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1 Intoduction
One of the most well-known achievements of the American mathematician
Errett Bishop is certainly Bishop’s theorem, which generalizes the Stone-
Weierstrass theorem. Published in 1961, “A generalization of the Stone-
Weierstrass theorem” is one of Errett Bishop’s earlier works. Since then,
Errett Bishop has been particularly interested in constructive analysis. How-
ever, the theorem he gave his name to is not constructive.

This may seem paradoxical to some, considering that Bishop himself is
known as a convinced constructivist and later in his life was seen as the lead-
ing mathematician in the field of constructive analysis. He earned this rep-
utation foremost through his book “Foundations of constructive Analysis”,
published in 1967. Bishop’s constructive analysis took Brouwer’s construc-
tive ideas and developed them further. It was on this basis that his book,
a standard work on classical analysis with the aim of constructively proving
large parts of classical analysis including the constructive Stone-Weierstrass
theorem, was written, a project that many mathematicians had described as
impossible at the time.

In this work we will constructively prove the Stone-Weierstrass theorem
for compact metric spaces and at the same time study Bishop’s construc-
tive analysis. Our proof is based on Bishop’s standard work “Foundation of
Constructive Analysis” and its extension “Constructive Analysis”. We will
also use definitions, propositions, etc. contained therein, but we will provide
more detailed proofs.
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2 Calculus and the Real Numbers

2.1 The Real Number System
Bishop’s definition of real numbers differs from that of classical analysis.
Based on the rational numbers and their usual laws, we define the real num-
bers as a regular sequence of rational numbers. Accordingly, we also redefine
the operations on real numbers.

Definition 1. A sequence {xn} of rational numbers is regular if for all m,n ∈
Z+

|xm − xn| ≤
1
m

+ 1
n

A real number is a regular sequence of rational numbers. Two real numbers
x := {xn} and y := {yn} are equal if for all n ∈ Z+

|xn − yn| ≤
2
n

The set of real numbers is denoted by R.

Definition 2. If Kx is the least integer which is greater than |x1| + 2, then
we call Kx the canonical bound for the real number x. It then obviously holds
for all n ∈ Z+

|xn| < Kx.

Definition 3. Let x := {xn} and y := {yn} be real numbers with respective
canonical bounds Kx and Ky. Write k := max{Kx, Ky}. Let α be any
rational number. We define

(a) x+ y := {x2n + y2n}∞n=1

(b) xy := {x2kny2kn}∞n=1

(c) max{x, y} := {max{xn, yn}}∞n=1

(d) − x := {−xn}∞n=1

(e) α∗ := {α, α, . . .}.

As one can easily see, the sequences just defined are also real numbers.
It can also be shown that they follow the same arithmetic laws which we
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already know from classical analysis.

Based on the definitions of positivity and negativity of real numbers, we
define the order relations “<” and “≤”.

Definition 4. A real number x := {xn} is said to be positive, or x ∈ R+, if

xn >
1
n

for some n in Z+. A real number x := {xn} is said to be nonnegative, or
x ∈ R+

0 ,if

xn ≥ −
1
n

for all n in Z+.

Definition 5. Let x and y be real numbers. We define x > y (or y < x) if
x− y ∈ R+ and x ≥ y (or y ≤ x) if x− y ∈ R+

0 . A real number x is negative
if x < 0∗, that is, if −x is positive.

Definition 6. For real numbers x and y we write x 6= y if and only if x < y
or x > y.

In Bishop’s constructive analysis it is not possible to compare arbitrary
real numbers as we know it from classical analysis. Whereas in classical
analysis it is always valid that for two arbitrary real numbers x, y ∈ R at
least one of the following properties holds

x < y ∨ x = y ∨ x > y.

This statement is not true in Bishop’s constructive analysis. Although we
can say in constructive mathematics that x ≤ y is equivalent to the negation
of x > y, it is not true that x > y is equivalent to the negation of x ≤ y. This
is because we can’t constructively prove that from x > y follows the negation
of x ≤ y. In order to still be able to compare arbitrary real numbers, we will
need the following two results.

Proposition 1. If x1, . . . , xn are real numbers with x1 + . . . + xn > 0, then
xi > 0 for some i ∈ {1, . . . , n}.

Corollary 1. If x, y, and z are real numbers with y < z, then either x < z
or x > y.
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2.2 Sequences and Series of Real Numbers
Definition 7. A sequence {xn} of real numbers converges to a real number
x0 if for each k in Z+ there exists Nk in Z+ such that for all n ≥ Nk

|xn − x0| ≤ k−1.

To express that {xn} converges to x0 we write lim
n→∞

xn = x0 or xn → x0 as
n→∞.

It should be noted that the definition of a convergent sequence of real
numbers includes not only the sequence {xn} itself, but also its limit x0 and
the sequence {Nk}. The same is true for other definitions mentioned later.
Definition 8. A sequence {xn} of real numbers is a Cauchy sequence if for
each k in Z+ there exists Mk in Z+ such that for all m,n ≥Mk

|xm − xn| ≤ k−1

Theorem 1. A sequence {xn} of real numbers converges if and only if it is
a Cauchy sequence.
Proposition 2. Assume that xn → x0 as n→∞, and yn → y0 as n→∞.
Then

(a) xn + yn → x0 + y0 as n→∞
(b) xnyn → x0y0 as n→∞

(c) max{xn, yn} → max{x0, y0} as n→∞
(d) x0 = c whenever xn = c for all n

(e) x−1
n → x−1

0 as n→∞ whenever x0 6= 0 and xn 6= 0 for all n
(f) x0 ≤ y0 if xn ≤ yn for all n

Definition 9. For each sequence {xn} of real numbers the number

sn :=
n∑
k=1

xk

is called the nth partial sum of {xn}, and {sn} is called the sequence of partial
sums of the sequence {xn}. A sum s0 of {xn} is a limit of the sequence {sn}
of partial sums, and we write

s0 =
∞∑
n=1

xn
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to indicate that s0 is a sum of {xn}. A sequence which is meant to be summed
is called a series. A series is said to converge to its sum.

Even if Bishop does not, we give a proof of the infinite geometric series,
because it will be of considerable use in the further explanations.

Theorem 2. If |x| < 1, then ∑∞
k=0 x

k = 1
1−x .

Proof. Let |x| < 1. We first show that
n∑
k=0

xk = 1− xn+1

1− x (1)

by induction.
If n = 0, then ∑n

k=0 x
k = 1 = 1−x

1−x . We assume that (1) is true for a fixed
n ∈ Z+

0 and we show that (1) must be true for n+ 1 as well.

n+1∑
k=0

xk = xn+1 +
n∑
k=0

xk = xn+1 + 1− xn+1

1− x = 1− xn+2

1− x

Since for |x| < 1 we have lim
n→∞

xn+1 = 0, it follows that

lim
n→∞

1− xn+1

1− x = 1
1− x · (1− lim

n→∞
xn+1) = 1

1− x.

Example 1. It is ∑∞n=1 2−n = 1. Since 0 < 1
2 < 1, we get

∞∑
n=1

2−n = 1
1− 1

2
− 1 = 1.

In classical analysis, we get as a result that a sequence of nonnegative
terms converges when the partial sums are bounded. Although this is not
the case in constructive analysis, we can refer to the following result as a
substitute, which is also known under the name comparison test.

Proposition 3. If ∑∞n=1 yn is a convergent series of nonnegative terms, and
if |xn| ≤ yn for each n, then ∑∞

n=1 xn converges.
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Proof. By Theorem 1 we get that the sequence of patial sums of {yn} is a
Cauchy sequence. Thus let k ∈ Z+ and Mk ∈ Z+ such that for all m,n ≥Mk

it is ∣∣∣∣∣
m∑
i=1

yi −
n∑
i=1

yi

∣∣∣∣∣ =
max{m,n}∑

i=min{m,n}+1
yi ≤

1
k
,

then for m,n ≥Mk follows∣∣∣∣∣
m∑
i=1

xi −
n∑
i=1

xi

∣∣∣∣∣ ≤
max{m,n}∑

i=min{m,n}+1
|xi| ≤

max{m,n}∑
i=min{m,n}+1

yi ≤
1
k
.

We have shown that the sequence of partial sums of {xn} is a Cauchy sequence
and therefore ∑∞n=1 xn converges.

The next test that represents a test for convergence is called the ratio
test.

Proposition 4. Let ∑∞n=1 xn be a series, c a positive real number, and N a
positive integer. Then ∑∞

n=1 xn converges if c < 1 and

|xn+1| ≤ c|xn|

for all n ≥ N .

