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These notes include part of the material discussed in the Tutorium and in the
Exercises that correspond to the Vorlesung “Modelle der Mengenlehre” of Prof.
Dr. Hans-Dieter Donder. Of course, possible mistakes in these notes are not
related to Prof. Donder at all. Many extra, or optional exercises can be found
here. Exercises that provide a certain technique, found also in other proofs in
the Vorlesung or connected to the given weekly exercises, start with [T].

Please feel free to send me your comments, or your suggestions regarding these
notes.
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1. Some History

1. Bolzano: he considered infinite sets (he also introduced the term Menge).

2. Cantor: he introduced cardinals-ordinals, topology of reals, he proved
that R is uncountable, that the set of algebraic numbers A is countable,
and he formulated the continuum hypothesis CH.

3. The axioms of ZF are due to Zermelo, except Replacement (Fraenkel,
Skolem), and Foundation (von Neumann).

2. Introductory facts

1. Unlike group-axioms (first the models, the groups, and then the axioms)
the set-axioms are given first and then we study their models!!!

2. The axioms of ZF are generally “accepted”. The infamous axiom of choice
AC is not considered that innocent.

3. There exist many set theories (e.g., in Bernays-Gödel ST we have two sorts
(types) of objects: sets and classes). Note that in ZF classes are informal
objects.

4. There exist many constructive set theories e.g., CZF, based on intuition-
istic logic (Aczel-Rathjen).

5. The language of ZF.

3. Remarks on the Axioms

1. Note that the axioms are actually first-order ones.

2. First we show by Extensionality the uniqueness of ∅, and “then” we write
∅ ∈ V . The same pattern is followed in every similarly written axiom.

3. The converse of Extensionality is provable by the equality axioms.

4. Cantor’s full Comprehension axiom scheme is false.

5. Thus we need more axioms to describe our intuition about sets.

6. Note that the scheme of Separation (Aussonderung) is derivable by the
rest of the axioms.

7. Note that the existence of an inductive set is equivalent to the existence
of an infinite set, but that requires the notion of a finite set. Of course,
it is intuitively expected that an inductive set is not finite (Jech p.26, Ex.
2.4).

8. Show that each set is a class.

4. On the axiom of foundation
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9. Verify the axiom of foundation on specific sets. There are sets x, like ω,
for which there exists only one element not intersecting x, while there are
sets, like R, such that every element doesn’t intersect x.

10. It is not used in actual mathematics but it is important for the formation
of the set-theoretic universe. It is also very important in the construction
of models of set theory.

11. There exist no infinite 3-chains

x0 3 x1 3 x2 3 . . . .

12. There exist no cycles
x0 ∈ x1 . . . xn ∈ x0.

13. @x(x ∈ x).

14. @x(P(x) ⊆ x).

15. ∀x,y(x /∈ y ∨ y /∈ x).

5. On well-orderings

A partial ordering (p.o) (u,<) is an irreflexive and transitive relation < on u.
If (u1, <), (u2, <) are p.o., a function f : u1 → u2 is called order-preserving, if

∀x,y∈u1(x < y → f(x) < f(y)).

If (u1, <), (u2, <) are linear p.o., an order-preserving f is also called increasing.
If f : u1 → u2 is 1−1 and onto u2, then f is called an isomorphism, if f, f−1

are o.p. (in this case we write u1 ∼= u2). If u2 = u1 and f is an isomorphism, f
is called an automorphism. A well-ordering (w.o.) is a p.o. (w,<) such that

∀u⊆w(u 6= ∅ → u has a least element).

Clearly, a w.o. is a linear p.o. (if x 6= y, then min{x, y} is in w).

1. If (w,<) is a well-ordered set, then show that there exists no sequence
α : N→ w such that

α0 > α1 > α2 > . . . .

Show also that this property (the non-existence of infinitely decreasing
chains) implies the existence of a minimum element for each non-empty
subset of w (for that one uses actually the principle of dependent choices).

2. (optional) If α, β : ω → w show that there exist i < j such that

α(i) ≤ α(j) ∧ β(i) ≤ β(j).
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3. (optional) There exist quasi-orderings (q.o) (u,�) i.e., a reflexive and
transitive relation on u, such that every sequence in u is good1 but (u,�)
is not a well-ordering.

4. (optional) We define
ω(∞) = (ωω,�p),

where
α �p β ↔ ∀n(α(n) ≤ β(n)),

for each α, β ∈ ωω. Show that ω(∞) has a bad sequence.

