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1 Introduction

The Elementary Theory of the Category of Sets (ETCS) was first introduced by William

Lawvere in [4] in 1964 to give an axiomatization of sets.

The goal of this thesis is to describe the Constructive Elementary Theory of the Category

of Sets (CETCS), following its presentation by Erik Palmgren in [2].

In chapter 2. we discuss basic elements of Category Theory. Category Theory was first

formulated in the year 1945 by Eilenberg and Mac Lane in their paper “General theory

of natural equivalences” and is the study of generalized functions, called arrows, in an

abstract algebra. Hence the comparison to “archery” describes the art and the beauty

of this field of mathematics fittingly. Category Theory is considered as a very abstract

field in mathematics and was therefore often overlooked by many mathematicians in the

past. However, already in the late 1940s many principles of Category Theory were applied

in mathematics, like algebraic topology and abstract algebra. Today it is not only used

in mathematical fields, but also in computer science, linguistics and philosophy. The

Category Theory explained in chapter 2. is meant to prepare for the study of the CETCS.

In chapter 3. we present the constructive approach to Lawvere’s ETCS. Unlike ETCS,

CETCS is formulated in intuitionistic logic instead of classical logic.

All notions and results in our thesis are found in [1] and [2]. Namely, all categorical

notions are found in [1] and all notions related to the CETCS are found in [2].
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2 Elements of basic Category Theory

2.1 The category Set

As an introduction we want to look at a simple concept, which we have encountered sev-

eral times in basic mathematics lectures or even in school.

Consider two sets A and B and a function f from A to B denoted by

f : A −→ B.

As usual, we will call A the domain of f , denoted by A = dom(f) and B the codomain

of f , denoted by B = cod(f).

Consider the functions g : B −→ C and h : C −→ D. Now we can define the composition

of f and g, denoted by g ◦ f : A −→ C, for every x ∈ A

(g ◦ f)(x) = g(f(x)).

These functions can be visualized by the following diagram:

A B

C

g◦f

f

g

We can also observe that for every set A there exists the identity function

idA : A −→ A,

given by

idA(x) = x.

Finally we note, that the functions satisfy following rules:

• Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f

• Unit law: f ◦ idA = f = idB ◦ f
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Now we identify the sets as objects and the arrows as functions between sets. In category

theory we denote this structure as the category of sets Set. The aim of categories is to

generalize this concept of sets and function and view it as an abstract algebra.

2.2 Basic definitions

Definition 2.1 (Category). A category C consists of:

• a collection of objects C0 denoted as A,B,C, . . .

• a collection of arrows or morphisms C1 denoted as f, g, h, . . .

• for a given arrow f : A −→ B there exist two objects

dom(f) = A and cod(f) = B,

called domain and codomain.

• a collection of compositions C2. An element h of C2 can be represented by two

arrows f : A −→ B and g : B −→ C with cod(f) = dom(g) and is denoted as

h = g ◦ f : A −→ C

.

• an identity arrow given by

1A : A −→ A,

for every A.

Furthermore, C satisfies following properties:

• Unit law: for given f : A −→ B

f ◦ 1A = f = 1B ◦ f

A A B B
1A

f

f

f

1B

• Associativity:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
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A B C D
f

g◦f

(h◦g)◦f

h◦(g◦f)

g

h◦g

h

Definition 2.2 (Functor). Consider two categories C and D. A mapping

F : C −→ D

is called functor, if it satisfies following properties:

• F (f : A −→ B) = F (f) : F (A) −→ F (B)

• F (1A) = 1F (A)

• F (f ◦ g) = F (f) ◦ F (g).

Definition 2.3 (Equalizer). Consider a category C. An equalizer consists of the following

data:

• two parallel arrows f, g : A −→ B

• an arrow e : E −→ A such that

f ◦ e = g ◦ e

and for a given arrow z : Z −→ A following universal property is satisfied:

there exists a unique arrow u : Z −→ E such that following diagram commutes:

E A B

Z

e
f

g

u
z

Definition 2.4 (Pullback). Consider a category C and two arrows f : A −→ C and

g : B −→ C. A pullback consists of following data:

• two arrows p1 : P −→ A and p2 : P −→ B.

• given arrows z1 : Z −→ A and z2 : Z −→ B with fz1 = gz2
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Then there exists a unique arrow u : Z −→ P with z1 = p1u and z2 = p2u, as shown in

the following diagram:

Z

P B

A C

z2

z1

u

p2

p1 g

f

2.3 Basic properties of Set

2.3.1 Epis and monos

Recall the definition of an injective and surjective function. We now want to discuss these

properties in the context of categories:

Definition 2.5 (Epis and Monos). Consider a category C and an arrow f : A −→ B.

We call f

• a monomorphism (or mono), if for all arrows g, h : C −→ A with fg = fh implies

g = h. We will denote a mono as: f : A� B

• an epimorphism (or epi), if for all arrows i, j : B −→ D with if = jf implies i = j.

To visualize these definitions we often use diagrams to avoid losing track of domain and

codomain, while working with many arrows. In the case of monomorphisms we obtain

following diagram:

C A B
g

h

f

It is easy to view these definitions as an abstract concept of injective and surjective func-

tions. In the category Set these definitions are equivalent.

Theorem 2.6. In Set a function f : A −→ B is injective if and only if f is a monomor-

phism.
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Proof. To prove that f is a monomorphism, assume f is an injection, i.e for every x, y ∈ A
and f(x) = f(y) implies x = y. Consider two function

g, h : C −→ A

Then

(f ◦ g)(x) = (f ◦ h)(x)

f(g(x)) = f(h(x))

holds. Since f is injective, it follows that g(x) = h(x) and since x is arbitrary, we conclude

g = h. Hence f is a mono.

Now suppose f is a mono. Without loss of generality |A| > 1, because if |A| = 1 it

satisfies injectivity of f trivially.

Now we choose a, a′ ∈ A with a 6= a′. We want to show f(a) 6= f(a′), thus implying the

injectivity of f . Consider the functions defined as follows:

g, h : {x} −→ A given by g(x) = a and h(x) = a′,

where {x} is any set containing only one element x. Since g 6= h and f is a monomorphism,

fg 6= fh. Together we get:

f(a) = f(g(x)) 6= f(h(x)) = f(a′),

which proves that f is injective.

Following Palmgren in [2] we can also generalize the notion of a monic arrows.

Suppose a sequence of mappings r1 : R −→ X1, . . . , R −→ Xn. This sequence is called

jointly monic, if and only if for any f, g : A −→ R the following holds:

r1f = r1g, . . . , rnf = rng implies f = g.

Note that f and g being jointly monic does not imply that f and g are monic. We will

use the same notation (r1, . . . , rn) : R � (X1, . . . , Xn)

After proving the equivalence above it is natural to assume the following:

Theorem 2.7. In Set a function f : A −→ B is surjective if and only if f is an

epimorphism.
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Proof. Let f : A −→ B be an epimorphism. We want to show by contradiction that f is

surjective. Assume that f is not surjective. We now can choose b ∈ B such that for all

x ∈ A: f(x) 6= b. Define the functions g, h as follows:

g : B −→ {y, y′} given by g(x) = y for all x ∈ A and

and

h : B −→ {y, y′}, given by h(x) =

y′ x = b

y otherwise

where {y, y′} is any given set with two elements. Obviously g 6= h, but (g ◦ f) = (h ◦ f)

because b is not in the range of f . This is a contradiction to f being an epimorphism,

hence f is surjective.

Now suppose f is surjective, i.e for all b ∈ B there exists an a ∈ A such that f(a) = b.

Suppose two functions g, h : B −→ C such that g 6= h. Then there exists a b ∈ B such

that g(b) 6= h(b). Together we get g(f(a)) 6= h(f(a)) and (g ◦ f)(a) 6= (h ◦ f)(a) proving

that f is an epi.

2.3.2 Elements as arrows

In contrast to other mathematical fields, in category theory we do not use the ε-relations.

Instead, we try describe the ε-defined notion with the arrows of categories.