Proof. We assume that c < 1 and that for all n ≥ N it is xn+1| ≤ c|xn|. We
show by induction, that for all n ≥ N

|xn| ≤ cn−N |xN | (2)

holds. If n = N , then (2) is obviously true. We now assume that (2) is true
for fixed n ∈ Z+ with n ≥ N and we show that (2) must be true for n+ 1 as
well.

|xn+1| ≤ c|xn| ≤ c · cn−N |xn| = c(n+1)−N |xN |

Therefore (2) is proved. Since |c| < 1, it follows from Theorem 2 that the
series

∞∑
n=1

cn−N |xN | =
|xN |
cN

∞∑
n=1

cn

converges. We now get that the series ∑∞n=1 xn converges by applying the
comparison test.
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The next test is based on Kummer’s criterion.

Lemma 1. Let {an} and {xn} be sequences of positive numbers, c a positive
number, and N a positive integer. Then ∑∞

n=1 xn converges if anxn → 0 as
n→∞ and for all n ≥ N

anxnx
−1
n+1 − an+1 ≥ c.

Lemma 2. Let {yn} be a sequence of positive numbers, c a positive number,
and N a positive integer such that for all n ≥ N

n(yny−1
n+1 − 1) ≥ c.

Then lim
n→∞

yn = 0.

The last convergence test executed in the following is also called Raabe’s
test in classical analysis.

Proposition 5. Let ∑∞n=1 xn be a series of positive numbers such that n(xnx−1
n+1−

1) converges to a limit L. Then ∑∞
n=1 xn converges if L > 1.

2.3 Continuous Functions
There is a proposition in classical analysis which states that a function that
is pointwise continuous on a compact interval is also uniformly continuous.
However, no constructive proof has yet been found for this proposition. In
order to be compatible with classical analysis, Bishop does not work with the
concept of pointwise continuity. Instead, he directly introduces the concept
of uniform continuity.

Definition 10. A real-valued function f defined on a compact interval I
( i.e. I is a non-empty interval of the form I = [a, b] with a < b and a,b
finite) is continuous on I if for each ε > 0 there exists w(ε) > 0 such that for
all x, y ∈ I

|x− y| ≤ w(ε)⇒ |f(x)− f(y)| ≤ ε.

The operation ε→ w(ε) is called a modulus of continuity for f. A real-valued
function f on an arbitrary interval J is continuous on J if it is continuous on
every compact subinterval I of J.

10



In this context, it should be noted that a modulus of continuity w is
always an indispensable part of the definition of a continuous function on a
compact interval.

Definition 11. A real number c is called the least upper bound (respectively,
greatest lower bound) of a subset A of R and written c := l.u.b. A (respec-
tively, c := g.l.b. A) if x ≤ c (respectively, x ≥ c) for all x in A and if for
each ε > 0 there exists x in A with c− x < ε (respectively, x− c < ε).

Theorem 3. Let the subset A of R have the property that for each ε > 0
there exist finitely many points y1, . . . , yn in A such that for each x in A at
least one of the numbers |x − y1|, . . . , |x − yn| is less than ε. (Such a set is
called totally bounded.) Then l.u.b. A and g.l.b. A exist.

Corollary 2. If f : [a, b]→ R is a continuous function on a compact interval,
then the quantities c := l.u.b.{f(x) : x ∈ [a, b]} and d := g.l.b.{f(x) : x ∈
[a, b]} (called, respectively, the supremum and the infimum of f on the interval
[a, b]) exist.

Proof. Let w be a modulus of continuity for f and let ε > 0. We choose
a0, . . . , an ∈ R such that

a = a0 ≤ a1 ≤ . . . ≤ an = b and ai+1 − ai ≤ w(ε)

for all i ∈ {0, . . . , n−1}. Then whenever it is x ∈ [a, b] we have |x−ai| ≤ w(ε)
for at least one i, and therefore |f(x)− f(ai)| ≤ ε for the corresponding i. So
we have shown that {f(x) : x ∈ [a, b]} is totally bounded. By Theorem 3, it
follows that sup f and inf f exist.

Theorem 4. Let f and g be continuous real-valued functions defined on an
interval I. Then the functions f + g, fg, and max{f, g} are continuous on
I. If f is bounded away from 0 on every compact subinterval J of I, that is,
if |f(x)| ≥ c for all x in J and some c > 0 (depending on J), then f−1 is
continuous on I.

Proof. By the definition of continuity, it is enough to consider the case in
which I is compact. In preperation of the proof, let wf and wg be moduli of
continuity for f and g on I. Let ε > 0.
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Let x, y ∈ I. If we set |x− y| ≤ w(ε) := min
{
wf

(
ε
2

)
, wg

(
ε
2

)}
, we get

|(f + g)(x)− (f + g)(y)| ≤ |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|

≤ ε

2 + ε

2 ≤ ε

It follows that f + g is continuous on I with modulus of continuity w.

Because of the Corollary above, we can set M := sup{|f(x)| : x ∈ I}.

Then if x, y ∈ I and |x− y| ≤ w(ε) := wf

(
ε

2M

)
, we have

|f 2(x)− f 2(y)| = |(f(x)− f(y)) · (f(x) + f(y))|
≤ |f(x)− f(y)| · (|f(x)|+ |f(y)|)

≤ |f(x)− f(y)| · 2M ≤ ε

2M · 2M = ε

and therefore f 2 is continuous on I.

Let α ∈ R. Then if x, y ∈ I and |x− y| ≤ w(ε) := wf

(
ε
|α|

)
, we have

|(αf)(x)− (αf)(y)| = |α||f(x)− f(y)| ≤ |α| · | ε
|α|

= ε

and therefore αf is continuous on I.

Since fg = 1
2((f + g)2 − f 2 − g2), it follows that fg is continuous on I.

Let x, y ∈ I. If we set |x− y| ≤ w(ε) := wf (ε), we get∣∣∣(|f |)(x)− (|f |)(y)
∣∣∣ =

∣∣∣|f(x)| − |f(y)|
∣∣∣ ≤ |f(x)− f(y)| ≤ ε

and therefore |f | is continuous on I.

Since it is

max{f, g}(x) = f(x) + g(x)
2 + |f(x)− g(x)|

2
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and

min{f, g}(x) = f(x) + g(x)
2 − |f(x)− g(x)|

2 ,

it follows that both functions are continuous on I.

Let |f(x)| ≥ c for all x in I and some c > 0. Then whenever x, y ∈ I and
|x− y| ≤ w(ε) := wf (M2 · ε), where M := inf{|f(x)| : x ∈ I}, we have

|f−1(x)− f−1(y)| =
∣∣∣∣∣ 1
f(x) −

1
f(y)

∣∣∣∣∣ =
∣∣∣∣∣f(y)− f(x)
f(x) · f(y)

∣∣∣∣∣
= |f(x)− f(y)|
|f(x)| · |f(y)| ≤

M2 · ε
M2 = ε,

and therefore f−1 is continuous on I.
It follows that g

f
= g · f−1 is continuous on I.

Theorem 5. The composition of continuous functions is continuous, in the
sense that if f : I → J and g : J → R are continuous, then g◦f is continuous,
provided that f maps every compact subinterval of I into a compact subinterval
of J.

Proof. Again, we only consider the case in which I and J are both compact.
Let wf be a modulus of continuity of f and wg a modulus of continuity of g.
Let ε > 0. Then if x, y ∈ I and |x− y| ≤ w(ε) := wf (wg(ε)), we have

|f(x)− f(y)| ≤ wg(ε)⇒ |(g ◦ f)(x)− (g ◦ f)(y)| = |g(f(x))− g(f(y))| ≤ ε.

Definition 12. A sequence {fn} of continuous functions on a compact in-
terval I converges on I to a continuous function f if for each ε > 0 there exists
Nε in Z+ such that for all x ∈ I and n ≥ Nε

|fn(x)− f(x)| ≤ ε

A sequence {fn} of continuous functions on an arbitrary interval J con-
verges on J to a continuous function f if it converges to f on every compact
subinterval I of J. Notations to express the fact that {fn} converges to f are
lim
n→∞

fn = f and fn → f as n→∞.
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Definition 13. A sequence {fn} of continuous functions on a compact in-
terval I is a Cauchy sequence on I if for each ε > 0 there exists Mε in Z+

such that for all x ∈ I and m,n ≥Mε

|fm(x)− fn(x)| ≤ ε

A sequence {fn} of continuous functions on an arbitrary interval J is a
Cauchy sequence on J if it is a Cauchy sequence on every compact subin-
terval of J.

Theorem 6. A sequence {fn} of continuous functions on an interval J con-
verges on J if and only if it is a Cauchy sequence on J.

Definition 14. To each sequence {fn} of continuous functions on an interval
I corresponds a sequence {gn} of partial sums, defined by

gn :=
n∑
k=1

fk

If {gn} converges to a continuous function g on I, then g is the sum of the
series ∑∞n=1 fn,

g :=
∞∑
n=1

fn

and the series is said to converge to g on I.