5. If (w,<) is a w.o. and f : w → w is increasing, then

∀x∈w(f(x) ≥ x).

6. If (w,<) is a w.o. and f : w → w is an automorphism, then f = idw.

7. If (w1, <), (w2, <) are w.o. and w1
∼= w2, then the isomorphism between

them is unique.

8. If (w,<) is a w.o. and for each x ∈ w we define

x̂ = {y ∈ w | y < x},

then there exists no isomorphism between w, x̂.

9. [T] If (w1, <), (w2, <) are w.o., then

w1
∼= w2 ∨ ∃y∈w2

(w1
∼= ŷ) ∨ ∃x∈w1

(w2
∼= x̂).

(The proof of this proposition is of the same style to the first Satz of the
Vorlesung notes.)

6. On well-founded relations

If (u, r) is a structure, then r is called well-founded (w.f.r.), if

∀v⊆u(v 6= ∅ → ∃a∈v∀x∈v(x 6 ra))

i.e., if each non-empty subset v of u has an r-minimal element.

1. Show that a w.f.r. is irreflexive and asymmetric i.e.,

∀x∈u(x 6 rx),

∀x,y∈u(x r y → y 6 rx).

2. Give an example of a w.f.r. which is not a transitive relation.

1A sequence α : ω → w is called good, if there exist i < j such that α(i) � α(j); otherwise
it is called bad.
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3. Show that if r is a well-ordering, then r is a w.f.r.

4. (optional) Find a w.f.r. which is not a w.o.

5. If (u, r) is a w.f.r., there exists no sequence α : ω → u such that

α1rα0, α2rα1, α3rα2 . . . .

Show also that this property implies the existence of an r-minimal element
for each non-empty subset of u.

6. (optional) Formulate and prove the proposition on w.f.r. corresponding
to item 5 of the previous section.
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7. On transitivity of sets

1. If u ∈ V , show that the following are equivalent:

(a) u is transitive.
(b)

⋃
u ⊆ u.

(c)
⋃
u+ = u, where u+ = u ∪ {u}.

2. If u is a transitive set, then
⋃
u is also transitive.

3. If u is a non-empty set each element of which is transitive, then
⋂
u is

also transitive.

4. If u is a non-empty set, then

u is transitive →
⋂
u = ∅.

5. [T] Show that for every set u there exists a transitive set v such that
u ⊆ v. Describe the least such transitive set2; this is called the transitive
closure, TC(u), of u.

8. On the definition of addition in ω

1. Using the Rekursionssatz für ω, show the following special case of it:

If a is a non-empty set, x is a fixed element of a and h : a → a, there
exists a unique function f : ω → a such that

f(0) = x

f(n+ 1) = h(f(n)).

2. Show that if m ∈ ω, there exists a function Am : ω → ω such that

Am(0) = m

Am(n+ 1) = Am(n) + 1.

Then define the addition of natural numbers + as an appropriate set.

2There are many propositions of that kind; e.g., see the existence of an R-closed set in-
cluding a given one, if R is set-like.
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9. On Ordinals

1. They were invented by Cantor to solve a problem in Fourier series.

2. What do the ordinals count, and why are they necessary? As it is noted
by T. Forster in [2], “ordinals are the kind of numbers that measures the
length of precisely this sort of process: transfinite and discrete”. E.g., as
it is asked in the exercise 3 of Blatt 3, if (u, r) is a structure and r is
founded, we define

u0 := ∅,
uα+1 := {x ∈ u | ∀y(y r x→ y ∈ uα},

uλ :=
⋃
α<λ

uα.

By Replacement one shows that there exists an ordinal ξ such that uξ+1 =
uξ. Also,

u0 ⊆ u1 ⊆ . . . uζ = u,

where ζ is the minimum ordinal satisfying uζ+1 = uζ .

3. The intuition behind addition and multiplication of ordinals.

10. Some basic facts

1. Show that
lim(λ)↔ ∀α(α < λ→ α+ 1 < λ).

2. Find a non-transitive subset of some ordinal α which does not belong to
α.

3. Show that for all ordinals α, β

α < s(β)↔ α ≤ β.