In Set we can even identify an element of an object (an element of a set in Set). In order

to discuss this, we define following terms:

Definition 2.8 (Initial and terminal objects). Consider a category C. An object

• 0 is called initial, if for every object C there exists a unique arrow f : 0 −→ C

• 1 is called terminal, if for every object C there exists a unique arrow f : C −→ 1

In Set it is easy to see that any singleton set, i.e. a set with only one element, is terminal.

For every set A there exists only one way to map all x ∈ A to any singleton set {∗} given

by the function f , which maps all elements to ∗.
The empty set {∅} is the initial object in Set. Now we want to show, how we can view

an element in Set as an arrow.

Remark 2.9. Consider the category Set with a terminal object 1 = {∗}. Then we can

identify every element of a set as a function.
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Proof. Let a be an element of a set A. Define the function f : 1 −→ A given by f(∗) = a.

Hence we can identify a as the function f .

Similarly, if we have the function f : 1 −→ A, we can identify the element a as f(∗).

2.3.3 Binary relations as monic arrows

Recall the term jointly monic. Palmgren [2] considers a jointly monic sequence of map-

pings r1 : R −→ X1, . . . , R −→ Xn as an n-ary relation between the objects X1, . . . , Xn.

For simplicity we will elaborate this for binary relations. The generalization can be shown

analogously.

In Set, a relation on a single set B1 can be identified as a subset of B1:

Let an injective function f : A −→ B1. Then the range of f Rng(f) = {f(a) : a ∈ A}
is a subset of B1. Define the relation Rf =

{
f(a) : a ∈ A

}
⊆ B1. We call this a 1-ary

relation of B1.

Now consider the sets B1 and B2. Let b1 ∈ B1, b2 ∈ B2 and b1 ∼ b2, i.e b1 is in relation

to b2. Define the set B′ = {(b1, b2) ∈ B1 × B2 : b1 ∼ b2}. We want to show that b1 ∼ b2

if and only if there exists an element a ∈ B′ such that b1 = f1(a), b2 = f2(a) and f1, f2

injective.

Assume b1 ∼ b2. Define f1, f2 as follows:

f1 : B′ −→ B1 : , given by f1(b1, b2) = b1

and

f2 : B′ −→ B2 : , given by f2(b1, b2) = b2.

It is easy to see that these functions are injections.

B′

B1

B2

a

b1

f1

b2f2

Define the set Rf1,f2 :=
{

(f1(a), f2(a) : a ∈ B′
}

. We want to show that there exists an

element a ∈ B′ such that b1 = f1(a) and b2 = f2(a) . To show this, we will show that the
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set B′ of all binary relation between the sets B1 and B2 is equal to Rf1,f2 :

Rf1,f2 = {(f1(a), f2(a) : a ∈ B′}
= {(f1(b1, b2), f2(b1, b2) : (b1, b2) ∈ B′}
= {(b1, b2) : (b1, b2) ∈ B′} = B′

By this, we have shown that a binary relation B′ ⊆ B1 × B2 generates a set Rf1,f2 and

two injective functions f1 and f2, such that B′ = Rf1,f2 .

Now suppose there exists a ∈ A and two injective functions

f1 : A −→ B1 and f2 : A −→ B2

such that f1(a) = b1 and f2(a) = b2. Define the relation b1 ∼ b2, if and only if there exists

an a ∈ A with f1(a) = b1 and f2(a) = b2. The set of all pairs (b1, b2) in relation is defined

as

Rf1,f2 :=
{

(f1(a), f2(a)) : ∃! a ∈ A
}
⊆ B1 ×B2.

So we showed that two injective functions generate a relation Rf1,f2 ⊆ B1 × B2 and to-

gether with the first part showing the equivalence.

2.3.4 Coequalizers as quotient sets

Consider a set A and a binary relation ∼ with following properties:

• reflexivity, i.e for all a ∈ A : a ∼ a

• symmetry, i.e for all a, b ∈ A: a ∼ b implies b ∼ a

• transitivity, i.e for all a, b, c ∈ A: a ∼ b and b ∼ c implies a ∼ c

Then we call ∼ an equivalence relation on A. Now define the equivalence class as follows:

[a] =
{
b ∈ A : a ∼ b

}
.

The set of all equivalence classes is called quotient set and is defined as:

A/ ∼=
{

[a] : a ∈ A
}
.

Further define the canonical projection

π : A −→ A/ ∼, a 7→ [a]
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and a function f ′ : A −→ B, which preserves the equivalence relation, i.e. a ∼ b implies

f(a) = f(b). Our aim is to find a function g : A/ ∼ −→ B such that following diagram

commutes:

A A/ ∼

B

f

π

g

We will now abstract this concept and introduce coequalizers:

Definition 2.10 (Coequalizer). Consider a category C. A coequalizer consist of following

data:

• two parallel arrows f, g : A −→ B

• an arrow q : B −→ Q such that qf = qg

If there exists an z : B −→ Z, which satisfies zf = zg, there exists a unique u : Q −→ Z

such that uq = z, i.e following diagram commutes:

A B Q

Z

f

g

q

z u

We now want to apply this definition to our problem above. With 2.3.3 we can identify the

binary relation ∼⊆ A×A as two monic (injective in Set) arrows. Define two projections

r1, r2 from the subset R :=∼

ri : R −→ A for i = 1, 2

and p1, p2 the projections

pi : X ×X −→ A for i = 1, 2

as shown in the following diagram:
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R

A A

A× A

r2r1

p2p1

With the canonical projection π : A −→ A/R, the projections ri for i ∈ {1, 2} and a

given function f : A −→ B, which preserves the equivalence relation, we can construct

following coequalizer:

R A A/R

B

r1

r2

π

f
f ′

with fr1 = fr2.

This means there exists a function f ′ : A/R −→ B such that f ′π(a) = f(a). Note that

this composition is well defined, since f preserves the equivalence relation. Therefore, we

conclude: given a pair of parallel mappings f, g : R −→ A we can construct a quotient

set by quotienting B with an equivalence relation ∼ given by

x ∼ y if and only if f(x) = g(x).

We will further study this concept in section 3.5.1 in the context of set- theoretic conse-

quences of CETCS.

2.4 Membership of elements

In the subsection 2.3.2 we have seen how to view elements as arrows. Now we want explain

the notion of ⊂= . One might be tempted to read this as ”elementhood”, but we will use

the term ”membership”, thus using this different notation (∈ means ”elementhood” and

⊂= means ”membership”).

With the Remark 2.3.2 we can identify the mapping of an element x ∈ A as a monic

function x : 1 −→ A. We now want to study the evaluations of x under the function f .

This can be seen as a special case of composition.
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If we identify x as the arrow x : 1 −→ A we can describe the element mapping of x under

f : A −→ B, as the (unique) composition of two arrows:

y := f ◦ x

We can now visualize y ∈ B as the following commuting diagram:

1

A B

x y

f

Now we can define the notion of ⊂= , which generalizes the meaning of the mapping of x

under f :

Definition 2.11 (⊂= - membership). Consider a category C with a terminal object 1,

x ∈ B and a monic arrow m : A� B. x is called member of m, if there exists an arrow

x′ : 1 −→ A such that x = f ◦ x′.

1

A B

x′ x

f

We write x ⊂= m, if x is a member of m.

Roughly speaking x ⊂= m, if x is in the range of the arrow m. As usual we can generalize

the notion of ⊂= − membership for sequence of arrows.

If for x ∈ (B1, . . . , Bn) and a sequence of monic arrows (m1, . . . ,mn) : A −→ (B1, . . . , Bn)

there exists an arrow x′ : 1 −→ A such that mi ◦ x′ = x for every i ∈ {1, . . . n} we call

x = (x1, . . . , xn) a member of (B1, . . . , Bn).

With this we can reformulate the definitions of epis and monos in Set.

Remark 2.12. An arrow f : A −→ B is called:

• onto, if for every y ∈ B there exists x ∈ A identified as the arrow x : 1 −→ A such

that f ◦ x = y.
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• mono, if for every x ∈ A identified as the arrow x : 1 −→ A and ∀x′ ∈ A: f◦x = f◦x′

implies x = x′

Note with the use of classical logic onto and epic arrows equivalent in Set, but in intu-

itionistic logic only epi ⇒ onto holds.