Remark 1. The comparison test and the ratio test carry over to series of
functions. The comparison test states that if ∑∞

n=1 gn is a convergent series
of nonnegative continuous functions on an interval I, then the series ∑∞

n=1 fn
of continuous functions on I converges on I whenever |fn(x)| ≤ gn(x) for all
n in Z+ and all x in I.
The ratio test states that if ∑∞

n=1 fn is a series of continuous functions on
an interval J such that for each compact subinterval I of J there exists a
constant cI , 0 < cI < 1, and a positive integer NI with for all x ∈ I and for
all n ≥ NI

|fn+1(x)| ≤ cI |fn(x)|,

then ∑∞
n=1 |fn| converges on J.
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Proposition 6. Let the series
∞∑
n=0

an(x− x0)n

have the property that there exists r > 0 and N in Z+ such that |an+1| ≤
r−1|an| for all n ≥ N . Then the series ∑∞n=0 |an(x − x0)n| converges on the
interval (x0 − r, x0 + r).

Proof. Let I ⊂ (xo− r, x0 + r) be an arbitrary compact interval. If we define
r0 := |x− x0|, we get

|an+1(x− x0)n+1| = |an+1||x− x=|n+1

≤ r−1|an||x− x0|n+1 = r0

r
· |an||x− x0|n.

Since |x − x0| < r, we have r0r
−1 < 1 and thus the series converges by the

ratio test.

2.4 Differentation
In accordance to Bishop-continuity we define differentiability directly on com-
pact intervals.

Definition 15. Let f and g be continuous functions on a compact proper
interval I (i.e. a and b are finite and a < b) such that for each ε > 0 there
exists δ(ε) > 0 such that for all x, y ∈ I it is

|y − x| ≤ δ(ε)⇒ |f(y)− f(x)− g(x)(y − x)| ≤ ε|y − x|.

Then f is said to be differentiable on I, g is called a derivative of f on I, and
δ is called a modulus of differentiability for f on I. If f and g are continuous
on the proper interval J, then g is a derivative of f on J if it is a derivative of
f on every compact proper subinterval I of J, and f is said to be differentiable
on J. To express that g is a derivative of f we write g = f ′ or g = Df .

Theorem 7. Let f1 and f2 be differentiable functions on an interval I. Then
f1 + f2 and f1 · f2 are differentiable on I. In case f1 is bounded away from
0 on every compact subinterval of I, then f−1

1 is differentiable on I. The
function x → x is differentiable on R. For each c in R the function x → c

15



is differentiable on R. The derivatives in question are given by the following
equations.

(a) D(f1 + f2) = Df1 +Df2

(b) D(f1 · f2) = f1Df2 + f2Df1

(c) Df−1
1 = −f−2

1 Df1

(d) dx
dx

= 1

(e) dc

dx
= 0

Proof. By the definition of differentiability, it is enough to consider the case
in which I is compact. To prove all this, let δ1 and δ2 be moduli of differ-
entiability for f1 and f2 on I, let f ′1 and f ′2 be the corresponding derivatives
and let w1 be a modulus of continuity for f1 on I.
(a) Let x, y ∈ I. If we set |y − x| ≤ δ(ε) := min{δ1( ε2), δ2( ε2)}, we get

|f1(y) + f2(y)− (f1(x) + f2(x))− (f ′1(x) + f ′2(x))(y − x)|
≤ |f1(y)− f1(x)− f ′1(x)(y − x)|+ |f2(y)− f2(x)− f ′2(x)(y − x)|

≤ ε

2 · |y − x|+
ε

2 · |y − x| = ε · |y − x|.

It follows that f1 + f2 is differentiable on I with derivative f ′1 + f ′2 and
modulus of differentiablity δ.
(b) Since f1, f2 and f ′2 are continuous and I is compact, their suprema and
infima on I exist. Therefore we can define M := max{max{|f1(x)| : x ∈
I},max{|f2(x)| : x ∈ I},max{|f ′2(x)| : x ∈ I}}. Then if x, y ∈ I and
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|y − x| ≤ δ(ε) := min{δ1

(
ε

3M

)
, δ2

(
ε

3M

)
, w1

(
ε

3M

)
}, we have

|f1(y)f2(y)− f1(x)f2(x)− (f1(x)f ′2(x) + f2(x)f ′1(x))(y − x)|
= |f1(y)f2(y)− f1(y)f2(x)− f1(y)f ′2(x)(y − x) + f1(y)f ′2(x)(y − x)
−f1(x)f ′2(x)(y − x) + f2(x)f1(y)− f2(x)f1(x)− f2(x)f ′1(x)(y − x)|
≤ |f1(y)||f2(y)− f2(x)− f ′2(x)(y − x)|+ |f1(y)− f1(x)||f ′2(x)||y − x|

+|f2(x)||f1(y)− f1(x)− f ′1(x)(y − x)|

≤ |f1(y)| · ε

3M · |y − x|+ |f
′
2(x)| · ε

3M · |y − x|+ |f2(x)| · ε

3M · |y − x|

≤M · ε

3M · |y − x|+M · ε

3M · |y − x|+M · ε

3M · |y − x|

= ε · |y − x|.

(c) Let M := max{max{|f−1
1 (x)| : x ∈ I},max{|f ′1(x)| : x ∈ I}}. Then

whenever x, y ∈ I and |y − x| ≤ δ(ε) := min{δ1

(
ε

2M2

)
, w1

(
ε

2M4

)
}, we have

|f−1
1 (y)− f−1

1 (x) + f−2
1 f ′1(x)(y − x)|

= |f−1
1 (x)− f−1

1 (y)− f−2
1 f ′1(x)(y − x)|

= |f−1
1 (x)f−1

1 (y)f1(y)− f−1
1 (x)f−1

1 (y)f1(x)
−f−1

1 (x)f−1
1 (y)f1(y)f−1

1 (x)f ′1(x)(y − x)|
= |f−1

1 (x)f−1
1 (y)||f1(y)− f1(x)− f1(y)f−1

1 (x)f ′1(x)(y − x)|
≤M2|f1(y)− f1(x)− f ′1(x)(y − x)

+f ′1(x)(y − x)− f ′1(x)f−1
1 (x)f1(y)(y − x)|

≤M2|f1(y)− f1(x)− f ′1(x)(y − x)|
+M2|f ′1(x)f−1

1 (x)f1(y)(y − x)− f ′1(x)(y − x)|
= M2|f1(y)− f1(x)− f ′1(x)(y − x)|+M2|f ′1(x)f−1

1 (x)||f1(y)− f1(x)||y − x|

≤M2 · ε

2M2 · |y − x|+M2M2 · ε

2M4 · |y − x| = ε · |y − x|.

(d) Let I be an arbitrary compact interval in R. Then for all x,y in I and
|y − x| ≤ δ(ε) := ε, we have

|y − x− 1(y − x)| = 0 ≤ ε · |y − x|.
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Since I was arbitrary, it follows the function x→ x is differentiable on R.
(e) Let I be again an arbitrary compact interval in R. Then if x,y in I and
|y − x| ≤ δ(ε) := ε , we get

|c− c− 0(y − x)| = 0 ≤ ε · |y − x|.

Corollary 3. For all positive integers n,

dxn

dx
= nxn−1.

Theorem 8. Let f : I → R and g : J → R be differentiable functions such
that f maps every compact subinterval of I into some compact subinterval of
J. Then g ◦ f is differentiable, and (g ◦ f)′ = (g′ ◦ f)f ′.

The following theorem is a counterpart to Rolle’s theorem. In the proof
it is particularly well recognizable, which characteristics one must consider
when proving constructively. In this case, this stems mainly from the fact,
that we can’t compare arbitrary real numbers.

Theorem 9. Let f be differentiable on the interval [a, b], and let f(a) = f(b).
Then for each ε > 0 there exists x in [a, b] with

|f ′(x)| ≤ ε

Proof. Since f is differentiable, we know that f ′ is continuous on [a, b]. We
take w to be a modulus of continuity of f ′ on [a, b] and we take δ to be a
modulus of differentiability of f on [a, b]. We choose x0, . . . , xn ∈ R such that

a = x0 < x1 < . . . < xn = b and xi+1 − xi ≤ min{δ
(
ε

2

)
, w

(
ε

2

)
}

for all i (0 ≤ i ≤ n− 1). Then we have

f(xi+1)− f(xi) = f ′(xi)(xi+1 − xi) + f(xi+1)− f(xi)− f ′(xi)(xi+1 − xi)

≤
(
f ′(xi) + ε

2

)
|xi+1 − xi| < (f ′(xi) + ε)|xi+1 − xi|
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for all i in {0, . . . , n− 1} and therefore it is

0 = f(b)− f(a) =
n−1∑
i=0

f(xi+1)− f(xi) <
n−1∑
i=0

(f ′(xi) + ε)|xi+1 − xi|.