4. If α, β, γ, δ ∈ On, show the following properties:

(i) α < β → γ + α < γ + β. Especially, 0 < β → γ < γ + β.
(ii) α ≤ β → α+γ ≤ β+γ. Find α, β, γ such that α < β and α+γ = β+γ.
(iii) α < β → γ·α < γ·β. Especially, 1 < β → γ < γ·β.
(iv) α ≤ β → α· γ ≤ β· γ. Find α, β, γ such that α < β and α· γ = β· γ.
(v) α+ γ < β + γ → α < β.
(vi) α· γ = β· γ → γ is successor ordinal→ α = β.
(vii) α· (β + γ) = α·β + α· γ. Is it true that (β + γ)·α = β·α+ γ·α?

5. If α < β and γ > 1, then γα < γβ . Check that this doesn’t hold for the
corresponding operations on cardinals.
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6. If ε0 is the ordinal defined by3

ε0 := sup{ω, ωω, ωω
ω

, . . .}

show that ωε0 = ε0 and also that ε0 is the least ordinal α satisfying
ωα = α. Therefore, ε0 is the least ordinal bigger than ω which is closed
under addition, multiplication and exponentiation of ordinals.

7. ∀α,β∈On(β ≤ α→ ∃!γ∈On(α = β + γ)).

8. ∀α>0,γ∃!β,ρ(ρ < α ∧ γ = α · β + ρ).

9. Cantor’s normal form theorem: Every ordinal α > 0 can be written
uniquely as

α = ωβm · km + . . .+ ωβ0 · k0,

where m ≥ 1, α ≥ βm > . . . > β0, and k0, . . . , km ∈ N \ {0}. Thus the
ordinal ε0 has the following convenient representation

ε0 = ωε0 · 1,

and that’s why in general α ≥ βm. The above convenience is one of the
reasons we use ω as a base in the representation of ordinals in a normal
form.

11. On the cumulative hierarchy

1. Show that ∀α(Vα ∈ V ).

2. Find a transitive set u having a non-transitive element x.

3. If the rank of a set x is defined as in the Vorlesung by4

rn(x) := min{α ∈ On | x ∈ Vα},

show that y ∈ x→ rn(y) < rn(x). Does the converse hold?

4. Show that the following are equivalent:

(i) Foundation Axiom.
(ii) V =

⋃
α∈On Vα.

5. Show the following:

(i) ∀α∈On(α ∈ Vα+1 \ Vα).
(ii) ∀α∈On(rn(α) = α+ 1).

3This is a very important ordinal in proof theory as the infamous theorem of Gentzen on
the consistency of arithmetic shows. For that see [6], Chapter 10.

4If one defines the rank of x as the least α such that x ∈ Vα+1, one gets rn(α) = α.
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6. Show that

A ∈ V ↔ {rn(x) | x ∈ A} is bounded in On.

7. The rank of a set, as defined above, is always a successor ordinal i.e.,

∀x∈V ∃α∈On(rn(x) = α+ 1),

where
α = sup{rn(y) | y ∈ x}.

8. Using the standard set-theoretic constructions of Z,Q,R (see for exam-
ple [1], Chapter 5), show that Z,Q,R,R R ∈ Vω+ω.

Suppose that v ∈ V and φ is a formula of the language of ZFC. The relativization
φu of φ to u is generated by replacing all occurrences x ∈ V in φ by x ∈ u.
Then we define

u |= φ := ZFC ` φu.

Then show the following:

1. ∀α∈On(Vα |= Extensionality Axiom).

2. ∀α∈On(α 6= 0→ Vα |= Empty set Axiom).

3. ∀α∈On(limitordinal(α)→ Vα |= Pair Axiom).

4. ∀α∈On(Vα |= Union axiom).

5. ∀α∈On(limitordinal(α)→ Vα |= Power set Axiom).

6. ∀α∈On(Vα |= Separation Scheme).

7. ∀α∈On(α > ω → Vα |= Infinity Axiom).

8. What about the converse to 2, 3, 5, 7?

9. Consider the following formulation of the Axiom of Choice: if R is a
relation, then there exists a function F such that dom(F ) = dom(R), in
order to show:

∀α∈On(Vα |= Axiom of Choice).

In other words, if λ is any limit ordinal number > ω, then

Vλ |= ZF0,

where
ZF0 = ZF \ {Replacement Axiom},
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and ZF is considered here to contain the Separation Scheme5. One could ask if
the Replacement Scheme is derivable by the rest axioms. Next results show the
independence of the Replacement Scheme.

(i) Find a well-ordering structure (w,<) such that < ∈ Vω+ω, and otp(w,<) /∈
Vω+ω.
(ii) Conclude by (i) that

Vω+ω 6|= Replacement Axiom.