Hence in the CETCS we will usually use the term onto. We will further discuss this in

chapter 3.

Here one can clearly recognize that Definition 2.5 is just the generalization of surjective

and injective functions in the context of Category Theory. In Category Theory, and in

order to understand [2] it is essential to view these terms as arrows.

With this we can define isomorphism, which will be very important in the CETCS.

Definition 2.13 (Isomorphism). An arrow f : A −→ B is an isomorphism if f is an epi

and a mono.

This allows us to describe an element a ∈ A as f−1(b) for b ∈ B in Set.

In [1] Awody uses a more general definition and uses ours as a proposition, but we will

use this as definition. This definition will be even clearer when we study the Constructive

Elementary Theory of the Category of Sets, where we will use this even as an axiom,

axiom (G), for our theory.

2.5 Partial and total arrows

To comprehend the the axioms of the Constructive Elementary Theory of the Category

of Sets we now want to elaborate the terms partial and total functions in the context of

category theory. This will especially be important to understand the (Π)- axiom, which

we will discuss later.

Definition 2.14 (Partial and total arrow). Consider a binary relation r = (r1, r2) : R −→
(X, Y ). r is a partial arrow if r1 is a mono. If r1 is an iso, we call r a total function.

In contrast to functions in Set, a partial arrow does not have to define f(x) for all x ∈ R.

It rather is defined on a subset R′ of R.

In Set a partial arrow is called partial function. Palmgren [2] uses the term partial

function in general categories. In this thesis we will use both terms depending on which

category we study. A partial function can be constructed with following data:
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• a subset A of X

• an inclusion map ιA : A −→ X

• two functions f : X −→ Y and g : A −→ Y

which satisfy f(ιA(a)) = g(a), i.e following diagram commutes:

A X

Y

g

ιA

f

We will now give a simple example of a partial function in the category Set.

Example 2.15. Consider a function f : R −→ R. Define an inclusion given by the

identity function id : R∗ −→ R and a function g : R∗ −→ R given by g(x) = 1
x
. With

this we get following commuting diagram and that f is a partial function:

R∗ R

R

1
x

id

f

We can characterize partial and total arrows as below:

Theorem 2.16. Consider a category C and a relation r : R −→ (X, Y ). Then

1. r is a partial arrow if and only if for all x ∈ X and y, z ∈ Y following holds: if

(x, y) ⊂= r and (x, z) ⊂= r then y = z.

2. r is a total arrow if and only if for all x ∈ X there exists a unique y ∈ Y such that

(x, y) ⊂= r.

3. If for all x ∈ X there exists a unique y ∈ Y such that (x, y) ⊂= r, then there exists

an arrow f : X −→ Y such that for all x ∈ X (x, fx) ⊂= r.

Proof. In this proof we will use concepts of 2.3.3.

1. Assume r is a partial arrow, that means r1 is a mono. With the characterization of
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monic arrows in 2.4 this is equivalent to:

for all s, t ∈ R, : r1s = r1t⇒ s = t.

Now suppose (x, y)⊂= r and (x, z)⊂= r. This means there exist arrows a1, a2 : 1 −→ R

such that r1a1 = x and r2a1 = y, r1a2 = x and r2a2 = z. r1 is a mono that means

a1 = a2 which implies y = z.

2. Assume r is a total function. That means r1 is an iso, so r1 is mono and onto.

Consider x ∈ X. Then there exists s ∈ R such that r(s) = (x, ∗) because r1 is

an epi. We now can use the notion s := r−1(x, ∗) ∈ R, since r1 is an iso. Define

y := r2(r
−1
1 x). Of course x = r1(r

−1
1 x) ∈ X, which means (x, y) ⊂= r, thus showing

the existence. Suppose there exists another y′ ∈ Y such that (x, y′) ⊂= r. r is also a

partial arrow and with 1) we get y = y′, which shows the uniqueness.

Now assume that for all x ∈ X there exists a unique y ∈ Y such that (x, y) ⊂=
r. This means 1) is satisfied, therefore r is a partial function and r1 is mono. We

now have to show that r1 is an onto. Since (x, y) ⊂= r for all x ∈ X there exists a

t ∈ R such that x = r1t and y = r2t. With the characterization of onto arrows in

subsection 2.4 we can conclude that r1 is onto, that means r1 is a total function.

3. Suppose for all x ∈ X there exists a unique y ∈ Y such that (x, y) ⊂= r. With 2)

we can conclude that r is a total function, i.e r1 is an iso and is invertible. Define

f := r2r
−1
1 . Then for all x ∈ X x = r1r

−1
1 x and fx = r2r

−1
1 x. With a := r−1x we

can conclude (x, fx) ⊂= r.

2.6 Cartesian closed categories (CCC)

In the Constructive Elementary Theory of the Category of Sets we study a special type of

categories, the cartesian closed categories (CCC). This allows us to generate new objects

with already existing ones, without worrying about the existence. Before defining CCCs

we need some prerequisites.

2.6.1 Products of objects

For two given objects A and B we want to define a new object denoted as A × B. By

defining, we aim to give an abstract characterization of the structure of A×B up to iso-

morphism. This characterization will be given by the universal matching property (UMP).
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There are different versions of the UMP depending on which structure we are examining

(for example for the coequalizer in Definition 2.10 we used a slightly different UMP than

we will for products). This way of defining structures is standard in category theory. We

now want to specifically study products of objects and give the according UMP. Defining

the UMP in other structures will work similarly.

Definition 2.17 (Product). Consider a category C and two objects A and B. A (binary)

product consists of

• an object P

• two arrows p1 : P −→ A and p2 : P −→ B

which satisfy the universal matching property:

For a given object X and and two arrows x1 : X −→ A and x2 : X −→ B there exists a

unique arrow u : X −→ P , such that x1 = p1u and x2 = p2u.

A product can be visualized by the following product diagram:

X

A B

P

x2x1

u

p2p1

In this case Palmgren [2] uses following notation for the unique arrow u and p := (p1, p2):

u ≡ 〈x1, x2〉p

Given a sequence of arrows p = (p1, . . . , pn) : P −→ (X1, . . . , Xn) this concept can be

generalized for n− ary products and u can be written as follows:

u ≡ 〈x1, . . . , xn〉p

This concept will be used in the many proofs (e.g Theorem 3.4).

As a counterpart we will define the dual of products, called coproducts.
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Definition 2.18 (Coproducts). Consider two arrows q1 : A −→ Q and q2 : B −→ Q. A

diagram is called coproduct, if there exists an object Z and two arrows z1 : A −→ Z and

B ←− Z, such that there exists a unique arrow u : Q −→ Z with uq1 = z1 and uq2 = z2,

as shown in
Z

A B

Q

z1

q1

z2

q2

u

We now want to give an example of products. Therefore we use this opportunity introduce

a new category, which plays a big part in the theory of CCCs.

2.6.2 Application: λ-Calculus

We now give an overview of λ-calculus, based on [1], to define the category of types,

denoted as C(λ). To understand the basic concept, consider the function x3 + y. If

we want to express the function, in which y is the variable and x is fixed, i.e the func-

tion given by y 7→ x3 + y, we write λy.x3 + y. If we want to view the function with

two variables, i.e the function x 7→ (y 7→ x3 + y), we write λx.λy.x3 + y. Roughly speak-

ing, we can view λ− calculus as the theory of bound and unbound variables. It consists of:

• Types: A,B,A −→ B,A × B, . . . (there are many different types such as function

types or identity types, but it suffices to view them as mere objects)

• Terms:

– variables x, y, z, . . . : A, read as x, y, z, . . . is a point of A

– a : A, b : B, . . . , where a and b are constants

– 〈a, b〉 : A×B, where a : A and b : B

– fst(c): A, where c : A×B

– ca : A −→ B, where c : A −→ B and a : A

– λy.b : A −→ B, where y : A and b : B

18



• Equations:

– fst(〈a, b〉) = a

– snd(〈a, b〉) = b

– 〈fst(c), snd(c)〉 = c

– (λy.b)a = b[a/y], where b[a/y] is defined as the substitution

– λx.cx = c, where x is a free variable in c

Further define the equivalence relation:

a ∼ b if and only if λx.b = λy.b[y/x]

Now we can define the category of types C(λ) as follows:

If we identify the objects as types, the arrows as the closed terms c : A −→ B, where c ∼ c′,

the identity arrow defined as 1A = λx.x and the composition defined as c ◦ a = λx.c(bx),

C(λ) is a category.