If we apply Proposition 1, we get that f ′(xi) > −ε for at least one value of i.
Furthermore, we have

f(xi)− f(xi+1) = f(xi)− f(xi+1)− f ′(xi+1)(xi − xi+1) + f ′(xi+1)(xi − xi+1)

≤ ε

2 · |xi − xi+1|+ f ′(xi+1)(xi − xi+1)

< ε · |xi − xi+1|+ f ′(xi+1)(xi − xi+1)
= ε · |xi − xi+1| − f ′(xi+1)|xi − xi+1|
= (ε− f ′(xi+1))|xi − xi+1|

for all i in {0, ..., n− 1} and therefore, we have

0 = f(a)− f(b) =
n−1∑
i=0

f(xi)− f(xi+1) <
n−1∑
i=0

(ε− f ′(xi+1))|xi − xi+1|.

Applying Proposition 1 again, we get that f ′(xi) < ε for at least one value of
i. By the Corollary to Proposition 1 and since ε

2 < ε, it is either |f ′(xi)| < ε
or |f ′(xi)| > ε

2 for all i (0 ≤ i ≤ n). If |f ′(xi)| < ε for some i, we are
done. Therefore, let us consider the case in which |f ′(xi)| > ε

2 for all i. Since
|xi+1−xi| ≤ w( ε2), the continuity of f implies |f ′(xi+1)−f ′(xi)| ≤ ε

2 and thus
we obtain that the quantities f ′(xi+1) and f ′(xi) are either both positive or
both negative. This must then obviously apply to all i. As f ′(xi) > −ε for
at least one value of i and f ′(xi) < ε for at least one value of i, we get that
0 < |f ′(xi)| < ε for at least one value of i.

Definition 16. Let f, f (1), f (2), . . . , f (n) be differentiable functions on an in-
terval I with Df = f (1), Df (1) = f (2), . . . , Df (n−1) = f (n) on I. Then f (n) is
called the nth derivative of f on I and written D(n)f , or simply f (n), and f
is said to be n times differentiable on I. The function f itself may be written
f (0) or D0f .

Definition 17. If f is an n times differentiable function on an Interval I,
and a is a point in I, then we call

n∑
k=0

f (k)(a)
k! (x− a)k
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the nth Taylor polynomial for f about a and for a given value b

R := f(b)−
n∑
k=0

f (k)(a)
k! (b− a)k

is called the remainder term. If f is infinitely differentiable on an open in-
terval I = (a− x, a+ x), then for t ∈ I we call

∞∑
n=0

f (n)(a)
n! (t− a)n

the Taylor series for f about a.

On the basis of the following theorem we see one more time that difficul-
ties stem from the fact that in constructive analysis in contrast to classical
analysis arbitrary real numbers can not be compared.

Theorem 10. Let f be an (n+1) times differentiable function on an interval
I. Let ε be a positive constant, and let a and b be points of I. Then there
exists c, with min{a, b} ≤ c ≤ max{a, b}, such that∣∣∣∣∣R− f (n+1)(c)

n! (b− c)n(b− a)
∣∣∣∣∣ ≤ ε,

where R represents the remainder term from the deinition above.

Proof. We start our proof by defining

M := 1 + max
{∣∣∣∣∣f (1)(a)

1!

∣∣∣∣∣,
∣∣∣∣∣f (2)(a)

2!

∣∣∣∣∣, · · · ,
∣∣∣∣∣f (n)(a)

n!

∣∣∣∣∣
}

and δ such that

0 < δ < min
{

1, ε

2nM ,w

(
ε

2

)}
,

where w is a modulus of continuity for f on [min{a, b},max{a, b}]. By the
Corollary of Proposition 1, it is either 0 < |a − b| or |a − b| < δ. We can
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therefore distinguish between these two cases. First suppose |a − b| < δ. If
we set c := b, we get

|R| =
∣∣∣f(b)− f(a)−

n∑
k=1

f (k)(a)
k! (b− a)k

∣∣∣
≤ |f(b)− f(a)|+

n∑
k=1

∣∣∣∣∣f (k)(a)
k!

∣∣∣∣∣ · |b− a|k
≤ ε

2 +M
n∑
k=1

δk <
ε

2 +M
n∑
k=1

ε

2nM = ε.

Now suppose that 0 < |a− b|. We consider the function

g(x) := f(b)− f(x)− f ′(x)
1! (b− x)− f ′′(x)

2! (b− x)2 − . . .

−f
(n)(x)
n! (b− x)n −R(b− x)(b− a)−1.

It follows immediately that g(a) = g(b) = 0. The function g is differentiable
on I as a composition of differentiable functions on I and we get

g′(x) = −f ′(x) + f ′(x)− f ′′(x)(b− x) + f ′′(x)(b− x)− . . .

+ f (n)(x)
(n− 1)!(b− x)n−1 − f (n+1)(x)

n! (b− x)n +R(b− a)−1

= −f
(n+1)

n! (b− x)n +R(b− a)−1.

By Rolle’s theorem, we know that for each ε > 0 there exists c with min{a, b} ≤
c ≤ max{a, b} and |g′(c)| ≤ ε. Since g is differentiable on [min{a, b} max{a, b}]
and g(a) = g(b), we can apply Rolle’s theorem

|g′(c)| =
∣∣∣− f (n+1)

n! (b− c)n +R(b− a)−1
∣∣∣ ≤ ε|b− a|−1

⇔
∣∣∣R− f (n+1)

n! (b− c)n(b− a)
∣∣∣ ≤ ε

and have thus finished our proof.
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3 Metric Spaces

3.1 Fundamental Definitions and Constructions
Definition 18. A metric on a set X is a function d : X×X → R+

0 such that
(a) d(x, y) = 0 if and only if x = y
(b) d(x, y) = d(y, x)
(c) d(x, y) ≤ d(x, z) + d(z, y)
Elements x and y of X are unequal, x 6= y, if and only if d(x, y) > 0. A set X
which is endowed with a metric is called a metric space. The most important
example of a metric space is the set of real numbers, metrized by defining
d(x, y) := |x− y|.
Definition 19. Let {(Xn, dn)} be a sequence of metric spaces, each bounded
by 1, i.e. dn(xn, yn) ≤ 1 for all xn, yn ∈ Xn. The product metric d on
X := ∏∞

n=1 Xn is defined by

d({xn}, {yn}) :=
∞∏
n=1

2−ndn(xn, yn)

for all {xn}, {yn} ∈ X.
Proposition 7. Let (X, d) be a metric space. Let h : R+

0 → R+
0 satisfy the

conditions
(i) h(u) = 0 if and only if u = 0
(ii) h(u+ v) ≤ h(u) + h(v) for all u, v ∈ R+

0 .
Then d′ := h ◦ d is a metric on X.
Proof. We show that d’ satisfies the metric properties from Definition 18.
(a) Because of (i) and the metric properties of d, it is

(h ◦ d)(x, y) = h(d(x, y)) = 0⇔ d(x, y) = 0⇔ x = y.

(b) Since d is a metric, we have

(h ◦ d)(x, y) = h(d(x, y)) = h(d(y, x)) = (h ◦ d)(y, x).

(c) Let c ∈ R+
0 such that d(x, y) + c = d(x, z) + d(z, y), then by (ii) we get

(h ◦ d)(x, y) = h(d(x, y)) ≤ h(d(x, y) + c)− h(c) ≤ h(d(x, y) + c)
= h(d(x, z) + d(z, y)) ≤ h(d(x, z)) + h(d(z, y))
= (h ◦ d)(x, z) + (h ◦ d)(z, y).
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Corollary 4. If d is any metric on a set X, then the function d′ defined by

d′(x, y) := min{d(x, y), 1}

for all x, y ∈ X is a bounded metric on X.
Proof. Obviously d′ is bounded on X. We show that d′ is a metric on X. It is

min{d(x, y), 1} = 1
2(d(x, y) + 1− |d(x, y)− 1|) = g(d(x, y)),

where g : R+
0 → R+

0 is a function given by g(x) := 1
2(x+ 1− |x− 1|). It now

suffices to show that g satisifies the conditons (i) and (ii) from Proposition
6. We see immediately that g(0) = 0. Futhermore we have

0 = g(x) = 1
2(x+ 1− |x− 1|)⇒ |x− 1| = x+ 1

Because |x − 1| = max{x − 1,−(x − 1)}, it is either |x − 1| = x − 1 or
|x− 1| = −(x− 1). But since x− 1 6= x+ 1 and −(x− 1) = x+ 1⇒ x = 0,
it follows from h(x) = 0, that x = 0. Furthermore

h(u+ v) = 1
2(u+ v + 1− |u+ v − 1|) = 1

2(u+ v + 1− |u− 1 + v − 1 + 1|)

≤ 1
2(u+ v + 1− |u− 1| − |v − 1|+ 1) = h(u) + h(v).

Thus d’ is a metric on X.