The above result is expected from Gödel’s second incompleteness theorem. If
there was a limit ordinal λ such that Vλ |= Replacement Axiom too, then we
would have that Vλ |= ZF. But then ZF could prove its own consistency, and
that contradicts Gödel’s second incompleteness theorem.

12. Extensions of Exercise 2, Blatt 3

1. Show that if α ∈ On, then α+ω is the least limit ordinal above α. Hence,
if λ is a limit ordinal, λ + ω is the immediate limit ordinal above λ. In
this case λ+ ω can be called the immediate next limit ordinal of λ.

2. Show that if λ is a limit ordinal, there is no, generally, an immediate pre-
vious limit ordinal of λ. Find a limit ordinal with no immediate previous
limit ordinal.

3. If α though, is an infinite successor ordinal, then there exists the maximum
limit ordinal below α. Moreover, if α is an infinite ordinal, the following
are equivalent:

(i) α is a successor ordinal.
(ii) α can be written uniquely as

α = λ+ n,

for some limit ordinal λ and some natural number n.

5As you already know the Separation scheme is proved by the Replacement scheme, but
in many textbooks it is included in the list of axioms of ZF and it is noted or proved later
that it is derivable (see e.g., [3] or [4]). In that way it is clear that ZF0 contains the required
Separation Scheme.
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13. Normal functions

A function F : On→ On is called normal, if it satisfies the following:

(i) F is (strictly) increasing i.e.,

∀α,β(α < β → F (α) < F (β)).

(ii) F is continuous (with respect to the order topology) i.e.,

∀λ∈LOn(F (λ) =
⋃
α<λ

F (α)),

where LOn denotes the class of limit ordinals.

1. Show that F1(α) = β + α, F2(α) = β · α and F3(α) = βα are normal
functions.

2. Give an example of an increasing function which is not continuous (con-
sider e.g., the successor function α 7→ α+ 1.)

3. Give an example of a continuous function which is not increasing (consider
e.g., a constant function).

4. Show that the function F : On→ On defined by

α 7→ α2

is not continuous (consider e.g., n→ ω while n2 → ω 6= ω2).

5. Suppose that F is continuous. Then the following are equivalent:

(i) F is normal.
(ii) ∀α(F (α) < F (α+ 1)).

Hint: Fix an ordinal α satisfying α < β and F (α) ≥ F (β). Take β to be
the least ordinal satisfying these properties. If β = γ + 1, then α ≤ γ and
we have by the least property of β that:

F (γ + 1) ≤ F (α) < F (γ) < F (γ + 1),

which is a contradiction. Note that α 6= γ, since otherwise hypothesis (ii)
is violated. If β ∈ LOn, then by continuity

F (β) =
⋃
δ<β

F (δ) ≤ F (α).

But since α < β already, we get

F (α) < F (α+ 1) ≤ F (β) ≤ F (α),

which is again a contradiction.
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6. Suppose that F : On→ On is increasing. Then the following hold:

(i) ∀α(F (α) ≥ α).
(ii) ∀α,β(F (α) < F (β)→ α < β).

Hint: (i) is a special case of Exercise 5 of paragraph 5.
(ii) Suppose that F (α) < F (β) and α ≥ β. Use the increasing property of
F to reach a contradiction.

7. If F is normal, then F has an unbounded class of fixed points. Actually,
show that

∀α∃β(α ≤ β ∧ F (β) = β ∧ ∀α<γ<β(F (γ) > γ)),

i.e., β is the least fixed point of F above α.

Hint: Define
β :=

⋃
n∈ω

βn,

where

β0 := α,

βn+1 := F (βn).

Then,

F (β) = F (
⋃
n∈ω

βn) =
⋃
n∈ω

F (βn) =
⋃
n∈ω

βn+1 = β.

Note that if α itself is a fixed point, then β = α, and trivially α satisfies
the least property. If α is not a fixed point, consider an ordinal γ such
that α < γ < β and F (γ) = γ. Then there exists n such that γ < βn and
we can take n to be the least natural having this property. Since there is
an m such that n = m+ 1 we have that

βm ≤ γ < βm+1.

Hence
γ < βm+1 = F (βm) ≤ F (γ) = γ,

which is of course a contradiction.