Indeed, we can verify associativity as follows:

c ◦ (b ◦ a) = λx(c((b ◦ a)x))

= λx(c((λy.b(ay))x))

= λx(c(b(ax)))

= λx(λy(c(by)(ax))

= λx((c ◦ b)(ax)) = (c ◦ b) ◦ a

and 1A is the unit:

c ◦ 1B = λx(c((λy.y)x)) = λx(cx) = c

1C ◦ c = λx((λy.y)(cx)) = λx(cx) = c

Further information about λ-calculus can be found in [5].

We now want to show that C(λ) has binary products:

Consider the types A, B and define the projections π1, π2 as follows:

π1 = λz.fst(z) and π2 = λz.snd(z) for z : A×B

For given arrows a : X −→ A and b : X −→ B we get following diagram
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X

A B

A×B

ba

(a,b)

π2π1

where (a.b) := λx.〈ax, bx〉. We now have to show the existence and the uniqueness of the

universal matching property:

Existence: We have to show that π1 ◦ (a, b) = a and π2 ◦ (a, b) = b. For this it is enough

to prove π1 ◦ (a, b) = a (π2 ◦ (a, b) = b can be proven similarly):

π1 ◦ (a, b) = λx(π1((λy.〈ay, by〉)x))

= λx(π1〈ax, bx〉)
= λ(ax) = a

Uniqueness: Consider an arrow c : X −→ A×B with π1 ◦ c = a and π2 ◦ c = b. We have

to show that (a, b) = c. Indeed:

(a, b) = λx.〈ax, bx〉
= λx.〈(π1 ◦ c)x, (π2 ◦ c)x〉
= λx.〈(λy(π1(cy)))x, (λy(π2(cy)))x〉
= λx.〈(λy((λz.fst(z))(cy)))x, (λy((λz.snd(z))(cy)))x〉
= λx.〈λyfst(cy))x, λy(snd(cy))x〉
= λx.〈fst(cx), snd(cx)〉
= λx.(cx)

= c

Together we get that the UMP of products is satisfied, which means the category C(λ)

has products.
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2.6.3 Exponentials

Before we define the cartesian closed categories, we will discuss exponentials first. This

term can be viewed as the categorical interpretation of function spaces.

Consider the category Set and a function

f : A×B −→ C.

By fixing a ∈ A we get the function

fa : B −→ C

and if a is a variable one can define the function:

f̃ : A −→ CB defined as a 7→ f(a, y),

where CB is the set of functions from B to C. With f̃ we can describe every function φ :

A −→ CB as φ = f̃ given by f(a, b) := φ(a)(b). This means there exists the isomorphism

Hom(A×B,C) ∼= Hom(A,CB).

In Set this isomorphism is given by the bijection

ev : CB ×B −→ C defined by (g, b) 7→ g(b),

which satisfies following universal matching property:

For a given function f : A −→ B there exists a unique function

f̃ : A −→ CB

such that

ev(f̃(a), b) = f(a, b)

and following diagram commutes:

A×B CB ×B

C

f

f×IdB

ev

With this in mind we can give the following definition of exponentials.
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Definition 2.19 (Exponential). Consider a category C with binary products. An expo-

nential of objects B and C consists of following data:

• an object denoted as CB

• an arrow

ev : CB ×B −→ C

called evaluation arrow, such that for all arrows

f : A×B −→ C

there exists a unique arrow

f̃ : A −→ CB

such that following diagram commutes:

A×B CB ×B

C

f

f×1B

ev

Now we have all the tools to define a cartesian closed category (CCC).

Definition 2.20 (Cartesian closed category). A category C is called cartesian closed if

C contains all finite products and exponentials.

Example 2.21. We will now give some examples for cartesian closed categories.

• It is easy to see that Set is a cartesian closed category, since it has all finite products

and exponentials. Further the evaluation ev : CB × B −→ C is defined by (g, b) 7→
g(b).

• The category of types C(λ) is a cartesian closed category. To prove this we will use

an equivalent characterization of CCCs from [1].

A category C is cartesian closed, if and only if following three properties are satisfied:

– C contains the terminal object 1 and for every object C, there exists an arrow

!C : C −→ 1

such that for every arrow f : C −→ 1,

f =!C .
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– For every object A and B, there exists the product A×B in C and arrows

p1 : A×B −→ A and p2 : A×B −→ B,

such that for every arrow f : Z −→ A and g : Z −→ B, there exists an arrow

〈f, g〉 : Z −→ A×B

with following properties:

∗ p1〈f, g〉 = f

∗ p2〈f, g〉 = g

∗ 〈p1h, p2h〉 = h for every h : Z −→ A×B.

– For every object A and B, there exists the exponential object BA and the arrow

ev : BA × A −→ B

and for every f : Z × A −→ B, there is a given arrow

f̃ : Z −→ BA

such that

ev ◦ (f̃ ◦ 1A) = f and ev ◦ (f ◦ 1A
:

) = g

for every g : Z −→ BA. For simplicity for given a : X −→ A and b : Y −→ B

we write

a× b = 〈a ◦ p1, b ◦ p2〉 : X × Y −→ A×B.

With this characterization of CCCs we will prove that C(λ) is cartesian closed.

For given two objects A and B we showed, that A × B exists. Now define BA :=

A −→ B. Further define the evaluation as

ev = λz.fst(z)snd(z) : BA × A −→ B

for z : Z. Further define for given f : Z × A −→ B the transpose f̃ as:

f̃ = λzλy.f〈x, y〉 : Z −→ BA

for z : Z and x : A. To show the third property of the characterization of CCCs we

have to show ev ◦ (f̃ ◦×1A) = f and ev ◦ (f ◦ 1A
:

) = g. With the rules formulated in
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section 2.6.2 we get:

ev ◦ (f̃ ◦ 1A) = (λz.fst(z)snd(z) ◦ [(λyλx.f〈y, x〉)× λu.u]

= λv.(λz.fst(z)snd(z))[λyλx.f〈y, x〉)× λu.u]v

= λv.(λz.fst(z)snd(z))[λw.〈(λyλx.f〈y, x〉)fst(w), λu.u)snd(w)〉]v
= λv.(λz.fst(z)snd(z))[λw.〈(λx.f〈fst(w), x〉), snd(w)〉]v
= λv.(λz.fst(z)snd(z))[〈(λx.f〈fst(v), x〉), snd(v)〉]
= λv.(λx.f〈fst(v), x〉)snd(v)

= λv.f〈fst(v), snd(v)〉
= λv.fv

= f

ev◦(f ◦ 1A
:

) = g can be shown similarly. So we showed that C(λ) is cartesian closed.

Remark 2.22 (CCC∼ λ− calculus). Awodey [1] shows that there exists a correspondence

between the logical system of λ- calculus and cartesian closed categories, which shows the

equivalence of both notions:

CCC ∼ λ-Calculus

This means that for a given cartesian closed category C, we can construct a λ− calculus

generated by a theory L. We denote this construction as L(λ). We will briefly describe

L(λ) :

• Types: define the types as the objects of C

• Terms: define the terms as the arrows a : A −→ B in C

• Equations: a selection of equations are for example

– λx.fst(x) = p1, where p1 is a projection

– λx.snd(x) = p2

– g(f(x) = (g ◦ f)(x)

– λy.y = 1A

This sketch implies, that there exists following isomorphism:

C ∼= C(C(L)).
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Before we study the CETCS in the next chapter, we want to define bicartesian categories.

Definition 2.23 (Cartesian and cocartesian). A category C is called cartesian, if follow-

ing properties are satisfied:

1. The terminal object 1 is in C.

2. Binary products exist.

3. Equalizers exists.

A category is called cocartesian, if following properties are satisfied:

1. The initial object 0 is in C.

2. Binary sums exist.

3. Coequalizer exist.

If C is cartesian and cocartesian, then we call C a bicartesian category.