We will assume from now on that whenever we deal with a sequence of
metric spaces each space is bounded by 1.
Definition 20. A function f : X1 → X2 from a metric space (X1, d1) to a
metric space (X2, d2) is uniformly continuous if there exists w : R+ → R+

such that for all x, y ∈ X1 and for all ε ∈ R+

d1(x, y) ≤ w(ε)⇒ d2(f(x), f(y)) ≤ ε.

The function w is called a modulus of continuity of f on X1.
Example 2. Let X be an arbitrary metric space and consider the function
x → d(x, x0). Let x, y ∈ X. As the metric properties imply that d(x, x0) ≤
d(x, y) + d(y, x0), we get

|d(x, x0)− d(y, x0)| ≤ d(x, y) ≤ ε,

if d(x, y) ≤ ε. Therefore the function x→ d(x, x0) is uniformely continuous
with modulus of continuity ε→ ε.

23



Example 3. Let (X, d) be the product of sequence of metric spaces
{(Xn, dn)}∞n=1. Let x := {xn}, y := {yn} ∈ X and for each n ∈ Z+ let
πn(x) := xn. If ∑∞k=1 2−kd(xk, yk) ≤ 2−nε, then we have 2−nd(xn, yn) ≤ 2−nε
and thus d(xn, yn) ≤ ε. So we have shown that πn is uniformly continuous
with modulus of continuity ε→ 2−nε.
Definition 21. A sequence {fn} of functions from a set X1 to a metric space
X2 converges uniformly to a function f : X1 → X2 if for each ε > 0 there
exists Nε in Z+ such that for all x ∈ X1 and n ≥ Nε

d(fn(x), f(x)) ≤ ε.

Proposition 8. The sum f + g and product fg of uniformly continuous
functions f : X → R and g : X → R are uniformly continuous, and f−1

is uniformly continuous if |f(x)| ≥ c for all x in X and some c > 0. The
composition f2◦f1 of uniformly continuous functions f1 : X1 → X2, f2 : X2 →
X3 is uniformly continuous. The limit f : X1 → X2 of a uniformly convergent
sequence {fn} of uniformly continuous functions from a metric space X1 to
a metric space X2 is uniformly continuous.
Definition 22. A sequence {xn} of elements of a metric space X converges
to an element x of X, written either lim

n→∞
xn = x or xn → x as n→∞ if

lim
n→∞

d(xn, x) = 0

Definition 23. Let X be a metric space. A subset Y of X is closed if and
only if it contains all points that are limits of sequences of points of Y. The
closure of a subset Y of X consists of all y in Y and of all x in X that are
limits of sequences of points of Y and can be written as

Y := {x ∈ X : ∀ε > 0 ∃y ∈ Y : d(x, y) ≤ ε}.

A subset Y of X is dense in X if its closure is X.

3.2 Compactness
Definition 24. A Cauchy sequence {xn} of elements of a metric space X is
a sequence such that for each ε > 0 there exists a positive integer Nε with

d(xm, xn) ≤ ε

for all m,n ≥ Nε. The metric space X is called complete if every Cauchy
sequence converges.
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Theorem 11. The product (X, d) of a sequence {(Xn, dn)} of complete met-
ric spaces is complete.

Proof. As mentioned earlier we assume that the (Xn, dn) are bounded by 1
for all n. Let {xk}, where for each n it is xk := {xkn}∞n=1 with xkn ∈ Xn, be a
Cauchy sequence of elements of X. We show that {xk} converges. Let n ∈ Z+

and ε > 0. We begin by showing that {xkn}∞k=1 is a Cauchy sequence. Since
{xk} ∈ X is a Cauchy sequence, we can choose N ∈ Z+ such that for all
k, j ≥ N get d(xk, xj) ≤ ε

2n . Then we have

dn(xkn, xjn) ≤ 2n
∞∑
i=1

2−idi(xki , x
j
i ) = 2nd(xk, xj) ≤ 2n · ε2n = ε

for all k, j ≥ N .
Since (Xn, dn) is complete for each n, the Cauchy sequence {xkn}∞k=1 converges
to a point x0

n ∈ Xn. We are now ready to show that {xk} converges to the
point x0 := {x0

n}∞n=1 ∈ X. Since lim
k→∞

dn(xkn, x0
n) = 0, we get for k sufficiently

large and arbitrary N ∈ Z+ that

d(xk, x0) =
N∑
n=1

2−ndn(xkn, x0
n) +

∞∑
n=N+1

2−ndn(xkn, x0
n)

≤
N∑
n=1

2−ndn(xkn, x0
n) +

∞∑
n=N+1

2−n

=
N∑
n=1

2−ndn(xkn, x0
n) +

(
1−

N∑
n=1

2−n
)

=
N∑
n=1

2−ndn(xkn, x0
n) +

(
1−

(
1− 2−(N+1)

2−1 − 1
))

=
N∑
n=1

2−ndn(xkn, x0
n) + 2−N ≤ 2−N + 2−N = 2−N+1,

where we used the geometric series and the fact that ∑∞n=1 2−n = 1. Since N
was arbitrary we are done.

Definition 25. A metric space X is totally bounded if for each ε > 0 there
exists a finite subset {x1, . . . , xn} (where n is a positive integer depending on
ε) of X, called an ε approximation to X, such that for each x in X at least
one of the numbers d(x, x1), . . . , d(x, xn) is less than ε.
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The definition in constructive analysis differs from that in classical anal-
ysis, according to which a set is compact if each open cover has a finite
subcover. In contrast, we define compactness via the properties of total
boundness and completeness.

Definition 26. A compact metric space, or simply a compact space, is a
metric space which is complete and totally bounded.

Proposition 9. The product of a sequence of compact spaces is compact.

Proof. We have already shown that the product of a sequence of complete
metric spaces is complete. It can easily be seen, that the product of a se-
quence of totally bounded metric spaces is totally bounded.

Proposition 10. The image f(X) of a totally bounded metric space X under
a uniformly continuous function f : X → Y is totally bounded.

Proof. Let ε > 0 and let w be a modulus of continuity for f. Since X is totally
bounded, there exists a finite subset {x1, · · · , xn} of X, such that for each
x ∈ X at least one of the numbers d(x, x1), . . . , d(x, xn) is less than w( ε2).
Due to the continuity of f, it follows that

d(f(x), f(xi)) ≤
ε

2 < ε

for at least one value of i ∈ {1, . . . , n}. Therefore {f(x1), . . . , f(xn)} is an ε
approximation to f(X) and thus f(X) is totally bounded.

Corollary 5. Let f : X → R be a uniformly continuous function on a totally
bounded metric space X. Then the least upper bound and greatest lower bound
of the subset f(X) of R, called respectively the supremum or sup and the
infimum or inf of f on X, and written sup{f(x) : x ∈ X} and inf{f(x) : x ∈
X}, exist.

Proof. We just showed that f(X) is totally bounded. Since we know that on
a totally bounded set the least upper bound and the greatest lower bound
exist, the Corollary follows.

Definition 27. For each compact space X and each metric space Y, we shall
use C(X, Y ) to denote the set of all (uniformly) continuous functions from
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X to Y. For C(X,R) we write simply C(X). The metric d on C(X, Y ) is
defined by

d(f, g) := sup{d(f(x), g(x)) : x ∈ X}

for f, g ∈ C(X, Y ). In case Y = R, the metric d is related to the norm

‖f‖ := sup{|f(x)| : x ∈ X}

on C(X) by the equality

d(f, g) := ‖f − g‖

for f, g ∈ C(X).

4 The constructive Stone-Weierstrass theo-
rem

4.1 Groundwork for the Stone-Weierstrass theorem
We now turn to the Stone-Weierstrass theorem, but for this we need some
groundwork first. Lemma 3 will be proved in the following, in contrast to
the explanations of Bishop, very detailed.

Definition 28. A polynomial (of degree N in n variables) is a function
p : Rn → R of the form

p(x1, . . . , xn) =
∑

0≤i1+...+in≤N
ai1···inx

i1
1 · · ·xinn

If p(0) = 0, the polynomial p is strict.

