How large are proper classes?

Silvia Steila joint work with Gerhard Jäger

Universität Bern

ABM

München December 14-15, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NGB

The theory NGB is formulated in a two-sorted language and consists of the following axioms:

- extensionality, pair, union, powerset, infinity for sets,
- Extensionality, Foundation for classes,
- Class Comprehension Schema: i.e, for every formula φ containing no quantifiers over classes there exists a class C such that

$$\forall x(\varphi[x] \leftrightarrow x \in C)$$

▶ Limitation of Size: i.e, for every proper class *C* there is a bijection between *C* and the class *V* of all sets.

• Let \mathcal{L}^c be the extension of \mathcal{L} with countably many class variables.

► The atomic formulas comprise the ones of *L* and all expression of the form "a ∈ C".

• An \mathcal{L}^c formula is elementary if it contains no class quantifiers.

 Δ^c_n, Σ^c_n and Π^c_n are defined as usual, but permitting subformulas of the form "a ∈ C".

KP^c

The theory KP^c is formulated in \mathcal{L}^c and consists of the following axioms:

- extensionality, pair, union, infinity,
- Δ^c₀-Separation: i.e, for every Δ^c₀ formula φ in which x is not free and any set a,

$$\exists x (x = \{y \in a : \varphi[y]\})$$

• Δ_0^c -Collection: i.e, for every Δ_0^c formula φ and any set a,

$$\forall x \in a \exists y \varphi[x, y] \to \exists b \forall x \in a \exists y \in b \varphi[x, y]$$

► Δ^c₁-Comprehension</sub>: i.e, for every Σ^c₁ formula φ and every Π^c₁ formula ψ,

$$\forall x(\varphi[x] \leftrightarrow \psi[x]) \rightarrow \exists X \forall x(x \in X \leftrightarrow \varphi[x])$$

• Elementary \in -induction: i.e, for every elementary formula φ ,

$$\forall x ((\forall y \in x \varphi[y]) \rightarrow \varphi[x]) \rightarrow \forall x \varphi[x]$$

Motivations: ... last ABM

Operators

We call a class an operator if all its elements are ordered pairs and it is right-unique (i.e. functional).

▶ We use *F* to denote operators.

• Given an operator F and a set a we write Mon[F, a] for:

$$\forall x(F(x) \subseteq a) \land \forall x, y(x \subseteq y \rightarrow F(x) \subseteq F(y)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Least fixed point statements

LFP

$$\mathsf{Mon}[F,a] \to \exists x (F(x) = x \land \forall y (F(y) = y \to x \subseteq y)$$

Separation

Σ_1^c -separation

For every Σ_1^c formula φ in which x is not free and any set a,

$$\exists x(x = \{y \in a : \varphi[y]\}).$$

$\mathsf{SBS}\;(\sim \mathsf{\Pi}^{\mathcal{P}}_1(\Delta^c_1)\text{-}\mathsf{Sep})$

For every Δ_1^c formula φ and sets *a* and *b*,

 $\exists z(z = \{x \in a : \exists y \subseteq b(\varphi[x, y])\})$

Fixed point principles in $KP^{c} + (V=L)$

If we add to our theory the Axiom of Limitation of Size:

• we have a global well-ordering of V,

all our principles are equivalent,

But... I am not able to prove the consistency of: KP^c + FP + Limitation of size, from the consistency of KP^c + FP.

What does it happen if we consider something weaker than a bijection?

Injections from ordinals to reals

Proposition

Assume that there are no injections from Ord to $\mathcal{P}(\omega).$ Then MI hold!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Injections from ordinals to reals

Proposition

Assume that there are no injections from Ord to $\mathcal{P}(\omega)$. Then MI hold!

Question

And if there is an injection from Ord to $\mathcal{P}(\omega)$?

Injections from reals to ordinals

Proposition

Assume that there is an injection from $\mathcal{P}(\omega)$ to Ord. Then BPI implies MI.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Injections from reals to ordinals

Proposition

Assume that there is an injection from $\mathcal{P}(\omega)$ to Ord. Then BPI implies MI.