In the CETCS we often use the existence of binary products in proofs (e.g in (3.5.3)).

Since we work with bicartesian categories, we know of the existence of these structures,

which simplifies proofs and makes the theory clearer.
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3 Constructive Elementary Theory of the Category

of Sets (CETCS)

In this section we will discuss the constructive version of the Elementary Theory of the

Category of Sets, based on paper [2]. From this we will derive some basic set-theoretic con-

sequences and compare them to standard categorical formulations. All the information,

theorems and proofs used are based on [2].

3.1 Constructivism

Since we will present the constructive version of the Elementary Theory of the Category

of Sets, we will therefore outline the basic principles of constructivism.

Unlike in most fields of mathematics, where one generally uses classical logic, constructive

mathematics is formulated using intuitionistic logic. That means for a formula ϕ the

stability rule

¬¬ϕ⇒ ϕ (1)

is not necessarily satisfied in intuitionistic logic. Since (1) does not hold for every formula

in intuitionistic logic, we can not accept proofs by contradiction in the constructive setting,

because following tautology would need to hold:

(¬ϕ⇒ ⊥)⇒ ϕ.

Additionally a proof in the constructive setting does not use the principle of excluded

middle, i.e. the statement

ϕ ∨ ¬ϕ (2)

is not necessarily satisfied for every formula ϕ.

According to constructive mathematics, every part of a proof has to be constructed. The

axiom of choice (AC) is often utilized in classical logic to assert the existence of objects,

without providing a method to construct them. Therefore this axiom can not be utilized

in the constructive setting.

Naturally the set of axioms in the CETCS is bigger and more “specific” than in ETCS. For

example the axiom (G), that an onto and monic arrow f : A −→ B is an isomorphism,

is an axiom in CETCS, but is provable in ETCS.
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3.2 Axioms of ETCS

Before we study the constructive version of the Elementary Theory of the Category of

Sets, we will first discuss the ETCS introduced by Lawvere. ETCS has eight axioms:

• Finite roots exist:

This means that all products A×B, coproducts A+B, equalizers, coequalizer and

a terminal object 1 exists.

• For all pairs of objects the exponential exists:

This means that for every object A and B the object BA exists.

• There exists the Dedekind-Peano object:

This means that there exists a natural numbers object (NNO) in a category C,

i.e there exists a sequence of mappings 1
0−→ N

s−→ N , which satisfies following

universal matching property:

For every other sequence of mappings 1
b−→ A

h−→ A there exists a unique mapping

f : N −→ A such that

f0 ≡ b and fS ≡ hf.

This can be visualised as follows:

1 N N

A A

b

0 S

f f

h

• The terminal object 1 is separating:

1 is separating if and only if for every arrow f : A −→ B and g : A −→ B with

f 6= g there exists a ∈ A, such that f ◦ a 6= g ◦ a. In essence this gives us a way to

check, if two arrows arrows are the same.

• Axiom of Choice holds:

This means for every arrow f : A −→ B there exists a g : B −→ A such that

f ◦ g ◦ f = f.

• For all objects A 6' 0, i.e A is not empty.

• For all elements a of a sum, a is a member of one of its injections

• There is an object A with more than one element
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3.3 Axioms of CETCS

As stated above, the constructive version of the Elementary Theory of the Category of

Sets requires more axioms than the ETCS. We will first list all the axioms needed and

introduce some abbreviations:

• (C) Every category C is bicartesian, i.e cartesian and cocartesian.

• (Π): Dependent product exists

For given arrows g : Y −→ X and f : X −→ I there exists an evaluation arrow

ev : P −→ Y , an arrow ϕ : F −→ I and two projections π1 : P −→ F and

π2 : P −→ X such that following diagram commutes and the square is a pullback:

Y P F

X I

g

π1

π2

ev

ϕ

f

(3)

The pullback satisfies following properties: if for all partial functions ψ : (ξ, ϑ) :

R −→ (X, Y ) and i ∈ I :

1. for all (x, y) ∈ (X, Y ) : (x, y) ⊂= ψ implies gy ≡ x and fx ≡ i

2. fx = i holds, then there exists y ∈ Y such that (x, y) ⊂= ψ

are satisfied, then there exists a unique s ∈ F , such that ϕs = i and for all (x, y) ∈
(X, Y ) following equivalence holds for α = (π1, π2, ev) : P � (F,X, Y ) :

(s, x, y) ∈ α if and only if (x, y) ∈ ψ (4)

If diagram (3) satisfies these properties, we call the diagram a universal Π-diagram.

• (G): Every arrow f : A −→ B that is an onto and a mono is an isomorphism.

• (PA): For every object A there exists an onto arrow f : A −→ P such that P is a

choice object. P is a choice object, if for every onto arrow f : A −→ P there exists

a g : P −→ A such that fg = 1P .

• (I): The intial object 0 has no elements.

• (DP): In a sum (the dual of a product) diagram A
f−→ S

g←− B following holds:

∀z ∈ S : z ⊂= f or z ⊂= g
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• (NT): For every sum diagram 1
x−→ S

y←− 1: x 6= y.

• (FCT): Every arrow f can be factorized as a monic arrow m and an onto arrow e:

f = m ◦ e

• (EFF): All equivalence relations r = (r1, r2) are effective, i.e for r : R � (X,X)

there exists a mapping e : X −→ E such that following equivalence holds

for every (x1, x2) ∈ (X1, X2) :

(x1, x2) ⊂= (r1, r2) if and only if ex1 ≡ ex2

Note that it is still uncertain, whether this set of axioms is optimal or if all the axioms

are independent from one another.

3.4 Π-Axiom

To understand the (Π)-axiom we now will discuss this in the category Set. The aim of

this subsection is rather to give an intuition for the (Π)- axiom than to give a formal

introduction to this topic.

Consider a function λ0 : I −→ Set in Set, which satisfies following property:

if i = j then λ0(i) ' λ0(j) (5)

Further define the function

λ1 : I × I −→ F(Set, Set) given by (i, j) 7→
(
λ0(i) −→ λ0(j)

)
. (6)

We can interpret λ1 as a ”transport map”, which can be visualized as follows:

λ0(i) λ0(j)

λ0(k)

λ1(i,k)

λ1(i,j)

λ1(j,k)

We will now study the elements φ = (φ)i∈I ∈
∏
i∈I
λ0(i). If φ ∈

∏
i

λ0(i) then for every

i ∈ I : φi ∈ λ0(i) where φ can be interpreted as an n-tupel. We can visualize φ as a path
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which intersects every set λ0(i) at exactly one point for every i ∈ I.

Now suppose for every i ∈ I λ0(i) = X, where X is a fixed set. Then the transport map

λi,j := λ1(i, j) is given by the identity function:

λi,j : X −→ X, x 7→ x

and φ is a function, because of property (5), which is given by:

φ : I −→ X.

The (Π)- axiom is the categorical way to express that there exists an object in the cate-

gory C, which behaves like
∏
i∈I
λ0(i) in Set.

We will now present a characterization of the Π- diagram, where F = 1 in the diagram.

Lemma 3.1. Consider a cartesian category C, which satisfies the axiom (G) and two

arrows g : Y −→ X and f : X −→ I. Then for a given arrow φ = (r1, r2) : R −→ (X, Y )

the diagram

Y R 1

X I

g

a

r1

r2

i

f

(7)

is a (Π)- diagram, if and only if following properties are satisfied:

1. φ is a partial arrow

2. For all x ∈ X with fx = i implies ∃y ∈ Y such that (x, y) ⊂= φ

3. For all x ∈ X and y ∈ Y with (x, y) ⊂= φ implies fx = i and gy = x

Proof. Suppose (7) is a (Π)- diagram. Since 1 is the initial object, the arrow i : 1 −→ I

is monic. Since (7) is a Π-diagram, we conclude that r1 is monic, which means that φ is

a partial arrow and 1) is satisfied. To show property 2) suppose i = fx for any i ∈ I. We

have to show that there exists y ∈ Y , such that (x, y) ⊂= φ. Since x ∈ X and i ∈ I there

exists a unique arrow u : 1 −→ R such that x = r1u and i = au, as shown in the following

diagram:
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1

R 1

X I

x

i

u

a

r1 i

f

Define y : 1 −→ Y as y = r2u. Then r1u = x and r2u = y, which implies (x, y) ⊂= φ.

