
Groups and higher groups
in homotopy type theory

Ulrik Buchholtz

TU Darmstadt

Arbeitstagung Bern-München, December 14, 2017



1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



Outline

1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



The Groupoid Model

Recall the Hofmann-Streicher groupoid model (1995):

Types A are groupoids.

Terms x : A are objects.

Identity types x =A y are hom-sets (as discrete groupoids).

Dependent types (x : A ` B : Type) are fibrations of groupoids (think
“B : A→ Gpd”).

The universe consists of discrete groupoids, aka sets. It is univalent.

The propositional truncation of a type, ‖A‖−1, is the groupoid with
the same objects as A, but with a unique isomorphism between any
pair of objects.



The Groupoid Model

Recall the Hofmann-Streicher groupoid model (1995):

Types A are groupoids.

Terms x : A are objects.

Identity types x =A y are hom-sets (as discrete groupoids).

Dependent types (x : A ` B : Type) are fibrations of groupoids (think
“B : A→ Gpd”).

The universe consists of discrete groupoids, aka sets. It is univalent.

The propositional truncation of a type, ‖A‖−1, is the groupoid with
the same objects as A, but with a unique isomorphism between any
pair of objects.



Groups in the groupoid model

Groups are pointed, connected groupoids. We can formalize connected
as isConn(A) := ‖A‖−1 × [(x, y : A)→ ‖x = y‖−1].

Hence it’s possible to use the groupoid model to do synthetic group
theory.



Delooping

If A is a pointed connected type, the carrier set (when viewed as a group)
is the loop type ΩA := (pt = pt).

The identity is the reflexivity path idp, and the group operation is path
concatenation.

Writing G for the carrier, it’s common to write BG for the pointed
connected type such that G = ΩBG (BG is the delooping of G).

We can use higher inductive types to define some common groups. For
example, the free group on one generator, aka the integers Z, is
represented by the higher inductive type generated by one point pt : BZ

and one path g : pt = pt.



Another way to get groups

If a : A is any object of any type A, then the connected component of A
containing a is a pointed connected type.
BAut(a) := (x : A)× ‖a = x‖−1.

The point pt : BAut(a) is of course pt := 〈a,−〉.

And the carrier is Aut(a) := (a = a).



Some group theory

BG→∗ BH homomorphism G→ H
BG→ BH conjugacy class of homomorphisms
BZ→∗ BH element of H
BZ→ BH conjugacy class in H
BG→ A A-action of G
BG→∗ BAut(a) action of G on a : A
X : BG→ Type type with an action of G
(x : BG)×X(x) quotient
(x : BG)→ X(x) fixed points



A comparison theorem?

Suppose we would like to prove an equivalence

Grp ' Type>0
pt

between the type of groups and the type of pointed connected types. We
will fail, because nothing in type theory ensures that the identities types
are sets!

In fact, the pointed connected types correspond to general ∞-groups.



A comparison theorem?

Suppose we would like to prove an equivalence

Grp ' Type>0
pt

between the type of groups and the type of pointed connected types. We
will fail, because nothing in type theory ensures that the identities types
are sets!

In fact, the pointed connected types correspond to general ∞-groups.



Homotopy levels

Recall Voevodsky’s definition of the homotopy levels:

Level Name Definition
−2 contractible isContr(A) := (x : A)×

(
(y : A)→ (x = y)

)
1 proposition isProp(A) := (x, y : A)→ isContr(x = y)
2 set isSet(A) := (x, y : A)→ isSet(x = y)
3 groupoid

...
...

...
...

n n-type
...

...
...

...

(Modulo starting at −2 instead of 0.)



Homotopy levels

Recall Voevodsky’s definition of the homotopy levels:

Level Name Definition
−2 contractible isContr(A) := (x : A)×

(
(y : A)→ (x = y)

)
1 proposition isProp(A) := (x, y : A)→ isContr(x = y)
2 set isSet(A) := (x, y : A)→ isSet(x = y)
3 groupoid

...
...

...
...

n n-type
...

...
...

...

(Modulo starting at −2 instead of 0.)



The right comparison theorem

Now we get an equivalence

Grp ' Type=1
pt

between discrete groups (i.e., whose carrier is a set) and pointed
connected 1-types.

And this equivalence lifts to an equivalence of (univalent) 1-categories.



Outline

1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



What’s so great about abelian groups?

If sets that are loop types are good, double loop types must be twice as
good!

And they are! Because of the Eckmann-Hilton argument, they represent
abelian groups.