Question

Assume that there are no injections from $\mathcal{P}(\omega)$ to Ord... BPI holds.

Surjections from ordinals to reals

Proposition

Assume that there is a surjection from Ord to $\mathcal{P}(\omega)$. Then there exists a strong well ordering of $\mathcal{P}(\omega)$.

Surjections from ordinals to reals

Proposition

Assume that there is a surjection from Ord to $\mathcal{P}(\omega)$. Then there exists a strong well ordering of $\mathcal{P}(\omega)$.

Question

Which is the strength of the statement: "For every class C, there exists either an injection from C to the ordinals or a surjection from the ordinals to C"?

Theorem

Assume that there exists a cofinal map $F : \mathcal{P}(\omega) \to \text{Ord.}$ Then SBS implies Σ_1^c -Separation for ordinals.

- Given φ we want to show that $\{x \in \omega : \exists \alpha \varphi[\alpha, x]\}$ is a set.
- ► By using *F*:

$$\exists \alpha \varphi[x, \alpha] \iff \exists y \subseteq \omega(\exists \alpha < F(y)(\varphi[x, \alpha])).$$

- The formula " $\exists \alpha < F(y)(\varphi[x, \alpha])$ " is Δ^c .
- By applying SBS we get the thesis.

Let CM be the statement: there exists a cofinal map $F : \mathcal{P}(\omega) \to \text{Ord}$.

•
$$L \models (\mathsf{CM} \lor (\mathcal{P}(\omega) \text{ is a set})).$$

Axiom Beta does not imply CM.

CM does not imply Axiom Beta.

CM does not imply that every the least fixed point of any arithmetical operator is Δ^c-definable.

What about the negation of CM?

Theorem

Assume that there are no cofinal maps from the reals to the ordinals. Then Π_1 -Reduction for ordinals holds.

Π_1 -Reduction for ordinals

Let φ and ψ be two Δ_0 formulas such that

$$\forall x \in \omega (\exists \alpha \varphi[x, \alpha] \implies \forall \alpha \psi[x, \alpha]).$$

there exists a set z such that

 $\{x \in \omega : \exists \alpha \varphi[x, \alpha]\} \subseteq z \subseteq \{x \in \omega : \forall \alpha \psi[x, \alpha]\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• Assume that we have a set ω and two Δ formulas φ and ψ such that

$$\forall x \in \omega (\exists \alpha \varphi[x, \alpha] \implies \forall \alpha \psi[x, \alpha])$$

and Π_1 -Reduction for them does not hold.

We derive

$$\forall z \subseteq \omega \exists x \in \omega \exists \alpha ((\varphi[x, \alpha] \land x \notin z) \lor (x \in z \land \neg \psi[x, \alpha]))$$

• Define the following operator $F : \mathcal{P}(\omega) \to \text{Ord}$.

$$F(z) = \mu \alpha (\exists x (\varphi[x, \alpha] \land x \notin z) \lor (x \in z \land \neg \psi[x, \alpha])).$$

• There exists β such that

$$\forall z \subseteq \omega \exists x \in \omega \exists \alpha \in \beta ((\varphi[x, \alpha] \land x \notin z) \lor (x \in z \land \neg \psi[x, \alpha]))$$

Define the set

$$\{x \in \omega : \exists \alpha < \beta \varphi[x, \alpha]\}.$$

and derive a contradiction.

Moreover:

- SBS implies Π_1 -Reduction for ordinals.
- The Axiom of Powerset implies \neg CM.

► ¬CM does not imply Axiom Beta.

Question

Which is the strength of Π₁-Reduction for ordinals?

Does Axiom Beta imply ¬CM?

Moreover:

- SBS implies Π_1 -Reduction for ordinals.
- The Axiom of Powerset implies \neg CM.

► ¬CM does not imply Axiom Beta.

Question

- Which is the strength of Π₁-Reduction for ordinals?
- Does Axiom Beta imply ¬CM?

Thank you!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