That means 2) is satisfied. 3) is satisfied trivially because the (Π)- diagram (7) commutes.

Now suppose the three properties are satisfied. We have to show that (7) is a (Π)- diagram.

Since the third property is satisfied the diagram (7) is commutes. We now have to show

that the square in (7) satisfies the pullback properties.

Since the second property is satisfied, for i = fx and (x, y) ⊂= φ for y ∈ Y , there exists

a : 1 −→ R such that r1a = x and r2a = y. This shows the existence of the arrow

a : 1 −→ R from the pullback property. We now will show that a is unique. Suppose

there exists another arrow a′ : 1 −→ R such that r1a
′ = x. Since the first property is

satisfied, r1 is a mono and we can conclude that a = a′, which shows that a : 1 −→ R is

unique, thus showing that (7) satisfies the pullback properties and together with the first

part, that it is a (Π)- diagram.

Remark 3.2. Now we want to briefly discuss the universal (Π)- diagram of the arrows

g : Y −→ X and f : X −→ I:

Y P F

X I

p

π1

π2

ev

ϕ

f

(8)

If a (Π)-diagram is universal, which means that the properties of the (Π)- axiom are

satisfied, then for any other (Π)- diagram
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Y P ′ F ′

X I

p

π′1

π′2

ev′

ϕ′

f

(9)

there exists a unique mapping n : F ′ −→ F such that ϕ′ ≡ ϕn. Additionally for the

unique arrow m : P ′ −→ P with nπ′1 ≡ π1m and π′2 ≡ (ev)m, ev′ = (ev)m holds.

In [2] (see Lemma 7.3 in [2]) Palmgren shows that m exists and ev′ = (ev)m is satisfied,

if and only if for all v ∈ F, x ∈ X and y ∈ Y following equivalence holds for two given

(Π)- diagrams:

(v, x, y) ⊂= (π′1, π
′
2, ev

′)⇐⇒ (nv, x, y) ⊂= (π1, π2, ev). (10)

3.5 Set-theoretic consequences

3.5.1 Quotient Sets

Recall that equalizers can be identified as quotient sets in the category Set. We will now

study this in the context of CETCS:

Proposition 3.3 (Quotient Sets). Consider a bicartesian category C and an equivalence

relation r = (r1, r2) : R � (X,X). Then there exists an arrow q : X −→ Q such that for

all (x1, x2) ∈ (X,X) the following holds:

(x1, x2) ⊂= r =⇒ qx1 = qx2 (11)

Additionally, if there exists an arrow f : X −→ Y with

(x1, x2) ⊂= r =⇒ fx1 = fx2, (12)

there exists a unique arrow h : Q −→ Y with hq = f . If (EFF) is satisfied (11) is an

equivalence.

Proof. Since C is a bicartesian, especially a cocartesian, category, we know coequalizer
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exist and we can define following coequalizer with qr1 = qr2:

R X Q
r1

r2

q

We will now show the first part:

Consider (x1, x2) ∈ (X,X) with (x1, x2) ⊂= r. We have to show that qx1 = qx2. Since

(x1, x2) ⊂= r there exists an arrow a : 1 −→ R such that x1 = r1a and x2 = r2a. Together

we get:

qr1 = qr2 ⇐⇒ qr1a = qr2a ⇐⇒ qx1 = qx2.

So we showed (11).

Now consider f : X −→ Y , which satisfies (12). Since fx1 = fx2 for all x1, x2 ∈ X and

for all t ∈ R : fr1t = fr2t (rit ∈ X for i = {1, 2}). Because all mapped elements are the

same the arrows f ◦ ri : R −→ Y for i = {1, 2} are identical. Since q is a coequalizer and

fr1 = fr2 there exists a unique arrow h : Q −→ Y with hq = f , shown in the following

diagram:

R X Q

Y

r1

r2

q

f
h

Suppose the category C satisfies the axiom (EFF), i.e there exists an arrow e : X −→ E

such that for all (x1, x2) ∈ (X,X) :

(x1, x2) ⊂= r ⇐⇒ ex1 = ex2 (13)

Similar to the proof of (12) we can conclude that er1 = er2. Since q is a coequalizer there

exists a unique arrow e′ : Q −→ E such that e = e′q.

R X Q

E

r1

r2

q

e
e′

Suppose qx1 = qx2 holds. Then:

qx1 = qx2 ⇐⇒ e′qx1 = e′qx2 ⇐⇒ ex1 = ex2

With (13) we can conclude (x1, x2) ⊂= r.
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3.5.2 Induction

Recall the induction principle:

Consider a formula ϕ(n) over the natural numbers n. Suppose the formula ϕ is satisfied

for 0, i.e ϕ(0). Further suppose the successor function S : N −→ N and for any given

n ∈ N satisfying ϕ(n), we can conclude ϕ(S(n)) :

ϕ(0) ∧ ∀n ∈ N : (ϕ(n)⇒ ϕ(S(n))

If this holds, then by the Peano-axioms we can conclude that ϕ is satisfied for all n ∈ N :

∀n ∈ N : ϕ(n)

We will now study this concept as a set theoretic consequence of the constructive Ele-

mentary Theory of the Category of Sets:

Proposition 3.4 (Induction). Consider a category C, which satisfies the axiom (G) and

has the natural numbers object (NNO). Furthermore suppose a monic function r : R � N

0 ⊂= r and for given n ∈ N with n ⊂= r implies Sn ⊂= r. Thus, for all n ∈ N : n ⊂= r.

Proof. Since 0 ⊂= r, there exists an arrow z : 1 −→ R with 0 = rz. We can now construct

following pullback diagram:

1

P R

R N

v

u

x

q

p r

S◦r

with the pullback properties px = u and qx = v for given arrows u, v : 1 −→ R. We want

to show that p is an iso, so we have to show p is an onto and a mono, as axiom(G) holds.

First we will show that p is a mono. Consider two arrows a, b : 1 −→ P such that pa = pb.

Since r is monic, we get together with the pullback properties following equality:

pa = pb ⇐⇒ (Sr)pa = (Sr)pb ⇐⇒ (qa)r = (qb)r ⇐⇒ qa = qb

We now have to show that a = b. From the pullback property we get a unique arrow

x : 1 −→ P such that px = u and qx = v. Since x is unique we can conclude that
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x = a = b, which shows that p is a mono.

Since ru ⊂= r we get Sru ⊂= r by assumption. Since u was arbitrary we can conclude with

the pullback properties and the remark in 2.4 that p is onto. Together with axiom (G)

we get that p is an isomorphism. We can now define the inverse p−1 : R −→ R, thus

qp−1 : R −→ R. Since (NNO) holds we get following commuting diagram:

1 N N

R R

z

0 S

f f

qp−1

that means f0 = z and fS = qp−1f . Now we get rf = 0 and

(rf)S = rqp−1f = S(rf). (14)

Since the identity arrow 1N also satisfies (14) we get rf = 1N . Hence for every n ∈ N
rfn = n holds and n ⊂= r, proving the proposition.

If we identify the membership of an element n ∈ N in r as satisfying the formula ϕ and

interpret the arrow S : N −→ N as the successor function S : N −→ N, we can clearly

see the similarities between both approaches to the induction principle.

3.5.3 Constructing new relations with logical operations

In this subsection we want to combine two sequences of jointly monic functions r =

(r1, . . . , rn) : R � (X1, . . . , XN) and s = (s1, . . . , sn) : S � (X1, . . . , XN) by using logical

operators ∧,∨,→ and the quantifiers ∀ and ∃.