8. [T] If F is normal, then the derivative F ′ of F is the function F ′ : On→
On defined by:

F ′(0) := µβ(F (β) = β)

F ′(α+ 1) := µβ(F ′(α) < β ∧ F (β) = β)

F ′(λ) := µβ(∀α<λ(F ′(α) < β) ∧ F (β) = β),

where λ is a limit ordinal and µβ(φ(β)) denotes the minimum ordinal
satisfying the formula φ. Then the following hold:
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(i) F ′ enumerates the fixed points of F , in other words

rng(F ′) = Fix(F ),

where Fix(F ) denotes the class of the fixed points of F .
(ii) Show that F ′ is also normal.

Hint: (i) Clearly, rng(F ′) ⊆ Fix(F ), and we show equality by assuming
that Fix(F ) \ rng(F ′) 6= ∅. Then we consider the least ordinal in Fix(F ) \
rng(F ′), which cannot be 0, and we reach a contradiction supposing that
α is a successor ordinal, or α is a limit ordinal.
(ii) To show that F is normal we first see that by the definition of F ′

F ′(α) < F ′(α+ 1),

for each α. To show that F is continuous it suffices to show that⋃
α<λ F

′(α) satisfies the definition of F ′(λ), if λ ∈ LOn. Clearly⋃
α<λ F

′(α) ∈ Fix(F ), since by the continuity of F

F (
⋃
α<λ

F ′(α)) =
⋃
α<λ

F (F ′(α)) =
⋃
α<λ

F ′(α).

Also,

∀α<λ(F ′(α) <
⋃
α<λ

F ′(α)),

since
F ′(α) < F ′(α+ 1) ≤

⋃
α<λ

F ′(α).

To show that
⋃
α<λ F

′(α) is the least ordinal satisfying the above proper-
ties we consider β, an arbitrary fixed point of F , such that ∀α<λ(F ′(α) <
β). But then we have immediately that⋃

α<λ

F ′(α) ≤ β.

By Exercise 5 we conclude that F ′ is normal.

9. [T] A closed and unbounded class of ordinals is called a club. Show that
if F : On→ On then

F is normal→ rng(F ) is a club.

Corollary: Using the normality of the derivative F ′ of some normal func-
tion F and the fact rng(F ′) = Fix(F ), we conclude that the class of fixed
points of a normal function is a club.

Hint: Suppose that rng(F ) is bounded, therefore it is a set, and let
γ =

⋃
rng(F ). Then by Exercise 6(i) we have that

γ ≤ F (γ) < F (γ + 1) ∈ rng(F ),
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which is absurd. To show that rng(F ) is closed we suppose that u 6= ∅ and
u ⊆ rng(F ), and we show that supu ∈ rng(F ) too. Of course, supu 6= 0,
since u 6= ∅. If supu = α+ 1, then α < supu, therefore there exists some
β ∈ u such that α < β ≤ α + 1, hence β = α + 1 and supu ∈ rng(F ).
Suppose now that supu = λ, for some λ ∈ LOn. Then the class

v = {β ∈ On | ∃α∈u(F (β) = α)}

is a set, since F is an 1−1 function. But then

F (
⋃
v) =

⋃
F (v) = supu,

i.e., supu ∈ rng(F ).

Remark: The converse implication doesn’t hold: Find a function F :
On→ On such that rng(F ) is a club but F is not normal!

10. Show that every club C is the range of a unique normal function F .

Hint: Define the function F which “enumerates in order” the elements of
C and show that it is normal.

11. (i) Show that a club is a proper class.
(ii) Find a closed class of ordinals which is not unbounded, and also an
unbounded class of ordinals which is not closed.

12. [T] If C1, C2 are clubs, then their intersection C1∩C2 is also a club. Hence,
if F1, F2 are normal functions, the class of their common fixed points is a
club. This, of course, applies to the normal functions F, F ′.

Hint: First we show that C1 ∩ C2 is closed: we suppose that u 6= ∅ and
u ⊆ C1 ∩ C2 and we show that supu ∈ C1 ∩ C2. But since C1, C2 are
closed, supu ∈ C1, and supu ∈ C2. To show that C1 ∩ C2 is unbounded
we fix an ordinal α and we form a sequence of ordinals

α < α1 < β1 < α2 < β2 < . . . ,

such that αi ∈ C1 and βi ∈ C2, for each i ∈ ω. Clearly,

α < sup
n
αn = sup

n
βn ∈ C1 ∩ C2.

13. Suppose that F,G : On → On are normal functions. Then the following
hold:

(i) Their composition F ◦G is a normal function.
(ii) Fix(F ◦G) = Fix(F ) ∩ Fix(G).

