 0 g ∈ C1

Thus the PDE now reads

ut(t, x) + b · ∇u(t, x) = 0 (5)
u(0, x) = g(x) (6)

Now (5) just says that the derivative of a solution must vanish in the direction
(1, b). Suppose u is a solution and define

z(s) := u(t + s, x + sb) s ∈ [−t, ∞)

Then we can differentiate

ż = ut(t + s, x + sb) + b · ∇u(t + s, x + sb) = 0
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So z is constant. Note that this is expected since (t + s, x + sb) parametrizes
the lines through (t, x) in direction (1, b). Furthermore we know that

z(−t) = u(0, x− bt) = g(x− bt)z(0) = u(t, x)

Hence u(t, x) = g(x− bt).

Remark 1. The solution is constant along all lines (t + s, x + sb), s ∈ [−t, ∞), so
it suffices to know the value for one point on each line. This now also justifies
the name "transport equation" since the initial condition g is transported along
in direction (1, b).

Theorem 2. (TE) with f ≡ 0, b(t, x) = b ∈ Rn, g ∈ C1 has a unique solution
u ∈ C1((0, ∞)×Rn) ∩ C0([0, ∞)×Rn) given by

u(t, x) := g(x− bt)

Proof. Existence. Check that g(x− bt) is a solution.
Uniqueness. Assume that u1, u2 are solutions and define

w := u1 − u2

w solves the PDE {
wt − b · ∇u = 0
w(0, x) = 0

Define z(s) := w(t + s, x + sb). As above

ż(s) = 0

and

z(−t) = w(0, x− bt) = 0
z(0) = w(t, x)

Hence w ≡ 0.

Case 2 b(t, ·) ∈ C1(Rn) for all t ∈ [0, ∞). We try to do the same thing as in
the first case and look for curves along which the solution is constant. Such a
curve is of the following form

Γ(s) := (s, γ(s)) γ : R→ Rn

For a curve γ and a solution u we have

d
ds

(u(s, γ(s)))

ut(s, γ(s)) + γ̇(s)×∇u(s, γ(s))
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Hence if γ is a curve through (t, x) ∈ (0, ∞)×Rn then u is constant along γ if
and only if {

γ̇(s) = b(s, γ(s))
γ(t) = x

(This is an ODE!) In that case

u(t, x) = u(t, γ(t)) = u(0, γ(0)) = g(γ(0))

Theorem 3. Assume u is a solution of (TE) with f ≡ 0 and that for (t, x) ∈ (0, ∞)
γ solves {

γ̇(s) = b(s, γ(s))
γ(t) = x

Then it holds that

u(t, x) = g(γ(0))
u(t, x) = u(s, γ(s)), ∀s ∈ [0, t]

Remark 2. Suppose Γ is the set of all these solutions γ. Then, as in the first case,
the initial condition is transported along Γ. Note that if γ is such a solution
and (t, x) ∈ Γ(s) then there might be no s such that Γ(s) ∩ {t = 0} 6= ∅. That
means that the set of curves that intersect the "zero-plane" might not cover all
of [0, ∞)×Rn.

Example 2. (i) b(t, x) = b ∈ Rn. For (t, x) ∈ (0, ∞)×Rn solve{
γ̇(s) = b
γ(t) = x

The solution is γ(s) = (x− bt) + s so that by Theorem 3

u(t, x) = g(γ(0)) = g(x− bt)

(ii) b(t, x) = x. We have to solve{
γ̇(s) = γ(s)γ(t) = x

The solution is γ(s) = xes−t, so by Theorem 3

u(t, x) = g(γ(0)) = g(xe−t)

Case 3 We consider the General Transport equation, i.e. f ∈ C0.

Theorem 4. Under the assuptions of the last theorem with f ∈ C0 instead of f ≡ 0
we have that

u(t, x) = g(γ(0)) +
∫ t

0
f (s, γ(s))ds
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Proof. By an easy computation (since u is a solution):

d
ds

u(s, γ(s)) = ut(s, γ(s)) + γ̇(s) · u(s, γ(s)) = f (s, γ(s))

Hence by the fundamental theorem of calculus

u(t, x) = u(t, γ(t)) = u(0, γ(0))︸ ︷︷ ︸
=g(γ(0))

+
∫ t

0
f (s, γ(s))ds

Remark 3. Note that we can not directly say the solution is transported along
the curves Γ but it is still uniquely determined by them.

Example 3. Consider {
ut + x · ∇u = t
u(0, x) = g(x)

By the last example γ(s) = xes−t so by theorem 4

u(t, x) = g(xe−t) +
∫ t

0
sds︸ ︷︷ ︸

= t2
2
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