For a given object X and the identity arrow 1X : X −→ X of a category C which satisfies

the axioms (G), (Π), (DP), (FCT) and (I) we can formulate following universally true

relation:

x ⊂= 1X , since 1Xx = x,∀x ∈ X

Now consider the arrow fA : 0 −→ X. Then a universal false statement is given by the

relation

¬(x ⊂= fx), x ∈ X.
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Theorem 3.5. Consider a bicartesian category C, which satisfies the axioms (G), (Π),

(DP), (FCT) and (I). For given jointly monic sequences r = (r1, . . . , rn) : R �

(X1, . . . , Xn) and s = (s1, . . . , sn) : S � (X1, . . . , Xn) there exists arrows (r ∧ s), (r ∨
s), (r → s) : Q −→ (X1, . . . , Xn) such that for all x ∈ X following holds:

1. x ⊂= (r ∧ s) if and only if x ⊂= r and x ⊂= s

2. x ⊂= (r ∨ s) if and only if x ⊂= r or x ⊂= s

3. x ⊂= (r → s) if and only if x ⊂= r implies x ⊂= s

If m : M � (X1, . . . , Xn) is an extended relation there exists ∀(m) : A � (X1, . . . , Xn)

and ∃(m) : E � (X1, . . . , Xn) such that for all (x1, . . . , xn) ∈ (X1, . . . , Xn) following

holds:

4. x ⊂= ∃(m) if and only if there exists y ∈ Y, (x1, . . . , xn, y) ⊂= m

5. x ⊂= ∀(m) if and only if for all y ∈ Y , (x1, . . . , xn, y) ⊂= m

Proof. It suffices to prove this for n = 1 and denote X1 = X, r1 = r and s1 = s.

1. Consider following pullback square:

P S

R X

p

q s

r

Define the monic arrow (r∧ s) : P −→ X. Assume x ⊂= r and x ⊂= s, i.e there exists

u : 1 −→ S and v : 1 −→ R such that su = x and rv = x. By the pullback property

there exist a unique arrow z : 1 −→ P , such that pz = v and qz = u. Especially

(r ∧ s)u = x holds, hence x ⊂= (r ∧ s).

Now assume x ⊂= (r ∧ s), i.e there exists z : 1 −→ P such that (r ∧ s)z = x. Then

rpz = x and sqz = x which implies x ⊂= r and x ⊂= s.

2. Consider the sum diagram (the dual of a product) R
i−→ U

j←− S and the unique

arrow f : U −→ X with properties r = fi and s = fj, i.e following sum diagram

commutes:
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R U S

X

i

r
f

j

s

With the axiom (FCT) we can factorize f as f = em where e : U −→ I is an onto

and m : I −→ X is a mono. We want to show that (r ∨ s) := m satisfies 2.

Suppose x ∈ X satisfies x ⊂= r. Then there exists t ∈ R such that x = rt = fit =

meit. As eit : 1 −→ I, thus x ⊂= m is satisfied. Similarly we can show x ⊂= m if we

assume x ⊂= s.

Now assume x ⊂= m. We have to show that x ⊂= r or x ⊂= s. Since e is an onto there

exists u ∈ U such that x = meu = fu. Since R
i−→ U

j←− S is a sum and (DP)

is satisfied without loss of generality we conclude u ⊂= i, which means there exists

t ∈ R such that u = it which implies x ⊂= r, since

x = fu = fit = rt.

3. Consider the monic mappings Q
p−→ R

r−→ X and construct following pullback

diagram:

Q S

R X

q

p s

r

Since the axiom (Π) is satisfied we can can construct following (Π)− diagram:

Q P F

R X

p

π1

π2

ev

ϕ

r

(15)

We want to show that (r → s) := ϕ satisfies 3. Assume x ⊂= (r → s). We want to

show: x ⊂= r implies x ⊂= s. Assume x ⊂= ϕ, that means there exists u : 1 −→ F such

that x = ϕu. Additionally suppose x ⊂= r, that means there exists v : 1 −→ R such

that x = rv. We have to show x ⊂= s. Since the square in (15) is a pullback and

u and v exist, there exists (by the pullback property) a unique arrow w : 1 −→ P
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such that u = π1w and v = π2w. Together with the pullback diagram (15) we get

following equality:

x = rv = rπ2w = rp(ev)w = sq(ev)w

Since sq(ev)w : 1 −→ S we conclude x ⊂= s, what we wanted to show.

Now suppose for all x ∈ X x ⊂= r implies x ⊂= s. Construct following pullback square:

T Q

1 X

t

rp

x

We want to show that the arrow (r → s) := ϕ : F −→ X from the (Π) -diagram

(15) satisfies x ⊂= ϕ. Define the arrow

ψ = (pt, t) : T � (R,Q),

where p : Q � R is the arrow in (15). Since p and t are monic arrows, pt is monic

and ϕ is a partial arrow. Assume ϕ(u) ≡ v for u ∈ R and v ∈ Q. Then there exists

w : 1 −→ T such that u = ptw and v = tw. We now want to prove both properties

of the (Π)- axiom.

(a) We have to show for all (u, v) ∈ (R,Q) with (u, v) ⊂= ϕ implies pv = u and

ru = x. Since u = ptw = pv holds, u = ptw and ru = rpv = x , which means

(a) in the (Π) -axiom is satisfied.

(b) To verify the second condition of (Π) we have to show that if ru = x holds,

then there exists v ∈ Q with (u, v) ⊂= ψ. Assume ru = x for u : 1 −→ R

and x ∈ X. That means x ⊂= r and by assumption we get x ⊂= s, i.e there

exists w : 1 −→ S such that sw = x. Since (3) is a pullback we get following

commuting pullback diagram and unique arrow v : 1 −→ Q such that u = pv

and w = qv:
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1

Q S

R X

w

u

v

q

p s

r

Together we get rpv = x. Since (3) is a pullback there exists a unique z : 1 −→
T with tz = v such that following pullback diagram commutes:

1

T Q

1 X

v

id

z

t

rp

x

This means ptz = pv = u and tz = v, i.e (u, v) ⊂= ϕ. Therefore the second

condition of (Π)-diagram is satisfied.

Since both conditions are satisfied and the (Π)-axiom holds in the universal (Π)-

diagram (15), there exists k ∈ F such that ϕk = x which shows x ⊂= ϕ.

4. Suppose m = (m1,m2) : M � (X, Y ) are two jointly monic arrows. Since (FCT)

holds, we can factorize m1 as an onto arrow e : M −→ I and a monic arrow

i : I −→ X. Note that (FCT) has to be satisfied, since m1 and m2 are jointly

monic does not imply that m1 is monic. Define ∃(m) := i. We have to show that

∃(m) satisfies the equivalence in 4. Suppose x ⊂= ∃(m).. Since x ⊂= ∃(m) there exist

t ∈ I such that x = it and since e is an onto, there exists s ∈ M such that es = t.

Together we get following equivalence:

x ⊂= ∃(m)⇔ x = it⇔ x = ies⇔ x = m1s. (16)

With (16) we can show the equivalence in 4.:

Assume x ⊂= ∃(m). Since m2s ∈ Y and x ⊂= m1 with (16) we can conclude (x,m2s) ⊂=

39



(m1,m2).

Now suppose there exists y ∈ Y such that (x, y) ⊂= m = (m1,m2) is satisfied. That

means there exist an arrow s : 1 −→ M such that x = m1s and y = m2s. Since

m1 = ie we get x = ies and since the arrow es : 1 −→ I exists, x ⊂= i = ∃(m) is

satisfied, thus showing the equivalence in 4.

5. We now want to show the equivalence in 5. Suppose a jointly monic arrow m =

(m1,m2) : M � (X, Y ) and two arrows p : U −→ X and q : U −→ Y. Recall the

term and notation of products in section 2.6.1. Since the category C is a bicartesian

category, we can especially construct products. Define m′ := 〈m1,m2〉 as the unique

arrow given by the universal mapping property for products, i.e following diagram

commutes:

M

X Y

U

m2m1

m′

qp

Since axiom (Π) we can construct following (Π)- diagram:

M P F

U X

m′

π1

π2

ev

ϕ

p

(17)

We now want to show that ∀(m) := ϕ satisfies the equivalence in 4. Suppose

x ⊂= ϕ and consider y ∈ Y. We have to show (x, y) ⊂= m. Since x ⊂= ϕ there exists

f : 1 −→ F such that x = ϕf . Further there exists u ∈ U such that x = pu and

y = qu that means (x, y) ⊂= (p, q). Since (17) is a (Π)- diagram, the square is a

pullback, that means there exists a unique arrow w : 1 −→ P such that f = p1w

andu = π2w, i.e following diagram commutes:
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1

P F

U X

f

u

w

π1

π2 ϕ

p

Together we conclude that m′(ev)w = π2w = u, which means u ⊂= m′ implying

(x, y) ⊂= ϕ since x = pu and y = qu.