14. If F is normal, then

λ is a limit ordinal→ F (λ) is a limit ordinal.
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15. If F is normal, then

∀β∃α(F (α) ≤ β ∧ ∀γ(F (γ) ≤ β → γ ≤ α)),

i.e., given an ordinal β and a normal function F , then F (α) is the best
approximation to β below that one can give using F .

16. Using 7 and 15, try to sketch a graph modeling the graph of a normal
function.

17. Show that the function ω : On→ On defined by

α 7→ ωα

is normal and also that rng(ω) = Kn \ ω, where Kn denotes the class of
cardinals.

18. Show that the class of limit ordinals LOn is a club (use paragraph 12 for
that).
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Solutions to selected exercises

Blatt 6, Aufgabe 1: The following is a simple consequence of the Collection
principle (Beschränkung): if φ(x, y, ~z) is a ZF-formula,

(∗) ∀x∈u∃y(φ(x, y, ~z))→ ∃v∀x∈u∃y∈v(φ(x, y, ~z)).

In order to show that u× v ∈ V within ZF− we fix x ∈ u and by the pairing in
ZF− we get

∀y∈v∃w(w =< x, y >).

Applying (∗) we get
∃a∀y∈v∃w∈a(w =< x, y >).

Since x was an arbitrary element of u, we have actually shown that

∀x∈u∃a∀y∈v∃w∈a(w =< x, y >).

Applying (∗) once more we get

∃c(∀x∈u∃w′∈c∀y∈v∃w∈w′(w =< x, y >)).

Next we define
d :=

⋃
c.

Since w =< x, y > and w ∈ w′ ∈ c we get

∀x∈u∀y∈v(< x, y >∈ d).

Hence
u× v = {e ∈ d | ∃x∈u∃y∈v(e =< x, y >),

which is in V by Σ0-comprehension (Aussonderung). Note that all along this
proof we used only Σ0-collection i.e., the collection principle, and the corre-
sponding (∗), for Σ0-formulas φ(x, y, ~z).

Remark on Aufgabe 1, Blatt 7: For the proof of the direction

∃F (F : On
onto−→ V )→ V = OD

we suppose that F is a class defined as

F = {(x, y) | φ(x, y)},

where φ is free of parameters.

Blatt 8, Aufgabe 2: By the definition of TC(x) we have that

y = TC(x)↔ transitive(y) ∧ ∀t(transitive(t) ∧ x ⊆ t→ y ⊆ t),
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which is a Π1-formula. Also, by the construction of TC(x) we have that

y = TC(x)↔ ∃f (function(f) ∧ dom(f) = ω ∧ y =
⋃

rng(f) ∧

∧ (0, x) ∈ f ∧ ∀n∈ω∀w∈rng(f)((n,w) ∈ f → (n+ 1,
⋃
w) ∈ f)),

which is a Σ1-formula, therefore y = TC(x) is a ∆1-formula.

A fact related to Blatt 8, Aufgabe 3: Suppose that y = G(x) is a Σ1-
formula and

F (α) = G(F � α),

for each α ∈ On. Then the formula y = F (x) is ∆1.

Proof : F is a class-function and each of its restrictions F � α is a set-function.
Moreover,

∀α,β∈On(α < β → F � α ⊆ F � β).

If we call such an initial segment of F a good function, we describe it as follows:

good(f)↔ ordinal(dom(f)) ∧ ∀α∈dom(f)(f(α) = G(F � α)).

Since y = G(x) is a Σ1-formula, it follows that good(f) is also Σ1. Since
two good functions with the same domain are identical we have the following
equivalences:

x = F (α)↔ ∃f (good(f) ∧ α ∈ dom(f) ∧ f(α) = x),

x = F (α)↔ ∀f (good(f) ∧ α ∈ dom(f) → f(α) = x).

By the first equivalence we get that x = F (α) is equivalent to a Σ1-formula (if we
add an existential quantifier to a Σ1-formula we get one which is again equivalent
to a Σ1-formula). By the second equivalence we get that x = F (α) is equivalent
to a Π1-formula (since the formula good(f) ∧ α ∈ dom(f) → f(α) = x) is
already equivalent to a Π1-formula; φ → ψ ↔ ¬φ ∨ ψ and the negation of a
Σ1-formula is equivalent to a Π1-formula), and if we add a universal quantifier
to a Π1-formula we get one which is equivalent to a Π1-formula.

Hence, the formula x = F (α) is ∆1.
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