Lemma 3. For each ε > 0 there exists a strict polynomial p : R → R such
that for all x ∈ R with |x| ≤ 1 ∣∣∣|x| − p(x)

∣∣∣ ≤ ε

Proof. In order to prove our Lemma, let us first consider the function f defined
by

f : (−1, 1)→ R, t→ (1− t) 1
2
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To determine the Taylor series from f about 0, we need the nth derivative of
f. We therefore examine the following examples:

f (1)(t) = (−1)1 · 1
2 · (1− t)

− 1
2

f (2)(t) = (−1)2 · 1
2 · −

1
2 · (1− t)

− 3
2

f (3)(t) = (−1)3 · 1
2 · −

1
2 · −

3
2 · (1− t)

− 5
2

So we can assume that

f (n)(t) = (−1)n ·
(

n∏
i=1

3− 2i
2

)
· (1− t) 1

2−n (3)

= −(2)n ·
(

n∏
i=2

2i− 3
)
· (1− t) 1

2−n

We proof our assertion by induction. We have already shown the case n=1.
We assume (1) is true for a fixed n ∈ Z+ and we show that (1) must be true
for n+ 1 as well.

f (n+1)(t) = (f (n)(t))′ = (−1)n ·
n∏
i=1

(
3− 2i

2

)
· ((1− t) 1

2−n)′

= (−1)n ·
n∏
i=1

(
3− 2i

2

)
·
(

1
2 − n

)
· (1− t) 1

2−n−1 · (−1)

= (−1)n+1 ·
n∏
i=1

(
3− 2i

2

)
·
(

3− 2(n+ 1)
2

)
· (1− t) 1

2−(n+1)

= f (n+1)(t)

Therefore the Taylor series for f about 0 is given by
∞∑
n=0

f(n)(0)
n! (t− 0)n = 1−

∞∑
n=1

(2nn!)−1
(

n∏
i=2

2i− 3
)
tn. (4)

We will show that this series converges to (1 − t) 1
2 . To this end, we first

define

RN := (1− t) 1
2 − 1 +

N∑
n=1

(2nn!)−1
(

n∏
i=2

2i− 3
)
tn,
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where RN is the associated remainder term to the Nth taylor polynomial.
By Taylor’s theorem, we know that for each ε > 0 there exists c such that
min{0, t} ≤ c ≤ max{0, t} and∣∣∣∣∣RN −

f (N+1)(c)
N ! (t− c)N t

∣∣∣∣∣ ≤ ε.

Since the set {c ∈ R : min{0, t} ≤ c ≤ max{0, t}} is compact,

m := inf

{∣∣∣∣∣RN −
f (N+1)(c)

N ! (t− c)N t
∣∣∣∣∣ : min{0, t} ≤ c ≤ max{0, t}

}

exists. Since ε is an arbitrary positive number, it is m = 0. Therefore we
know that there exists c in [min{0, t},max{0, t}] such that

RN = f (N+1)(c)
N ! (t− c)N t = −(2N+1N !)−1

(
N+1∏
i=2

2i− 3
)

(1− c) 1
2−N(t− c)N t.

Hence

|RN | = (2N+1N !)−1
(
N+1∏
n=2

2n− 3
)
|t(1− c) 1

2 | · |(t− c)(1− c)−1|N

≤ |t(1 + |t|)| 12 (2N+1N !)−1
(
N+1∏
n=2

2n− 3
)
· |(t− c)(1− c)−1|N .

It is easily seen that for all n ∈ Z+, it is

(2n+1n!)−1
(
n+1∏
n=2

2n− 3
)
≤ (2n

(
(n− 1)!)

)−1
(

n∏
n=2

2n− 3
)
.

Thus by the ratio test, it follows that if |x| < 1 the series

∞∑
n=1

(2n+1n!)−1
(
n+1∏
n=2

2n− 3
)
xn

converges and with that we have (for |x| < 1)

lim
n→∞

(2n+1n!)−1
(
n+1∏
n=2

2n− 3
)
xn = 0.
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For t ∈ (−1, 1) the term |t(1 + |t|)| 12 is is obviously bounded and futhermore
we have ∣∣∣∣∣ t− c1− c

∣∣∣∣∣ < 1 (c ∈ [min{0, t},max{0, t}]).

Together we now get lim
N→∞

RN = 0 and have finally shown that the Taylor
series from (2) converges to f on (−1, 1). We now show that this is also the
case on [−1, 1]. It holds for |t| < 1, that

∞∑
n=1

(2nn!)−1
(

n∏
i=2

2i− 3
)
tn ≤

∞∑
n=1

(2nn!)−1
(

n∏
i=2

2i− 3
)

(5)

If we apply Raabe’s test, we get that (3) converges, as

lim
n→∞

n

(∏n
k=2 2k − 3
2n · n! · 2n+1 · (n+ 1)!∏n+1

k=2 2k − 3
− 1

)
= 3

2 > 1.

Thus our Taylor series from (2) must also converge to a continuous function
on [−1, 1]. For reasons of continuity, this function must be f again.
We have therefore shown, that for all t ∈ [−1, 1] and all ε > 0 for some N it
is

|(1− t) 1
2 − g(t)| ≤ ε

2 ,

where

g(t) = 1−
N∑
n=1

(2nn!)−1
(

n∏
i=2

2i− 3
)
tN .

It follows for all ε > 0 and |x| ≤ 1, that there exists N such that∣∣∣|x| − g(1− x2)
∣∣∣ =

∣∣∣(1− (1− x2)) 1
2 − g(1− x2)

∣∣∣ ≤ ε

2 .

Because g(1− x2) is not a strict polynomial, we define

p(x) := g(1− x2)− g(1).

Then p is strict, since p(0) = g(1)− g(1) = 0 and since g(1) converges to 0,
we have for all ε > 0 and |x| ≤ 1∣∣∣|x| − p(x)

∣∣∣ =
∣∣∣|x| − g(1− x2) + g(1)

∣∣∣ ≤ ∣∣∣|x| − g(1− x2)
∣∣∣+ g(1) ≤ ε

2 + ε

2 = ε

for some N.
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Definition 29. Let G be a family of real-valued functions on a set X. Then
U(G) is the family of all real-valued functions f on X of the form

f := p ◦ g =
∑

0≤i1+...+in≤N
ai1·····ing1(x)i1 · · · · · gn(x)in ,

where p : Rn → R is a strict polynomial and where g : X → Rn has the form

g(x) := (g1(x), · · · , gn(x))

for some g1 · · · , gn in G.

Theorem 12. U(G) is the smallest family of real-valued functions on X in-
cluding G and closed with respect to the operations of addition, multiplication,
and multiplication by real numbers.

Proof. First we show that U(G) includes G and that U(G) is closed with
respect to the operations of addition, multiplication, and multiplication by
real numbers. To this end, first note that G ⊆ U(G), since for every g ∈ G
we have (p ◦ g)(x) = g(x), if p is given by p : R → R, p(x) := x. It then
also holds that p(0) = 0 and therefore p is a strict polynomial and it follows
that every g in G is also in U(G). Take f1, f2 ∈ U(G). It is easily seen that
the sum and product of f1 and f2 must be of the form f = p ◦ g, where p
is a polynomial and g is again as in the definition above. Furthermore, if
p is the polynomial associated with the sum of f1 + f2 and p1 and p2 are
the polynomials associated with f1 and f2, then p(0) = 0 must apply, since
p(0) = p1(0) + p2(0) = 0 + 0 = 0 and analogously, if p is the polynomial
associated with the product of f1 · f2, then p(0) = p1(0) · p2(0) = 0 · 0 = 0
holds. It therefore follows that f1 +f2 and f1 ·f2 are in U(G). Take f ∈ U(G)
and k to be a real number. Then

(kf)(x) = (k(p ◦ g))(x) = k(p(g(x))) = (kp)g(x) = ((kp) ◦ g)(x)

and since (kp)(0) = k · p(0) = k · 0 = 0, we have kf ∈ U(G).
Now consider the function

f := p ◦ g =
∑

0≤i1+···+in≤N
ai1·····ing1(x)i1 · · · · · gn(x)in .

Since the function f is the result of finite multiplication and addition of
functions of G and their multiplication with real numbers, it follows that
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each family of real-valued functions on X, which includes G and is closed
with respect to the operations of addition, multiplication, and multiplication
by real numbers, must contain f. Therefore U(G) is the smallest of such
families.
Theorem 13. If U(G) is closed with respect to the operations of addition,
multiplication, and multiplication by real numbers, then so is U(G).
Proof. First we remember that on a compact set X for every continuous
function f : X → R the supremum sup{f(x) : x ∈ X} exists. Let ε > 0. Let
f1, f2 ∈ U(G), g1, g2 ∈ U(G) such that sup{|fi(x) − gi(x)| : x ∈ X} < ε

2 for
i ∈ {1, 2} and define g := g1 +g2 ∈ U(G) and f := f1 +f2. From the obvious
properties of the supremum then follows

sup{|f(x)− g(x)| : x ∈ X}
= sup{|f1(x) + f2(x)− g1(x)− g2(x)| : x ∈ X}
≤ sup{|f1(x)− g1(x)|+ |f2(x)− g2(x)| : x ∈ X}

≤ sup{|f1(x)− g1(x)| : x ∈ X}+ sup{|f2(x)− g2(x)| : x ∈ X} < ε

2 + ε

2 = ε

and therefore we have f ∈ U(G).