Now suppose for a fixed x ⊂= X and for all y ∈ Y, (x, y) ⊂= m is satisfied. We have

to show that x ⊂= ϕ. Construct following pullback:

N M

1 X

n

m1

x

(18)

Define the partial arrow

(m′n, n) : N � (U,M).

(m′n.n) is indeed a partial arrow, since m′ and n are both monomorphisms. We

now want to show that the properties of the (Π)- axiom is satisfied:

(a) Assume (u, v) ⊂= (m′n, n). Then there exists an arrow t : 1 −→ N such that

u = m′nt and v = nt. Together we get m′v = m′nt = u and pu = m′nt =

m1nt = x, which shows condition (a).

(b) Assume u ∈ U satisfies pu = x. We have to show that there exists s ∈M such

that (u, s) ⊂= (m′n, n). Suppose y = qu. Because y ∈ Y the assumption implies

(x, y) ⊂= m, that means there exists s ∈ S such that x = m1s and y = m2s.

Since m′s = u and x = m1s, with the pullback (18) there exists a unique

t : 1 −→ N such that s = nt. That means (u, s) ⊂= (m′n, n), hence condition

(b) holds.

Since both conditions of the (Π)- axiom is satisfied there exists f ∈ F such that

ϕf = x, which implies x ⊂= ϕ, thus showing the equivalence.
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With this theorem we want two define a decidable relation:

Suppose f, t : 1 −→ 2 and consider a decidable relation r : P � X. We can now construct

an arrow χr : X −→ 2 such that

x ⊂= r ∧ χr(x) = t or (¬x ⊂= r) ∧ χr(x) = f.

Since ¬x ⊂= r is a universal false statement x ⊂= r if and only if χr(x) = t.

3.6 Correspondence to standard categorical formulations

In this section we will show how the CETCS fits in the standard categorical formulations.

More specifically, we want to show that a category C is locally cartesian closed, if and

only if it satisfies the (Π)- axiom.

Definition 3.6 (Locally cartesian closed). Consider a cartesian category C. C is called

locally cartesian closed if it satisfies the generalized exponential axiom or the (Π)- axiom.

Note that Awodey [1] uses a different definition for locally cartesian closed categories, us-

ing functors defined on the objects of the slice category. However, this definition implies

the use of the axiom of choice to construct specific objects, which we can not use in the

constructive setting.

We will now formulate a theorem, which we will later use to proof that a category is carte-

sian closed, if and only if it satisfies the (Π)- axiom. The proof needs simple, but lengthy

prerequisites (e.g image factorization and covers), which is not essential to understand

this equivalence, which can be found in [2], section 7.

Theorem 3.7. Consider a category C, which satisfies axiom (G) and two arrow g :

Y −→ X and f : X −→ I. Further suppose the diagram

Y P F

X I

p

π1

π2

ev

ϕ

f

(19)

is a universal (Π)- diagram. Then for every i ∈ I and every ψ = (r1, r2) : R −→ (X, Y ),

which satisfies the properties from Lemma 3.1, there exists a unique v : 1 −→ F such that

for all x ∈ X and y ∈ Y following equivalence holds:
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(x, y) ⊂= ψ ⇔ (v, x, y) ⊂= α,

where α = (π1, π2, ev) : P −→ (F,X, Y ).

Now we will proof the main theorem of this section, which we will later use to proof that

locally cartesian categories satisfy the (Π)- axiom.

Theorem 3.8. Consider a category C, which satisfies axiom (G) and two arrow g :

Y −→ X and f : X −→ I. Further consider the (Π)- diagram

Y P F

X I

g

π1

π2

ev

ϕ

f

(20)

Suppose for every i ∈ I and every ψ = (r1, r2) : R −→ (X, Y ), which satisfies Lemma 3.1,

there exists a unique arrow v : 1 −→ F with φv = i, such that for all x ∈ X and y ∈ Y
following equivalence holds:

(x, y) ⊂= ψ ⇔ (c, x, y) ⊂= α,

where α = (π1, π2, ev) : P −→ (F,X, Y ). Then (20) is a universal (Π)- diagram.

Proof. Consider another (Π)- diagram

Y P ′ F ′

X I

g

π′1

π′2

ev′

ϕ′

f

(21)

and form following pullback diagram:

Q 1

P ′ F ′

!

q v′

π1

(22)
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Further define the composed (Π)- diagram, given by:

Y P ′ F ′

X I

g

!

π′2

ev′q

ϕ′v′

f

(23)

We now want to proof following equivalence for x ∈ X and y ∈ Y :

(x, y) ⊂= (π′2q, (ev)′q)⇐⇒ (v′, x, y) ⊂= (π′1, π
′
2, ev

′)

Suppose (x, y) ⊂= (π′2q, (ev)′q) holds. Then there exists u : 1 −→ Q such that x = π′2qu

and (ev)′qu. Since (22) is a pullback, the diagram commutes and v′ = v′!u = π′1qu holds.

This means for the arrow qu : 1 −→ P ′, (v′, x, y) ⊂= (π′1, π
′
2, (ev)′) is satisfied.

Now suppose (v′, x, y) ⊂= (π′1, π
′
2, ev

′) holds. Then there exists t : 1 −→ P ′ such that

v′ = π′1t, x = π′2t and y = (ev)′t. Since v′ = π1t, there exists by the pullback property

of (22) a unique arrow s : 1 −→ Q such that t = qs. That means that for the arrow

s : 1 −→ q′ (x, y) ⊂= (π′2q, ev
′q) is satisfied, proving the equivalence.

Since (23) is a (Π)- diagram, the pair of arrows ψ = (π2q, (ev)′q) satisfies the three

properties from Lemma 3.1 for i = ϕ′v′. By the assumption, there exists a unique arrow

v : 1 −→ F such that ϕv = ϕ′v′ = i and for all x ∈ X, y ∈ Y following equivalence holds:

(v, x, y) ⊂= (π1, π2, ev)⇐⇒ (x, y) ⊂= ψ. (24)

This implies for every x ∈ X and y ∈ Y following equivalence is satisfied:

(v, x, y) ⊂= (π1, π2, ev)⇐⇒ (v′, x, y) ⊂= (π′1, π
′
2, ev

′) (25)

By Theorem 3.5 there exists a unique χ : F ′ −→ F such that for all v′ : 1 −→ F ,

ϕχv′ = ϕv′ is satisfied and for every x ∈ X and y ∈ Y following equivalence holds:

(χv, x, y) ⊂= (π1, π2, ev)⇐⇒ (v′, x, y) ⊂= (π′1, π
′
2, ev

′) (26)

To show that (20) is a universal (Π)- diagram by Remark 3.1, we have to show that there

exists a (unique) arrow κ : P ′ −→ P such that π1κ = χπ1 and π2κ = π2.
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The existence of the arrow κ follows immediately from Remark 3.1, since equivalence (26)

holds. The uniqueness of κ can be concluded from the uniqueness of (25). This shows

that (20) is a universal (Π)- diagram, which we wanted to proof.

Now the main result of this section is a simple conclusion from Theorem 3.7 and 3.8:

Corollary 3.9. Consider a category C, which satisfies axiom (G). C is a locally cartesian

closed category, if and only if C satisfies the (Π)- axiom.

Proof. Suppose C is a locally cartesian closed category. Theorem 3.7 states that C satisfies

the (Π)-axiom.

Now suppose C satisfies the (Π)- axiom. Then Theorem 3.8 implies that for every arrow

g : Y −→ X and f : X −→ I, there exists a universal (Π)- diagram.
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