But triple loop types give nothing new.



What’s so great about abelian groups?

If sets that are loop types are good, double loop types must be twice as
good!

And they are! Because of the Eckmann-Hilton argument, they represent
abelian groups.

But triple loop types give nothing new.



What’s so great about abelian groups?

If sets that are loop types are good, double loop types must be twice as
good!

And they are! Because of the Eckmann-Hilton argument, they represent
abelian groups.

But triple loop types give nothing new.



The ∞-groupoid model

HoTT: types are homotopy types
Grothendieck: homotopy types are ∞-groupoids

Thus: types are ∞-groupoids

Elements are objects, paths are morphisms, higher paths are higher
morphisms, etc.



Synthetic homotopy theory

In the HoTT book: Whitehead’s theorem, π1(S1), Hopf fibration, etc.

(Generalized) Blakers-Massey theorem

Quaternionic Hopf fibration

Gysin sequence, Whitehead products and π4(S3) (Brunerie)

Homology and cohomology theories

Serre spectral sequence for any cohomology theory (van Doorn
et al. following outline by Shulman)



Higher groups

Let us introduce the type

(n, k)Grp := (G : Type≤n)× (BkG : Type≥k
pt )× (G = ΩkBkG)

= Type≥k,≤n+k
pt

for the type of k-tuply groupal n-groupoids.
We can also allow k to be infinite, k = ω, but in this case we can’t cancel
out the G and we must record all the intermediate delooping steps:

(n, ω)Grp :=
(
B−G : (k : N)→ Type≥k,≤n+k

pt
)

×
(
(k : N)→ BkG = ΩBk+1G

)



The periodic table

k \ n 0 1 · · · ∞
0 pointed set pointed groupoid · · · pointed ∞-groupoid
1 group 2-group · · · ∞-group
2 abelian group braided 2-group · · · braided ∞-group
3 — ” — symmetric 2-group · · · sylleptic ∞-group
...

...
...

. . .
...

ω — ” — — ” — · · · connective spectrum

decategorication (n, k)Grp→ (n− 1, k)Grp,
discrete categorification (n, k)Grp→ (n + 1, k)Grp,
looping (n, k)Grp→ (n− 1, k + 1)Grp
delooping (n, k)Grp→ (n + 1, k− 1)Grp
forgetting (n, k)Grp→ (n, k− 1)Grp
stabilization (n, k)Grp→ (n, k + 1)Grp



The periodic table

k \ n 0 1 · · · ∞
0 pointed set pointed groupoid · · · pointed ∞-groupoid
1 group 2-group · · · ∞-group
2 abelian group braided 2-group · · · braided ∞-group
3 — ” — symmetric 2-group · · · sylleptic ∞-group
...

...
...

. . .
...

ω — ” — — ” — · · · connective spectrum

decategorication (n, k)Grp→ (n− 1, k)Grp,
discrete categorification (n, k)Grp→ (n + 1, k)Grp,
looping (n, k)Grp→ (n− 1, k + 1)Grp
delooping (n, k)Grp→ (n + 1, k− 1)Grp
forgetting (n, k)Grp→ (n, k− 1)Grp
stabilization (n, k)Grp→ (n, k + 1)Grp



The stabilization theorem

Theorem (Freudenthal)
If A : Type>n

pt with n ≥ 0, then the map A→ ΩΣA is 2n-connected.

Corollary (Stabilization)
If k ≥ n + 2, then S : (n, k)Grp→ (n, k + 1)Grp is an equivalence, and
any G : (n, k)Grp is an infinite loop space.

Theorem
There is an equivalence AbGrp ' (0, k)Grp for k ≥ 2, and this lifts to an
equivalence of univalent categories.

For example, for G : (0, 2)Grp an abelian group, we have
BnG = K(G, n), an Eilenberg-MacLane space.



Outline

1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



Motivation

1 Age-old problem: what’s the best way to reason (& program) with
syntax with binders? α-renaming? HOAS? wHOAS? de Bruijn
indices? nominal sets?

2 A new approach afforded us by HoTT.
3 This is based on the classifying type BΣ∞ of the finitary symmetric

group Σ∞.
4 HoTT lets us escape setoid hell. Will it also let us escape

weakening hell?
5 Application: will nominal techniques be useful for letting HoTT eat

itself?



A vision

Many interesting applications of autophagy: S-cohesion, equivariant
cohesion, maybe one day real/smooth/differential cohesion, etc.
All with internally defined models.

Real cohesion

HoTT++

Differential cohesion

pt-cohesion

. . .