Let f ∈ U(G) and let g ∈ U(G) such that sup{|f(x) − g(x)| : x ∈ X} <
ε

2M , where M := max{sup{|f(x)| : x ∈ X}, sup{|g(x)| : x ∈ X}}. Then it is
g2 ∈ U(G) and we get

sup{|f 2(x)− g2(x)| : x ∈ X}
= sup{|f(x)− g(x)| · |f(x) + g(x)| : x ∈ X}
≤ sup{|f(x)− g(x)| : x ∈ X} · sup{|f(x) + g(x)| : x ∈ X}

<
ε

2M · (sup{|f(x)| : x ∈ X}+ sup{|g(x)| : x ∈ X}) ≤ ε

2M · 2M = ε.

and therefore f 2 ∈ U(G).

Let f ∈ U(G), α ∈ R and let g ∈ U(G) such that sup{|f(x)− g(x)| : x ∈
X} < ε

|α| . Then it is αg ∈ U(G) and we have

sup{|(αf)(x)− (αg)(x)| : x ∈ X}
= sup{|α| · |f(x)− g(x)| : x ∈ X}

= |α| · sup{|f(x)− g(x)| : x ∈ X} < |α| · ε
|α|

= ε.
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and therfore it is αf ∈ U(G).

Since fg = 1
2((f + g)2 − f 2 − g2), it follows fg ∈ U(G) whenever f, g ∈

U(G).

Lemma 4. Let G be any family of continuous functions on a compact space
X. Let f and g be any functions belonging to the closure H of U(G) in C(X).
Then |f |, max{f, g} and min{f, g} also belong to H.

Proof. Because of the last two theorems, it is H = U(H). We choose c > 0
such that

‖cf‖ = sup{|cf(x)| : x ∈ X} = c · sup{|f(x)| : x ∈ X} ≤ 1.

This is possible, since X is compact and thus sup{|f(x)| : x ∈ X} exists. We
can now insert cf into the statement of Lemma 3 and obtain for all ε > 0
and all x ∈ X ∣∣∣|cf(x)| − p(cf(x))

∣∣∣ ≤ ε,

where p is a strict polynomial function defined as in Lemma 3. Since H is
closed and p ◦ (cf) ∈ H, we get |cf | ∈ H. Now it follows from |cf | ∈ H, that
|1
c
||cf | = |f | ∈ H and thus

max{f, g} = 1
2

(
f + g + |f − g|

)
∈ H

min{f, g} = 1
2

(
f + g − |f − g|

)
∈ H

Definition 30. Let X be a compact space. A family G ⊂ C(X) is separating
if there exists a function δ : R+ → R+

such that (Sep1) whenever ε > 0, x, y ∈ X, and d(x, y) ≥ ε there exists g in
G satisfying for all z ∈ X

d(x, z) ≤ δ(ε)⇒ |g(z)| ≤ ε and

d(y, z) ≤ δ(ε)⇒ |g(z)− 1| ≤ ε

and such that (Sep2) whenever ε > 0 and y ∈ X there exists g such that for
all z ∈ X

d(y, z) ≤ δ(ε)⇒ |g(z)− 1| ≤ ε.
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Lemma 5. Let G be a separating family of continuous functions on a compact
space X, and let H be the closure of U(G) in C(X). Let h be a function in
H with c := inf{|h(x)| : x ∈ X} > 0. Then h−1 ∈ H.

Proof. We define

λ := h2

(sup{|h(x)| : x ∈ X})2 .

Then

c2

‖h‖2 = (inf{|h(x)| : x ∈ X})2

(sup{|h(x)| : x ∈ X})2 ≤
h2

(sup{|h(x)| : x ∈ X})2 = λ ≤ 1

and therefore

‖1− λ‖ = sup{|1− λ(x)| : x ∈ X} ≤ 1− c2‖h‖−2 < 1.

We define the series
∞∑
n=0

h(1− λ)n
‖h‖2 .

Using the geometric series, we get
∞∑
n=0

h(1− λ)n
‖h‖2 = h

‖h‖2

∞∑
n=0

(1− λ)n = h

‖h‖2 ·
1

1− (1− λ) = h−1.

Since every partial sum of the series is in H and H is closed, h−1 must also
be in H.

4.2 The Stone-Weierstrass theorem
Having presented the groundwork, we now turn to the core of the constructive
Stone-Weierstrass theorem.

Theorem 14. Let G be a seperating family of continuous functions on a
compact space X. Then U(G) is dense in C(X).

Proof. We want to show that U(G) = C(X). In order to show this, let H be
the closure of U(G) in C(X). As we have seen before, it is H = U(H). We
begin by proving 1 ∈ H. It suffices to construct a function h ∈ H such that

34



inf{|h(x)| : x ∈ X} > 0. Then by Lemma 5, we have h−1 ∈ H and therefore
h · h−1 = 1 ∈ H. For this purpose, let x1, . . . , xn be a δ(1

2) approximation to
X, i.e. for each x in X we have d(x, xi) < δ(1

2) for at least one i, where δ is
the operation of Definition 30. Let z ∈ X. Because of (Sep2) of Definition
30, we have that for each i (1 ≤ i ≤ n) with d(xi, z) ≤ δ(1

2) there exists gi in
G satisfying

|gi(z)− 1| ≤ 1
2 ⇔ |1− gi(z)| ≤ 1

2 ⇒ 1− gi(z) ≤ 1
2 ⇔ gi(z) ≥ 1

2
Because of Lemma 4, we know that h := max{g1, . . . , gn} ∈ H. Since
d(xi, z) < δ(1

2) for at least one i, it follows h(z) ≥ 1
2 > 0 and 1 ∈ H as

claimed.

To finish our proof, our next step will be to show that for each y in X
and each r with 0 < r ≤ 1

4 there exists λ ∈ H with 0 ≤ λ ≤ 1 such that
λ(z) = 1 whenever d(y, z) ≤ δ(r) and λ(z) = 0 whenever d(y, z) ≥ 3r. For
this purpose, let y be an arbitrary point in X and let r be an arbitrary point
satisfying 0 < r ≤ 1

4 . Let {x1, . . . , xn} be a c := min{r, δ(r)} approxima-
tion to X, where δ is given by Definition 30 as before. Futhermore, let S be
the set of all i (1 ≤ i ≤ n) with d(xi, y) > r and let T be the set of all i
(1 ≤ i ≤ n) with d(xi, y) < 2r. Then the set {1, . . . , n} is apparently the
union of the finite sets S and T. Because of (Sep1) of Definition 30, we have
that for each i in S there exists gi in G such that in case d(xi, z) ≤ δ(r)
we have |gi(z)| ≤ r ⇒ gi(z) ≤ r ≤ 1

4 and in case d(y, z) ≤ δ(r) we have
|gi(z) − 1| ≤ r ⇔ |1 − gi(z)| ≤ r ⇒ 1 − gi(z) ≤ r ⇔ 3

4 ≤ 1 − r ≤ gi(z). For
each i in S we define

hi := min{1,max{0, 2gi −
1
2}}.

Then the following holds: hi ∈ H, 0 ≤ hi ≤ 1, hi(z) = 0 if d(xi, z) ≤ δ(r)
and hi(z) = 1 if d(y, z) ≤ δ(r). We further define

λ :=
∏
i∈S

hi.

It holds: λ ∈ H, 0 ≤ λ ≤ 1 and λ(z) = 1 if d(y, z) ≤ δ(r). We now consider
z in X with d(y, z) ≥ 3r and we choose i (1 ≤ i ≤ n) with d(xi, y) ≤ c ≤ r,
which is possible because {x1, · · · , xn} is a c approximation to X. Applying
the metric property d(y, z) ≤ d(xi, y) + d(xi, z), we get

d(xi, y) ≥ d(y, z)− d(xi, z) ≥ 3r − r = 2r.
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Hence, i ∈ S and since d(xi, z) ≤ c ≤ δ(r) it is λ(z) = hi(z) = 0 and we have
thus proven our desired result.

We are now sufficiently prepared to show that every f in C(X) is also in
H. Let w be a modulus of continuity of f. Let ε be an arbitrary positive
real number and we define r := min{1

4 ,
1
4w(ε)}. Let {y1, . . . , ym} be a δ(r)

approximation to X. As we have shown above, for each yj there exists λj in
H satisfying 0 ≤ λj ≤ 1, λj(z) = 1 in case d(yj, z) ≤ δ(r) and λj(z) = 0 in
case d(yj, z) ≥ 3r. We continue by defining

λ :=
m∑
j=1

λj.

We thus have λ ∈ H and λ ≥ 1, since for each z ∈ X we have d(yj, z) ≤ δ(r)
for at least one j and therefore λ(z) ≥ λj(z) ≥ 1. By Lemma 5, it follows
λ−1 ∈ H. Let g be given by

g :=
m∑
j=1

f(yj)λ−1λj.