HoTT++/UF



A vision

Many interesting applications of autophagy: S-cohesion, equivariant
cohesion, maybe one day real/smooth/differential cohesion, etc.
All with internally defined models.

Real cohesion

HoTT++

Differential cohesion

pt-cohesion

. . .

HoTT++/UF



Symmetric groups

Recall that the automorphism group of u : U is simply by
BAut u = (v : U)× ‖u = v‖−1. (This is a 1-group if U is a 1-type.)

The finite symmetric groups Σn are represented by BAut[n], where [n] is
the canonical set with n elements. (Recall the Set is a 1-type.)



More about finite sets

Let FinSet := (A : Type)× ‖∃n : N, A = [n]‖−1.

Then we get an equivalence

FinSet ' (n : N)× BAut[n]

using the pigeonhole principle which implies that [n] ' [m]→ n = m.

In particular we have the cardinality function card : FinSet→N.

NB these are Bishop sets, not Kuratowski sets; see also Yorgey’s thesis
for an application to the theory of species. See also Shulman’s
formalization in the HoTT library in Coq.



More about finite sets

Let FinSet := (A : Type)× ‖∃n : N, A = [n]‖−1.

Then we get an equivalence

FinSet ' (n : N)× BAut[n]

using the pigeonhole principle which implies that [n] ' [m]→ n = m.

In particular we have the cardinality function card : FinSet→N.

NB these are Bishop sets, not Kuratowski sets; see also Yorgey’s thesis
for an application to the theory of species. See also Shulman’s
formalization in the HoTT library in Coq.



The Schanuel topos

Recall the many equivalent ways to present the Schanuel topos:

1 The category of finitely supported nominal sets (Σ∞-sets).

2 The category of continuous Σ∞-sets.
3 The category of continuous Aut N-sets.
4 The category of sheaves on FinSetop

mon wrt the atomic topology.
5 The category of pullback-preserving functors FinSetmon → Set.

Focus on first two: in HoTT, we can present a variant as a slice topos
over BΣ∞.



The Schanuel topos

Recall the many equivalent ways to present the Schanuel topos:

1 The category of finitely supported nominal sets (Σ∞-sets).

2 The category of continuous Σ∞-sets.
3 The category of continuous Aut N-sets.
4 The category of sheaves on FinSetop

mon wrt the atomic topology.
5 The category of pullback-preserving functors FinSetmon → Set.

Focus on first two: in HoTT, we can present a variant as a slice topos
over BΣ∞.



From well-scoped de Bruijn and beyond

When representing syntax with binding we have many options:

Use names and quotient by α-equality

Use de Bruijn indices

Use well-scoped de Bruijn indices: index by N (number of free
variables)

(HoTT) Use symmetric well-scoped de Bruijn indices: index by
FinSet

(HoTT) Use nominal technique: index by BΣ∞.

N FinSet BΣ∞ BAut N
[−] i

card

j



Finitary symmetric group

BΣ∞ is both the homotopy colimit of

BAut[0]→ BAut[1]→ · · ·

and the homotopy coequalizer of

id, (–) +> : FinSet→ FinSet

using the equivalence mentioned above.

Constructors:

i : FinSet→ BΣ∞ or i : (n : N)→ BAut[n]→ BΣ∞,

g : (A : FinSet)→ i(A) = i(A +>).



Shift and weakening

The shift map is a special case of shifting by an arbitrary finite set B,
iA 7→ i(B + A), illustrated as follows:

A N

B A N

Thus we get a map FinSet×BΣ∞ → BΣ∞, which we write suggestively
as mapping A and X to A + X.



Reindexing

If f : I→ J is any function, we get operations

TypeI TypeJ
f!

f∗

f ∗

where f ∗Z(i) = Z(f i),

f!Y(j) = (i : I)× (f i = j)× Y(i), and

f∗Y(j) = (i : I)→ (f i = j)→ Y(i).

Applying these to the functions between >, N, FinSet and BΣ∞, we get
adjunctions connecting the various kinds of nominal types.
Applying these to the shift maps B +− : BΣ∞ → BΣ∞, we get that the
name abstraction operations have both adjoints.



The atoms

We define A : BΣ∞ → Type by recursion

A iA := A + N

ap A gA := (A + N ' A + (1 + N) ' (A + 1) + N)

Proposition
For all X : BΣ∞, [1]A X ' (1 + A)X. Hence, [1]A '̇ 1 + A.



Transpositions

We need to see the generators of Σ∞ equivariantly.
Define (– –) : A X→ A X→ X = X by induction on X.