Since the f(yj) (0 ≤ j ≤ m) are constant, it is g ∈ H. Let z ∈ X. It is
λj(z) = 0 if d(yj, z) ≥ 3r and because of the continuity we have |f(z) −
f(yj)| ≤ ε if d(yj, z) ≤ w(ε). Thus if we recognize that 3r ≤ 3

4w(ε) < w(ε)
we can conclude that

|f(z)− g(z)| =
∣∣∣ m∑
j=1

(f(z)− f(yj))λ−1(z)λj(z)
∣∣∣

≤
m∑
j=1
|f(z)− f(yj)|λ−1(z)λj(z) ≤

m∑
j=1

ελ−1(z)λj(z) = ε.

Since ε was arbitrary and H is closed, we finally get f ∈ H and have thus
completed our proof.
Corollary 6. Let {(Xn, dn)}∞n=1 be compact spaces, with product (X, d). Let
G be the set of all functions on X of the form

g := fn ◦ πn
where πn : X → Xn is the projection of X onto Xn and fn : Xn → R is
continuous. Then the set H of all h in C(X) of the form h = h1 + · · ·+ hn,
where each hi is a finite product of functions in G, is dense in C(X).
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Proof. Theorem 14 tells us that for each separating family G of continuous
functions in a compact space X, we have U(G) is dense in C(X). In Example
3 we have already seen that every projection πn : X → Xn is continuous and
since every fn is continuous by assumption, we get that every g in G is also
continuous. Since we have already seen that the space (X, d) is compact, to
apply Theorem 14 we only have to show that G is a separating family. To
this end, let ε > 0 and x := {xn}, y := {yn} be points of X with d(x, y) ≥ ε.
As the series ∑∞n=1 2−n = 1 converges, we can choose N ∈ Z+ satisfying∑∞
n=N+1 2−n < ε

2 . Using that for each n the metric dn is bounded by 1, we
estimate

N∑
n=1

2−ndn(xn, yn) >
N∑
n=1

2−ndn(xn, yn) +
∞∑

n=N+1
2−ndn(xn, yn)− ε

2

= d(x, y)− ε

2 ≥
ε

2 .

From this follows
N∑
n=1

2−ndn(xn, yn) >
(
ε

2

)
·
N∑
n=1

2−n ⇔
N∑
n=1

2−n
(
dn(xn, yn)− ε

2

)
> 0

⇒ dn(xn, yn)− ε

2 > 0⇔ dn(xn, yn) > ε

2

for some n with n ≤ N , where we used Proposition 1. We now define the
function

fn : Xn → R, zn →
dn(xn, zn)
dn(xn, yn) ,

which is continuous as we have seen in Example 2. Futhermore, we define
g := fn ◦ πn. Let z := {zn} ∈ X. If we have d(x, z) ≤ ε22−N−1, then

|g(z)| = |fn(zn)| =
∣∣∣∣∣dn(xn, zn)
dn(xn, yn)

∣∣∣∣∣ ≤ 2
ε
· dn(xn, zn)

≤ 2
ε
· 2n · d(x, z) ≤ 2

ε
· 2N · d(x, z) ≤ 2

ε
· 2N · ε22−N−1 = ε
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and if we have d(y, z) ≤ ε22−N−1, then

|g(z)− 1| = |fn(zn)− fn(yn)| =
∣∣∣∣∣dn(xn, zn)− dn(xn, yn)

dn(xn, yn)

∣∣∣∣∣
≤ 2
ε
· |dn(xn, zn)− dn(xn, yn)| ≤ 2

ε
· dn(yn, zn)

≤ 2
ε
· 2N · d(y, z) ≤ ε,

where we have used that dn(xn, zn) ≤ dn(xn, yn)+dn(yn, zn) holds, since dn is
a metric. So we showed that G satisfies (Sep1) of Definition 30 with δ(ε) :=
ε22−N−1. To show that δ also satiesfies (Sep2), let ε > 0 and y := {yn} ∈ X.
If we set g : X → R, g(z) = 1, then for all z ∈ X we get

d(y, z) ≤ δ(ε)⇒ |g(z)− 1| = 0 ≤ ε

and thus G is a separating family. It therefore follows that U(G) is dense
C(X).
H obviously includes G and is closed with respect to + and · . Since every
constant function from X to R is contained in G, it follows that H is also closed
with respect to multiplication by real numbers. If we consider a function of
the form

h = h1 + · · ·+ hn , hi = g1 · · · · · gn,

where m,n ∈ Z+,i ∈ {1, . . . , n} and g1, · · · , gn ∈ G, then we immediately see
that h must be an element of U(G). Together H = U(G) follows and thus H
is dense in C(X).

Corollary 7. Let X be a compact space with sup{d(x, y) : x, y ∈ X} > 0,
and let G consist of all functions x→ d(x, xo), with x0 ∈ X. Then U(G) is
dense in C(X).

Proof. We have already seen that x→ d(x, x0) is continuous for all x0 in X.
Thus every function in U(G) is also continuous as a composition of continu-
ous functions. We now show that U(G) is separating, because then follows
U(U(G)) = U(G) is dense in C(X).
To this end, let ε > 0 and x, y ∈ X with d(x, y) ≥ ε. We define the function
g in U(G) by

g(z) = d(x, z)
d(x, y) .
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Then if d(x, z) ≤ ε2, we have

|g(z)| =
∣∣∣∣∣d(x, z)
d(x, y)

∣∣∣∣∣ ≤ d(x, z)
ε
≤ ε2

ε
= ε

and if d(y, z) ≤ ε2, then we have

|g(z)− 1| =
∣∣∣∣∣d(x, z)− d(x, y)

d(x, y)

∣∣∣∣∣ ≤ |d(x, z)− d(x, y)|
ε

≤ d(y, z)
ε
≤ ε2,

where we have used that d(x, z) ≤ d(x, y) + d(y, z) holds, since d is a metric.
So we have shown that (Sep1) of Definition 30 holds for δ(ε) = ε2.

Now let again ε > 0, we still need to show that (Sep2) from Definition 30
also holds. To show this we will need some preparation. From Proposition 9
it follows that M := sup{d(x, y) : x, y ∈ X} exists, since X is compact and
the identity function from X to X is uniformly continuous. Let {x1, . . . , xn}
be a finite 1

7 ·M approximation to X. We suppose that there exists x ∈ X
such that d(x, xi) < 2

7 ·M for all i ∈ {1, . . . , n}. Futhermore let y, z ∈ X
and choose j, k ∈ {1, . . . , n} such that d(y, xj) < 1

7 ·M and d(z, xk) < 1
7 ·M .

Then

d(y, z) ≤ d(y, xj) + d(xj, x) + d(x, xk) + d(xk, z) <
6
7 ·M

holds, because of the metric properties. Now it follows that M ≤ 6
7 · M ,

which is a contradiction. We therefore can conclude that for every x ∈ X it
is d(x, xi) > 1

7 ·M for at least one i in {1, . . . , n}. If we define

g(z) := d(z, xi)
d(x, xi)

,

then g ∈ U(G) and if d(x, z) ≤ 1
7 ·Mε, we get

|g(z)− 1| =
∣∣∣∣∣d(z, xi)− d(x, xi)

d(x, xi)

∣∣∣∣∣ ≤ 7 · (|d(z, xi)− d(x, xi)|)
M

≤ 7 · d(x, z)
M

≤ ε.

It follows that U(G) is separating with δ(ε) := min{ε2, 1
7 ·Mε}.

An interesting aspect of the third Corollary that follows is that the special
case n = 1 andX = [−1, 1] is the famous Weierstrass approximation theorem.
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Corollary 8. Every continuous function f on a compact set X ⊂ Rn can be
arbitrarily closely approximated on X by polynomial functions p : Rn → R.

Proof. We prove the statement first for n = 1, so let X ⊂ R be compact.
We recall Lemma 3. We already know that for all x ∈ [−1, 1] the function
x → |x| can be arbitrarily closely approximated by polynomial functions.
Now consider a function of the form g : X → R, x → |x − x0| for x0 ∈ X.
Then g(X) is compact as g is uniformly continuous on X and since polynomial
functions are obviously closed with respect to multiplication by real numbers,
it follows that the function g can be arbitrarily closely approximated on X
by polynomial functions. Let G be the set of all functions of the form g.
Applying Corollary 8 follows then U(G) is dense in C(X) and thus we can
conclude that any function f ∈ C(X) can be arbitrarily closely approximated
on X by polynomial functions.
If we apply Corollary 7 to what has just been proved, the validity of the
statement also follows in the case X = [a, b]n for some compact interval
[a, b].
Let now X ⊂ Rn be an arbitrary compact interval. Then a compact interval
[a, b] exists such that X ⊂ [a, b]n. Since we know that each function x →
d(x, x0) with x0 ∈ [a, b]n can be arbitrarily closely approximated on [a, b]n
by polynomial functions, the statement follows also in the general case by
another application of Corollary 8.
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