(Not yet formalized.)

Then we get (a b)2 = 1, ((a b)(a c))3 = 1, (a b)(c d) = (c d)(a b) (using
fresh name convention).



Basic nominal theory

nominal set Z : BΣ∞ → Set

nominal type Z : BΣ∞ → Type

element x ∈ Z means x : Z(pt)

action by finite permutation for π ∈ Aut[n] and x ∈ X we get π · x by
transporting to [n], applying π, and transporting back.

equivariant action by transpositions for a, b : A X, transport along
(a b) : X = X.

terms with support Z@A = (X : BΣ∞)→ Z(A + X)



Generic syntax

Following Allais-Atkey-Chapman-McBride-McKinna, we introduce a
universe of descriptions of scope-safe syntaxes, Desc : Set:

A : Type0
A has dec.eq.
d : A→ Desc

σ A d : Desc

m : N

d : Desc

X m d : Desc : Desc

with semantics J–K : TypeI → TypeI for any I with S : I→ I:

Jσ A dK Z i := (a : A)× Jd aK Z i

JX m dK Z i := Z (Sm i)× JdK Z i

J K Z i := >



Terms and semantics in cubical sets model

The terms are then the inductive type family Tm d : BΣ∞ → Type:

a : A X
var a : Tm d X

z : JdK (Tm d)X
con z : Tm d X

(We can use any I with an atom family A : I→ Type.)

Inductive families of this kind (Dybjer calls them restricted) have
straight-forward semantics in the cubical models with
composition-operators working index-wise.



Nominal kit for generic syntax

We can of course reason about Tm d : BΣ∞ → Type using the
(de Bruijn) techniques of Allais et al.

However, we can also work nominally using equivalences

Z (Sm X) ' (Vec(A X)m× Z X)/∼.

These should obtain whenever Z is a nominal set with finite support.



Supports and binding

For generic syntax we can obtain the binding equivalences by proving by
induction on d that J–K preserves the structure of having finite sets of
support and binding equivalences.
In the same way can prove that Tm d X has decidable equality.

(In the formalization I use sized types to convince Agda these inductions
are structural.)



Outline

1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



Warmup: untyped lambda calculus

The un(i)typed λ-calculus can be represented by the description

dλ = σ [2] (λb, if b then X 1 else X 0 (X 0 )

A more perspicuous and scalable way to say the same thing:

Cλ : FinSet

Cλ := {lam, app}

cλ : Cλ → Desc

cλ lam := X 1

cλ app := X 0 (X 0 )

dλ := σ Cλ cλ



Warmup: untyped lambda calculus

The un(i)typed λ-calculus can be represented by the description

dλ = σ [2] (λb, if b then X 1 else X 0 (X 0 )

A more perspicuous and scalable way to say the same thing:

Cλ : FinSet

Cλ := {lam, app}

cλ : Cλ → Desc

cλ lam := X 1

cλ app := X 0 (X 0 )

dλ := σ Cλ cλ



Convenient constructors

Using the binding equivalence

Tm dλ (S X) ' (A X× Tm dλ X)/∼

we get a more convenient lam constructor:

lam : A X→ Tm dλ X)→ Tm dλ X).



A description of the syntax

A first test would be the λΠ-calculus:

CλΠ : FinSet

CλΠ := {lam, app, pi}

cλΠ : CλΠ → Desc

cλΠ lam := X 1

cλΠ app := X 0 (X 0 )

cλΠ pi := X 0 (X 1 )

dλΠ := σ CλΠ cλΠ



Next steps

To formalize the standard semantics of the λΠ-calculus (and other
dependent type theories), we need to prove that the semantics is
well-behaved wrt to substitution.

Probably(?) the best way is to perform a translation into well-typed
syntax with explicit substitutions first (but not set-truncated).

Longer term goal: The groupoid model of type theory with a
universe of sets in Type≤1.



Outline

1 Groups

2 Higher Groups

3 Nominal Types

4 Formalizing type theory

5 Conclusion



Open problems

Is there a classically equivalent definition of Σ∞ that carries the
“natural” topology?

Are there applications of higher-dimensional nominal types?

What is anyway the “correct” (∞, 1)-analogue of the Schanuel
topos? (Should a transposition cost a sign somehow?)

In directed type theory, there’s a nice way to do HOAS-style syntax.

Let’s make HoTT eat itself!


	Outline
	Groups
	Higher Groups
	Nominal Types
	Formalizing type theory
	Conclusion

